JP2020068645A - Self-consumption type power generation control system and switchboard - Google Patents

Self-consumption type power generation control system and switchboard Download PDF

Info

Publication number
JP2020068645A
JP2020068645A JP2018219484A JP2018219484A JP2020068645A JP 2020068645 A JP2020068645 A JP 2020068645A JP 2018219484 A JP2018219484 A JP 2018219484A JP 2018219484 A JP2018219484 A JP 2018219484A JP 2020068645 A JP2020068645 A JP 2020068645A
Authority
JP
Japan
Prior art keywords
power
conditioner
transformer
relay
switchboard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018219484A
Other languages
Japanese (ja)
Other versions
JP6526305B1 (en
Inventor
正雄 本家
Masao Honke
正雄 本家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wave Energy Inc
Original Assignee
Wave Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wave Energy Inc filed Critical Wave Energy Inc
Application granted granted Critical
Publication of JP6526305B1 publication Critical patent/JP6526305B1/en
Publication of JP2020068645A publication Critical patent/JP2020068645A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

To provide a power generation control system and a switchboard, capable of achieving "simplification and improved accuracy of load power measurement" and "precise control of power conditioner", by controlling a power conditioner based on a sum of received power and generated power, and the like.SOLUTION: There is provided a power generation control system 1 including: a power conditioner 2 for converting a DC current or the like into an AC current; a power receiver 3 connected to the power conditioner 2, a system K, and a load F; and a controller 4 for controlling the power conditioner 2 and the power receiver 3. The controller 4 controls the power conditioner 2 based on a sum of received power J and generated power H. The controller also stops the conversion of the power conditioner 2 in a power shortage almost zero state S1, and may cut off any circuit breaker provided from the power conditioner 2 to the system K in a reverse power generation state S2, and the like, and may measure the generated power H by a generated output meter 11 that is provided between a transformer 10 and a branch point 8 to the load F. In addition, there are provided: a switchboard 50 provided with a circuit breaker 7, a transformer 10, a generated output meter 11, and the like; and a power receiving board 60 provided with a power receiver 3 and the like.SELECTED DRAWING: Figure 1

Description

本発明は、システム外部からの直流電流又は交流電流を交流電流に変換するパワーコンディショナと、パワーコンディショナと系統と負荷にそれぞれ接続された受電部と、パワーコンディショナ及び/又は受電部を制御する制御部を有した発電制御システムや、その他、配電盤、変圧器、受電盤に関する。   The present invention controls a power conditioner that converts a direct current or an alternating current from the outside of the system into an alternating current, a power receiving unit connected to the power conditioner, a grid, and a load, and a power conditioner and / or a power receiving unit. The present invention relates to a power generation control system having a control unit for controlling power distribution, a distribution board, a transformer, and a power receiving board.

従来、電力制御システムが知られている(特許文献1参照)。
この電力制御システムは、燃料と酸化剤との化学反応により発電する燃料電池と、自然エネルギーを利用して発電する発電装置と、電力を蓄える蓄電池と、を備えた電力供給源と、建物に配置された電力消費機器で消費される消費電力を検出する消費電力検出部と、前記建物に設けられ、前記燃料電池から前記電力消費機器へ供給する目標となる目標電力が設定され、前記消費電力検出部で検出された消費電力と前記目標電力とを比較し、前記燃料電池が発電する電力が前記目標電力となるように、前記電力供給源から前記電力消費機器へ供給される電力のうち前記燃料電池から供給される電力を優先して使用する制御を行う電力制御部と、を有する建物の電力制御システムである。
Conventionally, a power control system is known (see Patent Document 1).
This power control system includes a fuel cell that generates power by a chemical reaction between a fuel and an oxidant, a power generator that uses natural energy to generate power, and a storage battery that stores power, and a power supply source that is installed in a building. Power consumption detection unit that detects the power consumption consumed by the consumed power consumption device, and the target power that is provided in the building and that is a target to be supplied from the fuel cell to the power consumption device is set, and the power consumption detection is performed. Of the electric power supplied from the electric power supply source to the electric power consuming device so that the electric power generated by the fuel cell is the target electric power. A power control system for a building, comprising: a power control unit that controls to preferentially use power supplied from a battery.

特開2013−219932号公報JP, 2013-219932, A

しかしながら、特許文献1に記載された電力制御システムでは、その請求項1に「電力消費機器で消費される消費電力を検出する」と簡単に記載されているものの、実際には、建物における電力消費機器以外に、建物に隣接して設けられた駐車スペースに駐車された車両にも電力消費機器がある等、複数個所に存在する電力消費機器の各消費電力やそれらの合計を取得することは、ハードウェア的に困難であり、正確に消費電力を測定し難い問題がある。
その結果、特許文献1の電力制御システムでは、太陽光発電装置や風力発電装置等からの発電電力を系統に応じた交流電力に変換して出力する機器であるパワーコンディショナ等の出力を的確に制御できない虞がある。
However, in the power control system described in Patent Document 1, although the claim 1 simply describes "to detect the power consumption of the power consumption device", in reality, the power consumption of the building is reduced. In addition to the devices, there is a power consumption device in a vehicle parked in a parking space adjacent to the building, etc. There is a problem that it is difficult in terms of hardware and it is difficult to measure power consumption accurately.
As a result, in the power control system of Patent Document 1, the output of a power conditioner or the like, which is a device that converts generated power from a solar power generation device, a wind power generation device, or the like into AC power according to the grid and outputs the power accurately, It may not be possible to control.

本発明は、このような点に鑑み、受電力と発電力との和に基づいてパワーコンディショナを制御すること等によって、負荷電力を直接測定せずに済み、「負荷電力測定の簡易化・正確性向上」や「パワーコンディショナの的確制御」を図れる発電制御システムや、配電盤、変圧器、受電盤を提供することを目的とする。   In view of such a point, the present invention does not need to directly measure the load power by controlling the power conditioner based on the sum of the received power and the generated power, and thus, "simplification of load power measurement. It is an object of the present invention to provide a power generation control system, a power distribution panel, a transformer, and a power receiving panel capable of "improving accuracy" and "precise control of power conditioner".

本発明に係る発電制御システム1は、システム外部からの直流電流又は交流電流を交流電流に変換するパワーコンディショナ2と、このパワーコンディショナ2と系統Kと負荷Fとにそれぞれ接続された受電部3と、これらパワーコンディショナ2及び/又は受電部3を制御する制御部4を有した発電制御システムであって、前記制御部4は、前記系統Kから受電部3へ受電される受電力Jと、前記パワーコンディショナ2から出力される発電力Hとの和に基づいて、前記パワーコンディショナ2を制御することを第1の特徴とする。   A power generation control system 1 according to the present invention includes a power conditioner 2 that converts a direct current or an alternating current from the outside of the system into an alternating current, and a power receiving unit connected to the power conditioner 2, the system K, and a load F, respectively. 3 and a control unit 4 for controlling the power conditioner 2 and / or the power receiving unit 3, wherein the control unit 4 receives the received power J from the grid K to the power receiving unit 3. And the first condition is to control the power conditioner 2 based on the sum of the generated electric power H output from the power conditioner 2.

本発明に係る発電制御システム1の第2の特徴は、上記第1の特徴に加えて、前記受電部3に、不足電力継電器5と逆電力継電器6を設け、前記制御部4は、前記不足電力継電器5で検知される不足電力Uが0に近づくと前記パワーコンディショナ2の変換を停止し、前記逆電力継電器6で検知される逆電力Gが0より大きくなると前記パワーコンディショナ2から系統Kまでの電路における何れかの遮断器を遮断する、又は、前記制御部4は、前記不足電力継電器5で検知される不足電力Uが0に近づくと前記パワーコンディショナ2から系統Kまでの電路における何れかの遮断器を遮断し、前記逆電力継電器6で検知される逆電力Gが0より大きくなると前記パワーコンディショナ2の変換を停止する点にある。
尚、本発明における「電路」とは、電気を流すものであって、銅、アルミニウム、銀、金、ニクロム等の導体や、この導体を絶縁物で覆ったケーブル、一般的な電線などを含む。
A second feature of the power generation control system 1 according to the present invention is that, in addition to the above first feature, the power receiving unit 3 is provided with a power shortage relay 5 and a reverse power relay 6, and the control unit 4 is configured to perform the shortage. When the insufficient power U detected by the power relay 5 approaches 0, the conversion of the power conditioner 2 is stopped, and when the reverse power G detected by the reverse power relay 6 becomes larger than 0, the power conditioner 2 sends power to the grid. If any short circuit breaker in the electric circuit up to K is cut off, or if the shortage electric power U detected by the shortage electric power relay 5 approaches 0, the control unit 4 cuts off the electric circuit from the power conditioner 2 to the grid K. When the reverse power G detected by the reverse power relay 6 becomes larger than 0, the conversion of the power conditioner 2 is stopped.
The "electric circuit" in the present invention is one for flowing electricity, and includes conductors such as copper, aluminum, silver, gold, and nichrome, and cables in which this conductor is covered with an insulator, general electric wires, and the like. .

本発明に係る発電制御システム1の第3の特徴は、上記第1の特徴に加えて、前記受電部3に、逆電力継電器6を設け、前記制御部4は、前記逆電力継電器6で検知される逆電力Gが0より大きくなると前記パワーコンディショナ2から系統Kまでの電路における何れかの遮断器を遮断する、又は、前記パワーコンディショナ2の変換を停止する点にある。   A third feature of the power generation control system 1 according to the present invention is that, in addition to the above first feature, a reverse power relay 6 is provided in the power receiving unit 3, and the control unit 4 detects the reverse power relay 6. When the reverse electric power G is greater than 0, the circuit breaker in the electric path from the power conditioner 2 to the system K is shut off, or the conversion of the power conditioner 2 is stopped.

本発明に係る発電制御システム1の第4の特徴は、上記第1〜3の特徴に加えて、前記パワーコンディショナ2と受電部3の間の電路における分岐点8から分岐する分岐電路9を介して、前記負荷Fに受電部3が接続され、前記分岐点8とパワーコンディショナ2の間の電路に、前記パワーコンディショナ2から入力される交流電流をより高圧な交流電流に変圧する変圧器10を有し、この変圧器10と分岐点8の間の電路に設けた発電力計11の測定値を、前記発電力Hとし、前記受電部3に設けた受電力計12で、前記受電力Jを測定している点にある。   A fourth characteristic of the power generation control system 1 according to the present invention is that, in addition to the first to third characteristics, a branch electric line 9 that branches from a branch point 8 in the electric line between the power conditioner 2 and the power receiving unit 3. The power receiving unit 3 is connected to the load F via the load F, and a transformer for transforming an AC current input from the power conditioner 2 into a higher voltage AC current in an electric path between the branch point 8 and the power conditioner 2. The power generation meter 11 provided in the electric path between the transformer 10 and the branch point 8 is the generated power H, and the power reception meter 12 provided in the power reception unit 3 The point is that the received power J is measured.

これらの特徴により、制御部4に、受電力Jと発電力Hとの和に基づいて、パワーコンディショナ2を制御させることによって、受電力Jと発電力Hとの和が、負荷Fが消費する負荷電力Dに相当するため、特許文献1とは異なり、負荷Fの負荷電力Dを直接測定する(例えば、数個所に存在する負荷Fの負荷電力Dやそれらの合計を取得する等の)必要がなく、受電力Jと発電力Hの測定はハードウェア的にシンプルな構造となって測定し易く、正確性も上がる(「負荷電力測定の簡易化・正確性向上」)。
その結果、より正確な受電力Jと発電力Hとの和に基づき、パワーコンディショナ2の変換を的確に制御できる(「パワーコンディショナの的確制御」)。
尚、このような発電制御システム1は、当該システム1の使用者が発電した電力を自ら消費するのに適した「自家消費型の発電制御システム」であるとも言える。
With these characteristics, the control unit 4 controls the power conditioner 2 based on the sum of the received power J and the generated power H, so that the sum of the received power J and the generated power H is consumed by the load F. The load power D of the load F is directly measured (e.g., the load power D of the load F existing at several locations or the total of the load power D and the like is obtained) unlike Patent Document 1. There is no need, and the measurement of the received power J and the generated power H has a simple hardware structure and is easy to measure, and the accuracy is improved (“simplification and improvement of accuracy of load power measurement”).
As a result, the conversion of the power conditioner 2 can be accurately controlled based on the more accurate sum of the received power J and the generated power H ("precise control of the power conditioner").
It should be noted that such a power generation control system 1 can also be said to be a “self-consumption power generation control system” suitable for a user of the system 1 to consume the generated power.

又、制御部4に、不足電力Uが0に近づくと(謂わば「不足電力略零状態S1になると」)パワーコンディショナ2の変換を停止し、逆電力Gが0より大きくなると(謂わば、「逆電力発生状態S2になると」)パワーコンディショナ2から系統(商用電力系統)Kまでの何れかの遮断器(発電遮断器7や受電遮断器7’等)を遮断する等によって、電力が受電部3から系統Kへ逆流することを、2つの系列(回路)にて、より確実に防止・低減できる。
尚、制御部4に、逆電力発生状態S2になると、パワーコンディショナ2の変換を停止する等としても良い。
Further, when the power shortage U approaches 0 (so-called "when the power shortage becomes substantially zero state S1"), the control unit 4 stops the conversion of the power conditioner 2 and the reverse power G becomes larger than 0 (so-called so-called. , "When the reverse power generation state S2 is reached") By cutting off any of the circuit breakers from the power conditioner 2 to the grid (commercial power grid) K (such as the power generation breaker 7 and the power receiving breaker 7 ') The two systems (circuits) can more reliably prevent and reduce the reverse flow from the power receiving unit 3 to the system K.
The control unit 4 may be configured to stop the conversion of the power conditioner 2 when the reverse power generation state S2 is entered.

更に、変圧器10と分岐点8の間に設けた発電力計11で発電力Hを測定することによって、パワーコンディショナ2の変換を制御するのに、変圧器10におけるロス分も考慮して、より的確で正確な発電力Hを測定でき、更なる「パワーコンディショナの的確制御」を図れる。   Further, by controlling the conversion of the power conditioner 2 by measuring the generated power H with the power generator 11 provided between the transformer 10 and the branch point 8, the loss in the transformer 10 is also taken into consideration. Therefore, the generated power H can be measured more accurately and accurately, and further "precise control of the power conditioner" can be achieved.

本発明に係る配電盤50は、配電盤筐体51と、この配電盤筐体51外から又は内からの交流電流を変圧する変圧器10と、この変圧器10で変圧した交流電流を配電盤筐体51外へ送電する送電部52を有した配電盤であって、前記配電盤筐体51に外から変圧器10が取り付けられ、前記配電盤筐体51内に送電部52が設けられ、前記送電部52には、前記配電盤筐体51外へ送電する交流電流を遮断する遮断器7が設けられ、この遮断器7と変圧器10の間の電路に設けた発電力計11で、前記変圧器10から出力される発電力Hを測定し、前記配電盤筐体51内に発電力計11も設けられていることを第1の特徴とする。   A switchboard 50 according to the present invention includes a switchboard housing 51, a transformer 10 for transforming an AC current from outside or inside the switchboard housing 51, and an AC current transformed by the transformer 10 outside the switchboard housing 51. A power distribution board having a power transmission section 52 for transmitting power to the power distribution section, wherein the transformer 10 is externally attached to the power distribution panel housing 51, the power transmission section 52 is provided in the power distribution panel housing 51, and the power transmission section 52 includes: A circuit breaker 7 for interrupting an alternating current transmitted to the outside of the switchboard housing 51 is provided, and the power generator 11 provided in an electric path between the circuit breaker 7 and the transformer 10 outputs the voltage from the transformer 10. The first feature is that the power generation H is measured and the power generation meter 11 is also provided in the switchboard casing 51.

本発明に係る配電盤50の第2の特徴は、上記第1の特徴に加えて、前記配電盤筐体51及び変圧器10の高さは、1500mm以下である点にある。   A second feature of the switchboard 50 according to the present invention is that, in addition to the first feature, the height of the switchboard housing 51 and the transformer 10 is 1500 mm or less.

これらの特徴により、配電盤50を用いれば、受電力Jと発電力Hとの和に基づいて、パワーコンディショナ2を制御させることが可能となり、受電力Jと発電力Hとの和が、負荷Fが消費する負荷電力Dに相当するため、特許文献1とは異なり、負荷Fの負荷電力Dを直接測定する必要がなく、受電力Jと発電力Hの測定はハードウェア的にシンプルな構造となって測定し易く、正確性も上がる(「負荷電力測定の簡易化・正確性向上」)。
その結果、より正確な受電力Jと発電力Hとの和に基づき、パワーコンディショナ2の変換を的確に制御できる(「パワーコンディショナの的確制御」)。
尚、このような配電盤50は、当該配電盤50の使用者が発電した電力を自ら消費するのに適した「自家消費型の配電盤」であるとも言える。
又、配電盤筐体51や変圧器10の高さを1500mm以下にすることによって、当該配電盤50や変圧器10等を、太陽光発電プラント100における太陽電池(太陽電池パネル)Tの下方に設け易くなり、配電盤50や変圧器10等の影が太陽電池パネルTにかかることがなく、そのためのスペースを設ける必要がないため、その分、太陽電池パネルTをより多く設置することが出来、太陽光発電プラント100の発電量が増加する(「発電量の増加」)。
そして、配電盤50や変圧器10等は、太陽電池パネルTの下方に配置できるほど小型化されていることから、太陽光発電プラント100を、ゴルフ場跡地や山間部の土地などに設置する際に配電盤50や変圧器10を搬入する道路が狭い場合であっても、容易に運搬することが可能となる(「運搬の容易化」)。
尚、本発明においては、少なくとも配電盤50や変圧器10を太陽電池パネルTの下方に配置することを「パネル下方配置」であるとも言う。
Due to these characteristics, if the switchboard 50 is used, it becomes possible to control the power conditioner 2 based on the sum of the received power J and the generated power H, and the sum of the received power J and the generated power H becomes the load. Since it corresponds to the load power D consumed by F, unlike in Patent Document 1, it is not necessary to directly measure the load power D of the load F, and the measurement of the received power J and the generated power H is a simple hardware structure. Therefore, it is easy to measure and the accuracy is improved (“Simplification and improvement of accuracy of load power measurement”).
As a result, the conversion of the power conditioner 2 can be accurately controlled based on the more accurate sum of the received power J and the generated power H ("precise control of the power conditioner").
It should be noted that such a switchboard 50 can be said to be a “self-consumption switchboard” suitable for the user of the switchboard 50 to consume the generated electric power by himself.
Further, by setting the height of the switchboard housing 51 and the transformer 10 to 1500 mm or less, the switchboard 50, the transformer 10, and the like can be easily provided below the solar cell (solar cell panel) T in the photovoltaic power plant 100. Therefore, the shadows of the switchboard 50, the transformer 10, etc. do not fall on the solar cell panel T, and it is not necessary to provide a space for it, so that more solar cell panels T can be installed, and the sunlight The power generation amount of the power generation plant 100 increases (“increase in power generation amount”).
Since the switchboard 50, the transformer 10, and the like are miniaturized so that they can be arranged below the solar cell panel T, when the solar power plant 100 is installed on a site of a golf course, a mountainous land, or the like. Even when the road on which the switchboard 50 and the transformer 10 are carried in is narrow, it can be easily transported (“facilitation of transportation”).
In the present invention, disposing at least the switchboard 50 and the transformer 10 below the solar cell panel T is also referred to as “panel lower disposition”.

本発明に係る変圧器10は、入力された交流電流を、より高圧な交流電流に変圧する変圧器であって、当該変圧器の高さは、1500mm以下であることを第1の特徴とする。   The transformer 10 according to the present invention is a transformer that transforms an input AC current into a higher-voltage AC current, and the first feature is that the height of the transformer is 1500 mm or less. .

この特徴により、変圧器10を用いれば、受電力Jと発電力Hとの和に基づいて、パワーコンディショナ2を制御させるための発電力計11を何れに設けるかが明確になり、当該変圧器10と分岐点8の間に設けた発電力計11で発電力Hを測定することも可能となって、パワーコンディショナ2の変換を制御するのに、変圧器10におけるロス分も考慮して、より的確で正確な発電力Hを測定できるため、特許文献1とは異なり、正確性も上がる(「負荷電力測定の簡易化・正確性向上」)。
その結果、より正確な受電力Jと発電力Hとの和に基づき、パワーコンディショナ2の変換を的確に制御し易くなる(「パワーコンディショナの的確制御」)と言える。
これに加えて、太陽光発電プラント100における「発電量の増加」や、変圧器10自体の「運搬の容易化」も図れる。
尚、このような変圧器10は、当該変圧器10の使用者が発電した電力を自ら消費するのに適した「自家消費型の変圧器」であるとも言える。
With this feature, if the transformer 10 is used, it becomes clear which of the generators 11 for controlling the power conditioner 2 is provided based on the sum of the received power J and the generated power H. It is also possible to measure the generated power H with a power generation meter 11 provided between the transformer 10 and the branch point 8. In controlling the conversion of the power conditioner 2, the loss in the transformer 10 is also taken into consideration. Since the more accurate and accurate generated power H can be measured, the accuracy is also improved unlike in Patent Document 1 (“Simplification and improvement in accuracy of load power measurement”).
As a result, it can be said that the conversion of the power conditioner 2 can be easily controlled accurately based on the more accurate sum of the received power J and the generated power H (“precise control of the power conditioner”).
In addition to this, it is possible to “increase the amount of power generation” in the photovoltaic power plant 100 and “facilitate transportation” of the transformer 10 itself.
It can be said that such a transformer 10 is a “self-consumption type transformer” suitable for the user of the transformer 10 to consume the generated electric power by himself / herself.

本発明に係る受電盤60は、受電盤筐体61と、この受電盤筐体61外にある直流電流又は交流電流を交流電流に変換するパワーコンディショナ2と前記受電盤筐体61外にある系統Kと前記受電盤筐体61外にある負荷Fに接続可能な受電部3を有した受電盤であって、前記受電盤筐体61内に受電部3が設けられ、前記受電部3に、不足電力継電器5及び逆電力継電器6と、前記系統Kから受電部3へ受電される受電力Jを測定する受電力計12が設けられ、前記パワーコンディショナ2と系統Kの間の電路における前記受電部3内の何れかに、遮断器7’が設けられていることを第1の特徴とする。   The power receiving board 60 according to the present invention is provided outside the power receiving board housing 61, the power conditioner 2 for converting a direct current or an alternating current existing outside the power receiving board housing 61 into an alternating current, and the power receiving board housing 61. A power receiving board having a power receiving section 3 connectable to a system K and a load F outside the power receiving board housing 61, wherein the power receiving section 3 is provided in the power receiving board housing 61, and the power receiving section 3 is provided. , A power shortage relay 5 and a reverse power relay 6, and a power receiver 12 for measuring the received power J received from the grid K to the power receiving unit 3, and in the electric path between the power conditioner 2 and the grid K. The first feature is that a circuit breaker 7'is provided in any of the power receiving units 3.

この特徴により、受電盤60を用いれば、受電力Jと発電力Hとの和に基づいて、パワーコンディショナ2を制御させることが可能となり、受電力Jと発電力Hとの和が、負荷Fが消費する負荷電力Dに相当するため、特許文献1とは異なり、負荷Fの負荷電力Dを直接測定する必要がなく、受電力Jと発電力Hの測定はハードウェア的にシンプルな構造となって測定し易く、正確性も上がる(「負荷電力測定の簡易化・正確性向上」)。
その結果、より正確な受電力Jと発電力Hとの和に基づき、パワーコンディショナ2の変換を的確に制御できる(「パワーコンディショナの的確制御」)。
尚、このような受電盤60は、当該受電盤60の使用者が発電した電力を自ら消費するのに適した「自家消費型の受電盤」であるとも言える。
With this feature, if the power receiving board 60 is used, the power conditioner 2 can be controlled based on the sum of the received power J and the generated power H, and the sum of the received power J and the generated power H becomes the load. Since it corresponds to the load power D consumed by F, unlike in Patent Document 1, it is not necessary to directly measure the load power D of the load F, and the measurement of the received power J and the generated power H is a simple hardware structure. Therefore, it is easy to measure and the accuracy is improved (“Simplification and improvement of accuracy of load power measurement”).
As a result, the conversion of the power conditioner 2 can be accurately controlled based on the more accurate sum of the received power J and the generated power H ("precise control of the power conditioner").
It should be noted that such a power receiving panel 60 can also be said to be a “self-consumption type power receiving panel” suitable for the user of the power receiving panel 60 to consume the power generated by the user.

本発明に係る発電制御システムや、配電盤、変圧器、受電盤によると、受電力と発電力との和に基づいてパワーコンディショナを制御すること等によって、「負荷電力測定の簡易化・正確性向上」や「パワーコンディショナの的確制御」を実現できる。   According to the power generation control system, the switchboard, the transformer, and the power receiving panel according to the present invention, by controlling the power conditioner based on the sum of the received power and the generated power, “the simplification and accuracy of load power measurement "Improvement" and "precision control of power conditioner" can be realized.

本発明の第1実施形態に係る発電制御システムや、配電盤、変圧器、受電盤を例示する概要図である。FIG. 1 is a schematic diagram illustrating a power generation control system according to a first embodiment of the present invention, a distribution board, a transformer, and a power receiving board. 本発明の第2実施形態に係る発電制御システムや、配電盤、変圧器、受電盤を例示する概要図である。It is a schematic diagram which illustrates the power generation control system which concerns on 2nd Embodiment of this invention, a switchboard, a transformer, and a power receiving board.

以下、本発明の実施形態を、図面を参照して説明する。
<第1実施形態の発電制御システム1の全体構成>
図1には、本発明の第1実施形態に係る発電制御システム1が示されている。
この発電制御システム1は、後述するパワーコンディショナ2と受電部3、そして、これらを制御する制御部4を有している。
尚、上述した受電部3は、パワーコンディショナ2と系統Kと負荷Fにそれぞれ接続されており、ここでは、まず系統Kと負荷Fについて、以下に述べる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Overall Configuration of Power Generation Control System 1 of First Embodiment>
FIG. 1 shows a power generation control system 1 according to the first embodiment of the present invention.
The power generation control system 1 has a power conditioner 2 and a power receiving unit 3 which will be described later, and a control unit 4 which controls these.
The power reception unit 3 described above is connected to the power conditioner 2, the system K, and the load F, respectively. Here, the system K and the load F will be described below.

<系統K>
図1に示したように、系統Kは、商用電力系統とも言い、電力を需要家の受電設備に供給するための、発電・変電・送電・配電を統合したシステムである。
系統Kは、三相3線(3φ3W)で、6600Vや22000V等、60Hz又は50Hz等の電力を、電力会社の変電所等から供給する。尚、柱上変圧器以降は、単相2線(1φ2W)や、1φ3W(単相3線)等の電力を供給しても良い。
<Strain K>
As shown in FIG. 1, the grid K is also called a commercial power grid, and is a system that integrates power generation, substation, power transmission, and power distribution to supply power to a power receiving facility of a customer.
The system K is a three-phase three-wire (3φ3W), and supplies electric power of 6600V, 22000V, 60 Hz, 50 Hz, etc. from a substation of a power company. After the pole transformer, electric power such as single-phase two-wire (1φ2W) or 1φ3W (single-phase three-wire) may be supplied.

<負荷F、負荷電力D>
図1に示したように、負荷Fは、系統Kから受電部3を介しての受電力Jや、パワーコンディショナ2から出力された発電力H等を消費する機器であって、このような負荷Fが消費する電力を負荷電力(消費電力とも言える)Dとする。
負荷Fは、受電力Jや発電力Hを消費するのであれば、何れの構成でも良いが、例えば、工場内であれば、インダストリアルモータ(IM、Industrial Motor)Fであったり、工場内の照明Fや、これら複数の照明Fと接続された照明分電盤F1などであっても良い。
<Load F, load power D>
As shown in FIG. 1, the load F is a device that consumes the received power J from the grid K via the power receiving unit 3, the generated power H output from the power conditioner 2, and the like. The power consumed by the load F is referred to as load power (also referred to as power consumption) D.
The load F may have any configuration as long as it consumes the received power J and the generated power H. For example, in a factory, an industrial motor (IM, Industrial Motor) F, or lighting in a factory It may be F, an illumination distribution board F1 connected to the plurality of illuminations F, or the like.

負荷Fは、工場内の機器の他、住宅やビル等の建物内のエアコン、蛍光灯、家電、電気自動車やガソリン自動車等の車両、当該車両内の機器などであっても良い。
その他、負荷Fは、系統Kから受電部3を介しての受電力Jやパワーコンディショナ2からの発電力Hを変圧(降圧)する変圧器(謂わば、降圧変圧器)F2を有していたり、この変圧器F2と受電部3(又はパワーコンディショナ2)との間の電路等に高圧交流負荷開閉器(LBS、Load Break Switch )F3を有していたり、変圧器F2と上述したインダストリアルモータ(又は照明)Fとの間の電路等に配線用遮断器(MCCB、Molded Case Circuit Break )F4を有していても良い。
尚、高圧交流負荷開閉器F3は、高圧限流ヒューズ等のヒューズを有していても良い。
The load F may be a device in a factory, an air conditioner in a building such as a house or a building, a fluorescent lamp, a home appliance, a vehicle such as an electric vehicle or a gasoline vehicle, a device in the vehicle, or the like.
In addition, the load F has a transformer (so-called step-down transformer) F2 that transforms (steps down) the received power J from the grid K via the power receiving unit 3 and the generated power H from the power conditioner 2. Or having a high-voltage AC load switch (LBS, Load Break Switch) F3 in an electric path between the transformer F2 and the power receiving unit 3 (or the power conditioner 2), or the transformer F2 and the above-mentioned industrial. A circuit breaker (MCCB, Molded Case Circuit Break) F4 may be provided in an electric path between the motor (or illumination) F and the like.
The high-voltage AC load switch F3 may have a fuse such as a high-voltage current limiting fuse.

負荷Fにおける変圧器F2の構成も、特に限定はないが、例えば、インダストリアルモータ用(動力用)であれば、三相3線(3φ3W)で、6600Vや22000V等を440Vや210V等に降圧する構成であったり、照明用(電灯用)であれば、単相3線(1φ3W)で、6600Vや22000V等を、105V以上210V以下等に降圧する構成であっても良い。
負荷Fは、このような変圧器F2が設けられていなくとも良く、この場合は、受電部3側に別の変圧器が設けられていたり、パワーコンディショナ2からの出力が、変圧器F2を介すことなく、負荷Fに直接接続する構成であっても良い。
The configuration of the transformer F2 in the load F is not particularly limited, but for example, for industrial motors (power), three-phase three-wire (3φ3W) is used to step down 6600V, 22000V, etc. to 440V, 210V, etc. In the case of a configuration or for illumination (for an electric light), a configuration may be used in which single-phase three-wire (1φ3W) is used to step down 6600V or 22000V to 105V or more and 210V or less.
The load F does not need to be provided with such a transformer F2. In this case, another transformer is provided on the power receiving unit 3 side, or the output from the power conditioner 2 is not provided with the transformer F2. The configuration may be such that it is directly connected to the load F without any intervention.

このような負荷F全体で消費される電力が、負荷電力Dであり、各負荷Fそのもので消費される電力の合計だけでなく、変圧器F2における電力ロス分や、照明分電盤F1で消費される電力を含んでも良い。
尚、負荷Fの数は、1又は複数であっても良いが、たとえ負荷Fが1つであっても、変圧器F2も有していれば、その電力ロス分も含めた電力が、負荷電力Dとなる。
The electric power consumed by the entire load F is the load electric power D, and not only the total electric power consumed by each load F itself, but also the power loss in the transformer F2 and the lighting distribution board F1. It may include the electric power to be used.
The number of the loads F may be one or more, but even if the number of the loads F is one, if the transformer F2 is also provided, the power including the power loss is It becomes electric power D.

このような負荷Fに接続された受電部3を有する発電制御システム1は、その他に、不足電力継電器5や逆電力継電器6、遮断器(発電遮断器7、受電遮断器7’等)、変圧器10、発電力計11、受電力計12を有していても良い。
尚、負荷Fは、後述するパワーコンディショナ2と受電部3の間の電路における分岐点(負荷分岐点)8から分岐する分岐電路(負荷分岐電路)9を介して、受電部3に接続されていても良い(換言すれば、受電部3に対して、負荷Fと、パワーコンディショナ2(変圧器10や遮断器(発電遮断器)7’)等とは、並列に接続されていても良い)。
この場合、負荷Fは、分岐点8と分岐電路9を介して、パワーコンディショナ2とも接続していると言え、負荷Fは、パワーコンディショナ2から出力される発電力Hを消費することも出来る。
The power generation control system 1 having the power receiving unit 3 connected to such a load F also includes a power shortage relay 5, a reverse power relay 6, a circuit breaker (a power generation circuit breaker 7, a power receiving circuit breaker 7 ′, etc.), a transformer, and the like. It may have a device 10, a power generation meter 11, and a power reception meter 12.
The load F is connected to the power receiving unit 3 via a branch electric line (load branch electric line) 9 that branches from a branch point (load branch point) 8 in the electric line between the power conditioner 2 and the power receiving unit 3 described later. (In other words, with respect to the power receiving unit 3, the load F, the power conditioner 2 (the transformer 10 or the circuit breaker (generation breaker) 7 ′), etc. may be connected in parallel. good).
In this case, it can be said that the load F is also connected to the power conditioner 2 via the branch point 8 and the branch electric line 9, and the load F may consume the generated power H output from the power conditioner 2. I can.

又、負荷Fが複数である場合には、当然に、上述した負荷分岐点8や負荷分岐電路9も複数となり、これら負荷分岐点8と負荷分岐電路9の数は、負荷Fの数と一致しているとも言える。
その他、発電制御システム1は、太陽光発電プラント100や風力発電プラントなどの発電プラントに用いられても良い。
以下、主に太陽光発電プラント100について述べる。
In addition, when there are a plurality of loads F, naturally there are also a plurality of load branch points 8 and load branch circuits 9 described above, and the number of these load branch points 8 and load branch circuits 9 is equal to the number of loads F. It can be said that I am doing it.
In addition, the power generation control system 1 may be used for a power generation plant such as a solar power generation plant 100 or a wind power generation plant.
Hereinafter, the solar power generation plant 100 will be mainly described.

<太陽光発電プラント100、系統Kなど>
図1に示したように、太陽光発電プラント100は、上述した発電制御システム1を有する他に、後述する変圧器10や配電盤筐体51、送電部52等を備えた配電盤50を有していても構わない。
太陽光発電プラント100においては、上述した配電盤50が、後述する受電部3や配電ケーブルを介して、鉄塔や電柱等を末端とする系統Kに接続されており、この受電部3が配電盤50の配電盤筐体51内に設けられていたり、受電部3が配電盤50とは別の受電盤60の受電盤筐体61内に設けられていても良い。
<Solar power plant 100, system K, etc.>
As shown in FIG. 1, the photovoltaic power generation plant 100 has a power distribution board 50 including a transformer 10, a switchboard housing 51, a power transmission section 52, and the like, which will be described later, in addition to the power generation control system 1 described above. It doesn't matter.
In the photovoltaic power plant 100, the switchboard 50 described above is connected to the system K having a tower or a utility pole as an end via the power receiving unit 3 and a power distribution cable described later, and the power receiving unit 3 of the switchboard 50 is connected. The power receiving unit 3 may be provided in the power distribution board housing 51, or may be provided in the power receiving board housing 61 of the power receiving board 60 different from the power distribution board 50.

太陽光発電プラント100は、太陽電池Tやパワーコンディショナ2、変圧器10、送電部52、配電盤50などを、それぞれ複数有していても良い。
更に、太陽電池Tが複数の場合、太陽光発電プラント100は、複数の太陽電池Tのうち所定数ごとと導通する複数の接続箱(遮断器等付き)を有していても構わず、各配電盤50は、これら複数の接続箱と導通することとなるが、この接続箱の機能が配電盤50に内蔵されていても良く、この場合、各配電盤50は、複数の太陽電池Tのうち所定数ごとと直接導通することとなる。
The solar power plant 100 may include a plurality of solar cells T, a power conditioner 2, a transformer 10, a power transmission unit 52, a switchboard 50, and the like.
Furthermore, when there are a plurality of solar cells T, the photovoltaic power plant 100 may have a plurality of connection boxes (with circuit breakers or the like) that are electrically connected to a predetermined number of the plurality of solar cells T, and The switchboard 50 is electrically connected to the plurality of connection boxes, but the function of the connection box may be built in the switchboard 50. In this case, each switchboard 50 has a predetermined number of solar cells T. Will be in direct conduction with each other.

最終的に受電部3から系統Kへ送電する時の電圧は、売電や買電が可能な電圧(例えば、6600V等)でも良いが、更に高圧(例えば、特別高圧(特高)として、例えば、22000V等)であっても構わない。この場合は、受電部3は、特高まで昇圧する変圧器(特高)を備えている。
又、太陽電池T、配電盤50、受電盤60等は、設置する土地の広さ・形状に応じて配列するが、例えば、1つの配電盤50の発電力を、例えば、1500kW(各パワーコンディショナ当たり250kW)とし、この配電盤50を複数台(例えば、30台以上で15000kW(15MW)以上、60台で30000kW(30MW))設けた太陽光発電プラント100としても良い。
The voltage when power is finally transmitted from the power receiving unit 3 to the system K may be a voltage at which power can be sold or purchased (for example, 6600 V), but as a higher voltage (for example, a special high voltage (extra high), for example, 22000V). In this case, the power receiving unit 3 includes a transformer (extra high) that steps up to the extra high.
Further, the solar cells T, the distribution board 50, the power receiving board 60, etc. are arranged according to the size and size of the land to be installed. For example, the power generated by one distribution board 50 is, for example, 1500 kW (per power conditioner). The solar power generation plant 100 may have a plurality of distribution boards 50 (for example, 30 or more, 15,000 kW (15 MW) or more and 60, 30,000 kW (30 MW)).

尚、配電盤50や受電盤60としての重量も、特に限定はないが、例えば、1トン以上10トン以下であっても良く、好ましくは1トン以上5トン以下、更に好ましくは1トン以上3トン以下であっても構わない。
このような太陽光発電プラント100における太陽電池Tについて、以下に述べる。
The weight of the power distribution board 50 and the power receiving board 60 is not particularly limited, but may be, for example, 1 ton or more and 10 ton or less, preferably 1 ton or more and 5 ton or less, more preferably 1 ton or more and 3 ton. It may be the following.
The solar cell T in such a solar power generation plant 100 will be described below.

<太陽電池T>
図1に示したように、太陽電池Tは、パネル状(平板状)等であっても良く、光が照射されることによって、正極(+極)と負極(−極)の間に直流電力を発生し、発生する電力の平均は、100W以上400W以下(例えば、250W)である。
これらのうち、ある太陽電池Tの+極に別の太陽電池Tの−極を接続し、別の太陽電池Tの+極にまた別の太陽電池Tの−極を接続し、以下、これを繰り返して、複数枚(例えば、5〜20枚)の太陽電池Tを直列に接続して、1本の太陽電池ストリングとなる。
<Solar cell T>
As shown in FIG. 1, the solar cell T may have a panel shape (flat plate shape) or the like, and is irradiated with light to generate a DC power between a positive electrode (+ pole) and a negative electrode (− pole). And an average of the generated power is 100 W or more and 400 W or less (for example, 250 W).
Of these, the positive pole of one solar cell T is connected to the negative pole of another solar cell T, the positive pole of another solar cell T is connected to the negative pole of another solar cell T, and Repeatedly, a plurality of (for example, 5 to 20) solar cells T are connected in series to form one solar cell string.

このように、複数枚の太陽電池Tが直列に繋がった太陽電池ストリング全体としての+極(電力出力端)と、−極(グランド端)の間の電圧は、各太陽電池Tで発生された直流電圧の和であって、天候、時刻や、各太陽電池Tの劣化、故障、設置位置のズレなどで変動するが、200V以上1500V以下となる。
又、太陽電池ストリングの電力出力端から出力される電力は、各太陽電池Tの電力の和であって、500W以上6000W以下(例えば、出力電力が250Wの太陽電池Tを14枚接続した場合、3500W=3.5kW)となる。
In this way, the voltage between the + pole (power output end) and the − pole (ground end) of the entire solar cell string in which a plurality of solar cells T are connected in series is generated in each solar cell T. It is the sum of the DC voltage, and varies from 200V to 1500V, although it varies depending on the weather, time, deterioration of each solar cell T, failure, displacement of installation position, and the like.
Further, the electric power output from the electric power output end of the solar cell string is the sum of the electric power of each solar cell T, and is 500 W or more and 6000 W or less (for example, when 14 solar cells T having an output power of 250 W are connected, 3500W = 3.5kW).

ここで、太陽電池Tを直列に接続するということは、それらの太陽電池Tのうち1つでも不具合のある太陽電池Tが発生すると、その太陽電池Tにおいて電流が遮断されてしまい、他の太陽電池Tにより発電された電力を出力することが困難となる。
そのため、直列に接続された太陽電池Tごとに、バイパスダイオード(図示省略)を設けることで、不具合の発生した太陽電池Tを、電流が、バイパス(迂回)するように構成される。
Here, connecting the solar cells T in series means that if one of the solar cells T has a defect, the solar cell T shuts off the electric current and the other solar cells T are disconnected. It becomes difficult to output the electric power generated by the battery T.
Therefore, by providing a bypass diode (not shown) for each of the solar cells T connected in series, the solar cell T in which the malfunction has occurred is configured so that the current bypasses the solar cells T.

尚、このバイパスダイオードは、太陽電池Tに対して、その−極から+極へ電流が流れる向きに並列に接続され、詳しくは、バイパスダイオードのカソード(陰極)が、太陽電池Tの+極に接続され、バイパスダイオードのアノード(陽極)が、太陽電池Tの−極に接続される。
このような太陽電池Tは、架台を介して設置面に設置されていても良い。
The bypass diode is connected in parallel to the solar cell T in a direction in which a current flows from the − pole to the + pole. Specifically, the cathode (cathode) of the bypass diode is connected to the + pole of the solar cell T. The anode of the bypass diode is connected to the negative pole of the solar cell T.
Such a solar cell T may be installed on the installation surface via a mount.

太陽電池T(又は架台)の設置面は、上述した太陽光発電システム10や配電盤50を設置する設置面のことであって、太陽電池Tを設置できるのであれば、何れの面であっても良いが、例えば、ゴルフ場跡地や山間部の土地、空き地、休耕地、農地等、土のある地面、建物の屋根や屋上、壁等であっても良い。
尚、架台は、太陽光発電プラント100の発電量を上げるため、太陽電池Tを所定方向(例えば、南へ行くほど低くなるよう)に傾けて支持しても良く、その角度は、十分な発電量を得られるのであれば、何度でも良いが、例えば、10度や5度などである。
The installation surface of the solar cell T (or the pedestal) is an installation surface on which the above-described solar power generation system 10 and the switchboard 50 are installed, and any surface can be installed as long as the solar cell T can be installed. For example, it may be a golf course ruins or mountainous land, vacant land, fallow land, farmland, etc., soiled ground, roof of a building, rooftop, wall or the like.
In addition, in order to increase the amount of power generation of the photovoltaic power plant 100, the gantry may support the solar cell T by tilting it in a predetermined direction (for example, it becomes lower toward the south), and the angle is sufficient for power generation. As long as the amount can be obtained, it may be repeated any number of times, for example, 10 degrees or 5 degrees.

<パワーコンディショナ2>
図1に示したように、パワーコンディショナ2は、上述した太陽電池Tなどの発電制御システム1外部からの直流電流や、風力発電装置の交流モータなどからの交流電流を、系統Kの電圧及び位相等に合わせた交流電力に変換して出力する機器である。
パワーコンディショナ2は、太陽電池T等からの直流電流等を交流電流(例えば、100V以上440V以下等)に変換するインバータ装置と、このインバータ装置が変換する交流の電圧や周波数を制御する制御部と、気中遮断器(ACB)等を備えていても良い。
<Power conditioner 2>
As shown in FIG. 1, the power conditioner 2 converts the direct current from the outside of the power generation control system 1 such as the above-described solar cell T and the alternating current from the alternating current motor of the wind power generator into the voltage of the system K and It is a device that converts to AC power according to the phase and outputs.
The power conditioner 2 includes an inverter device that converts a direct current or the like from the solar cell T or the like into an alternating current (for example, 100 V or higher and 440 V or lower), and a control unit that controls the voltage or frequency of the alternating current converted by the inverter device. And an air circuit breaker (ACB) or the like.

パワーコンディショナ2は、これらのインバータ装置や制御部、遮断器等が内蔵された筐体には、その内部の空気を逃がす回転ファン状の送風手段が設けられていても良い。
尚、このようなパワーコンディショナ2は、略してパワコン2とも呼ばれる。
The power conditioner 2 may be provided with a rotating fan-shaped blower unit for releasing the air inside the housing in which the inverter device, the control unit, the circuit breaker, etc. are built.
Such a power conditioner 2 is also called a power conditioner 2 for short.

パワーコンディショナ2は、後述する制御部4からの信号によって、当該パワーコンディショナ2から出力される発電力Hを、所定の値(目標上限値など)に制限(抑制)するように制御される(謂わば、「出力制限状態S3となる」)構成としても良い。
パワーコンディショナ2は、後述する不足電力継電器5や逆電力継電器6等からの信号によって、当該パワーコンディショナ2における変換を停止する構成としても良い(このように変換を停止することで、パワーコンディショナ2から発電力Hが出力されなくなるとも言える)。
尚、パワーコンディショナ2の数は、上述したように、1又は複数であっても良い。
パワーコンディショナ2が複数である場合、後述する不足電力継電器5等からの信号によって、パワーコンディショナ2の変換を停止する際には、一度に全てのパワーコンディショナ2の変換を停止しても良いし、まずは少なくとも一部のパワーコンディショナ2の変換を停止しても良い。
The power conditioner 2 is controlled by a signal from the control unit 4 described later so as to limit (suppress) the generated power H output from the power conditioner 2 to a predetermined value (target upper limit value or the like). (A so-called “output restriction state S3”) may be adopted.
The power conditioner 2 may be configured to stop the conversion in the power conditioner 2 in response to a signal from a power shortage relay 5, a reverse power relay 6 or the like, which will be described later (stopping the conversion in this way allows the power conditioner to be stopped). It can be said that the generated power H is not output from the power supply 2).
The number of power conditioners 2 may be one or more as described above.
When the number of the power conditioners 2 is plural, even if the conversion of all the power conditioners 2 is stopped at a time when the conversion of the power conditioners 2 is stopped by the signal from the power shortage relay 5 or the like described later. It is good. First, conversion of at least a part of the power conditioners 2 may be stopped.

パワーコンディショナ2は、上述した変圧器10や送電部52等を有した配電盤50の配電盤筐体51内に設けられていたり、配電盤50とは別の筐体(パワコン筐体)に内蔵されていても良い。
パワコン筐体に内蔵された場合には、1つの太陽光発電プラント100(の太陽電池Tの下方等)に、複数のパワコン筐体(つまり、パワーコンディショナ2)が分散して設けられていても構わない。
The power conditioner 2 is provided in the switchboard housing 51 of the switchboard 50 having the above-described transformer 10, the power transmission unit 52, or the like, or built in a housing (power conditioner housing) different from the switchboard 50. May be.
When incorporated in a power conditioner housing, a plurality of power conditioner housings (that is, the power conditioners 2) are provided in a distributed manner in one solar power plant 100 (below the solar cell T thereof). I don't mind.

<変圧器10>
図1に示したように、本発明に係る変圧器10は、上述した1又は複数のパワーコンディショナ2からの交流電流を、より高圧な交流電流に変圧(昇圧)する変圧器(謂わば、昇圧変圧器)である。
この変圧器10は、後述する配電盤筐体51外等の交流電流をより高圧な交流電流に変圧するのであれば、何れの構成でも良いが、例えば、配電盤筐体51に外から取り付け(盤筐体51の側外面等に設けられ)ていても構わない。
<Transformer 10>
As shown in FIG. 1, a transformer 10 according to the present invention is a transformer (so-called, so-called, so-called) that transforms (boosts) the alternating current from one or more power conditioners 2 described above into a higher alternating current. Step-up transformer).
The transformer 10 may have any configuration as long as it transforms an alternating current outside the distribution board casing 51, which will be described later, into a higher alternating current. For example, the transformer 10 is attached to the distribution board casing 51 from the outside (board casing). It may be provided on the outer side surface of the body 51 or the like).

又、変圧器10は、発電制御システム1全体としては、上述した負荷Fへの分岐点(負荷分岐点)8とパワーコンディショナ2の間の電路に設けられているとも言える。
尚、負荷Fが複数ある場合には、変圧器10は、それら複数の負荷分岐点8のうち、最もパワーコンディショナ2に近い負荷分岐点8と、当該パワーコンディショナ2の間の電路に設けられているとも言える。
It can also be said that the transformer 10 is provided in the electric circuit between the branch point (load branch point) 8 to the load F and the power conditioner 2 described above as the entire power generation control system 1.
When there are a plurality of loads F, the transformer 10 is provided in the electric path between the load branch point 8 closest to the power conditioner 2 among the plurality of load branch points 8 and the power conditioner 2. It can be said that it is being done.

変圧器10の上面には、配電盤筐体51外等からのケーブルや、後述する送電部52へのケーブルとの接続部分(接続端子)が設けられていても良く、変圧器10の側面等に、放熱フィンを有していても構わない。
変圧器10は、配電盤筐体51外等からの交流電流(例えば、100V以上440V以下等)を、送電に適したより高圧な交流電流(例えば、6600Vや22000V等)に変換しても良い。
The upper surface of the transformer 10 may be provided with a cable from the outside of the switchboard housing 51 or the like, or a connection portion (connection terminal) for connecting to a cable to the power transmission unit 52 described later. It may have a radiation fin.
The transformer 10 may convert an alternating current (for example, 100 V or more and 440 V or less) from the outside of the switchboard casing 51 or the like into a higher voltage alternating current (for example, 6600 V or 22000 V) suitable for power transmission.

変圧器10は、鉄心の組み方によって、より高さを低位としつつ十分な容量を持っていても良く、このような変圧器10の具体的な高さは、特に制限はないが、例えば、1500mm以下(900mm以上1500mm以下)であっても良く、好ましくは1400mm以下(900mm以上1400以下)、更に好ましくは1200mm以下(95mm以上1200mm以下)、より好ましくは1150mm以下(950mm以上1150mm以下、1100mmなど)であっても良い。
変圧器10の容量も、特に制限はないが、例えば、50kVA以上1000kVA以下、好ましくは100kVA以上800kVA以下、更に好ましくは200kVA以上700kVA以下(500kVAや330kVA等)であっても良い。
The transformer 10 may have a sufficient capacity while lowering the height depending on how the iron core is assembled. The specific height of such a transformer 10 is not particularly limited, but is, for example, 1500 mm. It may be the following (900 mm or more and 1500 mm or less), preferably 1400 mm or less (900 mm or more and 1400 or less), more preferably 1200 mm or less (95 mm or more and 1200 mm or less), more preferably 1150 mm or less (950 mm or more and 1150 mm or less, 1100 mm, etc.). May be
The capacity of the transformer 10 is not particularly limited, but may be, for example, 50 kVA or more and 1000 kVA or less, preferably 100 kVA or more and 800 kVA or less, and more preferably 200 kVA or more and 700 kVA or less (500 kVA, 330 kVA, etc.).

このような変圧器10は、例えば、連系用であるとも言え、三相3線(3φ3W)で、100V以上440V以下等を、6600Vや22000V等に昇圧する構成であっても良い。
ここで、変圧器10が三相3線である場合、その鉄心の組み方とは、縦(鉛直方向)に長い略ロ字型の鉄心4つを互いに接触した状態で横(水平方向)に並べ、隣接する2つの鉄心が互いに接触した部分3つそれぞれに導線(銅線等)を巻いてコイルを形成し、各コイルは、内側に低圧巻線、外側に高圧巻線を巻き(又は、内側に低圧巻線、外側に高圧巻線を巻き、更に、これら低圧巻線と高圧巻線との間に、中圧巻線を巻き)、各巻線の間に絶縁体を配置するものとなる。
It can be said that such a transformer 10 is, for example, for interconnection, and may be configured to boost 100V or more and 440V or less to 6600V, 22000V or the like with a three-phase three-wire (3φ3W).
Here, when the transformer 10 is a three-phase three-wire, the way of assembling the iron core means that four substantially square L-shaped iron cores that are long vertically (vertically) are arranged horizontally (horizontally) in contact with each other. , A coil is formed by winding a conductive wire (copper wire or the like) around each of the three portions where two adjacent iron cores are in contact with each other, and each coil has a low voltage winding inside and a high voltage winding outside (or inside). A low-voltage winding, a high-voltage winding on the outside, a medium-voltage winding between the low-voltage winding and the high-voltage winding), and an insulator disposed between the windings.

尚、各鉄心は、薄い鉄板を積層した積層鉄心であっても良い。
又、このような変圧器10は、所謂、トランスであると言える。
更に、変圧器10の数も、上述したように、1又は複数であっても良い。
変圧器10は、1つの太陽光発電プラント100(の太陽電池Tの下方等)に、複数の変圧器10が分散して設けられていても構わない。
In addition, each iron core may be a laminated iron core in which thin iron plates are laminated.
It can be said that such a transformer 10 is a so-called transformer.
Further, the number of transformers 10 may be one or more as described above.
As for the transformer 10, a plurality of transformers 10 may be provided in a distributed manner in one solar power plant 100 (below the solar cell T thereof).

<送電部52、遮断器(発電遮断器)7>
図1に示したように、送電部52は、上述した変圧器10からの交流電流を配電盤筐体51外へ送電する部分である。
送電部52は、変圧器10からの交流電流を配電盤筐体51外へ送電するのであれば、何れの構成でも良いが、例えば、配電盤筐体51内に設けられ、真空遮断器(VCB)等の遮断器(謂わば、発電遮断器)7や、避雷器(SAR)などを備えていても良い。
<Power transmission unit 52, breaker (generation breaker) 7>
As illustrated in FIG. 1, the power transmission unit 52 is a unit that transmits the alternating current from the above-described transformer 10 to the outside of the switchboard housing 51.
The power transmission unit 52 may have any configuration as long as it transmits the AC current from the transformer 10 to the outside of the switchboard housing 51. For example, the power transmission unit 52 is provided in the switchboard housing 51 and includes a vacuum circuit breaker (VCB) or the like. The circuit breaker 7 (so-called power generation circuit breaker) 7, a lightning arrester (SAR), etc. may be provided.

送電部52内では、上述した変圧器10からの交流電流が、上述の発電遮断器7等を経た後、配電盤筐体51の外部として、配電ケーブルを介して系統Kに接続したり、他の複数の配電盤筐体51(つまり、配電盤50)からの電力を取り纏める受電盤60を介して系統Kに接続するなど、送電部52は、最終的には系統Kに導通し送電可能な構成であれば良い。
尚、送電部52は、トランスミッターとも言え、特別高圧な電圧(例えば、22000V等)を送電する場合には、特高部とも言える。
又、送電部52の数も、上述したように、1又は複数であっても良いが、上述した変圧器10の数と同じ数であっても構わない。
In the power transmission unit 52, after the AC current from the above-described transformer 10 passes through the above-described power generation breaker 7 and the like, the AC current is connected to the system K via a power distribution cable as the outside of the switchboard casing 51, or other power supply. The power transmission unit 52 is finally connected to the system K via the power receiving panel 60 that collects electric power from the plurality of switchboard casings 51 (that is, the switchboard 50), and finally has a configuration capable of conducting to the system K and transmitting power. I wish I had it.
It should be noted that the power transmission unit 52 can be said to be a transmitter, and can also be said to be an extra-high voltage unit when transmitting a special high voltage (for example, 22000V).
Further, the number of the power transmission units 52 may be one or more as described above, but may be the same as the number of the transformers 10 described above.

送電部52における発電遮断器7は、メンテナンス性の向上のため、例えば、前後方向に回動可能となっていても良く、後述する制御部4(又は、逆電力継電器6や、不足電力継電器5)からの信号によって、引外しトリップコイル等を介して、遮断する構成としても良い。
このような発電遮断器7は、送電部52内に設けられていることによって、パワーコンディショナ2から系統Kまでのうち、上述した変圧器10(変圧器10の高圧側)と、上述した負荷分岐点8との間の電路を遮断することとなる(このように、発電遮断器7や後述する受電遮断器7’等で遮断することで、パワーコンディショナ2から発電力Hが出力されなくなる、又は、受電部3から系統Kへ電流が流れ込まなくなるとも言える)。
尚、負荷Fが複数ある場合には、発電遮断器7は、それら複数の負荷分岐点8のうち、最もパワーコンディショナ2に近い負荷分岐点8と、当該パワーコンディショナ2の間の電路に設けられているとも言える。
The power generation breaker 7 in the power transmission unit 52 may be rotatable in the front-back direction, for example, in order to improve maintainability, and the control unit 4 (or the reverse power relay 6 or the insufficient power relay 5 described later) may be used. ), It may be configured to shut off via a tripping trip coil or the like.
Since such a power generation circuit breaker 7 is provided in the power transmission unit 52, the above-described transformer 10 (the high-voltage side of the transformer 10) and the above-described load in the power conditioner 2 to the system K are provided. The electric path to the branch point 8 is cut off (in this way, by cutting off with the power generation breaker 7 or the power receiving breaker 7'described later, the generated power H is not output from the power conditioner 2). Or, it can be said that current does not flow from the power receiving unit 3 to the system K).
When there are a plurality of loads F, the power generation circuit breaker 7 is connected to a load branch point 8 closest to the power conditioner 2 among the plurality of load branch points 8 and an electric circuit between the power conditioners 2. It can be said that it is provided.

<発電力H、発電力計11>
図1に示すように、発電力Hは、上述したパワーコンディショナ2から出力される電力であり、発電電力Hであるとも言え、発電力計11は、この発電力Hを測定する電力計である。
発電力計11は、発電力Hを測定できるのであれば、何れの構成であっても良いが、例えば、上述した変圧器10(変圧器10の高圧側)と、上述した発電遮断器7の間の電路に(且つ、上述した送電部52内に)設けられていても構わない。
尚、発電力計11が変圧器10の高圧側と発電遮断器7の間の電路に設けられていた場合、変圧器10からの出力である発電力計11の測定値を、パワーコンディショナ2から出力される発電力Hとする(とみなす)こととなる。
<Power H, Power Meter 11>
As shown in FIG. 1, the generated power H is the power output from the power conditioner 2 described above, and it can be said that it is the generated power H. The power generator 11 is a power meter that measures this generated power H. is there.
The power generation meter 11 may have any configuration as long as it can measure the power generation H. For example, the above-described transformer 10 (high voltage side of the transformer 10) and the above-described power generation breaker 7 may be used. It may be provided in the electric path between them (and in the power transmission unit 52 described above).
When the power generation meter 11 is provided in the electric path between the high voltage side of the transformer 10 and the power generation breaker 7, the measured value of the power generation meter 11, which is the output from the transformer 10, is used as the power conditioner 2 The generated power H is output from (considered to be).

このような発電力計11は、例えば、送電部52内(例えば、上述した発電遮断器7と変圧器10(変圧器10の高圧側)の間の電路)に設けられた計器用変流器(CT、Current Transformer 、謂わば、発電CT)11aや、この計器用変流器11aに接続された過電流継電器(OCR、Over Current Relay、謂わば、発電OCR)11b、この過電流継電器11bに接続された電流計(謂わば、発電電流計)11c、この電流計11cの出力側と後述する受電部3における計器用変成器3aの低圧側に接続された電力計(狭義の発電力計)11dと、この電力計11dからの測定値をデジタル化等して制御部4へ出力する出力部11eを有していても良い。
発電力計11で測定される発電力Hの値と、後述する受電力計12で測定される受電力Jに基づいて、後述する制御部4によって、パワーコンディショナ2からの出力が制御される。
Such a power generation meter 11 is, for example, a current transformer for an instrument provided in the power transmission section 52 (for example, the electric path between the above-described power generation breaker 7 and the transformer 10 (the high-voltage side of the transformer 10)). (CT, Current Transformer, so-called power generation CT) 11a, overcurrent relay (OCR, Overcurrent Relay, so-called power generation OCR) 11b connected to this instrument current transformer 11a, and this overcurrent relay 11b. A connected ammeter (so-called so-called generation ammeter) 11c, a power meter connected to the output side of the ammeter 11c and the low-voltage side of the meter transformer 3a in the power receiving unit 3 described later (a power generator in a narrow sense) You may have 11d and the output part 11e which digitizes the measured value from this wattmeter 11d, and outputs it to the control part 4.
The output from the power conditioner 2 is controlled by the control unit 4 described later based on the value of the generated power H measured by the power generation meter 11 and the received power J measured by the power reception meter 12 described below. .

<受電部3、遮断器(受電遮断器)7’>
図1に示したように、受電部3は、上述したパワーコンディショナ2と系統Kと負荷Fにそれぞれ接続された部分であり、後述する受電力計12が設けられている。
又、受電部3には、後述する不足電力継電器5や、逆電力継電器6が設けられていても良い。
受電部3は、パワーコンディショナ2と系統Kと負荷Fにそれぞれ接続されているのであれば、何れの構成であっても良いが、例えば、後述する受電盤筐体61や配電盤筐体51内に設けられ、真空遮断器(VCB)等の遮断器(謂わば、受電遮断器)7’や、避雷器(SAR)、計器用変成器(VT、Voltage Transformer )3aなどを備えていても良い。
<Power receiving unit 3, circuit breaker (power receiving circuit breaker) 7 '>
As shown in FIG. 1, the power receiving unit 3 is a portion connected to the above-described power conditioner 2, the system K, and the load F, respectively, and is provided with a power receiving meter 12 described below.
Further, the power receiving unit 3 may be provided with a power shortage relay 5 and a reverse power relay 6 which will be described later.
The power receiving unit 3 may have any configuration as long as it is connected to the power conditioner 2, the system K, and the load F, for example, in a power receiving panel housing 61 or a switchboard housing 51 described later. May be provided with a circuit breaker (so-called power receiving circuit breaker) 7 ′ such as a vacuum circuit breaker (VCB), a lightning arrester (SAR), an instrument transformer (VT, Voltage Transformer) 3 a, and the like.

受電部3における受電遮断器7’も、後述する制御部4(又は、逆電力継電器6や、不足電力継電器5)からの信号によって、引外しトリップコイル等を介して、遮断する構成としても良い。
このような受電遮断器7’は、受電部3に設けられていることによって、パワーコンディショナ2から系統Kまでの受電部3内の電路を遮断することとなる。
The power receiving breaker 7 ′ in the power receiving unit 3 may also be configured to be cut off by a signal from the control unit 4 (or the reverse power relay 6 or the insufficient power relay 5) described later via a tripping trip coil or the like. .
Since such a power receiving breaker 7'is provided in the power receiving unit 3, it cuts off the electric path in the power receiving unit 3 from the power conditioner 2 to the system K.

受電部3における計器用変成器3aは、パワーコンディショナ2と系統Kの間で且つ受電部3内の電路において、上述した受電遮断器7’より系統K寄り(系統Kに近い側)の電路に設けられている。
このような計器用変成器3aは、その高圧側が、受電遮断器7’より系統K寄り(系統Kに近い側)の電路と、当該電路における分岐点(変成分岐点)3bから分岐電路(変成分岐電路)3cを介して接続され、計器用変成器3aの低圧側は、上述した発電力計11(狭義の発電力計11d)や、後述する受電力計12(狭義の受電力計12d)、不足電力継電器5、逆電力継電器6等に接続されている。
The instrument transformer 3a in the power receiving unit 3 is a power line between the power conditioner 2 and the power system K and in a power line in the power receiving unit 3 that is closer to the power system K than the power receiving circuit breaker 7 ′ (closer to the power system K). It is provided in.
In such an instrument transformer 3a, the high-voltage side of the electric circuit is closer to the system K (the side closer to the system K) than the power receiving circuit breaker 7'and a branching line (transforming branching point) 3b in the electric line. The low-voltage side of the instrument transformer 3a is connected via a branch circuit 3c, and the low-voltage side of the instrument transformer 3a is the above-mentioned power generator 11 (power generator 11d in a narrow sense) or a power receiver 12 (power receiver 12d in a narrow sense) described later. , A power shortage relay 5, a reverse power relay 6 and the like.

受電部3における計器用変成器3aの構成も、特に限定はないが、例えば、6600Vや22000V等を110V等に降圧する構成であっても良い。
受電部3では、この計器用変成器3aと変成分岐点3bの間の電路に、高圧限流ヒューズ3d(PF、Power Fuse)が設けられていても良い。
The configuration of the instrument transformer 3a in the power receiving unit 3 is not particularly limited, but may be, for example, a configuration in which 6600V, 22000V or the like is stepped down to 110V or the like.
In the power receiving unit 3, a high-voltage current limiting fuse 3d (PF, Power Fuse) may be provided in the electric path between the instrument transformer 3a and the transformer branch point 3b.

<受電力J、受電力計12>
図1に示したように、受電力Jは、上述した系統Kから受電部3へ受電される電力であり、受電電力Jとも言え、受電力計12は、この受電力Jを測定する電力計である。
受電力計12は、受電力Jを測定できるのであれば、何れの構成であっても良いが、例えば、パワーコンディショナ2と系統Kの間で且つ受電部3内の電路において、上述した受電遮断器7’よりパワーコンディショナ2寄り(パワーコンディショナ2に近い側)の電路に設けられていても良い。
<Power received J, power receiver 12>
As shown in FIG. 1, the received power J is the power received from the above-described grid K to the power receiving unit 3, and can also be called the received power J. The power receiving meter 12 measures the received power J. Is.
The power receiving meter 12 may have any configuration as long as it can measure the received power J. For example, the power receiving described above is provided between the power conditioner 2 and the system K and in the power line in the power receiving unit 3. It may be provided in the electric path closer to the power conditioner 2 than the circuit breaker 7 ′ (on the side closer to the power conditioner 2).

このような受電力計12は、例えば、上述した受電遮断器7’よりパワーコンディショナ2寄りの電路に設けられた計器用変流器(CT、Current Transformer 、謂わば、受電CT)12aや、この計器用変流器12aに接続された過電流継電器(OCR、Over Current Relay、謂わば、受電OCR)12b、この過電流継電器12bに接続された電流計(謂わば、受電電流計)12c、この電流計12cの出力側と上述した計器用変成器3aの低圧側に接続された電力計(狭義の受電力計)12dと、この電力計12dからの測定値をデジタル化等して制御部4へ出力する出力部12eを有していても良い。
受電力計12で測定される受電力Jの値と、上述した発電力計11で測定される発電力Hに基づいて、後述する制御部4によって、パワーコンディショナ2からの出力が制御される。
Such a power receiver 12 includes, for example, an instrument current transformer (CT, Current Transformer, so-called power receiving CT) 12a, which is provided in an electric path closer to the power conditioner 2 than the above-described power receiving breaker 7 ′. An overcurrent relay (OCR, Overcurrent Relay, so-called receiving OCR) 12b connected to the current transformer 12a, an ammeter (so-called receiving ammeter) 12c connected to the overcurrent relay 12b, A power meter (a power receiver in a narrow sense) 12d connected to the output side of the ammeter 12c and the low-voltage side of the meter transformer 3a described above, and a control unit that digitizes the measurement value from the power meter 12d It may have an output unit 12e for outputting to No.
The output from the power conditioner 2 is controlled by the control unit 4 described later based on the value of the received power J measured by the power receiver 12 and the generated power H measured by the power generator 11 described above. .

<不足電力U、不足電力継電器5>
図1に示すように、不足電力Uは、上述した系統K側において短絡(ショート)が起こった際に、受電部(受電端)3での受電力Jの不足分を表す電力であって、上述したパワーコンディショナ2からの発電力Hが大きくなり過ぎると、不足電力Uは0に近づくとも言える。
不足電力継電器(UPR、Under Power Relay )5は、上述した受電部3に設けられ、不足電力Uを検知する継電器である。
<Power shortage U, power shortage relay 5>
As shown in FIG. 1, the power shortage U is power representing the shortage of the power received J at the power receiving unit (power receiving end) 3 when a short circuit occurs on the system K side described above, It can be said that the insufficient power U approaches 0 when the power H generated from the power conditioner 2 described above becomes too large.
The insufficient power relay (UPR, Under Power Relay) 5 is a relay that is provided in the power receiving unit 3 described above and detects the insufficient power U.

不足電力継電器5は、不足電力Uを検知できるのであれば、何れの構成であっても良いが、例えば、上述した受電OCR12bと、受電電流計12cの間の電路に設けられ且つ上述した計器用変成器3aの低圧側に接続されていても良い。
不足電力継電器5で検知される不足電力Uが0に近づくと(謂わば「不足電力略零状態S1になると」)、後述する制御部4によって、上述したパワーコンディショナ2の変換を停止し、又は、上述したパワーコンディショナ2から系統Kまでの電路における何れかの遮断器(発電遮断器7や受電遮断器7’等)を遮断しても良い。
The power shortage relay 5 may have any configuration as long as it can detect the power shortage U. For example, the power shortage relay 5 is provided in the electric path between the power receiving OCR 12b described above and the power receiving ammeter 12c and is for the above-described instrument. It may be connected to the low voltage side of the transformer 3a.
When the power shortage U detected by the power shortage relay 5 approaches 0 (so-called "when the power shortage becomes substantially zero state S1"), the control unit 4 described later stops the conversion of the power conditioner 2 described above, Alternatively, any of the circuit breakers (the power generating circuit breaker 7, the power receiving circuit breaker 7 ′, etc.) in the electric path from the power conditioner 2 to the system K described above may be cut off.

ここで、本発明における「不足電力Uが0(ゼロ)に近づく」とは、不足電力Uが、「0W(ワット)より大きく(つまり、0Wを含まない)」且つ「0W近傍の値以下となる」ことを意味し、本発明における「0W近傍の値」とは、0Wより大きい値であれば良く、用いる不足電力継電器5の分解能に応じたり、所定の不足電力Uの値に設定する等をしても構わず、例えば、1kW(1000W)や1W、1mW、1μWなどであっても良い。   Here, in the present invention, “the power shortage U approaches 0 (zero)” means that the power shortage U is “greater than 0 W (watt) (that is, not including 0 W)” and equal to or less than a value near 0 W. In the present invention, the “value in the vicinity of 0 W” may be any value larger than 0 W, depending on the resolution of the power shortage relay 5 to be used, or set to a predetermined value of the power shortage U, etc. Alternatively, it may be 1 kW (1000 W), 1 W, 1 mW, 1 μW, or the like.

<逆電力G、逆電力継電器6>
図1に示すように、逆電力Gは、上述した受電部3から系統Kへ逆流する電力であり、逆流電力Gとも言え、逆電力継電器(RPR、Reverse Power Relay )6も、上述した受電部3に設けられ、逆電力Gを検知する継電器である。
逆電力継電器6は、逆電力Gを検知できるのであれば、何れの構成であっても良いが、例えば、上述した不足電力継電器5と、受電電流計12cの間の電路に設けられ且つ上述した計器用変成器3aの低圧側に接続されていても良い。
<Reverse power G, reverse power relay 6>
As shown in FIG. 1, the reverse power G is the power that flows back from the power receiving unit 3 to the grid K, and can also be called the reverse power G, and the reverse power relay (RPR, Reverse Power Relay) 6 is also the power receiving unit described above. 3 is a relay that detects the reverse power G.
The reverse power relay 6 may have any configuration as long as it can detect the reverse power G. For example, the reverse power relay 6 is provided in the electric path between the above-mentioned insufficient power relay 5 and the power receiving ammeter 12c and described above. It may be connected to the low-voltage side of the instrument transformer 3a.

逆電力継電器6で検知される逆電力Gが0より大きくなると(謂わば「逆電力発生状態S2になると」)、後述する制御部4によって、上述したパワーコンディショナ2から系統Kまでの何れかの遮断器(発電遮断器7や受電遮断器7’等)を遮断し、又は、上述したパワーコンディショナ2の変換を停止しても良い。
尚、逆電力継電器6で逆電力Gが検知された際、上述した遮断器をハードウェア的に(例えば、引外しトリップコイル等を介して)遮断する場合、当該逆電力継電器6自体が、後述する制御部4であるとも言える。
When the reverse power G detected by the reverse power relay 6 becomes larger than 0 (so-called “reverse power generation state S2”), any one of the above-mentioned power conditioner 2 to the system K is controlled by the control unit 4 described later. The circuit breaker (power generation circuit breaker 7, power receiving circuit breaker 7 ', etc.) may be blocked, or the conversion of the power conditioner 2 described above may be stopped.
Incidentally, when the reverse power G is detected by the reverse power relay 6, when the circuit breaker described above is cut off by hardware (for example, via a tripping trip coil or the like), the reverse power relay 6 itself will be described later. It can also be said that it is the control unit 4 that operates.

ここで、本発明における「逆電力Gが0より大きくなる」とは、逆電力Gが、厳密に0W(0mWや0μW等)より大きくなる(当然に、0Wを含まない)ことを意味するものの、用いる逆電力継電器6の分解能や設定等によっては、その逆電力Gが「0Wより大きく」且つ「0Wとみなせる値以下となる」ことを意味しても許容し、本発明における「0Wとみなせる値」とは、用いる逆電力継電器6の分解能に応じたり、所定の不足電力Uの値に設定する等をしても構わず、例えば、1mWや1μW、1nWなどであっても良い。   Here, “the reverse power G becomes larger than 0” in the present invention means that the reverse power G becomes strictly larger than 0 W (0 mW, 0 μW, etc.) (of course, does not include 0 W). Depending on the resolution, setting, etc. of the reverse power relay 6 to be used, the reverse power G is allowed to mean “greater than 0 W” and “less than or equal to a value that can be regarded as 0 W”, and can be regarded as “0 W” in the present invention. The "value" may be, for example, 1 mW, 1 μW, 1 nW or the like, depending on the resolution of the reverse power relay 6 used, or may be set to a predetermined value of the insufficient power U.

<受電部3における他の機器>
図1に示したように、受電部3には、その他、不足電圧継電器21や過電圧継電器22、不足周波数継電器(周波数低下継電器とも言う)23、過周波数継電器24が設けられていても良い。
更に加えて、受電部3には、断路器25、計器用変圧変流器26、電力量計27、柱上気中開閉器28が設けられていても良い。
<Other devices in power receiving unit 3>
As shown in FIG. 1, the power receiving unit 3 may be additionally provided with an undervoltage relay 21, an overvoltage relay 22, an underfrequency relay (also referred to as a frequency lowering relay) 23, and an overfrequency relay 24.
In addition, the power receiving unit 3 may be provided with a disconnector 25, an instrument transformer / current transformer 26, a watt hour meter 27, and a pole air switch 28.

受電部3における不足電圧継電器(UVR、Under Voltage Relay )21は、不足電圧を検知する継電器であって、不足電圧を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器3aの低圧側に接続されていても良い。
不足電圧継電器21で検知される不足電圧が、所定値(6600Vや22000V等から、所定の電圧(例えば、100Vや200V等)を引いた値)以下になると、後述する制御部4によって、上述したパワーコンディショナ2から系統Kまでの何れかの遮断器(発電遮断器7や受電遮断器7’等)を遮断しても良いが、この遮断は、上述した逆電力発生状態S2になった場合より、優先度が低いとも言える。
尚、不足電圧継電器21で不足電圧が検知された際、上述した遮断器をハードウェア的に(例えば、引外しトリップコイル等を介して)遮断する場合、当該不足電圧継電器21自体が、後述する制御部4であるとも言える。
The undervoltage relay (UVR, Under Voltage Relay) 21 in the power receiving unit 3 is a relay that detects an undervoltage, and may have any configuration as long as it can detect the undervoltage, for example, as described above. It may be connected to the low-voltage side of the instrument transformer 3a.
When the undervoltage detected by the undervoltage relay 21 becomes equal to or lower than a predetermined value (a value obtained by subtracting a predetermined voltage (for example, 100V, 200V, etc. from 6600V, 22000V, etc.)), the control unit 4 described later described above. Although any of the circuit breakers from the power conditioner 2 to the system K (the power generating circuit breaker 7, the power receiving circuit breaker 7 ', etc.) may be cut off, this breaking occurs when the reverse power generation state S2 described above is reached. Therefore, it can be said that the priority is low.
When the undervoltage relay 21 detects an undervoltage, the undervoltage relay 21 itself will be described later when the above-mentioned breaker is cut off by hardware (for example, via a trip trip coil or the like). It can be said that it is the control unit 4.

受電部3における過電圧継電器(OVR、Over Voltage Relay)22は、過電圧を検知する継電器であって、過電圧を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器3aの低圧側に接続されていても良い。
過電圧継電器22で検知される過電圧が、所定値(6600Vや22000V等から、所定の電圧(例えば、100Vや200V等)を足した値)以上になると、後述する制御部4によって、上述したパワーコンディショナ2から系統Kまでの何れかの遮断器を遮断しても良いが、この遮断も、上述した逆電力発生状態S2になった場合より、優先度が低いとも言える。
尚、過電圧継電器22で過電圧が検知された際、上述した遮断器をハードウェア的に遮断する場合、当該過電圧継電器22自体が、後述する制御部4であるとも言える。
The overvoltage relay (OVR, Over Voltage Relay) 22 in the power receiving unit 3 is a relay that detects an overvoltage and may have any configuration as long as it can detect an overvoltage. For example, the above-described instrument transformer It may be connected to the low pressure side of the container 3a.
When the overvoltage detected by the overvoltage relay 22 becomes equal to or higher than a predetermined value (a value obtained by adding a predetermined voltage (eg, 100V, 200V, etc. from 6600V, 22000V, etc.)), the power condition described above is controlled by the control unit 4 described later. Although any of the circuit breakers from the node 2 to the system K may be cut off, it can be said that this cutoff also has a lower priority than when the reverse power generation state S2 described above is entered.
When the overvoltage relay 22 detects an overvoltage, the above-mentioned circuit breaker is cut off by hardware, the overvoltage relay 22 itself can be said to be the control unit 4 described later.

受電部3における不足周波数継電器(UFR、Under Frequency Relay )23は、不足周波数を検知する継電器であって、不足周波数を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器3aの低圧側に接続されていても良い。
不足周波数継電器23で検知される不足周波数が、所定値(60Hzや50Hz等から、所定の周波数(例えば、1Hz以上10Hz以下等)を引いた値)以下になると、後述する制御部4によって、上述したパワーコンディショナ2から系統Kまでの何れかの遮断器を遮断しても良いが、この遮断も、上述した逆電力発生状態S2になった場合より、優先度が低いとも言える。
尚、不足周波数継電器23で不足周波数が検知された際、上述した遮断器をハードウェア的に遮断する場合、当該不足周波数継電器23自体が、後述する制御部4であるとも言える。
The insufficient frequency relay (UFR, Under Frequency Relay) 23 in the power receiving unit 3 is a relay that detects an insufficient frequency and may have any configuration as long as it can detect the insufficient frequency. It may be connected to the low-voltage side of the instrument transformer 3a.
When the insufficient frequency detected by the insufficient frequency relay 23 becomes equal to or lower than a predetermined value (a value obtained by subtracting a predetermined frequency (for example, 1 Hz or more and 10 Hz or less) from 60 Hz, 50 Hz, etc.), the control unit 4 described later causes Although any of the circuit breakers from the power conditioner 2 to the system K may be cut off, it can be said that this cutoff also has a lower priority than when the reverse power generation state S2 described above is entered.
When the insufficient frequency relay 23 detects an insufficient frequency, when the circuit breaker described above is shut down by hardware, it can be said that the insufficient frequency relay 23 itself is the control unit 4 described later.

受電部3における過周波数継電器(OFR、Over Frequency Relay)24は、過周波数を検知する継電器であって、過周波数を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器3aの低圧側に接続されていても良い。
過周波数継電器24で検知される過周波数が、所定値(60Hzや50Hz等から、所定の周波数(例えば、1Hz以上10Hz以下等)を足した値)以上になると、後述する制御部4によって、上述したパワーコンディショナ2から系統Kまでの何れかの遮断器を遮断しても良いが、この遮断も、上述した逆電力発生状態S2になった場合より、優先度が低いとも言える。
尚、過周波数継電器24で過周波数が検知された際、上述した遮断器をハードウェア的に遮断する場合、当該過周波数継電器24自体も、後述する制御部4であるとも言える。
The over-frequency relay (OFR, Over Frequency Relay) 24 in the power receiving unit 3 is a relay that detects an over-frequency and may have any configuration as long as it can detect an over-frequency. It may be connected to the low-voltage side of the instrument transformer 3a.
When the overfrequency detected by the overfrequency relay 24 becomes equal to or higher than a predetermined value (a value obtained by adding a predetermined frequency (for example, 1 Hz or more and 10 Hz or less) from 60 Hz or 50 Hz, etc.), the control unit 4 described later causes Although any of the circuit breakers from the power conditioner 2 to the system K may be cut off, it can be said that this cutoff also has a lower priority than when the reverse power generation state S2 described above is entered.
When the overfrequency relay 24 detects an overfrequency, the above-mentioned circuit breaker is cut off by hardware, the overfrequency relay 24 itself can be said to be the control unit 4 described later.

受電部3における断路器(DS、Disconnecting Switch)25は、発電制御システム1や、この発電制御システム1を用いた太陽光発電プラント100などにおける回路に電流が流れていない状態で、当該回路を開閉する機器であって、断路器25には、電流を遮断する機能はなく、別の遮断器(受電遮断器7’や発電遮断器7等)で電流を遮断してから、断路器の開閉を行う。
断路器25は、電流が流れていない状態で回路を開閉できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器3aへの分岐点(変成分岐点)3bと系統Kの間の電路に設けられていても良い。
The disconnector (DS, Disconnecting Switch) 25 in the power receiving unit 3 opens and closes the circuit in the power generation control system 1 or the solar power generation plant 100 using the power generation control system 1 in a state where no current flows. The disconnector 25 does not have a function of interrupting the current, and the current is interrupted by another interrupter (such as the power receiving interrupter 7'and the power generating interrupter 7) before opening or closing the interrupter. To do.
The disconnector 25 may have any configuration as long as it can open and close the circuit in the state where no current is flowing. For example, the branch point (transformation branch point) 3b to the above-mentioned instrument transformer 3a and It may be provided in the electric circuit between the lines K.

受電部3における計器用変圧変流器(VCT、Combined Voltage and Current Transformer)26は、計器用変圧器(VT)と計器用変流器(CT)を一つに組み合わせた機器であって、系統Kから受電部3に流れ込む(又は、系統Kへ流れ出す)電流や電圧の測定を行う機器であって、電力量計27は、上述した計器用変圧変流器26と組み合わせて、系統Kから受電部3に流れ込む(又は、受電部3から系統Kへ流れ出す)電力量の測定を行う機器である。
計器用変圧変流器26は、系統Kから受電部3に流れ込む等の電流や電圧を測定できるのであれば、何れの構成であっても良いが、例えば、計器用変圧変流器26は、上述した断路器25と系統Kの間の電路に設けられていても良い。
又、電力量計27も、系統Kから受電部3に流れ込む際等の電力量の測定ができるのであれば、何れの構成であっても良いが、例えば、計器用変圧変流器26に接続されて、当該計器用変圧変流器26から出力される電流及び電圧の測定値を入力し、これら電流と電圧をかけた値(電圧と電流の積)を積算して電力量を測定しても良い。
ここで、電力量計27は、系統Kから受電部3に流れ込む電力量を測定する際は買電用であると言え、逆に、受電部3から系統Kへ流れ出す電力量を測定する際は売電用であるとも言える。尚、この電力量計27は、電気用品安全法で規定された乙種電気用品であっても良い。
The instrument voltage transformer (VCT, Combined Voltage and Current Transformer) 26 in the power receiving unit 3 is a device that is a combination of an instrument transformer (VT) and an instrument current transformer (CT). A device that measures the current and voltage flowing from K to the power receiving unit 3 (or flowing out to the system K), and the watt-hour meter 27 is combined with the above-described meter transformer transformer 26 to receive power from the system K. It is a device that measures the amount of electric power that flows into the unit 3 (or flows out from the power receiving unit 3 to the system K).
The instrument transformer current transformer 26 may have any configuration as long as it can measure a current or voltage such as flowing into the power receiving unit 3 from the system K. For example, the instrument transformer current transformer 26 is It may be provided in the electric circuit between the disconnector 25 and the system K described above.
Also, the electric power meter 27 may have any configuration as long as it can measure the amount of electric power when flowing into the power receiving unit 3 from the system K, for example, it is connected to the transformer transformer 26 for a meter. Then, the measured values of the current and the voltage output from the voltage transformer / current transformer 26 are input, and the values obtained by multiplying the current and the voltage (the product of the voltage and the current) are integrated to measure the electric energy. Is also good.
Here, it can be said that the watt-hour meter 27 is for power purchase when measuring the amount of power flowing from the grid K to the power receiving unit 3, and conversely, when measuring the amount of power flowing from the power receiving unit 3 to the grid K. It can be said that it is for selling electricity. The watt-hour meter 27 may be a type B electric appliance defined by the Electrical Appliance and Material Safety Law.

受電部3における柱上気中開閉器(PAS、Pole Air Switches )28は、発電制御システム1や太陽光発電プラント100と系統Kとの責任分界点等の開閉に用いる機器である。
柱上気中開閉器28は、発電制御システム1や太陽光発電プラント100と系統Kとの責任分界点等を開閉できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変圧変流器26と系統Kの間の電路に設けられていても良い。
A pole air switch (PAS, Pole Air Switches) 28 in the power receiving unit 3 is a device used to open and close a responsibility demarcation point or the like between the power generation control system 1 or the photovoltaic power plant 100 and the grid K.
The pillar air switch 28 may have any configuration as long as it can open and close the responsibility demarcation point between the power generation control system 1 or the photovoltaic power plant 100 and the grid K, and for example, the above-described instrument. It may be provided in the electric line between the transformer transformer 26 and the system K.

<制御部4>
図1に示したように、制御部4は、上述したパワーコンディショナ2及び/又は受電部3を制御する部分である。
制御部4は、上述した系統Kから受電部3へ受電される受電力Jと、上述したパワーコンディショナ2から出力される発電力Hとの和に基づいて、パワーコンディショナ2を制御する。
<Control unit 4>
As illustrated in FIG. 1, the control unit 4 is a unit that controls the power conditioner 2 and / or the power receiving unit 3 described above.
The control unit 4 controls the power conditioner 2 based on the sum of the received power J received from the grid K to the power receiving unit 3 and the generated power H output from the power conditioner 2 described above.

又、制御部4は、上述した不足電力継電器5で検知される不足電力Uが0に近づくと(つまり、「不足電力略零状態S1になると」)、上述したパワーコンディショナ2の変換を停止し、制御部4は、上述した逆電力継電器6で検知される逆電力Gが0より大きくなると(つまり、「逆電力発生状態S2」になると)、上述したパワーコンディショナ2から系統Kまでの電路における何れかの遮断器(発電遮断器や受電遮断器7’等)を遮断しても良い。
この場合には、実際の発電制御システム1では、まず不足電力略零状態S1になってから、逆電力発生状態S2になることが多く起こるとも言え、先に起こり易い不足電力略零状態S1で、不足電力Uを減らす(より0に近づく)方向に働くパワーコンディショナ2の変換を停止するため、その後、逆電力発生状態S2となることは非常に少なくなると共に、パワーコンディショナ2の変換を再開する際に、パワーコンディショナ2からの出力を系統Kの電圧及び位相等に合わせる必要はなく、発電制御システム1の復帰がより短時間で・より手間なく行うことが可能となる(システム復帰の短時間化・容易化」)とも言える。
尚、逆に、先に起こり易い不足電力略零状態S1で、パワーコンディショナ2から系統Kまでの何れかの遮断器を遮断した場合には、再び接続する際に、パワーコンディショナ2からの出力を系統Kの電圧及び位相等に合わせる必要が出てくるとも言える。
その他、制御部4は、上述とは逆に、不足電力略零状態S1になると、上述したパワーコンディショナ2から系統Kまでの電路における何れかの遮断器(発電遮断器や受電遮断器7’等)を遮断し、逆電力発生状態S2」になると、上述したパワーコンディショナ2の変換を停止等しても良い。
Further, the control unit 4 stops the conversion of the power conditioner 2 described above when the power shortage U detected by the power shortage relay 5 described above approaches 0 (that is, “when the power shortage becomes substantially zero state S1”). However, when the reverse power G detected by the reverse power relay 6 described above becomes greater than 0 (that is, when the "reverse power generation state S2" is reached), the control unit 4 changes the power conditioner 2 to the system K from the power conditioner 2 described above. Any circuit breaker (power generation circuit breaker, power receiving circuit breaker 7 ', etc.) in the electric circuit may be cut off.
In this case, in the actual power generation control system 1, it can be said that the reverse power generation state S2 often occurs first after the power shortage substantially zero state S1 occurs. , The conversion of the power conditioner 2 that works in the direction of decreasing the power shortage U (closer to 0) is stopped, so that the reverse power generation state S2 is extremely reduced thereafter, and the conversion of the power conditioner 2 is reduced. When restarting, it is not necessary to match the output from the power conditioner 2 with the voltage and phase of the system K, and the power generation control system 1 can be restored in a shorter time and with less trouble (system restoration. It can be said that it is "shortened and made easier").
On the contrary, when any of the circuit breakers from the power conditioner 2 to the system K is cut off in the power shortage substantially zero state S1 that is likely to occur first, when the power conditioner 2 is connected again, It can be said that it becomes necessary to match the output with the voltage and phase of the system K.
On the contrary, when the power shortage is substantially zero S1 contrary to the above, the control unit 4 causes any of the circuit breakers (the power generation breaker and the power receiving breaker 7'in the electric path from the power conditioner 2 to the system K described above. Etc.) and the reverse power generation state S2 ″ is reached, the conversion of the power conditioner 2 described above may be stopped.

尚、制御部4は、逆電力発生状態S2になった際に発電遮断器7等の遮断器をハードウェア的に遮断する場合、当該逆電力継電器6が制御部4に含まれるとも言える。
これは、上述したように、不足電圧継電器21で不足電圧が検知された際に遮断器をハードウェア的に遮断する場合や、過電圧継電器22で過電圧が検知された際に遮断器をハードウェア的に遮断する場合、不足周波数継電器23で不足周波数が検知された際に遮断器をハードウェア的に遮断する場合、過周波数継電器24で過周波数が検知された際に遮断器をハードウェア的に遮断する場合も同様で、これら不足電圧継電器21や、過電圧継電器22、不足周波数継電器23、過周波数継電器24が、制御部4に含まれるとも言える。
It should be noted that when the control unit 4 shuts off the breaker such as the power generation breaker 7 in a hardware manner when the reverse power generation state S2 is entered, it can be said that the reverse power relay 6 is included in the control unit 4.
This is because, as described above, when the undervoltage relay 21 detects an undervoltage, the circuit breaker is shut down by hardware, or when the overvoltage relay 22 detects an overvoltage, the circuit breaker operates by hardware. When shutting off, the hardware interrupts the circuit breaker when the insufficient frequency relay 23 detects an insufficient frequency, and when the overfrequency relay 24 detects an overfrequency, shuts the circuit breaker hardware. It can be said that the same applies to the case where the control unit 4 includes the undervoltage relay 21, the overvoltage relay 22, the underfrequency relay 23, and the overfrequency relay 24.

制御部4は、受電力Jと発電力Hとの和に基づいて、パワーコンディショナ2を制御するのであれば、何れの制御方法であっても良いが、例えば、以下に示す式(1)や式(2)に基づいて発電力Hの目標上限値(発電目標上限値)THmax を導出しても良い。
尚、式(1)や式(2)においては、受電力Jや発電力H、制限係数A(負荷電力Dに相当する受電力Jと発電力Hの和にかける制限係数A)、変動対応定数Bが、それぞれ時刻tによって変化するものとして、受電力をJ(t)、発電力をH(t)、制限係数A(t)、変動対応定数をB(t)としていて、これらのうち、受電力J(t)、発電力H(t)、変動対応定数B(t)それぞれの単位はkW等としている。
The control unit 4 may use any control method as long as it controls the power conditioner 2 based on the sum of the received power J and the generated power H. For example, the following formula (1) is used. Alternatively, the target upper limit value (power generation target upper limit value) TH max of the generated power H may be derived based on Equation (2).
In the equations (1) and (2), the received power J, the generated power H, the limiting coefficient A (the limiting coefficient A multiplied by the sum of the received power J corresponding to the load power D and the generated power H), and the variation correspondence Assuming that the constant B changes with time t, the received power is J (t), the generated power is H (t), the limiting coefficient A (t), and the fluctuation correspondence constant is B (t). , The received power J (t), the generated power H (t), and the fluctuation correspondence constant B (t) are each in kW or the like.

ここで、受電力J(t)や発電力H(t)は、上述した受電力計12や発電力計11によって、所定の時間毎に測定されていても(所定のサンプリングタイムでも)良いが、例えば、1秒毎や5秒毎など、サンプリングタイムが1秒以上10秒以下であっても構わない。
制限係数A(t)は、特に限定はないが、例えば、0以上1以下の値(つまり、0%以上100%以下、90%や95%、98%、99%、100%等)であっても良く、変動対応定数B(t)も、特に限定はないが、例えば、0kW以上20kW以下であっても構わない。
Here, the received power J (t) and the generated power H (t) may be measured by the above-described received power meter 12 and generated power meter 11 at predetermined time intervals (even at a predetermined sampling time). For example, the sampling time may be 1 second or more and 10 seconds or less, such as every 1 second or every 5 seconds.
The limiting coefficient A (t) is not particularly limited, but is, for example, a value of 0 or more and 1 or less (that is, 0% or more and 100% or less, 90% or 95%, 98%, 99%, 100%, etc.). Also, the fluctuation correspondence constant B (t) is not particularly limited, but may be, for example, 0 kW or more and 20 kW or less.

尚、制御係数A(t)や変動対応定数B(t)は、所定のサンプリングタイムごとに細かく変化させずとも良く、例えば、大まかな区間ごと(1時間ごとや30分ごと)に所定の値としても良く、より具体的には、一日のうち「午前0時から午前9時まで」と「午後5時から午後12時まで」は、A(t)=1.00(100%)、B(t)=0kW等とし、「午前9時から午後5時まで」はA(t)=0.90(90%)、B(t)=10kW等としても良い。
このような制御部4は、実際にパワーコンディショナ2から出力される発電力Hが、上述した式(1)や式(2)にて導出した発電目標上限値THmax となるように、最大電力点追従制御(MPPT(Maximum Power Point Tracking)Control )等を行っていても良い。
It should be noted that the control coefficient A (t) and the variation correspondence constant B (t) do not have to be finely changed at each predetermined sampling time. For example, the control coefficient A (t) and the variation correspondence constant B (t) are set to predetermined values for each rough section (every hour or every 30 minutes). More specifically, "A (t) = 1.00 (100%),""from 0:00 to 9:00" and "from 5:00 to 12:00" in a day, B (t) = 0 kW or the like, and “from 9 am to 5 pm” may be A (t) = 0.90 (90%), B (t) = 10 kW, or the like.
Such a control unit 4 sets the maximum value so that the generated power H actually output from the power conditioner 2 becomes the power generation target upper limit value TH max derived by the above-described formula (1) or formula (2). Power point tracking control (MPPT (Maximum Power Point Tracking) Control) or the like may be performed.

その他、制御部4は、余剰買取制御を行うのであれば、電力会社からの出力制限(出力制御)指令に応じて、発電目標上限値THmax だけでなく、上述した不足電力継電器5で検知される不足電力Uに応じたパワーコンディショナ2の変換停止、上述した逆電力継電器6で検知される逆電力Gに応じた遮断も、コントロールしても良い。
つまり、制御部4は、
<1>電力会社から出力制限指令が出ていない時間帯(例えば、「午前0時から午前9時まで」と「午後3時から午後12時まで」など)では、基本的には、パワーコンディショナ2から出力される発電力Hは全て負荷F側や受電部3側に流し、
<1−1>負荷F側に余剰電力が発生している場合は、その余剰電力を、受電部3を介して系統K側に流す(売電する)ことになり、
<1−2>負荷F側の電力が足りない場合は、その不足分の電力を、受電部3を介して系統K側から負荷F側に流し込む(買電する)ことになり、
これら<1−1>と<1−2>では、制御部4は、不足電力継電器5で検知される不足電力Uに応じたパワーコンディショナ2の変換停止や、逆電力継電器6で検知される逆電力Gに応じた遮断を行わないようにさせても良い。
更に、制御部4は、
<2>電力会社から出力制限指令が出ている時間帯(例えば、「午前9時から午後3時まで」などに40%等の出力制限指令(系統Kへの出力上限値(系統出力上限値)KHmax を、太陽光発電プラント100等の最大発電力の40%等にせよとの指令)が出ている時間帯など)では、基本的に、パワーコンディショナ2から出力される発電力Hは、必ず制御され、
<2−1>もし(受電力Jと発電力Hの和)が系統出力上限値KHmax より大きい場合(つまり、負荷電力Dが系統出力上限値KHmax より大きい場合)は、実際にパワーコンディショナ2から出力される発電力Hが、上述した式(1)や式(2)にて導出した発電目標上限値THmax となるように制御し(「出力制限状態S3となり」)、
この<2−1>では、制御部4は、不足電力継電器5で検知される不足電力Uに応じたパワーコンディショナ2の変換停止や、逆電力継電器6で検知される逆電力Gに応じた遮断を行わせ、
<2−2>もし(受電力Jと発電力Hの和)が系統出力上限値KHmax より小さい場合(つまり、負荷電力Dが系統出力上限値KHmax より小さい場合)は、パワーコンディショナ2から出力される発電力Hが、上述した系統出力上限値KHmax となるように制御しつつ(「出力制限状態S3となりつつ」)、パワーコンディショナ2から出力される発電力Hを負荷F側に流すと、負荷F側に余剰電力が発生するため、その余剰電力を、受電部3を介して系統K側に流す(売電する)ことになり、
この<2−2>では、制御部4は、不足電力継電器5で検知される不足電力Uに応じたパワーコンディショナ2の変換停止や、逆電力継電器6で検知される逆電力Gに応じた遮断を行わないようにさせても良い。
In addition, if the surplus purchase control is performed, the control unit 4 detects not only the power generation target upper limit value TH max but also the above-described power shortage relay 5 according to the output limit (output control) command from the electric power company. The conversion stop of the power conditioner 2 according to the insufficient power U that is caused, and the interruption according to the reverse power G detected by the reverse power relay 6 described above may also be controlled.
That is, the control unit 4
<1> In a time period when no output restriction command is issued from the electric power company (for example, “from midnight to 9:00 am” and “from 3:00 pm to 12:00 pm”), the power condition is basically set. All the generated power H output from the power supply 2 flows to the load F side and the power receiving unit 3 side,
<1-1> When surplus power is generated on the side of the load F, the surplus power is flown (sold) to the system K side via the power receiving unit 3,
<1-2> When the electric power on the load F side is insufficient, the shortage of electric power is fed (power purchase) from the system K side to the load F side via the power receiving unit 3.
In <1-1> and <1-2>, the control unit 4 detects the conversion stop of the power conditioner 2 according to the power shortage U detected by the power shortage relay 5 or the reverse power relay 6. The interruption according to the reverse electric power G may not be performed.
Furthermore, the control unit 4
<2> Output restriction command of 40% or the like during the time period (for example, from “9 am to 3:00 pm”) when an output restriction command is issued from the electric power company (output upper limit value to the system K (system output upper limit value ) KH max is, for example, a time zone during which a command to set 40% of the maximum power generation of the photovoltaic power plant 100, etc.) is issued), basically, the power generation H output from the power conditioner 2 Is always controlled,
<2-1> If (sum of received power J and generated power H) is larger than system output upper limit KH max (that is, load power D is larger than system output upper limit KH max ), the actual power condition The generated electric power H output from the inverter 2 is controlled so as to be the power generation target upper limit value TH max derived by the above-described formulas (1) and (2) (“becomes the output limit state S3”),
In <2-1>, the control unit 4 responds to the stop of conversion of the power conditioner 2 according to the insufficient power U detected by the insufficient power relay 5 and the reverse power G detected by the reverse power relay 6. Let's shut off,
<2-2> If (the sum of the received power J and the generated power H) is smaller than the system output upper limit KH max (that is, the load power D is smaller than the system output upper limit KH max ), the power conditioner 2 The generated power H output from the power conditioner 2 is controlled so that the system output upper limit value KH max described above (“being in the output limit state S3”), and the generated power H output from the power conditioner 2 is applied to the load F side. When the power is supplied to the load F, surplus power is generated on the load F side, and thus the surplus power is supplied (power sold) to the system K side via the power receiving unit 3.
In <2-2>, the control unit 4 responds to the stop of conversion of the power conditioner 2 according to the insufficient power U detected by the insufficient power relay 5 and the reverse power G detected by the reverse power relay 6. The interruption may not be performed.

制御部4は、発電制御システム1(又は、太陽光発電プラント100)内であれば、何れに設けられていても良いが、例えば、後述する受電盤60(受電盤筐体61)内や、配電盤50(配電盤筐体51)内に設けられていても良い。
以下は、この制御部4や、ここまで述べた受電部3、不足電力継電器5、逆電力継電器6、遮断器7(発電遮断器7や受電遮断器7’等)、変圧器10、発電力計11、受電力計12等を設けた配電盤50や、受電盤60について述べる。
The control unit 4 may be provided in any of the power generation control system 1 (or the solar power generation plant 100), for example, in the power receiving panel 60 (power receiving panel housing 61) described later, or It may be provided in the switchboard 50 (switchboard case 51).
The following are the control unit 4, the power receiving unit 3, the power shortage relay 5, the reverse power relay 6, the circuit breaker 7 (the power generating circuit breaker 7 and the power receiving circuit breaker 7 ', etc.), the transformer 10, the power generation described above. The power distribution board 50 provided with the total 11, the power receiving meter 12, and the like, and the power receiving board 60 will be described.

<配電盤50、配電盤筐体51>
図1に示したように、本発明に係る配電盤50は、配電盤筐体51と、上述した変圧器(昇圧変圧器)10と、上述した送電部52を有する盤であって、配電盤筐体51は、図1においては、略凹字状に示されているが、実際には略直方体状等に形成されていても良い。
配電盤50では、配電盤筐体51に外から変圧器10が取り付けられ、配電盤筐体51内に送電部52が設けられ、配電盤筐体51内には、発電力計11も設けられている。
配電盤50(配電盤筐体51)は、高さを低位としても良く、このような配電盤筐体51の具体的な高さは、特に制限はないが、例えば、1500mm以下(900mm以上1500mm以下)であっても良く、好ましくは1400mm以下(900mm以上1400以下)、更に好ましくは1200mm以下(95mm以上1200mm以下)、より好ましくは1150mm以下(950mm以上1150mm以下、1100mmなど)であっても良い。
<Switchboard 50, Switchboard case 51>
As shown in FIG. 1, a switchboard 50 according to the present invention is a switchboard panel including a switchboard casing 51, the above-described transformer (step-up transformer) 10, and the above-described power transmission section 52. 1 is shown in a substantially concave shape in FIG. 1, it may actually be formed in a substantially rectangular parallelepiped shape or the like.
In the switchboard 50, the transformer 10 is attached to the switchboard housing 51 from the outside, the power transmission unit 52 is provided in the switchboard housing 51, and the power generation meter 11 is also provided in the switchboard housing 51.
The height of the switchboard 50 (switchboard housing 51) may be low, and the specific height of the switchboard housing 51 is not particularly limited, but is, for example, 1500 mm or less (900 mm or more and 1500 mm or less). It may be present, preferably 1400 mm or less (900 mm or more and 1400 mm or less), more preferably 1200 mm or less (95 mm or more and 1200 mm or less), and more preferably 1150 mm or less (950 mm or more and 1150 mm or less, 1100 mm, etc.).

この他、配電盤50は、上述したパワーコンディショナ2や、後述する集電部53、逆流防止ダイオード、開閉器、エアコン、無停電電源装置(UPS)、補機、ヒューズ(上述した高圧限流ヒューズ3d以外のヒューズなど)、継電器(上述した不足電力継電器5や逆電力継電器6、不足電圧継電器21や過電圧継電器22、不足周波数継電器23、過周波数継電器24以外の継電器など)、ケーブル(配線コード)、端子、コネクタ、センサ、CPU、蓄電池、制御部などを有していても良い。
又、配電盤50(つまり、配電盤筐体51)の数も、上述したように、1又は複数であっても良いが、上述した変圧器10や送電部52の数と同じ数であっても構わない。
配電盤50は、1つの太陽光発電プラント100(の太陽電池Tの下方等)に、複数の配電盤50が分散して設けられていても構わない。
In addition, the switchboard 50 includes the power conditioner 2 described above, a current collector 53 described below, a backflow prevention diode, a switch, an air conditioner, an uninterruptible power supply (UPS), an auxiliary device, and a fuse (the high-voltage current limiting fuse described above. Fuse other than 3d), relay (relay power relay 5, reverse power relay 6, undervoltage relay 21, overvoltage relay 22, underfrequency relay 23, relay other than overfrequency relay 24, etc.), cable (wiring code) , A terminal, a connector, a sensor, a CPU, a storage battery, a control unit, and the like.
Further, the number of the switchboards 50 (that is, the switchboard housings 51) may be one or more as described above, but may be the same as the number of the transformers 10 and the power transmission units 52 described above. Absent.
The switchboard 50 may be provided with a plurality of switchboards 50 dispersed in one solar power plant 100 (below the solar cell T thereof).

<集電部53など>
図1に示したように、集電部53は、配電盤筐体51外からの複数の交流ケーブル(交流電流を流すケーブル)又は直流ケーブル(直流電流を流すケーブル)を集電する部分である。
尚、集電部53は、複数の交流ケーブルを集電する場合は、交流集電部であると言え、複数の直流ケーブルを集電する場合は、直流集電部であると言える。
<Current collector 53, etc.>
As shown in FIG. 1, the current collector 53 is a part that collects a plurality of AC cables (cables for passing AC current) or DC cables (cables for passing DC current) from outside the switchboard housing 51.
The current collector 53 can be said to be an AC current collector when collecting a plurality of AC cables, and can be said to be a DC current collector when collecting a plurality of DC cables.

以下、集電部53は、配電盤筐体51外からの複数の交流ケーブルを集電する交流集電部53’であるとして、主に述べる。
交流集電部53’は、配電盤筐体51が有しているのであれば、当該配電盤筐体51の何れに設けられていても良いが、例えば、配電盤筐体51の内部に設けられて(内蔵されて)いても構わない。
Hereinafter, the current collector 53 will be mainly described as an AC current collector 53 ′ that collects a plurality of AC cables from outside the switchboard housing 51.
The AC current collector 53 ′ may be provided in any of the switchboard casings 51 as long as the switchboard casing 51 has it. For example, it is provided in the switchboard casing 51 ( It doesn't matter if it is built-in).

又、交流集電部53’は、交流遮蔽器(交流ブレーカ)54を複数有しており、この交流ブレーカ54は、配線用遮断器(MCCB、Molded Case Circuit Break )であっても良く、これら複数の交流集電部53’を介して、配電盤筐体51外にあるパワーコンディショナ2それぞれが、上述した昇圧変圧器10と接続されている。
このような交流ブレーカ54も、配電盤筐体51が備えるのであれば、当該配電盤筐体51(配電盤50自体)は、従来の交流集電箱の機能も内蔵することとなる。
Further, the AC current collector 53 ′ has a plurality of AC shields (AC breakers) 54, and the AC breakers 54 may be wiring breakers (MCCB, Molded Case Circuit Break). Each of the power conditioners 2 outside the switchboard casing 51 is connected to the above-described step-up transformer 10 via a plurality of AC current collectors 53 '.
If such an AC breaker 54 is also provided in the switchboard housing 51, the switchboard housing 51 (switchboard 50 itself) will also incorporate the function of a conventional AC current collector box.

<受電盤60、受電盤筐体61>
図1に示したように、本発明に係る受電盤60は、受電盤筐体61と、上述した受電部3を有した盤であって、受電盤筐体61は、略直方体状等に形成され、この受電盤筐体61内に受電部3が設けられている。
受電盤60は、1つの発電制御システム1(又は太陽光発電プラント100)において、1つだけ存在するとも言える。
尚、太陽光発電プラント100において、配電盤50が1つのみで且つ配電盤50(配電盤筐体51)内に上述した受電部3が内蔵されているのであれば、当該太陽光発電プラント100は、受電盤60を有さずとも良い。
<Power receiving board 60, power receiving board housing 61>
As shown in FIG. 1, a power receiving board 60 according to the present invention is a board having a power receiving board housing 61 and the power receiving unit 3 described above, and the power receiving board housing 61 is formed in a substantially rectangular parallelepiped shape or the like. The power receiving unit 3 is provided in the power receiving board housing 61.
It can be said that only one power receiving panel 60 exists in one power generation control system 1 (or the solar power generation plant 100).
In the solar power generation plant 100, if there is only one switchboard 50 and the power receiving unit 3 described above is built in the switchboard 50 (switchboard housing 51), the solar power plant 100 will receive the power. It is not necessary to have the board 60.

<第2実施形態の発電制御システム1>
図2は、本発明の第2実施形態に係る発電制御システム1を示している。
この第2実施形態において第1実施形態と最も異なるのは、制御部4が、逆電力継電器6で検知される逆電力Gが0より大きくなった時のみ(逆電力発生状態S2になった時のみ)に、パワーコンディショナ2から系統Kまでの電路における何れかの遮断器(発電遮断器7や受電遮断器7’等)を遮断する、又は、パワーコンディショナ2の変換を停止する点である。
<Power Generation Control System 1 of Second Embodiment>
FIG. 2 shows a power generation control system 1 according to the second embodiment of the present invention.
The second embodiment is most different from the first embodiment only when the control unit 4 has a reverse power G detected by the reverse power relay 6 that is greater than 0 (when the reverse power generation state S2 is reached. Only) in order to shut off any of the circuit breakers (power generation circuit breaker 7, power receiving circuit breaker 7 ', etc.) in the electric circuit from the power conditioner 2 to the system K, or to stop the conversion of the power conditioner 2. is there.

又、第2実施形態では、パワーコンディショナ2の内部(パワーコンディショナ2が複数であれば、それぞれのパワーコンディショナ2の内部)に、上述した不足電圧継電器21や過電圧継電器22、不足周波数継電器23、過周波数継電器24を有していたり、単独運転検出機能(単独運転検出機能部29)を有している点も、第1実施形態と異なっている。
ここで、単独運転検出機能部29は、能動的方式検出部29aや、受動的方式検出部29b、能動的方式外乱発生部29cを備えていても良い。
Further, in the second embodiment, the undervoltage relay 21, the overvoltage relay 22, and the underfrequency relay described above are provided inside the power conditioner 2 (when there are a plurality of power conditioners 2, the inside of each power conditioner 2). 23 and an over-frequency relay 24, and an isolated operation detection function (isolated operation detection function unit 29) are also different from the first embodiment.
Here, the islanding operation detection function unit 29 may include an active system detection unit 29a, a passive system detection unit 29b, and an active system disturbance generation unit 29c.

第2実施形態の発電制御システム1は、制御部4が、逆電力発生状態S2になった時のみに、発電遮断器7や受電遮断器7’等を遮断する、又は、パワーコンディショナ2の変換を停止するのであれば、不足電力継電器5自体は、有していなくとも良いが、逆に、不足電力継電器5自体を有していても良い。
尚、第2実施形態の発電制御システム1が不足電力継電器5自体を有している場合では、当該不足電力継電器5で検知される不足電力Uが0に近づいても(不足電力略零状態S1になっても)、パワーコンディショナ2の変換を停止せず、パワーコンディショナ2から系統Kまでの電路における何れかの遮断器(発電遮断器7や受電遮断器7’等)を遮断することはない。
In the power generation control system 1 according to the second embodiment, the control unit 4 shuts off the power generation circuit breaker 7 or the power receiving circuit breaker 7 ′ only when the reverse power generation state S2 is entered, or the power conditioner 2 operates. If the conversion is stopped, the power shortage relay 5 itself may not be provided, but conversely, the power shortage relay 5 itself may be provided.
In the case where the power generation control system 1 of the second embodiment has the power shortage relay 5 itself, even if the power shortage U detected by the power shortage relay 5 approaches 0 (power shortage substantially zero state S1). However, it does not stop the conversion of the power conditioner 2 and interrupts any breaker (power generation breaker 7 or power receiving breaker 7 ', etc.) in the electric path from the power conditioner 2 to the grid K. There is no.

その他の発電制御システム1や、配電盤50、変圧器10、受電盤60の構成、作用効果や使用態様は、第1実施形態と同様である。
又、図2における真空遮断器(VCB)等の発電遮断器7や受電遮断器7’、断路器25、交流ブレーカ54である配線用遮断器、負荷Fにおける配線用遮断器F4、受電部3の計器用変成器3a、高圧限流ヒューズ3dを表す記号は、図1とは異なるものの、それらの構成、作用効果や使用態様も、図1(第1実施形態)と同様である。
Other configurations of the power generation control system 1, the distribution board 50, the transformer 10, and the power receiving board 60 are the same as those in the first embodiment.
In addition, a power generating circuit breaker 7 such as a vacuum circuit breaker (VCB) in FIG. 2, a power receiving circuit breaker 7 ′, a disconnector 25, a wiring circuit breaker that is an AC breaker 54, a wiring circuit breaker F4 in a load F, a power receiving unit 3 Although the symbols for the instrument transformer 3a and the high-voltage current limiting fuse 3d are different from those in FIG. 1, their configurations, operational effects, and use modes are also the same as those in FIG. 1 (first embodiment).

<その他>
本発明は、前述した実施形態に限定されるものではない。発電制御システム1や、配電盤50、変圧器10、受電盤60等の各構成又は全体の構造、形状、寸法などは、本発明の趣旨に沿って適宜変更することが出来る。
発電制御システム1は、蓄電池や燃料電池、ガソリン等の燃料で動く発電機などを有しても良く、この場合、蓄電池や燃料電池等は、負荷Fと同様に、パワーコンディショナ2と受電部3の間の電路における分岐点(蓄電分岐点や燃料電池分岐点、発電機分岐点など)から分岐する分岐電路(蓄電分岐電路や燃料電池分岐電路、発電機分岐電路など)を介して、蓄電池や燃料電池等に受電部3が接続されていても良く、この場合、蓄電池や燃料電池等は、分岐点と分岐電路を介して、パワーコンディショナ2とも接続していると言える。
又、この場合、制御部4は、蓄電池は、パワーコンディショナ2から出力される発電力Hを充電したり、充電した電力を負荷F側に流して当該負荷Fで消費させたり、上述した電力会社から出力制限指令が出ていない時間帯など売電が可能であれば、充電した電力を受電部3を介して系統K側に流しても良い。
更に、この場合、制御部4は、燃料電池や発電機などは、発電した電力を、負荷F側に流して当該負荷Fで消費させたり、蓄電池に充電させたり、上述した電力会社から出力制限指令が出ていない時間帯など売電が可能であれば、充電した電力を受電部3を介して系統K側に流しても良い。
<Other>
The present invention is not limited to the above embodiment. The configuration, overall structure, shape, dimensions, etc. of the power generation control system 1, the distribution board 50, the transformer 10, the power receiving board 60, etc. can be appropriately changed in accordance with the spirit of the present invention.
The power generation control system 1 may include a storage battery, a fuel cell, a generator that operates on fuel such as gasoline, and in this case, the storage battery, the fuel cell, and the like, like the load F, include the power conditioner 2 and the power receiving unit. A storage battery via a branch circuit (storage branch circuit, fuel cell branch circuit, generator branch circuit, etc.) branching from a branch point (storage branch point, fuel cell branch point, generator branch point, etc.) in the circuit between 3 The power receiving unit 3 may be connected to a fuel cell or the like, and in this case, it can be said that the storage battery, the fuel cell, or the like is also connected to the power conditioner 2 via the branch point and the branch electric path.
Further, in this case, the control unit 4 causes the storage battery to charge the generated electric power H output from the power conditioner 2, or to cause the charged electric power to flow to the load F side and be consumed by the load F. If it is possible to sell power, such as during a time period when the output restriction command is not issued from the company, the charged power may be supplied to the system K side via the power receiving unit 3.
Further, in this case, the control unit 4 causes the fuel cell, the generator, or the like to flow the generated power to the load F side to be consumed by the load F, charge the storage battery, or limit the output from the power company. If it is possible to sell power, such as during a time period when no command is issued, the charged power may be supplied to the system K side via the power receiving unit 3.

制御部4は、不足電力継電器5で検知される不足電力Uが0に近づくと(「不足電力略零状態S1になると」)、パワーコンディショナ2から系統Kまでの何れかの遮断器(発電遮断器7等)を遮断し、逆電力継電器6で検知される逆電力Gが0より大きくなると(「逆電力発生状態S2になると」)、パワーコンディショナ2から系統Kまでの他の遮断器(受電遮断器7’等)を遮断しても良い。
この場合でも、先に起こり易い不足電力略零状態S1で遮断することになる遮断器(発電遮断器7等)が、逆電力発生状態S2で遮断することになる他の遮断器(受電遮断器7’等)より、パワーコンディショナ2寄りに(パワーコンディショナ2に近い側に)あれば、遮断する範囲がより狭くなって、系統Kの電圧及び位相等に合わせる機器が少なくなり、発電制御システム1の復帰にかかる時間・手間を低減できると言える。
尚、逆に、先に起こり易い不足電力略零状態S1で、パワーコンディショナ2からより遠い遮断器(受電遮断器7’等)を遮断した場合には、再び接続する際に、受電部3等の発電制御システム1や、負荷Fなども遮断してしまう可能性も大きくなり、より多くの機器を系統Kの電圧及び位相等に合わせる必要が出てくるとも言える。
When the power shortage U detected by the power shortage relay 5 approaches 0 (“when the power shortage becomes substantially zero state S1”), the control unit 4 causes any breaker (power generation) from the power conditioner 2 to the grid K. When the reverse power G detected by the reverse power relay 6 becomes larger than 0 (“in the reverse power generation state S2”), the other breakers from the power conditioner 2 to the grid K are cut off. The power receiving breaker 7 ', etc. may be cut off.
Even in this case, the circuit breaker (power generation circuit breaker 7 or the like) that is to be interrupted first in the underpower nearly zero state S1 that is likely to occur first is another circuit breaker (power receiving circuit breaker) that is to be interrupted in the reverse power generation state S2. 7 ', etc., closer to the power conditioner 2 (on the side closer to the power conditioner 2), the cutoff range becomes narrower, and there are fewer devices that match the voltage and phase of the system K, etc. It can be said that the time and effort required to restore the system 1 can be reduced.
On the contrary, when the breaker (power receiving breaker 7 ', etc.) farther from the power conditioner 2 is shut off in the state S1 of insufficient power shortage that tends to occur first, the power receiving unit 3 is reconnected. It can be said that the possibility of shutting off the power generation control system 1 such as the above, the load F, and the like also increases, and more devices need to be adjusted to the voltage and phase of the system K.

発電制御システム1は、不足電力継電器5と逆電力継電器6を有しつつも、不足電力Uを測定する不足電力計や逆電力Gを測定する逆電力計を別途有していても良く、制御部4は、これら不足電力計や逆電力計によって、上述した不足電力略零状態S1や逆電力発生状態S2になったかを判断して、不足電力Uに応じたパワーコンディショナ2の変換停止及び逆電力Gに応じた遮断や、不足電力Uに応じた何れかの遮断器による遮断及び逆電力Gに応じた他の遮断器による遮断を行っても良い。
又、制御部4は、上述した不足電力Uに応じたパワーコンディショナ2の変換停止や、逆電力Gに応じた遮断などを行いつつも、不足電力略零状態S1の代わりに、受電力計12で測定される受電力Jが0に近づくと、パワーコンディショナ2の変換を停止したり、パワーコンディショナ2から系統Kまでの何れかの遮断器(発電遮断器7等)を遮断する等をしても良い。
発電力計11は、パワーコンディショナ2と変圧器10の間の電路に設けられ、パワーコンディショナ2から直接出力される電力を、発電力Hとしても良い。
The power generation control system 1 may have a power shortage meter 5 for measuring the power shortage U and a reverse power meter for measuring the reverse power G separately while having the power shortage relay 5 and the reverse power relay 6. The unit 4 determines whether the power shortage state or the reverse power generation state S2 described above is reached by the power shortage meter or the reverse power meter, and stops conversion of the power conditioner 2 according to the power shortage U. It is also possible to perform the interruption according to the reverse power G, the interruption by any one of the circuit breakers according to the insufficient power U, and the interruption by the other breaker according to the reverse power G.
Further, the control unit 4 performs the conversion stop of the power conditioner 2 according to the above-mentioned insufficient power U, shuts off according to the reverse power G, etc., but instead of the almost zero power consumption state S1, the power receiving meter. When the received power J measured at 12 approaches 0, the conversion of the power conditioner 2 is stopped, or any breaker (power generation breaker 7 or the like) from the power conditioner 2 to the system K is cut off, etc. You may do it.
The power generation meter 11 may be provided in the electric path between the power conditioner 2 and the transformer 10, and the power directly output from the power conditioner 2 may be used as the power generation H.

その他、発電制御システム1は、制御部4に、発電開始から、余剰買取制御を行うか、全量買取制御を行うか決定していても良い。
配電盤50は、配電盤筐体51内にパワーコンディショナ2が設けられていても良い。
In addition, the power generation control system 1 may determine to the control unit 4 whether to perform surplus purchase control or full amount purchase control from the start of power generation.
In the switchboard 50, the power conditioner 2 may be provided in the switchboard housing 51.

発電制御システムや、配電盤、変圧器、受電盤は、太陽光発電プラントなどに対して、その発電量や規模に関わらず利用でき、太陽光発電プラント以外に、風力、水力、波力、地熱等によって回転される発電機(交流モータ等)によって発電するプラントにおいて使用でき、屋外・屋内を問わず利用可能である。   Power generation control systems, distribution boards, transformers, and power receiving boards can be used for solar power plants, etc., regardless of the amount of power generation and scale. In addition to solar power plants, wind power, water power, wave power, geothermal power, etc. It can be used in a plant that generates electricity by a generator (AC motor, etc.) that is rotated by, and can be used both indoors and outdoors.

1 発電制御システム
2 パワーコンディショナ
3 受電部
4 制御部
5 不足電力継電器
6 逆電力継電器
7 遮断器(発電遮断器)
7’ 遮断機(受電遮断器)
8 分岐点
9 分岐電路
10 変圧器
11 発電力計
12 受電力計
50 配電盤
51 配電盤筐体
60 受電盤
61 受電盤筐体
K 系統
F 負荷
J 受電力
H 発電力
U 不足電力
G 逆電力
1 Power generation control system 2 Power conditioner 3 Power receiving unit 4 Control unit 5 Insufficient power relay 6 Reverse power relay 7 Breaker (Generator breaker)
7'Circuit breaker (power receiving circuit breaker)
8 branch point 9 branch circuit 10 transformer 11 power generator 12 power meter 50 power distribution board 51 power distribution board housing 60 power receiving board 61 power distribution board housing K system F load J power received H power generated U insufficient power G reverse power

本発明に係る発電制御システム1は、システム外部からの直流電流又は交流電流を交流電流に変換するパワーコンディショナ2と、このパワーコンディショナ2と系統Kと負荷Fとにそれぞれ接続された受電部3と、これらパワーコンディショナ2及び/又は受電部3を制御する制御部4を有した発電制御システムであって、前記制御部4は、前記系統Kから受電部3へ受電される受電力Jと、前記パワーコンディショナ2から出力される発電力Hとの和に基づいて、前記パワーコンディショナ2を制御し、前記パワーコンディショナ2と受電部3の間の電路における分岐点8から分岐する分岐電路9を介して、前記負荷Fに受電部3が接続され、前記分岐点8とパワーコンディショナ2の間の電路に、前記パワーコンディショナ2から入力される交流電流をより高圧な交流電流に変圧する変圧器10を有し、この変圧器10の高圧側と分岐点8の間の電路に設けた発電力計11の測定値を、前記発電力Hとし、前記受電部3に設けた受電力計12で、前記受電力Jを測定していることを第1の特徴とする。
尚、本発明における「電路」とは、電気を流すものであって、銅、アルミニウム、銀、金、ニクロム等の導体や、この導体を絶縁物で覆ったケーブル、一般的な電線などを含む。
A power generation control system 1 according to the present invention includes a power conditioner 2 that converts a direct current or an alternating current from the outside of the system into an alternating current, and a power receiving unit connected to the power conditioner 2, the system K, and a load F, respectively. 3 and a control unit 4 for controlling the power conditioner 2 and / or the power receiving unit 3, wherein the control unit 4 receives the received power J from the grid K to the power receiving unit 3. And the generated power H output from the power conditioner 2, the power conditioner 2 is controlled based on the sum of the generated power H and the power conditioner 2 is branched from the branch point 8 in the electric path between the power conditioner 2 and the power receiving unit 3. The power receiving unit 3 is connected to the load F via a branch electric line 9, and is input from the power conditioner 2 to the electric line between the branch point 8 and the power conditioner 2. Has a transformer 10 for transforming the generated alternating current into a higher voltage alternating current, and the measured value of a power generator 11 provided in the electric path between the high voltage side of the transformer 10 and the branch point 8 is used as the generated power H and then, at the receiving power meter 12 provided in the power receiving unit 3, the first feature that you have to measure the power receiving force J.
The "electric circuit" in the present invention is one for flowing electricity, and includes conductors such as copper, aluminum, silver, gold, and nichrome, and cables in which this conductor is covered with an insulator, general electric wires, and the like. .

本発明に係る発電制御システム1の第2の特徴は、上記第1の特徴に加えて、前記制御部4は、以下に示す式(1)又は式(2)に基づいて、前記発電力Hの目標上限値THmax を導出して、パワーコンディショナ2を制御する点にある。
尚、式(1)又は式(2)においては、前記受電力、発電力、制限係数及び変動対応定数が、それぞれ時刻tによって変化するものとして、前記受電力をJ(t)、前記発電力をH(t)、前記制限係数をA(t)、前記変動対応定数をB(t)とし、前記制限係数A(t)は0以上1以下の値である。
A second feature of the power generation control system 1 according to the present invention is that, in addition to the above first feature, the control unit 4 uses the generated power H based on the following formula (1) or formula (2). Is to control the power conditioner 2 by deriving the target upper limit value THmax .
In the formula (1) or the formula (2), it is assumed that the received power, the generated power, the limiting coefficient, and the variation response constant change with time t, and the received power is J (t), the generated power. Is H (t), the limiting coefficient is A (t), the variation correspondence constant is B (t), and the limiting coefficient A (t) is a value of 0 or more and 1 or less.

本発明に係る発電制御システム1の第3の特徴は、上記第1又は2の特徴に加えて、前記受電部3に、逆電力継電器6を設け、前記制御部4は、前記逆電力継電器6で検知される逆電力Gが0より大きくなると前記パワーコンディショナ2から系統Kまでの電路における何れかの遮断器を遮断する、又は、前記パワーコンディショナ2の変換を停止する点にある。 A third feature of the power generation control system 1 according to the present invention is that, in addition to the features of the first or second feature, a reverse power relay 6 is provided in the power receiving unit 3, and the control unit 4 causes the reverse power relay 6 to operate. When the reverse electric power G detected in step 2 becomes larger than 0, either of the circuit breakers in the electric path from the power conditioner 2 to the system K is cut off, or the conversion of the power conditioner 2 is stopped.

本発明に係る発電制御システム1の第4の特徴は、上記第1又は2の特徴に加えて、前記受電部3に、不足電力継電器5と逆電力継電器6を設け、前記制御部4は、前記不足電力継電器5で検知される不足電力Uが0に近づくと前記パワーコンディショナ2の変換を停止し、前記逆電力継電器6で検知される逆電力Gが0より大きくなると前記パワーコンディショナ2から系統Kまでの電路における何れかの遮断器を遮断する、又は、前記制御部4は、前記不足電力継電器5で検知される不足電力Uが0に近づくと前記パワーコンディショナ2から系統Kまでの電路における何れかの遮断器を遮断し、前記逆電力継電器6で検知される逆電力Gが0より大きくなると前記パワーコンディショナ2の変換を停止する点にある。 A fourth feature of the power generation control system 1 according to the present invention is that, in addition to the features of the first or second feature, the power receiving unit 3 is provided with a power shortage relay 5 and a reverse power relay 6, and the control unit 4 is When the power shortage U detected by the power shortage relay 5 approaches 0, the conversion of the power conditioner 2 is stopped, and when the reverse power G detected by the reverse power relay 6 becomes larger than 0, the power conditioner 2 From the power conditioner to the grid K when the shortage of electric power U detected by the shortage of electric power relay 5 approaches 0. of blocking one of the circuit breaker in path, the reverse power G detected by the reverse power relay 6 is in regard to Suspend conversion greater becomes than zero of the power conditioner 2.

本発明に係る配電盤50は、配電盤筐体51と、この配電盤筐体51外において直流電流又は交流電流を交流電流に変換するパワーコンディショナ2から又は前記配電盤筐体51において直流電流又は交流電流を交流電流に変換するパワーコンディショナ2からの交流電流を変圧する変圧器10と、この変圧器10で変圧した交流電流を配電盤筐体51外へ送電する送電部52を有した配電盤であって、前記配電盤筐体51に外から変圧器10が取り付けられ、前記配電盤筐体51内に送電部52が設けられ、前記送電部52には、前記配電盤筐体51外へ送電する交流電流を遮断する遮断器7が設けられ、この遮断器7と変圧器10の高圧側の間の電路に設けた発電力計11で、前記変圧器10から出力される発電力(H)を測定し、前記配電盤筐体51内に発電力計11も設けられ、この発電力計11で測定された発電力Hと、前記配電盤筐体51外又は内に設けられた受電力計12で測定された系統Kからの受電力Jとの和に基づいて、前記パワーコンディショナ2を制御することを第1の特徴とする。 Switchboard 50 according to the present invention, the switchboard a housing 51, a direct current or alternating current in the switchboard cabinet direct current or in the power conditioner 2, or from the switchboard housing 51 for converting an alternating current to alternating current outside the 51 A distribution board having a transformer 10 for converting the AC current from the power conditioner 2 for converting the AC current into an AC current, and a power transmission unit 52 for transmitting the AC current transformed by the transformer 10 to the outside of the distribution board casing 51. , The transformer 10 is attached to the switchboard casing 51 from the outside, the power transmission unit 52 is provided in the switchboard casing 51, and the power transmission unit 52 shuts off an alternating current transmitted to the outside of the switchboard casing 51. breaker 7 is provided for, in the power generation power meter 11 provided on path between the high voltage side of the transformer 10 and the circuit breaker 7 measures the power generation (H) output from the transformer 10, before Generating capacity meter 11 in the switchboard housing 51 also provided, and the generator power meter 11 power generation H measured by lineage K of the measured power reception power meter 12 provided in the switchboard housing 51 or outside the inner based on the sum of the power receiving force J from, the first feature that you control the power conditioner 2.

その他、変圧器10は、入力された交流電流を、より高圧な交流電流に変圧する変圧器であって、当該変圧器の高さは、1500mm以下であっても良い Other, transformer 10, the input alternating current, a transformer for transforming the higher pressure alternating current, the height of the transformer may it der below 1500 mm.

その他、受電盤60は、受電盤筐体61と、この受電盤筐体61外にある直流電流又は交流電流を交流電流に変換するパワーコンディショナ2と前記受電盤筐体61外にある系統Kと前記受電盤筐体61外にある負荷Fに接続可能な受電部3を有した受電盤であって、前記受電盤筐体61内に受電部3が設けられ、前記受電部3に、不足電力継電器5及び逆電力継電器6と、前記系統Kから受電部3へ受電される受電力Jを測定する受電力計12が設けられ、前記パワーコンディショナ2と系統Kの間の電路における前記受電部3内の何れかに、遮断器7’が設けられていても良い In addition, the power receiving board 60 includes a power receiving board housing 61, a power conditioner 2 for converting a direct current or an alternating current outside the power receiving board housing 61 into an alternating current, and a system K outside the power receiving board housing 61. And a power receiving unit 3 that can be connected to a load F outside the power receiving unit housing 61, wherein the power receiving unit 3 is provided in the power receiving unit housing 61, and the power receiving unit 3 is insufficient. A power relay 5 and a reverse power relay 6 and a power receiver 12 for measuring the received power J received from the grid K to the power receiving unit 3 are provided, and the power reception in the power line between the power conditioner 2 and the grid K is performed. either in part 3, the breaker 7 'may be provided.

尚、制限係数A(t)や変動対応定数B(t)は、所定のサンプリングタイムごとに細かく変化させずとも良く、例えば、大まかな区間ごと(1時間ごとや30分ごと)に所定の値としても良く、より具体的には、一日のうち「午前0時から午前9時まで」と「午後5時から午後12時まで」は、A(t)=1.00(100%)、B(t)=0kW等とし、「午前9時から午後5時まで」はA(t)=0.90(90%)、B(t)=10kW等としても良い。
このような制御部4は、実際にパワーコンディショナ2から出力される発電力Hが、上述した式(1)や式(2)にて導出した発電目標上限値THmax となるように、最大電力点追従制御(MPPT(Maximum Power Point Tracking)Control )等を行っていても良い。
Note that the limiting coefficient A (t) and the variation correspondence constant B (t) do not have to be finely changed at each predetermined sampling time, and for example, a predetermined value can be obtained for each rough section (every hour or every 30 minutes). More specifically, "A (t) = 1.00 (100%),""from 0:00 to 9:00" and "from 5:00 to 12:00" in a day, B (t) = 0 kW or the like, and “from 9 am to 5 pm” may be A (t) = 0.90 (90%), B (t) = 10 kW, or the like.
Such a control unit 4 sets the maximum value so that the generated power H actually output from the power conditioner 2 becomes the power generation target upper limit value TH max derived by the above-described formula (1) or formula (2). Power point tracking control (MPPT (Maximum Power Point Tracking) Control) or the like may be performed.

Claims (8)

システム外部からの直流電流又は交流電流を交流電流に変換するパワーコンディショナ(2)と、このパワーコンディショナ(2)と系統(K)と負荷(F)とにそれぞれ接続された受電部(3)と、これらパワーコンディショナ(2)及び/又は受電部(3)を制御する制御部(4)を有した発電制御システムであって、
前記制御部(4)は、前記系統(K)から受電部(3)へ受電される受電力(J)と、前記パワーコンディショナ(2)から出力される発電力(H)との和に基づいて、前記パワーコンディショナ(2)を制御することを特徴とする発電制御システム。
A power conditioner (2) for converting a direct current or an alternating current from the outside of the system into an alternating current, and a power receiving unit (3) connected to the power conditioner (2), the grid (K) and the load (F), respectively. ) And a control unit (4) for controlling the power conditioner (2) and / or the power receiving unit (3),
The control unit (4) determines the sum of the received power (J) received from the grid (K) to the power receiving unit (3) and the generated power (H) output from the power conditioner (2). A power generation control system characterized by controlling the power conditioner (2) based on the above.
前記受電部(3)に、不足電力継電器(5)と逆電力継電器(6)を設け、
前記制御部(4)は、前記不足電力継電器(5)で検知される不足電力(U)が0に近づくと前記パワーコンディショナ(2)の変換を停止し、前記逆電力継電器(6)で検知される逆電力(G)が0より大きくなると前記パワーコンディショナ(2)から系統(K)までの電路における何れかの遮断器を遮断する、又は、
前記制御部(4)は、前記不足電力継電器(5)で検知される不足電力(U)が0に近づくと前記パワーコンディショナ(2)から系統(K)までの電路における何れかの遮断器を遮断し、前記逆電力継電器(6)で検知される逆電力(G)が0より大きくなると前記パワーコンディショナ(2)の変換を停止することを特徴とする請求項1に記載の発電制御システム。
The power receiving section (3) is provided with an insufficient power relay (5) and a reverse power relay (6),
The control unit (4) stops conversion of the power conditioner (2) when the power shortage (U) detected by the power shortage relay (5) approaches 0, and causes the reverse power relay (6) to stop. When the detected reverse power (G) becomes larger than 0, any breaker in the electric path from the power conditioner (2) to the grid (K) is cut off, or
When the shortage power (U) detected by the shortage power relay (5) approaches 0, the control unit (4) breaks any circuit breaker in the electric path from the power conditioner (2) to the grid (K). 2. The power generation control according to claim 1, wherein when the reverse power (G) detected by the reverse power relay (6) becomes larger than 0, the conversion of the power conditioner (2) is stopped. system.
前記受電部(3)に、逆電力継電器(6)を設け、
前記制御部(4)は、前記逆電力継電器(6)で検知される逆電力(G)が0より大きくなると前記パワーコンディショナ(2)から系統(K)までの電路における何れかの遮断器を遮断する、又は、前記パワーコンディショナ(2)の変換を停止することを特徴とする請求項1に記載の発電制御システム。
A reverse power relay (6) is provided in the power receiving unit (3),
When the reverse power (G) detected by the reverse power relay (6) becomes larger than 0, the control unit (4) breaks any circuit breaker in the electric path from the power conditioner (2) to the grid (K). 2. The power generation control system according to claim 1, wherein the power conditioner is shut down or the conversion of the power conditioner (2) is stopped.
前記パワーコンディショナ(2)と受電部(3)の間の電路における分岐点(8)から分岐する分岐電路(9)を介して、前記負荷(F)に受電部(3)が接続され、
前記分岐点(8)とパワーコンディショナ(2)の間の電路に、前記パワーコンディショナ(2)から入力される交流電流をより高圧な交流電流に変圧する変圧器(10)を有し、
この変圧器(10)と分岐点(8)の間の電路に設けた発電力計(11)の測定値を、前記発電力(H)とし、
前記受電部(3)に設けた受電力計(12)で、前記受電力(J)を測定していることを特徴とする請求項1〜3の何れか1項に記載の発電制御システム。
A power receiving unit (3) is connected to the load (F) via a branch electric line (9) that branches from a branch point (8) in an electric line between the power conditioner (2) and the power receiving unit (3),
In the electric path between the branch point (8) and the power conditioner (2), a transformer (10) for transforming the alternating current input from the power conditioner (2) into a higher-voltage alternating current,
The measured value of the power generation meter (11) provided in the electric path between the transformer (10) and the branch point (8) is defined as the power generation (H),
The power reception control system according to any one of claims 1 to 3, wherein the power reception meter (12) provided in the power reception unit (3) measures the power reception (J).
配電盤筐体(51)と、この配電盤筐体(51)外から又は内からの交流電流を変圧する変圧器(10)と、この変圧器(10)で変圧した交流電流を配電盤筐体(51)外へ送電する送電部(52)を有した配電盤であって、
前記配電盤筐体(51)に外から変圧器(10)が取り付けられ、前記配電盤筐体(51)内に送電部(52)が設けられ、
前記送電部(52)には、前記配電盤筐体(51)外へ送電する交流電流を遮断する遮断器(7)が設けられ、
この遮断器(7)と変圧器(10)の間の電路に設けた発電力計(11)で、前記変圧器(10)から出力される発電力(H)を測定し、
前記配電盤筐体(51)内に発電力計(11)も設けられていることを特徴とする配電盤。
Switchboard casing (51), a transformer (10) for transforming an alternating current from outside or inside the switchboard casing (51), and an alternating current transformed by the transformer (10) to the switchboard casing (51). ) A switchboard having a power transmission section (52) for transmitting power to the outside,
A transformer (10) is attached to the switchboard casing (51) from the outside, and a power transmission unit (52) is provided in the switchboard casing (51).
The power transmission unit (52) is provided with a circuit breaker (7) for interrupting an alternating current transmitted to the outside of the switchboard casing (51),
The power output (H) output from the transformer (10) is measured by a power generation meter (11) provided in the electric path between the circuit breaker (7) and the transformer (10),
A switchboard characterized in that a power meter (11) is also provided in the switchboard housing (51).
前記配電盤筐体(51)及び変圧器(10)の高さは、1500mm以下であることを特徴とする請求項5に記載の配電盤。   The switchboard according to claim 5, wherein heights of the switchboard housing (51) and the transformer (10) are 1500 mm or less. 入力された交流電流を、より高圧な交流電流に変圧する変圧器であって、
当該変圧器の高さは、1500mm以下であることを特徴とする変圧器。
A transformer for transforming an input AC current into a higher voltage AC current,
The height of the said transformer is 1500 mm or less, The transformer characterized by the above-mentioned.
受電盤筐体(61)と、この受電盤筐体(61)外にある直流電流又は交流電流を交流電流に変換するパワーコンディショナ(2)と前記受電盤筐体(61)外にある系統(K)と前記受電盤筐体(61)外にある負荷(F)に接続可能な受電部(3)を有した受電盤であって、
前記受電盤筐体(61)内に受電部(3)が設けられ、
前記受電部(3)に、不足電力継電器(5)及び逆電力継電器(6)と、前記系統(K)から受電部(3)へ受電される受電力(J)を測定する受電力計(12)が設けられ、
前記パワーコンディショナ(2)と系統(K)の間の電路における前記受電部(3)内の何れかに、遮断器(7’)が設けられていることを特徴とする受電盤。
Power receiving board housing (61), power conditioner (2) for converting direct current or alternating current outside the power receiving board housing (61) into alternating current, and a system outside the power receiving board housing (61) (K) and a power receiving panel (3) connectable to a load (F) outside the power receiving panel housing (61),
A power receiving unit (3) is provided in the power receiving board housing (61),
A power shortage relay (5) and a reverse power relay (6) in the power receiving unit (3), and a power receiver (J) for measuring the power received (J) from the grid (K) to the power receiving unit (3). 12) is provided,
A power receiving panel, characterized in that a circuit breaker (7 ') is provided in any of the power receiving sections (3) in an electric path between the power conditioner (2) and the grid (K).
JP2018219484A 2018-10-23 2018-11-22 In-house power generation control system, switchboard Active JP6526305B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018198863 2018-10-23
JP2018198863 2018-10-23

Publications (2)

Publication Number Publication Date
JP6526305B1 JP6526305B1 (en) 2019-06-05
JP2020068645A true JP2020068645A (en) 2020-04-30

Family

ID=66730737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018219484A Active JP6526305B1 (en) 2018-10-23 2018-11-22 In-house power generation control system, switchboard

Country Status (1)

Country Link
JP (1) JP6526305B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7293031B2 (en) * 2019-08-06 2023-06-19 未来工業株式会社 Three-phase three-wire power distribution system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125537A (en) * 2001-10-11 2003-04-25 Hokuriku Electric Power Co Inc:The Discharging method for secondary battery for power storage
JP2010011677A (en) * 2008-06-30 2010-01-14 Toshiba Mitsubishi-Electric Industrial System Corp Power converting apparatus
JP2014003797A (en) * 2012-06-18 2014-01-09 Tsubakimoto Chain Co Electric power controller
JP2014093868A (en) * 2012-11-03 2014-05-19 Hirosee Corp Distribution board
JP2014166001A (en) * 2013-02-22 2014-09-08 Takasago Seisakusho:Kk Power regulator and power regulation method
JP2017163795A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Operation controller of power generation facility, operation control method and operation control system thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003125537A (en) * 2001-10-11 2003-04-25 Hokuriku Electric Power Co Inc:The Discharging method for secondary battery for power storage
JP2010011677A (en) * 2008-06-30 2010-01-14 Toshiba Mitsubishi-Electric Industrial System Corp Power converting apparatus
JP2014003797A (en) * 2012-06-18 2014-01-09 Tsubakimoto Chain Co Electric power controller
JP2014093868A (en) * 2012-11-03 2014-05-19 Hirosee Corp Distribution board
JP2014166001A (en) * 2013-02-22 2014-09-08 Takasago Seisakusho:Kk Power regulator and power regulation method
JP2017163795A (en) * 2016-03-11 2017-09-14 オムロン株式会社 Operation controller of power generation facility, operation control method and operation control system thereof

Also Published As

Publication number Publication date
JP6526305B1 (en) 2019-06-05

Similar Documents

Publication Publication Date Title
US11539192B2 (en) Electrical service adapter for supply side interconnect
Eltawil et al. Grid-connected photovoltaic power systems: Technical and potential problems—A review
Papathanassiou et al. A benchmark low voltage microgrid network
US8638008B2 (en) 380 volt direct current power distribution system for information and communication technology systems and facilities
JP2022516975A (en) Methods and systems for connecting and measuring distributed energy resource devices
Vasanthkumar et al. Design and development of 5MW solar PV grid connected power plant using PVsyst
JP6526305B1 (en) In-house power generation control system, switchboard
JP7001282B2 (en) Wattmeter relays, panels, and self-consumed power systems
Abobakr et al. Comparison of Egyptian standards for grid-connected photovoltaic power plants with IEC and IEEE standards: A case study in Egypt
Torquato et al. Review of international guides for the interconnection of distributed generation into low voltage distribution networks
JP2020137382A (en) Extension type captive consumption system, power generation device, and extension type high voltage branch panel
Adesina et al. Design, implementation and performance analysis of an off-grid solar powered system for a Nigerian household
Wanik et al. Comparison on the impact of 0.4 MW PV with central inverter vs string inverter on distribution network operation
JP7382106B1 (en) Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc.
Ashok Kumar et al. Grid-Connected 5 kW Mono-crystalline Solar PV System
JP2021058077A (en) Power distribution system, self consumption type power generation plant, transformer, and control box
Mohanty et al. PV component selection for off-grid applications
JP6433040B1 (en) Solar power generation system distributed under the panel
Tervonen Effects of household photovoltaic systems with energy storage systems on the voltage grid
JP6936071B2 (en) Power generation equipment control method and power generation equipment control device
Abu-aisheh et al. Designing Large scale Photovoltaic Systems
JP6895664B2 (en) Solar power generation system and AC current collector box
Ball Grid‐Connected PV Systems
Hollis et al. Apollo Photovoltaic Overview and Assessment
Winstead Residential Wind Turbine Testing Using a Battery Charging Configuration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181122

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R150 Certificate of patent or registration of utility model

Ref document number: 6526305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250