JP6936071B2 - Power generation equipment control method and power generation equipment control device - Google Patents

Power generation equipment control method and power generation equipment control device Download PDF

Info

Publication number
JP6936071B2
JP6936071B2 JP2017150596A JP2017150596A JP6936071B2 JP 6936071 B2 JP6936071 B2 JP 6936071B2 JP 2017150596 A JP2017150596 A JP 2017150596A JP 2017150596 A JP2017150596 A JP 2017150596A JP 6936071 B2 JP6936071 B2 JP 6936071B2
Authority
JP
Japan
Prior art keywords
power
power generation
distribution system
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017150596A
Other languages
Japanese (ja)
Other versions
JP2019030190A (en
Inventor
尚 梅岡
尚 梅岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2017150596A priority Critical patent/JP6936071B2/en
Publication of JP2019030190A publication Critical patent/JP2019030190A/en
Application granted granted Critical
Publication of JP6936071B2 publication Critical patent/JP6936071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、発電設備の制御方法および発電設備の制御装置に関する。 The present invention relates to a method for controlling a power generation facility and a control device for the power generation facility.

近年、太陽光や風力などの変動電源の増加や、送配電事業者による需給バランスをとるための調整に係るコストの低減などが求められている。しかしながら、変動電源が増加すると需給バランスをとるための調整力を増加させることとなり、この2つの社会的要求は両立が難しい。また、電力の小売事業者においては、常に安価な電力の調達を必要としており、卸電力取引所である時間断面において高値の電気を調達しなければならないときには、これに変わる電気を臨時に調達したいニーズなどがある。そこで、需要場所に設置している発電源や蓄電池、或いは需要場所での需要量を任意に制御することで、この調整力の代替や電気の卸供給をするための電源として活用する、技術が求められている。 In recent years, there has been a demand for an increase in variable power sources such as solar power and wind power, and a reduction in costs related to adjustments for balancing supply and demand by power transmission and distribution business operators. However, when the variable power source increases, the adjustment power for balancing supply and demand increases, and it is difficult to balance these two social demands. In addition, electricity retailers always need to procure cheap electricity, and when they have to procure high-priced electricity in the time section of the wholesale electricity exchange, they want to temporarily procure electricity to replace it. There are needs and so on. Therefore, there is a technology that can be used as a substitute for this adjustment power or as a power source for wholesale supply of electricity by arbitrarily controlling the power generation and storage batteries installed at the demand location or the demand amount at the demand location. It has been demanded.

ところで、電気の需要場所で発電した電力を配電系統に逆潮流させる場合、配電系統の電圧や熱容量が、配電設備の上限規定値を超える可能性が生じる。電力の安定供給は、電圧を正常な範囲に保ち、熱容量が配電設備の許容量を超えないことで実現するので、需要場所からの逆潮流は、安定供給を損なう可能性がある。 By the way, when the electric power generated at the place where electricity is demanded is reverse-flowed to the distribution system, the voltage and heat capacity of the distribution system may exceed the upper limit specified value of the distribution equipment. Stable power supply is achieved by keeping the voltage in the normal range and the heat capacity does not exceed the capacity of the distribution equipment, so reverse power flow from the demand location may impair the stable supply.

従来は、発電設備能力から発電される最大出力を基に送配電設備の設計を行ない工事することで安全を担保していた。そのため、年に幾度もない最大発電量に合わせて設備構築されるため送配電事業者や発電者のコスト負担も少なくない。今後、需要場所への蓄電池や燃料電池等の発電設備の導入が進み、これを需給調整力や卸供給電源として活用することを考えると、既存の配電系統を増強することなしに、そのまま活用する技術が望まれる。そのためには、配電系統の電圧や電流が適正範囲に保たれるよう発電量を調整する技術が必要となる。 In the past, safety was ensured by designing and constructing power transmission and distribution equipment based on the maximum output generated from the capacity of the power generation equipment. Therefore, since the equipment is constructed according to the maximum amount of power generation that does not occur many times a year, the cost burden of the power transmission and distribution business operator and the power generator is not small. In the future, the introduction of power generation facilities such as storage batteries and fuel cells to demand locations will progress, and considering that they will be used as supply and demand adjustment capabilities and wholesale supply power sources, they will be used as they are without strengthening the existing distribution system. Technology is desired. For that purpose, a technique for adjusting the amount of power generation is required so that the voltage and current of the distribution system are kept within an appropriate range.

系統の電圧を監視し、それによって発電設備の出力を調整する方法としては、例えば特許文献1に記載されている技術がある。この技術によれば系統電圧の許容値から逸脱しないよう個々の発電設備(蓄電池)を制御することが可能となる。しかしながら、需給調整力や卸供給電源として活用することを考えた場合、電力の必要な提供量は決まっており、発電設備の出力を低下させてしまうと足りなくなる場合があるという課題があった。 As a method of monitoring the voltage of the system and adjusting the output of the power generation facility by it, for example, there is a technique described in Patent Document 1. According to this technology, it is possible to control individual power generation facilities (storage batteries) so as not to deviate from the permissible value of the system voltage. However, when considering the use as a supply and demand adjusting power or a wholesale supply power source, there is a problem that the required amount of electric power is determined, and if the output of the power generation facility is reduced, it may become insufficient.

特許第5633872号公報Japanese Patent No. 5633872

本発明は、上記事情に鑑みてなされたものであり、上記課題を解決することができる発電設備の制御方法および発電設備の制御装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a power generation facility control method and a power generation facility control device capable of solving the above problems.

上記課題を解決するため、本発明の一態様は、複数のセンサーが、複数の発電設備のうち少なくとも1つが需要家に備えられた蓄電池であって当該複数の発電設備が接続された配電系統の異なる測定場所における電圧をそれぞれ計測し、制御部が、前記各発電設備で所定の電力が発電され、前記センサーで測定された電圧が前記配電系統の許容範囲を超えたことが検知された場合に当該センサーから送信される測定結果を受信し、前記電圧が許容値を超えるとき当該発電設備のうち前記蓄電池からの発電を停止し、該停止した発電電力に相当する電力を、前記電圧が許容値以下である前記配電系統のいずれかの箇所における他の1または複数の前記蓄電池で発電させることで補うよう前記各発電設備を制御することを特徴とする発電設備の制御方法である。 In order to solve the above problems, one aspect of the present invention is a distribution system in which a plurality of sensors are storage batteries in which at least one of a plurality of power generation facilities is provided to a consumer and the plurality of power generation facilities are connected. the voltage at different measurement locations to measure each control unit, the predetermined power at the originating generation facilities is generated, the voltage measured by the sensor exceeds an allowable range of the distribution system is detected In this case, when the measurement result transmitted from the sensor is received and the voltage exceeds the permissible value, the power generation from the storage battery in the power generation facility is stopped, and the power corresponding to the stopped power generation is generated by the voltage. It is a method of controlling a power generation facility, characterized in that each power generation facility is controlled so as to supplement the power generation by another one or a plurality of the storage batteries in any part of the distribution system which is equal to or less than an allowable value.

また、本発明の一態様は、複数のセンサーが、複数の発電設備のうち少なくとも1つが需要家に備えられた蓄電池であって当該複数の発電設備が接続された配電系統の異なる測定場所における電流をそれぞれ計測し、制御部が、前記各発電設備で所定の電力が発電され、前記センサーで測定された電流が前記配電系統の許容範囲を超えたことが検知された場合に当該センサーから送信される測定結果を受信し、前記電流が許容値を超えるとき当該発電設備のうち前記蓄電池からの発電を停止し、該停止した発電電力に相当する電力を、前記電流が許容値以下である前記配電系統のいずれかの箇所における他の1または複数の前記蓄電池で発電させることで補うよう前記各発電設備を制御することを特徴とする発電設備の制御方法である。 Further, in one aspect of the present invention, the plurality of sensors are storage batteries in which at least one of the plurality of power generation facilities is provided to the consumer, and the current at different measurement locations of the distribution system to which the plurality of power generation facilities are connected. each measured, control unit, the predetermined power at the originating generation facilities is generated from the sensor when the current measured by the sensor exceeds an allowable range of the distribution system is detected receiving a measurement result transmitted, the power from the battery of the power plant when the current exceeds the allowable value is stopped, the power corresponding to the power generation electric power said stop, said current is less than the allowable value A method for controlling a power generation facility, which comprises controlling each power generation facility so as to supplement the power generation by generating power from the other one or a plurality of the storage batteries in any part of the power distribution system.

また、本発明の一態様は、複数の発電設備のうち少なくとも1つが需要家に備えられた蓄電池であって当該複数の発電設備が接続された配電系統の異なる測定場所のそれぞれにおける電圧または電流を計測する計測部と、1または複数の前記発電設備で所定の電力発電され、前記計測部で計測された電圧または電流が前記配電系統の許容範囲を超えたことが検知された場合に当該計測部から送信される測定結果を受信し、その許容範囲を超えた箇所に対応する前蓄電池の発電を制限し、該制限した発電電力に相当する電力を、前記許容範囲を超えた配電系統とは異なる配電系統において前記電圧または前記電流が許容範囲以下の箇所に対応する前蓄電池で発電させることで補うよう蓄電池を制御する制御部とを備える発電設備の制御装置である。 Further, in one aspect of the present invention, at least one of the plurality of power generation facilities is a storage battery provided to the consumer, and the voltage or current at each of the different measurement locations of the distribution system to which the plurality of power generation facilities are connected can be measured. When a predetermined power is generated by the measuring unit to be measured and one or more of the power generation facilities, and it is detected that the voltage or current measured by the measuring unit exceeds the allowable range of the distribution system, the measurement is performed. receiving a measurement result transmitted from the part, to limit the power of the previous SL-acid battery that corresponds to箇plant exceeds the allowable range, the power corresponding to the power generation electric power the limit, exceeds the allowable range distribution the system is a control device for power generation equipment and a control unit for controlling the storage battery to compensate by causing the power generation in the previous SL-acid battery that corresponds tooffice said voltage or said current is below the allowable range at different power distribution system.

本発明の各態様によれば、配電系統に接続された複数の発電設備が提供する電力を確保し、かつ、配電系統の電圧や電流を許容値から逸脱しないように制御することができる。 According to each aspect of the present invention, it is possible to secure the electric power provided by the plurality of power generation facilities connected to the distribution system and control the voltage and current of the distribution system so as not to deviate from the permissible values.

本発明の一実施形態に係る発電設備の制御システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of the control system of the power generation facility which concerns on one Embodiment of this invention. 図1に示す統合制御装置2、情報収集・制御装置62、および蓄電池設備63の構成例を示すブロック図である。FIG. 5 is a block diagram showing a configuration example of the integrated control device 2, the information collection / control device 62, and the storage battery facility 63 shown in FIG. 図1に示す配電系統A4の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the distribution system A4 shown in FIG. 図1に示す配電系統A4の他の構成例を示す模式図である。It is a schematic diagram which shows the other configuration example of the distribution system A4 shown in FIG. 本発明の一実施形態に係る発電設備の制御装置の基本的構成例と動作例を示す図である。It is a figure which shows the basic configuration example and the operation example of the control device of the power generation facility which concerns on one Embodiment of this invention.

以下、図面を参照して本発明の実施形態について説明する。図1は、本発明の一実施形態に係る発電設備の制御システム(発電設備の制御装置)1(以下、制御システム1という)の構成例を示す模式図である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a configuration example of a power generation equipment control system (power generation equipment control device) 1 (hereinafter referred to as a control system 1) according to an embodiment of the present invention.

図1に示す制御システム1は、統合制御装置2と、住宅等の複数の需要地6に設置された情報収集・制御装置62および電力の発電、蓄電、負荷等を行う電気設備と、統合制御装置2と複数の情報収集・制御装置62間を接続する通信設備とを備える。 The control system 1 shown in FIG. 1 includes an integrated control device 2, an information collection / control device 62 installed in a plurality of demand areas 6 such as a house, and electrical equipment for generating, storing, and loading electric power, and integrated control. It is provided with communication equipment for connecting the device 2 and the plurality of information collection / control devices 62.

図1では、需要地6に設置されている電気設備として、蓄電池設備63、太陽光発電設備64、電力負荷設備65を例示している。これらの蓄電池設備63、太陽光発電設備64、電力負荷設備65は、電力線66と分電盤61を介して配電系統A4または配電系統B5に接続されている。ただし、各需要地6は、蓄電池設備63、太陽光発電設備64、および電力負荷設備65をすべて備えていてもよいし、いずれか1つまたは2つを備えていてもよい。なお、蓄電池設備63は、蓄電池と、例えば、その蓄電池からの放電や蓄電池への充電を制御するインバータ、コンバータ等の電力変換回路、制御回路等を備える。太陽光発電設備64は、太陽電池モジュールと、例えば、太陽電池の出力を所定の直流電力や交流電力に変換するパワーコンディショナ等の変換回路、制御回路等を備える。なお、太陽光発電設備64のパワーコンディショナ等の変換回路や制御回路と、蓄電池設備63のインバータ、コンバータ等の電力変換回路は、一体的に構成されていてもよい。電力負荷設備65は、1または複数の電気機器等を含む。 In FIG. 1, as the electric equipment installed in the demand area 6, the storage battery equipment 63, the solar power generation equipment 64, and the electric power load equipment 65 are illustrated. These storage battery equipment 63, photovoltaic power generation equipment 64, and power load equipment 65 are connected to the distribution system A4 or the distribution system B5 via the power line 66 and the distribution board 61. However, each demand area 6 may be provided with all of the storage battery facility 63, the photovoltaic power generation facility 64, and the power load facility 65, or may be provided with any one or two of them. The storage battery facility 63 includes a storage battery, for example, a power conversion circuit such as an inverter and a converter for controlling discharge from the storage battery and charging of the storage battery, a control circuit, and the like. The photovoltaic power generation facility 64 includes a solar cell module, a conversion circuit such as a power conditioner that converts the output of the solar cell into predetermined DC power or AC power, a control circuit, and the like. The conversion circuit and control circuit of the power conditioner of the photovoltaic power generation facility 64 and the power conversion circuit of the inverter, converter and the like of the storage battery facility 63 may be integrally configured. The power load facility 65 includes one or more electrical devices and the like.

なお、本実施形態において、発電設備とは、蓄電池設備63、太陽光発電設備64等の電力を発生する設備である。発電設備としては、蓄電池設備63と太陽光発電設備64のほか、例えば、燃料電池、ガスエンジン発電機、ディーゼルエンジン発電機、風力発電等がある。需要地6は、例えば、1または複数種類の発電設備を備えることができる。 In the present embodiment, the power generation equipment is equipment that generates electric power, such as a storage battery equipment 63 and a solar power generation equipment 64. Examples of the power generation equipment include a fuel cell, a gas engine generator, a diesel engine generator, a wind power generation, and the like, in addition to the storage battery equipment 63 and the solar power generation equipment 64. The demand area 6 may be provided with, for example, one or a plurality of types of power generation facilities.

なお、本実施形態では、発電設備のうち、運転もしくは停止、または出力調整等の制御可能なものを制御対象とする。また、発電設備は、上述したように、電力負荷設備65が設置された需要地6(需要場所)に設置された発電設備であってもよいし、電力負荷設備65が設置されていない需要地6に単独で設置された発電設備であってもよい。すなわち、本実施形態において需要地6は、電力負荷設備65が設置されていない設置場所を含む。なお、需要地6は、電力系統を構成する発電所→(送電線)→変電所→(配電線)→需要場所の各構成要素のうちの「需要場所」に対応する。 In the present embodiment, among the power generation facilities, those that can be controlled such as operation or stop, output adjustment, etc. are targeted for control. Further, as described above, the power generation facility may be a power generation facility installed in the demand area 6 (demand location) where the power load facility 65 is installed, or a demand area where the power load facility 65 is not installed. It may be a power generation facility installed independently in 6. That is, in the present embodiment, the demand area 6 includes an installation location where the power load facility 65 is not installed. The demand area 6 corresponds to a “demand location” among the components of the power plant → (transmission line) → substation → (distribution line) → demand location that constitutes the power system.

また、通信設備は、インターネット等の通信網3と、統合制御装置2と通信網3間および情報収集・制御装置62と通信網3間を接続する複数の通信線8を有している。 Further, the communication equipment has a communication network 3 such as the Internet, and a plurality of communication lines 8 connecting the integrated control device 2 and the communication network 3 and the information collection / control device 62 and the communication network 3.

配電系統A4は、配電変電所11と配電線路や配電設備等を備える。配電線路は、例えば、高圧配電線と低圧配電線を含む。配電線は、例えば、電柱に電線を架線した架空配電線と、ケーブルを地中に埋設した地中配電線を含む。配電設備は、配電用変圧器(受電用変圧器や柱上変圧器)、開閉器、引込線7、電力量計等を含む。また、配電系統B5は、配電変電所12と配電系統A4と同様の配電線路や配電設備等を備える。配電系統A4と配電系統B5は、例えば所定の1または複数箇所に、配電線や引込線7に流れる電圧や電流を検知する電圧センサーや電流センサーを備えている。 The distribution system A4 includes a distribution substation 11, a distribution line, distribution equipment, and the like. Distribution lines include, for example, high voltage distribution lines and low voltage distribution lines. The distribution line includes, for example, an overhead distribution line in which an electric wire is laid on a utility pole and an underground distribution line in which a cable is buried in the ground. Distribution equipment includes distribution transformers (power receiving transformers and pole transformers), switches, drop lines 7, watt-hour meters, and the like. Further, the distribution system B5 includes a distribution substation 12 and a distribution line, a distribution facility, and the like similar to the distribution system A4. The distribution system A4 and the distribution system B5 are provided with a voltage sensor or a current sensor that detects a voltage or a current flowing through a distribution line or a drop line 7 at a predetermined one or a plurality of locations, for example.

次に、図2を参照して、図1に示す統合制御装置2、情報収集・制御装置62および蓄電池設備63の構成例について説明する。図2は、図1に示す統合制御装置2、情報収集・制御装置62および蓄電池設備63が有する情報の処理と通信に係る構成と、各構成間の情報の流れを示す。図2に示す統合制御装置2は、データ受信部21、制御量演算部22、および制御指令値送信部23を有する。情報収集・制御装置62は、電力情報受信部621、データ送信部622、制御指令値受信部623、制御量演算部624、および制御指令値送信部625を有する。情報収集・制御装置62は、例えば、HEMS(Home Energy Management System)の制御装置である。ただし、制御量演算部624は、省略してもよい。また、蓄電池設備63は、制御指令値受信部631、制御部632、および蓄電池状態送信部633を有する。 Next, a configuration example of the integrated control device 2, the information collection / control device 62, and the storage battery facility 63 shown in FIG. 1 will be described with reference to FIG. FIG. 2 shows a configuration related to information processing and communication possessed by the integrated control device 2, the information collection / control device 62, and the storage battery facility 63 shown in FIG. 1, and the flow of information between the configurations. The integrated control device 2 shown in FIG. 2 includes a data receiving unit 21, a controlled quantity calculation unit 22, and a control command value transmitting unit 23. The information collection / control device 62 includes a power information receiving unit 621, a data transmitting unit 622, a control command value receiving unit 623, a control amount calculation unit 624, and a control command value transmitting unit 625. The information collection / control device 62 is, for example, a HEMS (Home Energy Management System) control device. However, the control amount calculation unit 624 may be omitted. Further, the storage battery equipment 63 includes a control command value receiving unit 631, a control unit 632, and a storage battery state transmitting unit 633.

図2に示す構成例において、電力情報受信部621は、分電盤61から、例えば引込線7の電圧や電流の計測結果を受信する。また、電力情報受信部621は、分電盤61から、例えば引込線7を介して配電系統A4または配電系統B5から順潮流する電力または配電系統A4または配電系統B5へ逆潮流する電力の計測結果を示す情報を受信する。電力情報受信部621は、また、蓄電池状態送信部633から、蓄電池設備63の蓄電残量、充放電電力の値等の蓄電池の状態を示す情報を受信する。データ送信部622は、例えば電力情報受信部621が分電盤61または蓄電池状態送信部633から受信した情報を、所定の時間間隔でデータ受信部21に対して送信する。 In the configuration example shown in FIG. 2, the power information receiving unit 621 receives, for example, the measurement results of the voltage and current of the drop line 7 from the distribution board 61. Further, the power information receiving unit 621 measures the measurement result of the power flowing forward from the distribution system A4 or the distribution system B5 or the power flowing backward to the distribution system A4 or the distribution system B5 from the distribution board 61, for example, via the service line 7. Receive the information shown. The power information receiving unit 621 also receives information indicating the state of the storage battery, such as the remaining charge of the storage battery equipment 63 and the value of the charge / discharge power, from the storage battery state transmission unit 633. The data transmission unit 622 transmits, for example, the information received by the power information reception unit 621 from the distribution board 61 or the storage battery state transmission unit 633 to the data reception unit 21 at predetermined time intervals.

データ受信部21は、データ送信部622が送信した情報を受信する。また、データ受信部21は、図示していない送配電事業者や小売電気事業者のサーバ等から電力提供の要請を示す情報を受信したり、配電系統の電圧、電流等の状態を示す情報を系統情報として受信したりする。データ受信部21は、受信した情報を制御量演算部22へ出力する。 The data receiving unit 21 receives the information transmitted by the data transmitting unit 622. In addition, the data receiving unit 21 receives information indicating a request for power supply from a server or the like of a power transmission and distribution business operator or a retail electric power company (not shown), or receives information indicating the state of voltage, current, or the like of the distribution system. Received as system information. The data receiving unit 21 outputs the received information to the control amount calculation unit 22.

制御量演算部22は、後述するようにして、データ受信部21から入力された情報に基づき、所定の時間間隔で蓄電池設備63の放電電力(あるいは充放電電力)の制御指令値を演算し、演算した結果を制御指令値送信部23へ出力する。なお、制御指令値は、蓄電池設備63からの放電電力量(あるいは充放電電力量)の制御指令値を示す値であってもよい。なお、蓄電池設備63以外の発電設備を制御対象とする場合、制御量演算部22が演算する制御指令値は発電電力(あるいは発電電力量)の制御指令値を示す値となる。制御指令値送信部23は、例えば蓄電池設備63の放電電力の制御指令値を示す情報を制御指令値受信部623へ送信する。 As will be described later, the control amount calculation unit 22 calculates the control command value of the discharge power (or charge / discharge power) of the storage battery facility 63 at predetermined time intervals based on the information input from the data reception unit 21. The calculated result is output to the control command value transmission unit 23. The control command value may be a value indicating a control command value of the discharge power amount (or charge / discharge power amount) from the storage battery equipment 63. When a power generation facility other than the storage battery facility 63 is to be controlled, the control command value calculated by the control amount calculation unit 22 is a value indicating the control command value of the generated power (or the generated power amount). The control command value transmitting unit 23 transmits, for example, information indicating a control command value of the discharge power of the storage battery equipment 63 to the control command value receiving unit 623.

制御指令値受信部623は、制御指令値送信部23から蓄電池設備63の放電電力の制御指令値を示す情報を受信し、制御指令値送信部625へ出力する。制御指令値送信部625は、制御指令値受信部623から入力した蓄電池設備63の放電電力の制御指令値を示す情報を、制御指令値受信部631へ送信する。 The control command value receiving unit 623 receives information indicating the control command value of the discharge power of the storage battery equipment 63 from the control command value transmitting unit 23, and outputs the information to the control command value transmitting unit 625. The control command value transmitting unit 625 transmits information indicating the control command value of the discharge power of the storage battery equipment 63 input from the control command value receiving unit 623 to the control command value receiving unit 631.

制御指令値受信部631は、制御指令値送信部625から受信した蓄電池設備63の放電電力の制御指令値を示す情報を、制御部632へ出力する。制御部632は、制御指令値受信部631から入力した蓄電池設備63の放電電力の制御指令値を示す情報に基づき、蓄電池設備63の放電電力を制御する。 The control command value receiving unit 631 outputs information indicating the control command value of the discharge power of the storage battery equipment 63 received from the control command value transmitting unit 625 to the control unit 632. The control unit 632 controls the discharge power of the storage battery equipment 63 based on the information indicating the control command value of the discharge power of the storage battery equipment 63 input from the control command value receiving unit 631.

また、制御量演算部624は、例えば、電力情報受信部621が受信した情報を入力し、入力した情報に基づいて、制御量演算部22に代わり、自装置が制御する蓄電池設備63の放電電力の制御指令値を演算する。制御指令値送信部625は、制御量演算部624が出力した制御指令値または制御指令値送信部23が送信した制御指令値を制御指令値受信部631に対して送信する。なお、制御量演算部624が出力した制御指令値に基づいて蓄電池設備63を制御する場合、統合制御装置2がその制御状態を認識できるようにするため、データ送信部622は、制御内容を示す情報をデータ受信部21に対して送信する。 Further, the control amount calculation unit 624 inputs, for example, the information received by the power information reception unit 621, and based on the input information, the discharge power of the storage battery equipment 63 controlled by the own device instead of the control amount calculation unit 22. Calculates the control command value of. The control command value transmission unit 625 transmits the control command value output by the control amount calculation unit 624 or the control command value transmitted by the control command value transmission unit 23 to the control command value reception unit 631. When the storage battery equipment 63 is controlled based on the control command value output by the control amount calculation unit 624, the data transmission unit 622 indicates the control content so that the integrated control device 2 can recognize the control state. Information is transmitted to the data receiving unit 21.

本実施形態において制御量演算部22は、例えば次の(1)〜(7)のいずれかに示す演算の仕方で、蓄電池設備63の放電電力の制御指令値を演算する。なお、(1)〜(7)では、蓄電池設備63を発電設備とし、放電電力の制御指令値を発電量の制御指令値として、制御量演算部22による演算の仕方について説明する。ここで、発電量の制御指令値は、発電電力の制御指令値であってもよいし、発電電力量の制御指令値であってもよい。 In the present embodiment, the control amount calculation unit 22 calculates the control command value of the discharge power of the storage battery equipment 63 by the calculation method shown in any of the following (1) to (7), for example. In (1) to (7), a method of calculation by the control amount calculation unit 22 will be described with the storage battery equipment 63 as the power generation equipment and the discharge power control command value as the power generation amount control command value. Here, the control command value of the generated power amount may be the control command value of the generated power or the control command value of the generated power amount.

(1)例えば、制御量演算部22は、まず、複数の発電設備が接続された配電系統の電圧を1または複数箇所で計測した結果をデータ受信部21から入力する。次に、制御量演算部22は、各発電設備を出力可能な最大値(kW)で発電させた場合に、電圧が許容値を超えるとき当該発電設備の発電を停止し、その停止した発電電力に相当する電力を、電圧が許容値以下の他の1または複数の発電設備で発電させることで補えるよう各発電設備を制御することができるように各発電設備に対する発電量の制御指令値を演算する。 (1) For example, the control amount calculation unit 22 first inputs from the data reception unit 21 the result of measuring the voltage of the distribution system to which a plurality of power generation facilities are connected at one or a plurality of points. Next, the control amount calculation unit 22 stops the power generation of the power generation equipment when the voltage exceeds the permissible value when the power generation equipment is generated at the maximum value (kW) that can be output, and the stopped power generation power. Calculate the control command value of the amount of power generation for each power generation facility so that each power generation facility can be controlled so that the power equivalent to the above can be supplemented by generating power with one or more other power generation facilities whose voltage is less than the permissible value. do.

(2)あるいは、制御量演算部22は、まず、複数の発電設備が接続された配電系統の電圧を1または複数箇所で計測した結果をデータ受信部21から入力する。次に、制御量演算部22は、各発電設備を出力可能な最大値(kW)で発電させた場合に、電圧が許容値を超えるとき当該発電設備の発電を低下させ、その低下させた発電電力に相当する電力を、電圧が許容値以下の他の1または複数の発電設備で発電させることで補えるよう各発電設備を制御することができるように各発電設備に対する発電量の制御指令値を演算する。 (2) Alternatively, the control amount calculation unit 22 first inputs from the data reception unit 21 the result of measuring the voltage of the distribution system to which the plurality of power generation facilities are connected at one or a plurality of points. Next, the control amount calculation unit 22 reduces the power generation of the power generation facility when the voltage exceeds the permissible value when the power generation facility is generated at the maximum value (kW) that can be output, and the reduced power generation is performed. The control command value of the amount of power generation for each power generation facility is set so that each power generation facility can be controlled so that the power equivalent to the power can be supplemented by generating power with one or more other power generation facilities whose voltage is less than the permissible value. Calculate.

(3)あるいは、制御量演算部22は、まず、複数の発電設備が接続された配電系統の電流を1または複数箇所で計測した結果をデータ受信部21から入力する。次に、制御量演算部22は、各発電設備を出力可能な最大値(kW)で発電させた場合に、電流が許容値を超えるとき当該発電設備の発電を停止し、その停止した発電電力に相当する電力を、電流が許容値以下の他の1または複数の発電設備で発電させることで補えるよう各発電設備を制御することができるように各発電設備に対する発電量の制御指令値を演算する。 (3) Alternatively, the control amount calculation unit 22 first inputs from the data reception unit 21 the result of measuring the current of the distribution system to which the plurality of power generation facilities are connected at one or a plurality of points. Next, the control amount calculation unit 22 stops the power generation of the power generation equipment when the current exceeds the permissible value when the power generation equipment is generated at the maximum value (kW) that can be output, and the stopped power generation power. Calculate the control command value of the amount of power generation for each power generation facility so that each power generation facility can be controlled so that the power equivalent to the above can be supplemented by generating power with one or more other power generation facilities whose current is less than the permissible value. do.

(4)あるいは、制御量演算部22は、まず、複数の発電設備が接続された配電系統の電流を1または複数箇所で計測した結果をデータ受信部21から入力する。次に、制御量演算部22は、各発電設備を出力可能な最大値(kW)で発電させた場合に、電流が許容値を超えるとき当該発電設備の発電を低下させ、その低下させた発電電力に相当する電力を、電流が許容値以下の他の1または複数の発電設備で発電させることで補えるよう各発電設備を制御することができるように各発電設備に対する発電量の制御指令値を演算する。 (4) Alternatively, the control amount calculation unit 22 first inputs from the data reception unit 21 the result of measuring the current of the distribution system to which the plurality of power generation facilities are connected at one or a plurality of points. Next, the control amount calculation unit 22 reduces the power generation of the power generation facility when the current exceeds the permissible value when the power generation facility is generated at the maximum value (kW) that can be output, and the reduced power generation is performed. The control command value of the amount of power generation for each power generation facility is set so that each power generation facility can be controlled so that the power equivalent to the power can be supplemented by generating power with one or more other power generation facilities whose current is less than the permissible value. Calculate.

(5)あるいは、制御量演算部22は、まず、同一配電系統上に複数の発電設備が設置されているその配電系統上に流れる電流を計測した結果をデータ受信部21から入力する。次に、制御量演算部22は、計測された電流値が配電系統の許容値を超えた場合、許容値以下になるよう、その複数の発電設備の、全体の出力を低下させ、その低下させた発電電力に相当する電力を、電流が許容値以下の他の配電系統上に設置された1または複数の発電設備で発電することで補うことができるように各発電設備に対する発電量の制御指令値を演算する。 (5) Alternatively, the control amount calculation unit 22 first inputs from the data receiving unit 21 the result of measuring the current flowing on the distribution system in which a plurality of power generation facilities are installed on the same distribution system. Next, when the measured current value exceeds the permissible value of the distribution system, the control amount calculation unit 22 reduces the overall output of the plurality of power generation facilities so as to be equal to or less than the permissible value, and lowers the output. A control command for the amount of power generated for each power generation facility so that the power equivalent to the generated power can be supplemented by generating power with one or more power generation facilities installed on another distribution system whose current is less than the permissible value. Calculate the value.

(6)なお、制御量演算部22は、(5)の処理において、同一配電系統上に設置された複数の発電設備のうちの一部の発電設備を停止することによって全体の出力を低下させる、ことができるように各発電設備に対する発電量の制御指令値を演算することができる。 (6) In the process of (5), the control amount calculation unit 22 reduces the overall output by stopping some of the power generation facilities installed on the same distribution system. , It is possible to calculate the control command value of the amount of power generation for each power generation facility.

(7)また、制御量演算部22は、(5)の処理において、同一配電系統上に設置された複数の発電設備各々の出力を調整することによって全体の出力を低下させる、ことができるように各発電設備に対する発電量の制御指令値を演算することができる。 (7) Further, in the process of (5), the control amount calculation unit 22 can reduce the overall output by adjusting the output of each of the plurality of power generation facilities installed on the same distribution system. It is possible to calculate the control command value of the amount of power generation for each power generation facility.

なお、本実施形態において、配電系統の電圧または電流の計測は、例えば次のように行うことができる。すなわち、例えば配電系統A4またはB5に接続された引込線7が屋内に引き込まれて分電盤61内に接続される点の近傍において配電系統の電圧または電流を計測することができる。電圧は相間電圧を電圧センサーによって測定し、電流はCT(変流器)等電流センサーによって計測することができる。近年は電圧/電流測定機能を備えた分電盤があり、LAN(ローカルエリアネットワーク)の通信ケーブルで外部に計測値情報を伝送できるものがあり、これを活用しても良い。 In the present embodiment, the voltage or current of the distribution system can be measured, for example, as follows. That is, for example, the voltage or current of the distribution system can be measured in the vicinity of the point where the service line 7 connected to the distribution system A4 or B5 is drawn indoors and connected to the distribution board 61. The voltage can be measured by a voltage sensor for the interphase voltage, and the current can be measured by a current sensor such as a CT (current transformer). In recent years, there are distribution boards equipped with a voltage / current measurement function, and there are some that can transmit measurement value information to the outside with a LAN (local area network) communication cable, and this may be utilized.

また、出力可能な最大値(kW)とは、その発電設備が有する定格の最大出力値のことである。ただし、ガスエンジン発電機等燃料を必要とする発電機については、燃料消費率が最大となる出力と置き換えて読む。 The maximum output value (kW) is the rated maximum output value of the power generation facility. However, for generators that require fuel, such as gas engine generators, read by replacing with the output that maximizes the fuel consumption rate.

電圧の許容値とは、電力の品質安定のために設けられた許容値のことを指し、一般には電気事業法施行規則で202V±20V、101V±6Vと定められている値を用いるが、これに限定するものではない。 The allowable value of voltage refers to the allowable value provided for stabilizing the quality of electric power, and generally, the values specified as 202V ± 20V and 101V ± 6V in the Electricity Business Act Enforcement Regulations are used. It is not limited to.

電流の許容値とは、配電設備の保安上問題とならない電流値の許容値で、電線ケーブルの種類や太さで決まる。本請求項では、需要場所や発電設備の引き込み点で測定しているので、引込線の許容電流値を指す。 The permissible current value is the permissible value of the current value that does not pose a problem in the safety of distribution equipment, and is determined by the type and thickness of the electric wire cable. In this claim, since the measurement is made at the place of demand or the lead-in point of the power generation facility, it refers to the permissible current value of the lead-in line.

また、(5)において、同一配電系統上とは、配電変電所11および12から需要側であって、電流値を制御しようとする区間を指す。例えば、ある配電系統から支線が分岐している場合で、複数の発電設備がその支線に接続されており、その支線の電流値を計測する場合は、同一配電系統上とはその支線の制御区間をいう。また、支線に分岐される前の電流値を計測しその計測値に基づいて制御する場合は、支線に分岐される前の区間からの制御区間のことを指す。この場合、電流の許容値とは、配電設備の保安上問題とならない電流値の許容値で、電線ケーブルの種類や太さ、変圧器の仕様等で決まる。また、(5)では、複数の需要場所や発電設備が接続されている配電系統上で測定しているので、引込線や変圧器、開閉器等配電系統機器のうち最も小さな許容電流値で決まる。 Further, in (5), the term “on the same distribution system” refers to a section from the distribution substations 11 and 12 on the demand side where the current value is to be controlled. For example, when a branch line is branched from a certain distribution system, multiple power generation facilities are connected to the branch line, and the current value of the branch line is measured, the control section of the branch line is on the same distribution system. To say. When the current value before branching to the branch line is measured and controlled based on the measured value, it refers to the control section from the section before branching to the branch line. In this case, the allowable value of the current is the allowable value of the current value that does not pose a problem in the safety of the distribution equipment, and is determined by the type and thickness of the electric wire cable, the specifications of the transformer, and the like. Further, in (5), since the measurement is performed on a distribution system to which a plurality of demand locations and power generation facilities are connected, it is determined by the smallest allowable current value among the distribution system devices such as service lines, transformers, and switches.

なお、制御システム1における制御の概要は次のとおりである。本実施形態では、太陽光発電設備64および蓄電池設備63が設置された需要地(住宅)6が、複数、配電系統A4または配電系統B5に連系されている。近年、住宅の太陽光発電設備は大容量化が進み定格出力が6kW以上のものも珍しくない。送配電事業者や電力小売事業者からある時間において電気の提供を要請された場合、設置された蓄電池から電気を供出する。すると、これが晴れた日の日中であれば、太陽光発電の余剰電力に加え、当該蓄電池電力も配電系統に逆潮流することとなる。逆潮流する電力が大きいことから、住宅と系統との連系点において電圧が許容値を超えることや、住宅への電力の引込線の電流許容値超えることが懸念される。また、このような住宅が複数あると、その住宅群が接続されている配電系統全体で電流がその許容値を超える危険もある。そのため、本実施形態では、配電系統の電圧・電流値は適正範囲を保つように蓄電池からの電力供出量を抑制し、これにより不足した電力は、別の需要地(=発電地)にて蓄電池から放電することで補っている。 The outline of the control in the control system 1 is as follows. In the present embodiment, a plurality of demand areas (houses) 6 in which the photovoltaic power generation equipment 64 and the storage battery equipment 63 are installed are connected to the distribution system A4 or the distribution system B5. In recent years, the capacity of residential photovoltaic power generation equipment has been increasing, and it is not uncommon for the rated output to be 6 kW or more. When a power transmission and distribution business operator or an electric power retailer requests the provision of electricity at a certain time, the electricity is supplied from the installed storage battery. Then, if this is during the daytime on a sunny day, in addition to the surplus power of the photovoltaic power generation, the storage battery power will also be reverse-flowed to the distribution system. Since the amount of power that flows backward is large, there is a concern that the voltage will exceed the permissible value at the interconnection point between the house and the grid, or that the current permissible value of the power lead-in line to the house will be exceeded. In addition, if there are a plurality of such houses, there is a risk that the current will exceed the permissible value in the entire distribution system to which the houses are connected. Therefore, in the present embodiment, the amount of power supplied from the storage battery is suppressed so that the voltage and current values of the distribution system are kept in an appropriate range, and the insufficient power is collected by the storage battery in another demand area (= power generation area). It is supplemented by discharging from.

各需要地(=発電地、住宅)6において、配電系統A4またはB5は、分電盤61で主開閉器等を経て各発電設備や電力負荷設備に電力線66を介して接続されている。電流センサーや電圧センサーはこの分電盤61内に設置され、配電系統A4またはB5からの引込線7の末端付近で測定される。上述したように、近年、センサーを内蔵した分電盤もありこれを活用することも考えられる。これらのセンサーで、配電系統A4またはB5からの順潮流電力、系統への逆潮流電力、電圧などが計測できる。 In each demand area (= power generation area, house) 6, the distribution system A4 or B5 is connected to each power generation facility or power load facility via a power line 66 via a main switch or the like on a distribution board 61. The current sensor and the voltage sensor are installed in the distribution board 61, and are measured near the end of the service line 7 from the distribution system A4 or B5. As mentioned above, in recent years, there is also a distribution board with a built-in sensor, and it is conceivable to utilize this. With these sensors, it is possible to measure forward power flow power from the distribution system A4 or B5, reverse power flow power to the system, voltage, and the like.

このセンサーで取得したデータは、情報収集・制御装置62に通信線67によって送られ、情報収集・制御装置62では電力情報受信部621でこのデータを受信する。通信には例えば宅内LANが使用される。電力情報受信部621で受信するデータは、電圧、電流データの他、消費電力や太陽光発電電力、また、蓄電池設備63に内蔵される蓄電池状態送信部633から、充電状態や放電可能量、充電/放電/停止などの動作情報が送られてくる。これらのデータは、データ送信部622から統合制御装置2に送信される。 The data acquired by this sensor is sent to the information collection / control device 62 by the communication line 67, and the information collection / control device 62 receives this data at the power information receiving unit 621. For example, a home LAN is used for communication. The data received by the power information receiving unit 621 includes voltage and current data, as well as power consumption and solar power generation, and the charging state, dischargeable amount, and charging from the storage battery state transmitting unit 633 built in the storage battery facility 63. Operation information such as / discharge / stop is sent. These data are transmitted from the data transmission unit 622 to the integrated control device 2.

統合制御装置2ではこれらデータの他、送配電事業者や小売電気事業者から電力提供の要請があった場合に、提供する時刻、時間、電力などデータが送られてきて、これをデータ受信部21で受信する。また、情報収集・制御装置62からのデータは、ある特定需要地のデータのみならず、複数の需要地(住宅)6からデータが送られてくる。その頻度は例えば1分間隔とすることができる。統合制御装置2の制御量演算部22では、データ受信部21で受信したデータから、どの需要地(住宅)6の蓄電池設備63からどれだけの出力で放電すれば良いかを演算する。蓄電池設備63のインバータロスを考慮するとできるだけ効率の良い出力、すなわち定格出力で放電させるよう演算するのが好ましい。また、全ての住宅から放電するのではなく、必要最小限に限って放電する蓄電池を選定することが望ましい。電力提供の時刻になると、その結果を制御指令値送信部23が、各需要地(住宅)6の情報収集・制御装置62に送信する。 In the integrated control device 2, in addition to these data, when a power transmission and distribution business operator or a retail electric power company requests power supply, data such as the time, time, and power to be provided is sent, and this is sent to the data receiver. Receive at 21. Further, as for the data from the information collection / control device 62, not only the data of a specific demand area but also the data is sent from a plurality of demand areas (houses) 6. The frequency can be, for example, 1 minute intervals. The control amount calculation unit 22 of the integrated control device 2 calculates from the data received by the data reception unit 21 how much output should be discharged from the storage battery equipment 63 of which demand area (house) 6. Considering the inverter loss of the storage battery equipment 63, it is preferable to calculate so as to discharge at the most efficient output, that is, the rated output. In addition, it is desirable to select a storage battery that discharges only to the minimum necessary, rather than discharging from all houses. At the time of power supply, the control command value transmission unit 23 transmits the result to the information collection / control device 62 of each demand area (house) 6.

情報収集・制御装置62は、制御指令値受信部623にてこれを受信し、制御指令値送信部625より蓄電池設備63に送信される。 The information collection / control device 62 receives this at the control command value receiving unit 623 and transmits it from the control command value transmitting unit 625 to the storage battery equipment 63.

蓄電池設備63では、制御指令値受信部631でこの情報を受信し、制御部632にてその指令値どおりの放電を行なう。電力提供の終了時刻になると、同様に統合制御装置2から蓄電池設備63からの放電の停止の指令を発し、情報収集・制御装置62を介して蓄電池設備63は放電を停止する。 In the storage battery equipment 63, the control command value receiving unit 631 receives this information, and the control unit 632 discharges according to the command value. At the end time of power supply, the integrated control device 2 similarly issues a command to stop the discharge from the storage battery equipment 63, and the storage battery equipment 63 stops the discharge via the information collection / control device 62.

なお、電圧許容値あるいは電流許容値に達する電圧あるいは電流が検知された場合の制御システム1の動作は次の通りである。 The operation of the control system 1 when a voltage or current that reaches the allowable voltage value or the allowable current value is detected is as follows.

<上限電圧値を検知した場合>
蓄電池設備63からの放電を開始したとき、若しくは、蓄電池設備63が放電している最中に、ある需要地(住宅)6で分電盤61内の電圧センサーで測定された電圧が配電系統A4またはB5の許容範囲の上限を超えたことが検知された場合、その電圧値データは、統合制御装置2に送信される。統合制御装置2の制御量演算部22は、当該需要地(住宅)6の蓄電池設備63からの放電を停止若しくは放電出力を抑制し、その電力相当分を、他の需要地(住宅)6の蓄電池設備63から放電するよう演算する。この結果を制御指令値送信部23から情報収集・制御装置62を介し、蓄電池設備63に伝達、作動させる。
<When the upper limit voltage value is detected>
When discharging from the storage battery equipment 63 is started, or while the storage battery equipment 63 is discharging, the voltage measured by the voltage sensor in the distribution board 61 at a certain demand area (house) 6 is the distribution system A4. Or, when it is detected that the upper limit of the allowable range of B5 is exceeded, the voltage value data is transmitted to the integrated control device 2. The control amount calculation unit 22 of the integrated control device 2 stops the discharge from the storage battery equipment 63 of the demand area (house) 6 or suppresses the discharge output, and the amount equivalent to the electric power is used by the other demand area (house) 6. Calculate to discharge from the storage battery equipment 63. This result is transmitted from the control command value transmission unit 23 to the storage battery equipment 63 via the information collection / control device 62 and operated.

なお、電圧上昇による蓄電池設備63からの放電の停止若しくは出力抑制は、情報収集・制御装置62に制御量演算部624を設ければ、統合制御装置2に情報を挙げなくとも各需要地(住宅)6において実行することが可能となる。または蓄電池設備63に電力情報受信部と制御量演算部を設けても可能である。これらの場合、放電の停止若しくは出力抑制された蓄電池のデータを、情報収集・制御装置62のデータ送信部622から統合制御装置2に送信し、統合制御装置2の制御量演算部22にて、電力提供要請量と照合し、不足分を他の需要地(住宅)6の蓄電池設備63から放電するよう演算する。 If the information collection / control device 62 is provided with the control amount calculation unit 624 to stop the discharge from the storage battery equipment 63 or suppress the output due to the voltage rise, each demand area (house) without giving information to the integrated control device 2. ) 6 can be executed. Alternatively, the storage battery equipment 63 may be provided with a power information receiving unit and a control amount calculation unit. In these cases, the data of the storage battery whose discharge is stopped or whose output is suppressed is transmitted from the data transmission unit 622 of the information collection / control device 62 to the integrated control device 2, and the control amount calculation unit 22 of the integrated control device 2 transmits the data. It is compared with the power supply request amount, and the shortage is calculated to be discharged from the storage battery facility 63 of the other demand area (house) 6.

<上限電流値を検知した場合>
ある需要地(住宅)6で分電盤61内の電流センサーで測定された電流が配電系統A4またはB5の許容範囲の上限を超えたことが検知された場合、上限電圧値を検知した場合と同様の処置をとるが、同一配電系統上の複数の需要地(住宅)6からの放電や、需要減、太陽光の発電増などにより、その系統全体として電流が増えた場合、分電盤61内の電流センサーではその検知が不可能となる。その場合は、配電系統A4またはB5上に設置された電流センサーの情報を用いることとなる。この情報は系統情報として、例えば送配電事業者が発信し統合制御装置2のデータ受信部21で受信することが考えられる。この系統情報は、計測地点、電流の上限値、計測された電流値であっても良いし、当該地点の潮流を低下させる量であっても良い。いま、配電系統A4にて電流値が上限に達しようとしている場合、統合制御装置2の制御量演算部22では、配電系統A4/B5/・・・の系統情報と各需要地(住宅)6の位置情報、各需要地(住宅)6の蓄電池設備63からの放電出力から、抑制すべき蓄電池設備63とその量を演算し、その抑制量に相当する電力量を、例えば電流値に余裕のある配電系統B5に接続された需要地(住宅)6の蓄電池設備63から放電するよう演算する。
<When the upper limit current value is detected>
When it is detected that the current measured by the current sensor in the distribution board 61 exceeds the upper limit of the allowable range of the distribution system A4 or B5 in a certain demand area (house) 6, and when the upper limit voltage value is detected. The same measures are taken, but when the current increases in the entire system due to discharge from multiple demand areas (houses) 6 on the same distribution system, decrease in demand, increase in solar power generation, etc., the distribution board 61 The current sensor inside cannot detect it. In that case, the information of the current sensor installed on the distribution system A4 or B5 will be used. This information can be considered as system information, for example, transmitted by a power transmission and distribution business operator and received by the data receiving unit 21 of the integrated control device 2. This system information may be a measurement point, an upper limit value of a current, a measured current value, or an amount that lowers the tidal current at the point. Now, when the current value is about to reach the upper limit in the distribution system A4, the control amount calculation unit 22 of the integrated control device 2 provides system information of the distribution system A4 / B5 / ... and each demand area (house) 6 The storage battery equipment 63 to be suppressed and its amount are calculated from the position information of the storage battery equipment 63 and the discharge output from the storage battery equipment 63 of each demand area (house) 6, and the amount of electric power corresponding to the suppressed amount is, for example, a margin in the current value. It is calculated to discharge from the storage battery facility 63 of the demand area (house) 6 connected to a certain distribution system B5.

以上のように本実施形態によれば、配電系統に配置された発電設備を活用する際に、配電系統の電圧値や電流値を見ながら、問題にならないよう発電設備の発電量を制限し、且つ、問題とならない需要地の発電設備を稼動させることができる。これによれば、電圧値や電流値を許容値以下に制御するとともに、需給調整力や卸供給電源として所定の電力量を提供可能とすることができる。 As described above, according to the present embodiment, when utilizing the power generation equipment arranged in the distribution system, the power generation amount of the power generation equipment is limited so as not to cause a problem while observing the voltage value and the current value of the distribution system. Moreover, it is possible to operate the power generation equipment in the demand area that does not cause a problem. According to this, it is possible to control the voltage value and the current value to be less than the permissible value, and to provide a predetermined amount of electric power as a supply and demand adjusting force and a wholesale supply power source.

次に、図3を参照して、本発明の一実施形態として、図1に示す制御システム1の変形例(制御システム1aとする)について説明する。図3に示す制御システム1aでは、図1に示す配電系統A4に接続される発電設備等の構成例が変形されている。なお、図3では、図1に示す構成例からの変形部分を図示し、統合制御装置2等の同一の構成については一部図示を省略している。また、図3において、図1に示す構成と同一または対応する構成には同一の符号を用いている。図3に示す制御システム1aでは、配電系統A4が、複数の電柱43と、高圧配電線41と、柱上変圧器44と、低圧配電線42と、引込線7とを備えている。需要地(住宅)6では、低圧配電線42に接続された引込線7が電力量計68を介して分電盤61内で主開閉器612に接続されている。また、分電盤61には発電設備である蓄電池設備63が接続されている。分電盤61は計測部611を有し、計測部611が分電盤61内で引込線7の相間電圧と相電流を計測する。 Next, a modified example of the control system 1 shown in FIG. 1 (referred to as the control system 1a) will be described as an embodiment of the present invention with reference to FIG. In the control system 1a shown in FIG. 3, a configuration example of a power generation facility or the like connected to the distribution system A4 shown in FIG. 1 is modified. Note that, in FIG. 3, a modified portion from the configuration example shown in FIG. 1 is shown, and some of the same configurations of the integrated control device 2 and the like are omitted. Further, in FIG. 3, the same reference numerals are used for the same or corresponding configurations as those shown in FIG. In the control system 1a shown in FIG. 3, the distribution system A4 includes a plurality of utility poles 43, a high-voltage distribution line 41, a pole transformer 44, a low-voltage distribution line 42, and a drop line 7. In the demand area (house) 6, the service line 7 connected to the low-voltage distribution line 42 is connected to the main switch 612 in the distribution board 61 via the watt hour meter 68. Further, a storage battery facility 63, which is a power generation facility, is connected to the distribution board 61. The distribution board 61 has a measuring unit 611, and the measuring unit 611 measures the interphase voltage and the phase current of the drop line 7 in the distribution board 61.

また、図3に示す制御システム1aは、配電系統A4に接続される発電設備として、大型蓄電池設備9を備えている。大型蓄電池設備9は、内部に蓄電池と、インバータ、コンバータ等の変換回路と、制御回路と、電圧・電流センサー91を備える。電圧・電流センサー91は、引込線104の相間電圧と相電流を計測し、計測結果を示す情報を例えば図1に示す統合制御装置2へ送信する。引込線104は、構内第1号柱101上に設置されている計器用変圧変流器102を介して高圧配電線41に接続されている引込線71に接続されている。計器用変圧変流器102には電力量計103が接続されている。大型蓄電池設備9は、引込線104を介して、高圧配電線41との間で電力を順潮流させたり、逆潮流させたりする。 Further, the control system 1a shown in FIG. 3 includes a large storage battery facility 9 as a power generation facility connected to the distribution system A4. The large storage battery equipment 9 includes a storage battery, a conversion circuit such as an inverter and a converter, a control circuit, and a voltage / current sensor 91 inside. The voltage / current sensor 91 measures the interphase voltage and the phase current of the drop line 104, and transmits information indicating the measurement results to, for example, the integrated control device 2 shown in FIG. The drop line 104 is connected to the drop line 71 connected to the high-voltage distribution line 41 via the instrument transformer current transformer 102 installed on the premises No. 1 pillar 101. A watt-hour meter 103 is connected to the instrument transformer current transformer 102. The large storage battery facility 9 causes electric power to flow forward or reverse to the high-voltage distribution line 41 via the service line 104.

図3に示す制御システム1aによれば、図1に示す制御システム1と同様に次の効果が得られる。すなわち、図3に示す制御システム1aでは、配電系統A4に配置された蓄電池設備63、大型蓄電池設備9等の発電設備を活用する際に、配電系統A4の電圧値や電流値を見ながら、問題にならないよう発電設備の発電量を制限し、且つ、問題とならない需要地の発電設備を稼動させることができる。これによれば、電圧値や電流値を許容値以下に制御するとともに、需給調整力や卸供給電源として所定の電力量を提供可能とすることができる。 According to the control system 1a shown in FIG. 3, the following effects can be obtained as in the control system 1 shown in FIG. That is, in the control system 1a shown in FIG. 3, when utilizing the power generation facilities such as the storage battery facility 63 and the large storage battery facility 9 arranged in the distribution system A4, there is a problem while observing the voltage value and the current value of the distribution system A4. It is possible to limit the amount of power generated by the power generation equipment so that the power generation equipment does not become a problem, and to operate the power generation equipment in the demand area where there is no problem. According to this, it is possible to control the voltage value and the current value to be less than the permissible value, and to provide a predetermined amount of electric power as a supply and demand adjusting force and a wholesale supply power source.

次に、図4を参照して、本発明の一実施形態として、図1に示す制御システム1の他の変形例(制御システム1bとする)について説明する。図4に示す制御システム1bでは、図1に示す配電系統A4の電流を計測する計測部の構成が変形されている。なお、図4は、図1に示す構成例からの変形部分を図示し、統合制御装置2等の同一の構成については一部図示を省略している。また、図4において、図1に示す構成と同一または対応する構成には同一の符号を用いている。図4に示す制御システム1bでは、配電系統A4が、複数の電柱43と、高圧配電線41と、柱上変圧器44と、低圧配電線42と、電流センサー45−1および45−2と、複数の引込線7とを備えている。需要地(住宅)6では、低圧配電線42に接続された引込線7が分電盤61を介して発電設備である蓄電池設備63に接続されている。電流センサー45−1は発電系統により近い位置で高圧配電線41に流れる電流を検知し、電流センサー45−2は電流センサー45−1より発電系統から遠い位置で高圧配電線41に流れる電流を検知する。制御システム1bでは、例えば各分電盤61で引込線7を流れる電流を計測し、電流センサー45−1および45−2で所定の区間毎に配電線を流れる電流を計測することができる。 Next, with reference to FIG. 4, another modification of the control system 1 shown in FIG. 1 (referred to as the control system 1b) will be described as an embodiment of the present invention. In the control system 1b shown in FIG. 4, the configuration of the measuring unit for measuring the current of the distribution system A4 shown in FIG. 1 is modified. Note that FIG. 4 illustrates a modified portion from the configuration example shown in FIG. 1, and a part of the same configuration of the integrated control device 2 and the like is omitted. Further, in FIG. 4, the same reference numerals are used for the same or corresponding configurations as those shown in FIG. In the control system 1b shown in FIG. 4, the distribution system A4 includes a plurality of utility poles 43, a high-voltage distribution line 41, a pole transformer 44, a low-voltage distribution line 42, and current sensors 45-1 and 45-2. It is provided with a plurality of drop lines 7. In the demand area (house) 6, the service line 7 connected to the low-voltage distribution line 42 is connected to the storage battery facility 63, which is a power generation facility, via the distribution board 61. The current sensor 45-1 detects the current flowing through the high-voltage distribution line 41 at a position closer to the power generation system, and the current sensor 45-2 detects the current flowing through the high-voltage distribution line 41 at a position farther from the power generation system than the current sensor 45-1. do. In the control system 1b, for example, each distribution board 61 can measure the current flowing through the drop line 7, and the current sensors 45-1 and 45-2 can measure the current flowing through the distribution line at predetermined sections.

図4に示す制御システム1bによれば、図1に示す制御システム1と同様に次の効果が得られる。すなわち、図4に示す制御システム1bでは、配電系統A4に配置された複数の蓄電池設備63を活用する際に、配電系統A4の電流値を見ながら、問題にならないよう発電設備の発電量を制限し、且つ、問題とならない需要地の発電設備を稼動させることができる。これによれば、電流値を許容値以下に制御するとともに、需給調整力や卸供給電源として所定の電力量を提供可能とすることができる。 According to the control system 1b shown in FIG. 4, the following effects can be obtained as in the control system 1 shown in FIG. That is, in the control system 1b shown in FIG. 4, when utilizing the plurality of storage battery facilities 63 arranged in the distribution system A4, the power generation amount of the power generation facility is limited so as not to cause a problem while observing the current value of the distribution system A4. However, it is possible to operate the power generation equipment in the demand area that does not pose a problem. According to this, it is possible to control the current value to be less than the permissible value and to provide a predetermined amount of electric power as a supply and demand adjusting force or a wholesale supply power source.

次に、図5を参照して上記本発明の実施形態の基本的構成について説明する。図5(a)は、本発明の一実施形態に係る発電設備の制御装置の基本的構成例を示すブロック図である。図5(b)は、図5(a)に示す発電設備の制御装置200の動作例を示すブローチャートである。図5(a)に示す発電設備の制御装置200は、計測部201と制御部202を備える。発電設備の制御装置200は、図5(b)に示す処理を所定の周期で繰り返し実行する。 Next, the basic configuration of the embodiment of the present invention will be described with reference to FIG. FIG. 5A is a block diagram showing a basic configuration example of a control device for a power generation facility according to an embodiment of the present invention. FIG. 5B is a blow chart showing an operation example of the control device 200 of the power generation facility shown in FIG. 5A. The control device 200 of the power generation facility shown in FIG. 5A includes a measurement unit 201 and a control unit 202. The control device 200 of the power generation facility repeatedly executes the process shown in FIG. 5B at a predetermined cycle.

計測部201は、複数の発電設備が接続された配電系統の電圧または電流を1または複数箇所で計測する(ステップS1)。制御部202は、1または複数の発電設備で所定の電力を発電した場合、計測した電圧または電流が許容値を超えるとき、その許容値を超えた箇所に対応する1または複数の発電設備の発電を制限し(ステップS2)、その制限した発電電力に相当する電力を、電圧および電流が許容値以下の箇所に対応する1または複数の発電設備で発電させることで補うよう各発電設備を制御する(ステップS3)。ここで、所定の電力は、例えば、各発電設備の定格出力や効率が所定の値以上となる出力である。また、発電の制限は、発電(放電)を停止させることと、発電電力(放電電力)を低下させることを含む。また、箇所とは、例えば、分電盤61、引込線、引込線の引き込み口、配電線の所定区間等である。また、箇所に対応する発電設備とは、箇所が分電盤である場合、当該分電盤に接続されている発電設備であり、箇所が引込線、引込線の引き込み口、配電線の所定区間等である場合、それらの箇所に接続されている発電設備である。 The measuring unit 201 measures the voltage or current of the distribution system to which a plurality of power generation facilities are connected at one or a plurality of points (step S1). When the measured voltage or current exceeds the permissible value when the control unit 202 generates a predetermined power with one or more power generation facilities, the control unit 202 generates power of one or more power generation facilities corresponding to the portion exceeding the permissible value. (Step S2), and each power generation facility is controlled so that the power corresponding to the limited power generation power is supplemented by generating power with one or more power generation facilities corresponding to locations where the voltage and current are below the permissible values. (Step S3). Here, the predetermined electric power is, for example, an output at which the rated output or efficiency of each power generation facility is equal to or higher than a predetermined value. In addition, the limitation of power generation includes stopping power generation (discharge) and reducing the generated power (discharge power). Further, the location is, for example, a distribution board 61, a service line, a service port for the service line, a predetermined section of the distribution line, or the like. In addition, the power generation equipment corresponding to the location is the power generation equipment connected to the distribution board when the location is a distribution board, and the location is a drop line, a service port for the service line, a predetermined section of the distribution line, etc. In some cases, it is a power generation facility connected to those locations.

なお、図5に示す構成と、図1〜図4に示す構成とは対応関係は次のとおりである。すなわち、発電設備の制御装置200は、図1〜図4に示す制御システム1、1aおよび1bに対応する。計測部201は、図3に示す計測部611、電圧・電流センサー91や図4に示す電流センサー45−1および45−2に対応する。制御部202は、図2に示す統合制御装置2、情報収集・制御装置62、および蓄電池設備63に対応する。 The correspondence between the configuration shown in FIG. 5 and the configuration shown in FIGS. 1 to 4 is as follows. That is, the control device 200 of the power generation facility corresponds to the control systems 1, 1a and 1b shown in FIGS. 1 to 4. The measuring unit 201 corresponds to the measuring unit 611 shown in FIG. 3, the voltage / current sensor 91, and the current sensors 45-1 and 45-2 shown in FIG. The control unit 202 corresponds to the integrated control device 2, the information collection / control device 62, and the storage battery facility 63 shown in FIG.

図5に示す発電設備の制御装置200によれば、図5では図示していない配電系統に配置された発電設備を活用する際に、配電系統の電圧値や電流値を見ながら、問題にならないよう発電設備の発電量を制限し、且つ、問題とならない需要地の発電設備を稼動させることができる。これによれば、電圧値や電流値を許容値以下に制御するとともに、需給調整力や卸供給電源として所定の電力量を提供可能とすることができる。 According to the power generation equipment control device 200 shown in FIG. 5, when utilizing the power generation equipment arranged in the distribution system (not shown in FIG. 5), there is no problem while observing the voltage value and the current value of the distribution system. It is possible to limit the amount of power generated by the power generation equipment and operate the power generation equipment in the demand area where there is no problem. According to this, it is possible to control the voltage value and the current value to be less than the permissible value, and to provide a predetermined amount of electric power as a supply and demand adjusting force and a wholesale supply power source.

以上、この発明の実施形態である発電設備の制御方法および発電設備の制御装置を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 The control method of the power generation facility and the control device of the power generation facility, which are the embodiments of the present invention, have been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the present invention. It also includes designs that do not deviate from the gist of.

1、1a、1b:制御システム、2:統合制御装置、4:配電系統A、5:配電系統B、6:需要地(住宅)、7、71、104:引込線、22、624:制御量演算部、45−1、45−2:電流センサー、61:分電盤、62:情報収集・制御装置、63:蓄電池設備、91:電圧・電流センサー、200:発電設備の制御装置、201、611:計測部、202、632:制御部 1, 1a, 1b: Control system, 2: Integrated control device, 4: Distribution system A, 5: Distribution system B, 6: Demand area (house), 7, 71, 104: Drop line, 22, 624: Control amount calculation Unit, 45-1, 45-2: Current sensor, 61: Distribution board, 62: Information collection / control device, 63: Storage battery equipment, 91: Voltage / current sensor, 200: Power generation equipment control device, 201, 611 : Measurement unit, 202, 632: Control unit

Claims (3)

複数のセンサーが、複数の発電設備のうち少なくとも1つが需要家に備えられた蓄電池であって当該複数の発電設備が接続された配電系統の異なる測定場所における電圧をそれぞれ計測し、
制御部が、前記各発電設備で所定の電力が発電され、前記センサーで測定された電圧が前記配電系統の許容範囲を超えたことが検知された場合に当該センサーから送信される測定結果を受信し、前記電圧が許容値を超えるとき当該発電設備のうち前記蓄電池からの発電を停止し、該停止した発電電力に相当する電力を、前記電圧が許容値以下である前記配電系統のいずれかの箇所における他の1または複数の前記蓄電池で発電させることで補うよう前記各発電設備を制御する
ことを特徴とする発電設備の制御方法。
A plurality of sensors, at least one of the plurality of power generation equipment to measure the voltage at different measurement locations distribution system in which the plurality of power generation equipment to a storage battery provided in the customer is connected,
Control unit, the predetermined power at the originating generation facilities is generated, measurement results received from the sensor when the voltage measured by the sensor exceeds an allowable range of the distribution system is detected receives the power from the battery of the power plant when the voltage exceeds the permissible value is stopped, the power corresponding to the power generation electric power said stop, one of the said voltage is equal to or less than the allowable value the power distribution system A method for controlling a power generation facility, which comprises controlling each power generation facility so as to supplement the power generation by generating power from the other one or a plurality of the storage batteries at the location.
複数のセンサーが、複数の発電設備のうち少なくとも1つが需要家に備えられた蓄電池であって当該複数の発電設備が接続された配電系統の異なる測定場所における電流をそれぞれ計測し、
制御部が、前記各発電設備で所定の電力が発電され、前記センサーで測定された電流が前記配電系統の許容範囲を超えたことが検知された場合に当該センサーから送信される測定結果を受信し、前記電流が許容値を超えるとき当該発電設備のうち前記蓄電池からの発電を停止し、該停止した発電電力に相当する電力を、前記電流が許容値以下である前記配電系統のいずれかの箇所における他の1または複数の前記蓄電池で発電させることで補うよう前記各発電設備を制御する
ことを特徴とする発電設備の制御方法。
A plurality of sensors, at least one of the plurality of power generation equipment to measure the current at different measurement locations distribution system in which the plurality of power generation equipment is connected to a storage battery provided in the customer respectively,
Control unit, the predetermined power at the originating generation facilities is generated, measurement results received from the sensor when the current measured by the sensor exceeds an allowable range of the distribution system is detected receives the power from the battery of the power plant when the current exceeds the allowable value is stopped, the power corresponding to the power generation electric power the stop, any of the current is equal to or less than the allowable value the power distribution system A method for controlling a power generation facility, which comprises controlling each power generation facility so as to supplement the power generation by generating power from the other one or a plurality of the storage batteries at the location.
複数の発電設備のうち少なくとも1つが需要家に備えられた蓄電池であって当該複数の発電設備が接続された配電系統の異なる測定場所のそれぞれにおける電圧または電流を計測する計測部と、
1または複数の前記発電設備で所定の電力発電され、前記計測部で計測された電圧または電流が前記配電系統の許容範囲を超えたことが検知された場合に当該計測部から送信される測定結果を受信し、その許容範囲を超えた箇所に対応する前蓄電池の発電を制限し、該制限した発電電力に相当する電力を、前記許容範囲を超えた配電系統とは異なる配電系統において前記電圧または前記電流が許容範囲以下の箇所に対応する前蓄電池で発電させることで補うよう蓄電池を制御する制御部と
を備える発電設備の制御装置。
A measuring unit that measures voltage or current at different measurement locations of a distribution system to which at least one of a plurality of power generation facilities is a storage battery provided in a customer and the plurality of power generation facilities are connected.
Measurement transmitted from the measuring unit when it is detected that a predetermined electric power is generated by one or more of the power generation facilities and the voltage or current measured by the measuring unit exceeds the permissible range of the distribution system. It receives the results, limiting the power of the previous SL-acid battery that corresponds to箇plant exceeds the allowable range, different distribution system and distribution system the power corresponding to the power generation electric power the limit, exceeds the allowable range power generation equipment of a control device and a said voltage or the control unit in which the current to control the battery so to compensate by causing the power generation in the previous SL-acid battery that corresponds to the following箇plant tolerance in.
JP2017150596A 2017-08-03 2017-08-03 Power generation equipment control method and power generation equipment control device Active JP6936071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150596A JP6936071B2 (en) 2017-08-03 2017-08-03 Power generation equipment control method and power generation equipment control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150596A JP6936071B2 (en) 2017-08-03 2017-08-03 Power generation equipment control method and power generation equipment control device

Publications (2)

Publication Number Publication Date
JP2019030190A JP2019030190A (en) 2019-02-21
JP6936071B2 true JP6936071B2 (en) 2021-09-15

Family

ID=65476723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150596A Active JP6936071B2 (en) 2017-08-03 2017-08-03 Power generation equipment control method and power generation equipment control device

Country Status (1)

Country Link
JP (1) JP6936071B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235166A (en) * 2002-02-12 2003-08-22 Mitsubishi Heavy Ind Ltd System link and method, apparatus, program, and recording medium for controlling power supply in system interconnection
JP4890920B2 (en) * 2006-04-14 2012-03-07 株式会社日立製作所 Power quality maintenance support method and power quality maintenance support system for a distribution system in which a plurality of distributed power sources are connected
CN102640378B (en) * 2009-09-15 2015-11-25 西安大略大学 Distributed generator inverter is as the application of STATCOM
JP5608615B2 (en) * 2011-07-27 2014-10-15 株式会社日立製作所 Power management system for charging and power management apparatus for the same
KR102193439B1 (en) * 2013-09-06 2020-12-21 한국전력공사 Apparatus and method for calculating connection possible capacity of distributed generator
JP6596857B2 (en) * 2015-03-18 2019-10-30 中国電力株式会社 Distribution system control device, control method and program for distribution system control device

Also Published As

Publication number Publication date
JP2019030190A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
Nour et al. Review on voltage‐violation mitigation techniques of distribution networks with distributed rooftop PV systems
US10756546B2 (en) Methods of advanced grid and microgrid support functionalities through hybrid fuel cell systems
Hill et al. Battery energy storage for enabling integration of distributed solar power generation
US10656663B2 (en) Apparatuses including utility meter, power electronics, and communications circuitry, and related methods of operation
US11809209B2 (en) Systems and methods for electricity generation, storage, distribution, and dispatch
CN102812610B (en) Control apparatus and control method
JP2017521034A (en) Power grid network gateway aggregation
JP2017521033A (en) Control of hierarchical distributed power grid
KR101403063B1 (en) Wind power generation system, and wind power generator extension method for wind power generation system
KR101109187B1 (en) Operation method for power system using real-time power information
US10288041B2 (en) Renewable energy system having a distributed energy storage systems and photovoltaic cogeneration
US10630076B2 (en) Electrical energy storage device and system
JP2013183622A (en) Distributed power supply system and voltage adjustment method
JP3781977B2 (en) Distributed power supply network
JP2010213384A (en) Distributed power supply system
Cho et al. Demonstration of a DC microgrid with central operation strategies on an island
US20150025702A1 (en) Energy management system
US20240146101A1 (en) System for controlling voltage and reactive power for an electrical grid
Kester et al. A smart MV/LV-station that improves power quality, reliability and substation load profile
JP6936071B2 (en) Power generation equipment control method and power generation equipment control device
KR20210086969A (en) Grid Connected Energy storage system and operating method thereof
Matei et al. Voltage regulation in distribution networks with distributed generation—A review
US20220014025A1 (en) Feed-in method for a wind power system, and wind power system
Akhmatov Experience with voltage control from large offshore windfarms: the Danish case
Hosseinzadeh et al. Constructing a multi-microgrid with the inclusion of renewable energy in Oman's rural power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210826

R151 Written notification of patent or utility model registration

Ref document number: 6936071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151