JP7382106B1 - Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc. - Google Patents

Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc. Download PDF

Info

Publication number
JP7382106B1
JP7382106B1 JP2023147239A JP2023147239A JP7382106B1 JP 7382106 B1 JP7382106 B1 JP 7382106B1 JP 2023147239 A JP2023147239 A JP 2023147239A JP 2023147239 A JP2023147239 A JP 2023147239A JP 7382106 B1 JP7382106 B1 JP 7382106B1
Authority
JP
Japan
Prior art keywords
power
load
transformer
tertiary
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023147239A
Other languages
Japanese (ja)
Inventor
正雄 本家
Original Assignee
株式会社力電
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社力電 filed Critical 株式会社力電
Priority to JP2023147239A priority Critical patent/JP7382106B1/en
Application granted granted Critical
Publication of JP7382106B1 publication Critical patent/JP7382106B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】三巻線型の変圧器における2、3次巻線側の定格容量の和を、1次巻線側の定格容量より大きくする等して「負荷追加のニーズ対応」や「コストの低減」などを実現する。【解決手段】系統Kからの電力等を消費する負荷2と変圧器3を有した受配電システム1や受配電盤10、変圧器3である。変圧器3は三巻線型の変圧器で、1次巻線は系統Kに接続され、2、3次巻線は負荷2に接続され、2、3次巻線側の各定格電圧は1次巻線側の定格電圧より低圧で、2、3次巻線側の定格容量の和は1次巻線側の定格容量より大きい。又、変圧器3は、3次巻線に電気自動車等の充電器2Bや蓄電装置4、発電装置5等が接続されたり、3次巻線側がその定格容量を超えて所定時間だけ使用されたり、系統側電路6aの系統遮断器7aを内蔵した高圧盤筐体8Aと、負荷側電路6bの負荷遮断器7bを内蔵した低圧盤筐体8Bを、変圧器3が支持する等しても良い。【選択図】図1[Issue] In a three-winding transformer, the sum of the rated capacities of the secondary and tertiary windings is made larger than the rated capacity of the primary winding to meet the need for additional loads and reduce costs. ” and so on. A power receiving/distributing system 1, a power receiving/distributing board 10, and a transformer 3 have a load 2 and a transformer 3 that consume electric power etc. from a system K. The transformer 3 is a three-winding type transformer, the primary winding is connected to the system K, the 2nd and 3rd windings are connected to the load 2, and the rated voltage of each of the 2nd and 3rd windings is the same as the primary winding. The voltage is lower than the rated voltage on the winding side, and the sum of the rated capacities on the secondary and tertiary winding sides is greater than the rated capacity on the primary winding side. In addition, the transformer 3 may be connected to a charger 2B for an electric vehicle, a power storage device 4, a power generator 5, etc. to the tertiary winding, or the tertiary winding may be used for a predetermined period of time exceeding its rated capacity. , the transformer 3 may support a high-voltage panel casing 8A containing a built-in grid breaker 7a for the grid-side electrical line 6a and a low-voltage panel casing 8B containing a built-in load breaker 7b for the load-side electrical line 6b. . [Selection diagram] Figure 1

Description

本発明は、負荷と系統との間に接続された変圧器を有した受配電システムや、受配電盤、及び、変圧器に関する。 The present invention relates to a power reception and distribution system having a transformer connected between a load and a grid, a power reception and distribution board, and a transformer.

従来、受配電システムの一例として、電力供給管理システムが知られている(特許文献1参照)。
この電力供給管理システムは、需要家の住宅にて使用され且つ消費電力が第1の値の第1電気負荷装置及び同需要家の住宅にて使用され且つ消費電力が前記第1の値と異なる第2の値の第2電気負荷装置、に電力供給系統から電力を供給するシステムであって、時間帯別の電力料金単価を設定する料金設定部、及び、前記設定された電力料金単価に関する情報を前記需要家に報知する報知部、を備えるシステムにおいて、前記料金設定部は、前記第1電気負荷装置に対する電力料金単価である第1電力料金単価と、前記第2電気負荷装置に対する電力料金単価である第2電力料金単価と、を互いに異なるように設定するように構成される。
Conventionally, a power supply management system is known as an example of a power reception and distribution system (see Patent Document 1).
This power supply management system includes a first electrical load device that is used in a consumer's residence and whose power consumption is different from the first value; A system for supplying power from a power supply system to a second electric load device having a second value, the system comprising: a rate setting unit that sets a power rate unit price for each time zone; In the system, the system includes a notification unit that notifies the consumer of information, wherein the rate setting unit sets a first power rate unit price that is a power rate unit price for the first electric load device, and a power rate unit price for the second electric load device. The second power rate unit price, which is the unit price, is configured to be set to be different from each other.

特開2016-85531号公報Japanese Patent Application Publication No. 2016-85531

上述した特許文献1に記載された電力供給管理システムは、近年、地球温暖化防止や化石燃料への依存等に対する問題意識の高まりから排気ガスが出ない電気自動車が広く普及し始めているため、第2電気負荷装置が自動車駆動用の車載蓄電池を充電する際に使用される充放電装置となっており、電気自動車の走行により蓄電池の充電量が低下した際には、従来の自動車販売店や給油所などに設置された充電スタンド等にて、蓄電池を充電する必要がある。
ここで、この充電時間を実用的な数分~数十分などにするためには、所定の電力以上(100kW以上など)の電力供給を行う充電器(急速充電器など)が必要となる。
The power supply management system described in the above-mentioned Patent Document 1 has become popular in recent years, as electric vehicles that emit no exhaust gas have become widespread due to increasing awareness of issues such as preventing global warming and dependence on fossil fuels. 2 The electric load device is a charging/discharging device used to charge the on-board storage battery for driving the car. It is necessary to charge the storage battery at a charging station installed at a location, etc.
Here, in order to make this charging time practical, such as several minutes to several tens of minutes, a charger (such as a quick charger) that supplies more than a predetermined amount of power (such as 100 kW or more) is required.

しかしながら、この電力供給管理システムは、特許文献1の段落0020や0059等に記載されたように、変圧器の定格容量を超えないようにしながら電力供給系統から電力を供給しているため、当該変圧器の定格容量以上の充電器などの負荷を追加で使用したい等のニーズがある。
そのようなニーズに対応する際、従来は、別の受配電設備を設置する等をしなくてはならず、その設置費用などの余計なコストが生じる問題があった。
However, as described in paragraphs 0020 and 0059 of Patent Document 1, this power supply management system supplies power from the power supply system while ensuring that the rated capacity of the transformer is not exceeded. There is a need to use an additional load such as a charger that exceeds the rated capacity of the device.
In order to meet such needs, in the past, it was necessary to install separate power receiving and distribution equipment, which posed the problem of incurring extra costs such as installation costs.

本発明は、このような点に鑑み、三巻線型の変圧器における2、3次巻線側の定格容量の和を、1次巻線側の定格容量より大きくする等で、「負荷追加のニーズ対応」や「コストの低減」などを実現し得る受配電システムや受配電盤、変圧器を提供することを目的とする。 In view of these points, the present invention makes the sum of the rated capacities of the secondary and tertiary windings in a three-winding transformer larger than the rated capacity of the primary winding, thereby reducing the need for "additional load." The company aims to provide power receiving and distribution systems, power receiving and distribution boards, and transformers that can meet customer needs and reduce costs.

本発明に係る受配電システム1は、系統Kから受電する電力を消費可能な負荷2と、前記負荷2と系統Kの間に接続された変圧器3を有した受配電システムであって、前記負荷2は、2次側負荷2aと3次側負荷2bを含み、前記変圧器3は、1次巻線と2次巻線と3次巻線を備えた三巻線型の変圧器であり、前記1次巻線は系統Kに接続され、前記2次巻線は2次側負荷2aに接続され、前記3次巻線は3次側負荷2bに接続され、前記2次巻線側の定格電圧と3次巻線側の定格電圧のそれぞれが、前記1次巻線側の定格電圧より低圧であり、前記2次巻線側の定格容量と3次巻線側の定格容量の和が、前記1次巻線側の定格容量より大きく、前記変圧器3の2次巻線には、前記2次側負荷2aとして電灯負荷2a1及び/又は動力負荷2a2が少なくとも接続され、前記変圧器3の3次巻線には、前記3次側負荷2bとして蓄電池を内蔵した乗り物用の充電器2Bが少なくとも接続されていると共に、蓄電装置4及び/又は発電装置5も接続されていて、前記系統Kと変圧器3の間の系統側電路6aを遮断可能な系統遮断器7aと前記変圧器3と負荷2の間の負荷側電路6bを遮断可能な負荷遮断器7bが内部に設けられた盤筐体8と、前記変圧器3を備えた受配電盤10を有していることを第1の特徴とする。 A power receiving and distributing system 1 according to the present invention is a power receiving and distributing system having a load 2 capable of consuming power received from a system K, and a transformer 3 connected between the load 2 and the system K. The load 2 includes a secondary load 2a and a tertiary load 2b, and the transformer 3 is a three-winding type transformer including a primary winding, a secondary winding, and a tertiary winding. The primary winding is connected to the system K, the secondary winding is connected to the secondary load 2a, the tertiary winding is connected to the tertiary load 2b, and the rating of the secondary winding is Each of the voltage and the rated voltage on the tertiary winding side is lower than the rated voltage on the primary winding side, and the sum of the rated capacity on the secondary winding side and the rated capacity on the tertiary winding side is: A lighting load 2a1 and/or a power load 2a2, which is larger than the rated capacity of the primary winding side, is connected to the secondary winding of the transformer 3 as the secondary load 2a, and the transformer 3 At least a vehicle charger 2B having a built-in storage battery is connected to the tertiary winding as the tertiary load 2b, and a power storage device 4 and/or a power generation device 5 are also connected to the tertiary winding. A panel in which a system breaker 7a capable of interrupting a system side electric line 6a between K and the transformer 3 and a load breaker 7b capable of interrupting a load side electric line 6b between the transformer 3 and the load 2 are provided inside. The first feature is that it has a housing 8 and a power distribution board 10 including the transformer 3 .

本発明に係る受配電システム1の第の特徴は、上記第の特徴に加えて、前記変圧器3は、前記充電器2Bが少なくとも接続されている3次巻線側が、その定格容量を超えて所定時間だけ使用される点にある。 A second feature of the power receiving and distribution system 1 according to the present invention is that, in addition to the first feature, the transformer 3 has a rated capacity of at least the tertiary winding side to which the charger 2B is connected. The point is that it is used only for a predetermined period of time.

本発明に係る受配電盤10は、盤筐体8と、前記盤筐体8外において系統Kと当該系統Kから受電する電力を消費可能な負荷2の間に接続された変圧器3を備えた受配電盤であって、前記変圧器3は、1次巻線と2次巻線と3次巻線を備えた三巻線型の変圧器であり、前記1次巻線は系統Kに接続され、前記2次巻線は2次側負荷2aに接続され、前記3次巻線は3次側負荷2bに接続され、前記2次巻線側の定格電圧と3次巻線側の定格電圧のそれぞれが、前記1次巻線側の定格電圧より低圧であり、前記2次巻線側の定格容量と3次巻線側の定格容量の和が、前記1次巻線側の定格容量より大きく、前記盤筐体8は、前記系統Kと変圧器3の間の系統側電路6aを遮断可能な系統遮断器7aが内部に設けられた高圧盤筐体8Aと、前記変圧器3と負荷2の間の負荷側電路6bを遮断可能な負荷遮断器7bが内部に設けられた低圧盤筐体8Bを含み、前記高圧盤筐体8Aの重量と低圧盤筐体8Bの重量を、前記変圧器3が支持していることを第1の特徴とする。 A power receiving and distribution board 10 according to the present invention includes a board housing 8 and a transformer 3 connected outside the board housing 8 between a system K and a load 2 that can consume power received from the system K. In the switchboard, the transformer 3 is a three-winding type transformer including a primary winding, a secondary winding, and a tertiary winding, and the primary winding is connected to a system K, The secondary winding is connected to the secondary load 2a, the tertiary winding is connected to the tertiary load 2b, and the rated voltage of the secondary winding and the rated voltage of the tertiary winding are respectively is lower than the rated voltage of the primary winding, and the sum of the rated capacity of the secondary winding and the rated capacity of the tertiary winding is greater than the rated capacity of the primary winding. , the panel casing 8 includes a high voltage panel casing 8A in which a system breaker 7a capable of interrupting the system side electric line 6a between the system K and the transformer 3 is provided, and a high voltage panel casing 8A that is connected to the transformer 3 and the load 2. The transformer includes a low voltage panel casing 8B in which a load breaker 7b capable of interrupting the load-side electric line 6b between The first feature is that 3 is supported .

その他、受配電盤10は、盤筐体8と、前記盤筐体8外において系統Kと当該系統Kから受電する電力を消費可能な負荷2の間に接続された変圧器3を備えた受配電盤であって、前記盤筐体8は、前記系統Kと変圧器3の間の系統側電路6aを遮断可能な系統遮断器7aが内部に設けられた高圧盤筐体8Aと、前記変圧器3と負荷2の間の負荷側電路6bを遮断可能な負荷遮断器7bが内部に設けられた低圧盤筐体8Bを含み、前記高圧盤筐体8Aの重量と低圧盤筐体8Bの重量を、前記変圧器3が支持していても良い In addition, the power receiving and distribution board 10 is equipped with a transformer 3 connected between a power grid K and a load 2 that can consume power received from the power grid K outside the board case 8. The panel housing 8 includes a high voltage panel housing 8A in which a system breaker 7a capable of interrupting the system side electric line 6a between the system K and the transformer 3 is provided; The weight of the high voltage panel housing 8A and the weight of the low voltage panel housing 8B are the same as the weight of the high voltage panel housing 8A and the weight of the low voltage panel housing 8B. , may be supported by the transformer 3.

本発明に係る受配電盤10の第の特徴は、上記第の特徴に加えて、前記高圧盤筐体8Aの重量と低圧盤筐体8Bの重量の変圧器3による支持として、前記高圧盤筐体8Aが、前記変圧器3に上方から取り付けられ、前記低圧盤筐体8Bが、前記高圧盤筐体8Aに平面視一方から取り付けられ、前記低圧盤筐体8Bの下端が、前記変圧器3の下部まで延びている点にある。 A second feature of the power distribution board 10 according to the present invention is that, in addition to the first feature, the weight of the high voltage board casing 8A and the weight of the low voltage board casing 8B are supported by the transformer 3. The casing 8A is attached to the transformer 3 from above, the low voltage panel casing 8B is attached to the high voltage panel casing 8A from one side in plan view, and the lower end of the low voltage panel casing 8B is attached to the transformer 3. It is located at a point extending to the bottom of 3.

本発明に係る受配電盤10の第の特徴は、上記第の特徴に加えて、前記変圧器3における平面視一方に偏心した位置に、吊下具3aが設けられている点にある。 A third feature of the power distribution board 10 according to the present invention, in addition to the second feature described above, is that a hanging tool 3a is provided at a position eccentric to one side of the transformer 3 in a plan view.

その他、変圧器3は、系統Kと当該系統Kから受電する電力を消費可能な負荷2の間に接続される変圧器であって、当該変圧器は、1次巻線と2次巻線と3次巻線を備えた三巻線型の変圧器であり、前記1次巻線は系統Kに接続され、前記2次巻線は2次側負荷2aに接続され、前記3次巻線は3次側負荷2bに接続され、前記2次巻線側の定格電圧と3次巻線側の定格電圧のそれぞれが、前記1次巻線側の定格電圧より低圧であり、前記2次巻線側の定格容量と3次巻線側の定格容量の和は、前記1次巻線側の定格容量より大きくても良い In addition, the transformer 3 is a transformer connected between a system K and a load 2 that can consume power received from the system K, and the transformer has a primary winding and a secondary winding. The transformer is a three-winding type transformer having a tertiary winding, the primary winding is connected to the system K, the secondary winding is connected to the secondary load 2a, and the tertiary winding is connected to the system K. The rated voltage of the secondary winding side and the rated voltage of the tertiary winding side are each lower than the rated voltage of the primary winding side, and the rated voltage of the secondary winding side is connected to the secondary side load 2b. The sum of the rated capacity of the tertiary winding side and the rated capacity of the tertiary winding side may be larger than the rated capacity of the primary winding side.

その他、変圧器3は、当該変圧器は、前記2次巻線側と3次巻線側の一方が、当該一方の定格容量を超えて所定時間だけ使用されても良い In addition, the transformer 3 may be used only for a predetermined time with one of the secondary winding side and the tertiary winding side exceeding the rated capacity of the one.

これらの特徴により、三巻線型の変圧器3において、1次巻線を系統Kに接続し、2次巻線を2次側負荷2aに接続し、3次巻線を3次側負荷2bに接続し、2次巻線側の定格電圧と3次巻線側の定格電圧のそれぞれを1次巻線側の定格電圧より低圧にし、2次巻線側の定格容量と3次巻線側の定格容量の和を、1次巻線側の定格容量より大きくすることによって、特許文献1とは異なり、充電器などの負荷を追加で使用したい等のニーズに対応が可能となり、そのようなニーズに対応しても、別の受配電設備を設置する等をせずとも良いため、設置費用などの余計なコストが不要となる(「負荷追加のニーズ対応」や「コストの低減」)。 Due to these characteristics, in the three-winding type transformer 3, the primary winding is connected to the system K, the secondary winding is connected to the secondary load 2a, and the tertiary winding is connected to the tertiary load 2b. The rated voltage on the secondary winding side and the rated voltage on the tertiary winding side are each lower than the rated voltage on the primary winding side, and the rated capacity on the secondary winding side and the rated voltage on the tertiary winding side are By making the sum of the rated capacities larger than the rated capacity of the primary winding side, unlike Patent Document 1, it is possible to respond to needs such as wanting to use an additional load such as a charger, and such needs can be met. Even if it corresponds to the above, there is no need to install separate power receiving and distribution equipment, so there is no need for extra costs such as installation costs ("meeting the need for additional loads" and "reducing costs").

又、変圧器3の2次巻線に電灯負荷2a1や動力負荷2a2を接続し、3次巻線に電気自動車等の蓄電池を内蔵した乗り物用の充電器2Bや蓄電装置4、発電装置5を接続し、系統遮断器7aと負荷遮断器7bを内蔵した盤筐体8と、変圧器3を備えた受配電盤10を設けることによって、受配電盤10を介して、1次巻線側の系統Kと、2次巻線側の電灯負荷2a1や動力負荷2a2と、3次巻線側の充電器2Bや蓄電装置4、発電装置5との間の電流の流れを制御して、充電器などの負荷を追加で使用したい等のニーズに、より高度に柔軟に対応することが可能となる。
更に、三巻線型の変圧器3において、充電器2Bが接続されている3次巻線側、若しくは、2次巻線側と3次巻線側の一方が、その定格容量を超えて所定時間だけ使用されることによって、更に「負荷追加のニーズ対応」を実現できる。
In addition, a lighting load 2a1 and a power load 2a2 are connected to the secondary winding of the transformer 3, and a charger 2B for a vehicle such as an electric vehicle with a built-in storage battery, a power storage device 4, and a power generation device 5 are connected to the tertiary winding. By providing a panel housing 8 with a built-in system breaker 7a and a load breaker 7b, and a power distribution board 10 equipped with a transformer 3, the system K on the primary winding side can be connected via the power distribution board 10. It controls the flow of current between the lighting load 2a1 and power load 2a2 on the secondary winding side and the charger 2B, power storage device 4, and power generation device 5 on the tertiary winding side. It becomes possible to more highly and flexibly respond to needs such as the desire to use additional loads.
Furthermore, in the three-winding type transformer 3, the tertiary winding side to which the charger 2B is connected, or one of the secondary winding side and the tertiary winding side, exceeds its rated capacity for a predetermined time. By using only 1, it is possible to further ``meet the needs for additional load''.

そして、系統遮断器7aを内蔵した高圧盤筐体8Aの重量と、負荷遮断器7bを内蔵した低圧盤筐体8Bの重量を、変圧器3で支持することによって、受配電システム1における受配電盤10の設置は、変圧器3さえ固定すれば可能となり、設置の容易化も図れる。
その他、高圧盤筐体8Aと低圧盤筐体8Bの変圧器3による支持として、高圧盤筐体8Aを変圧器3に上方側から取り付け、低圧盤筐体8Bを高圧盤筐体8Aに平面視一方から取り付け、低圧盤筐体8Bの下端を変圧器3の下部まで延ばすことによって、変圧器3の上に高圧盤筐体8Aが載っているだけ、設置面積(又は、平面視での専有面積)の低減(「省スペース化」)を図ることが出来、この「省スペース化」をしつつ、低圧盤筐体8Bを変圧器3下部まで垂下させた分だけ低圧盤筐体8Bの内容積(内部スペース)を確保できる。又、変圧器3における平面視一方に偏心した位置に吊下具3aを設けても良い。
By supporting the weight of the high voltage panel casing 8A containing the system breaker 7a and the weight of the low voltage panel casing 8B containing the load breaker 7b by the transformer 3, the power receiving and distribution panel in the power receiving and distribution system 1 is supported. 10 can be installed only by fixing the transformer 3, and the installation can be facilitated.
In addition, in order to support the high voltage panel casing 8A and the low voltage panel casing 8B by the transformer 3, the high voltage panel casing 8A is attached to the transformer 3 from above, and the low voltage panel casing 8B is attached to the high voltage panel casing 8A in plan view. By attaching it from one side and extending the lower end of the low voltage panel casing 8B to the bottom of the transformer 3, the installation area (or exclusive area in plan view ) can be achieved ("space saving"), and while making this "space saving", the internal volume of the low voltage panel casing 8B can be reduced by the amount that the low voltage panel casing 8B is allowed to hang down to the bottom of the transformer 3. (internal space) can be secured. Further, the hanging tool 3a may be provided at a position eccentric to one side of the transformer 3 in a plan view.

本発明に係る受配電システムや受配電盤、変圧器によると、三巻線型の変圧器における2、3次巻線側の定格容量の和を、1次巻線側の定格容量より大きくする等で、「負荷追加のニーズ対応」や「コストの低減」などを実現し得る。 According to the power reception and distribution system, power reception and distribution board, and transformer according to the present invention, the sum of the rated capacities of the secondary and tertiary windings in a three-winding transformer can be made larger than the rated capacity of the primary winding. , ``meeting the need for additional load'' and ``reducing costs.''

本発明に係る受配電システム、受配電盤、変圧器を例示する概要図である。1 is a schematic diagram illustrating a power receiving and distributing system, a power receiving and distributing board, and a transformer according to the present invention. 受配電システム、受配電盤、変圧器を例示する回路図である。1 is a circuit diagram illustrating a power reception and distribution system, a power reception and distribution board, and a transformer. 受配電盤、変圧器を示す側面図である。FIG. 2 is a side view showing a power distribution board and a transformer. 受配電盤、変圧器を示す正面図である。It is a front view showing a power distribution board and a transformer. 図3の側面図で示された受配電盤における高圧盤筐体のA-A矢視断面図である。FIG. 4 is a cross-sectional view taken along the line AA of the high-voltage panel housing in the power distribution board shown in the side view of FIG. 3; 図3の側面図で示された受配電盤における高圧盤筐体のB-B矢視断面図である。FIG. 4 is a sectional view taken along line BB of the high-voltage panel housing in the power distribution board shown in the side view of FIG. 3; 図3の側面図で示された受配電盤における高圧盤筐体、低圧盤筐体、変圧器のC-C矢視断面図である。FIG. 4 is a cross-sectional view taken along the line CC of the high-voltage panel housing, low-voltage panel housing, and transformer in the power receiving and distribution board shown in the side view of FIG. 3; 図3の側面図で示された受配電盤における高圧盤筐体、低圧盤筐体のD-D矢視断面図である。FIG. 4 is a cross-sectional view taken along the line DD of the high-voltage panel housing and the low-voltage panel housing in the power receiving and distribution board shown in the side view of FIG. 3; 受配電盤における変圧器の上面を示す平面図である。FIG. 3 is a plan view showing the top surface of a transformer in the power distribution board. (a)は受配電盤における高圧盤筐体と低圧盤筐体の間の仕切板を示す正面図であり、(b)は受配電盤における低圧盤筐体内の負荷遮断器を示す正面図である。(a) is a front view showing a partition plate between a high-voltage panel casing and a low-voltage panel casing in the power distribution board, and (b) is a front view showing a load breaker in the low-voltage panel casing in the power distribution board. 変圧器における負荷分担を示すグラフであって、(a)は2次巻線側と3次巻線側の負荷分担を示し、(b)は2次巻線側での単相3線と三相3線の負荷分担を示す。It is a graph showing load sharing in a transformer, where (a) shows the load sharing between the secondary winding side and the tertiary winding side, and (b) shows the load sharing between the single-phase three-wire and three-wire windings on the secondary winding side. Shows the load sharing of phase 3 wires.

以下、本発明の実施形態を、図面を参照して説明する。
<受配電システム1の全体構成>
図1、2に示されたように、本発明に係る受配電システム1は、後述する負荷2と、後述し且つ本発明に係る変圧器3を有している。
受配電システム1は、少なくとも系統Kから変圧器3を経ての電力を負荷2が消費する。
受配電システム1は、後述する蓄電装置4及び/又は後述する発電装置5を有していたり、後述する系統側電路6aや負荷側電路6b、後述する系統遮断器7aや負荷遮断器7b、後述する高圧盤筐体8Aや低圧盤筐体8Bを有していたり、後述し且つ本発明に係る受配電盤10などを有していても良い。
その他、受配電システム1は、発電装置5が後述する太陽光発電装置5Aである場合、その太陽光発電変換部5Abの後述する制御装置20を有していても良い。
Embodiments of the present invention will be described below with reference to the drawings.
<Overall configuration of power reception and distribution system 1>
As shown in FIGS. 1 and 2, a power reception and distribution system 1 according to the present invention includes a load 2, which will be described later, and a transformer 3, which will be described later, and according to the present invention.
In the power receiving and distribution system 1, the load 2 consumes at least the power from the system K via the transformer 3.
The power reception and distribution system 1 includes a power storage device 4 described later and/or a power generation device 5 described later, a system side electric line 6a and a load side electric line 6b described below, a system breaker 7a and a load breaker 7b described below, and a power generation apparatus 5 described later. It may have a high-voltage panel casing 8A and a low-voltage panel casing 8B, or may include a power receiving and distribution board 10 according to the present invention, which will be described later.
In addition, when the power generation device 5 is a solar power generation device 5A described below, the power receiving and distribution system 1 may include a control device 20 described below for the solar power generation conversion unit 5Ab.

受配電システム1が蓄電装置4及び/又は発電装置5を有している場合、負荷2は、系統Kから変圧器3を経ての電力、蓄電装置4からの電力及び/又は発電装置5からの電力を消費しても良い。
尚、本発明における「負荷2は、系統Kから変圧器3を経ての電力、蓄電装置4からの電力及び/又は発電装置5からの電力を消費する」とは、負荷2が、系統Kから変圧器3を経ての電力と、蓄電装置4からの電力と、発電装置5からの電力のうち、少なくとも1つを消費することを意味する。
When the power reception and distribution system 1 has a power storage device 4 and/or a power generation device 5, the load 2 is the power from the grid K via the transformer 3, the power from the power storage device 4, and/or the power generation device 5. It may consume electricity.
In the present invention, "load 2 consumes power from system K via transformer 3, power from power storage device 4, and/or power from power generator 5" means that load 2 consumes power from system K via transformer 3, power from power storage device 4, and/or power from power generation device 5. This means that at least one of the power that has passed through the transformer 3, the power from the power storage device 4, and the power from the power generator 5 is consumed.

ここで、本発明における「系統Kから変圧器3を経ての電力」とは、系統Kから変圧器3を経ての電力(系統Kから受電した電力(受電力))R全てだけでなく、受電力Rの少なくとも一部との意味である。
又、本発明における「蓄電装置4からの電力」とは、蓄電装置4から出力(放電)される電力(蓄電力)T全てだけでなく、蓄電力Tの少なくとも一部との意味である。
尚、受配電システム1において、蓄電装置4が負荷2に接続された際に蓄電力Tが0(ゼロ)である場合には、接続された当該負荷2が消費するのは受電力Rのみとなるものの、蓄電装置4が当該負荷2に接続された時から既に蓄電力Tが0より大きい(他の所で蓄電装置4に幾らかの電力を充電した後に接続した)場合には、当該負荷2は少なくとも蓄電力Tを消費するとし、必要に応じて受電力Rも合わせて消費することとしても良い。
更に、本発明における「発電装置5からの電力」とは、発電装置5から出力される電力(発電力)H全てだけでなく、発電力Hの少なくとも一部との意味である。
尚、受配電システム1において、発電装置5の発電力Hが0(ゼロ)である場合には、負荷2が消費するのは、上述したような蓄電力Tと受電力Rのうち、少なくとも一方となるものの、発電装置5の発電力Hが0より大きい場合には、当該負荷2は少なくとも発電力H及び蓄電力Tを消費するとし、必要に応じて受電力Rも合わせて消費することとしても良い。
Here, in the present invention, "power from system K via transformer 3" refers to not only all of the power R from system K through transformer 3 (power received from system K (received power)) This means at least a portion of the electric power R.
Furthermore, in the present invention, "power from the power storage device 4" means not only all of the power (stored power) T output (discharged) from the power storage device 4, but also at least a part of the stored power T.
In the power receiving and distribution system 1, if the stored power T is 0 (zero) when the power storage device 4 is connected to the load 2, the connected load 2 consumes only the received power R. However, if the stored power T is already greater than 0 when the power storage device 4 is connected to the load 2 (the connection is made after the power storage device 4 has been charged with some power elsewhere), the load 2 2 consumes at least the stored power T, and may also consume the received power R if necessary.
Furthermore, in the present invention, "electric power from the power generation device 5" means not only all of the power (generated power) H output from the power generation device 5, but also at least a part of the power generated H.
In the power receiving and distribution system 1, when the generated power H of the power generating device 5 is 0 (zero), the load 2 consumes at least one of the above-mentioned stored power T and received power R. However, if the power generation H of the power generation device 5 is larger than 0, the load 2 will consume at least the power generation H and the stored power T, and if necessary, the received power R will also be consumed. Also good.

ここで、本発明における容量、電力、電流、電圧は、定格範囲の値であっても良く、この場合、定格容量、定格電力、定格電流、定格電圧と言える。
これら定格容量等とは、電気製品を安全に使用するために製造者によって補償された電力等の限度値であるとも言え、更に、定格とは、機器や装置で、安全・適性な動作が保証される使用限度や条件であるとも言える。
又、本発明における電流が交流の場合、容量の値(容量値)、電力の値(電力値)、電流の値(電流値)、電圧の値(電圧値)は、実効値であっても良い。
尚、実際には、所定条件や所定時間内であれば、変圧器3がその定格容量を超える容量の電力にて使用(運転)されたり、変圧器3や系統側電路6a、負荷側電路6b等にその定格電流を超える電流が流れる等であっても良い。
Here, the capacity, power, current, and voltage in the present invention may be values within a rated range, and in this case, they can be said to be rated capacity, rated power, rated current, and rated voltage.
These rated capacities can be said to be the limit values of electric power etc. compensated by the manufacturer for the safe use of electrical products.Furthermore, the ratings are the guarantees that safe and appropriate operation of the equipment or equipment is guaranteed. It can also be said that they are the limits and conditions for use.
Furthermore, when the current in the present invention is alternating current, the value of capacity (capacitance value), value of electric power (power value), value of current (current value), and value of voltage (voltage value) may be effective values. good.
In reality, under predetermined conditions or within a predetermined period of time, the transformer 3 may be used (operated) with a capacity exceeding its rated capacity, or the transformer 3, the grid side electric line 6a, and the load side electric line 6b may be etc., a current exceeding the rated current may flow.

<負荷2、電灯負荷2a1、動力負荷2a2>
図1、2に示されたように、負荷2は、上述した系統Kから受電する受電力Rを、少なくとも消費する負荷(負荷設備)である。つまり、負荷2の消費電力(容量)の値は、受配電システム1が系統Kから受電する受電力Rの値より大きくても(負荷2の消費電力の一部だけを、受電力Rで賄っても)良い。
負荷2は、例えば、自動車販売店や給油所などであったり、レンタカー店舗(レンタカー屋)であったり、工場・作業所における後述の充電器2Bを含んでいたり、電気・電子機器などの電力を使用する機器設備(白熱電灯や蛍光灯、水銀灯(照明器具)などの一般の電灯負荷2a1や、エアコン、モータ、ポンプなど一般の動力負荷2a2等)を含んでいても良く、工場・作業所そのものを含んでいても良い。
又、負荷2は、会社等の法人・団体や個人、官公署・組合などの事務所、住宅、店舗、倉庫・車庫・駐車場・駐輪場、校舎・講堂・体育館、研究施設、病院・診療所、旅館・ホテル、劇場・映画館・競技場・野球場などにおける電気・電子機器などの電力を使用する機器や、会社などの事務所等そのものを含んでいても良く、これらが組み合わさったものを含んでも構わない。
このような負荷2は、後述する2次側負荷2aと、3次側負荷2bを含んでいる。
<Load 2, lighting load 2a1, power load 2a2>
As shown in FIGS. 1 and 2, the load 2 is a load (load equipment) that consumes at least the received power R received from the system K described above. In other words, even if the value of power consumption (capacity) of load 2 is greater than the value of received power R that power receiving and distribution system 1 receives from grid K (only a part of the power consumption of load 2 is covered by received power R), Even) Good.
The load 2 is, for example, a car dealership, a gas station, etc., a rental car store (rental car shop), a charger 2B (described later) in a factory or workshop, or a power source for electric/electronic equipment. It may include the equipment and equipment used (general lighting loads 2a1 such as incandescent lamps, fluorescent lamps, mercury lamps (lighting equipment), general power loads 2a2 such as air conditioners, motors, pumps, etc.), and the factory / work place itself. May contain.
In addition, load 2 includes offices of corporations, organizations, individuals, public offices, unions, etc., residences, stores, warehouses, garages, parking lots, bicycle parking lots, school buildings, auditoriums, gymnasiums, research facilities, hospitals, and clinics. , may include equipment that uses electricity such as electrical and electronic equipment in inns, hotels, theaters, movie theaters, stadiums, baseball stadiums, etc., as well as offices of companies, etc., or combinations of these. may be included.
Such a load 2 includes a secondary load 2a and a tertiary load 2b, which will be described later.

<2次側負荷2a、3次側負荷2b、充電器2B>
図1、2に示されたように、2次側負荷2aは、後述する変圧器3の2次巻線に接続される負荷2であり、3次側負荷2bは、変圧器3の3次巻線に接続される負荷2である。
1つの受配電システム1において、2次側負荷2aや3次側負荷2bの個数も、特に限定はないが、例えば、1つであったり、複数であっても良い。
2次側負荷2aには、上述した電灯負荷2a1や動力負荷2a2などが含まれても良く、3次側負荷2bには、後述する充電器2Bが含まれていても構わない。
尚、上述とは逆に、2次側負荷2aには、充電器2Bが含まれ、3次側負荷2bには、電灯負荷2a1や動力負荷2a2などが含まれても良く、その他、2次側負荷2aと3次側負荷2bの一方だけ、又は、両方に、電灯負荷2a1や動力負荷2a2、充電器2Bなどが含まれていても構わない。
以下では特に、充電器2Bについて詳解する。
<Secondary side load 2a, tertiary side load 2b, charger 2B>
As shown in FIGS. 1 and 2, the secondary load 2a is the load 2 connected to the secondary winding of the transformer 3, which will be described later, and the tertiary load 2b is the load 2 connected to the tertiary winding of the transformer 3, which will be described later. This is a load 2 connected to the winding.
In one power reception and distribution system 1, the number of secondary loads 2a and tertiary loads 2b is not particularly limited, but may be one or more, for example.
The secondary load 2a may include the above-mentioned lighting load 2a1, the power load 2a2, etc., and the tertiary load 2b may include the charger 2B described below.
Contrary to the above, the secondary load 2a may include the charger 2B, and the tertiary load 2b may include the lighting load 2a1, the power load 2a2, etc. The lighting load 2a1, the power load 2a2, the charger 2B, etc. may be included in only one or both of the side load 2a and the tertiary load 2b.
In particular, the charger 2B will be explained in detail below.

充電器2Bは、急速充電器や、普通充電器、超急速充電器など何れの構成でも構わない。尚、3次側負荷2bは、充電器2Bだけであったり、充電器2Bが含まれていなかったり、充電器2Bと充電器2B以外の負荷設備であっても良い。
ここで、本発明における「充電器2B」とは、電気自動車(EV)や、プラグインハイブリッド車などの他、電動二輪車などのバッテリ(蓄電池)を内蔵した乗り物の充電に用いる設置型の充電装置や充電施設であって、充電スタンドや、充電ステーション、充電スポット等とも言う。尚、充電器2Bは、乗り物以外に、バッテリ(蓄電池)を内蔵したスマートフォンや携帯電話などの通信機器や、携帯用PC(パーソナルコンピュータ)、電気製品などの充電に用いる充電装置や充電施設であっても良い。
充電器2Bから電気自動車などへの出力は、直流の電流であっても、交流の電流であっても良く、何れか一方のみ出力可能であったり、両方を出力可能であっても構わない。
一方、電気自動車などは、プラグ等を介して、直流の電流を入力したり、交流の電流を入力しても良く、何れか一方のみ入力可能であったり、両方入力可能であっても構わない。
尚、充電器2Bは、充電器2Bからの出力が直流の電流である場合は、急速充電を行い、充電器2Bからの出力が交流の電流である場合は、普通充電を行う構成であっても良い。
充電器2Bは、蓄電装置4からの電力や受電力Rなどを蓄電する蓄電部を有していたり、蓄電装置4からの電流を、交流から直流に又は直流から交流に変換する変換部(AC/DCコンバータや、DC/ACインバータ(DC/ACコンバータ)、DC/DCコンバータなど)を有していても良い。
The charger 2B may have any configuration such as a quick charger, a normal charger, or an ultra-fast charger. Note that the tertiary side load 2b may be only the charger 2B, may not include the charger 2B, or may be a load equipment other than the charger 2B and the charger 2B.
Here, the "charger 2B" in the present invention refers to an installed charging device used for charging vehicles with built-in batteries (storage batteries) such as electric vehicles (EVs), plug-in hybrid vehicles, and electric motorcycles. A charging facility is also called a charging station, charging station, charging spot, etc. In addition to vehicles, the charger 2B is a charging device or charging facility used to charge communication devices such as smartphones and mobile phones with built-in batteries (storage batteries), portable PCs (personal computers), and electrical products. It's okay.
The output from the charger 2B to the electric vehicle or the like may be a direct current or an alternating current, and it does not matter if only one or both can be output.
On the other hand, for electric vehicles, etc., direct current or alternating current may be input via a plug, etc., or only one or both may be input. .
Note that the charger 2B is configured to perform quick charging when the output from the charger 2B is a direct current, and to perform normal charging when the output from the charger 2B is an alternating current. Also good.
The charger 2B has a power storage unit that stores the power from the power storage device 4, the received power R, etc., and a conversion unit (AC) that converts the current from the power storage device 4 from AC to DC or from DC to AC. /DC converter, DC/AC inverter (DC/AC converter), DC/DC converter, etc.).

1つの受配電システム1において、充電器2Bの個数も、特に限定はないが、例えば、1つであったり、複数であっても良い。
充電器2Bの容量は、30kWや50kWであったり、100kWや180kW(90kW×2)、200kW以上などであっても構わない。
充電器2Bの充電時間は、電気自動車などのバッテリの容量によるが、バッテリが満充電となるまで、急速充電器であれば、例えば、約10分や約20分、約30分、約40分などであったり、10分以上120分以下などであっても良く、普通充電器であれば、例えば、約5時間や約7時間、約8時間、約10時間、約12時間、約14時間、約24時間であったり、2時間以上30時間以下などであっても良く、超急速充電器(例えば、蓄電部を有し、蓄電部に蓄電した電力を高電圧で出力する等)であれば、約3分や約5分、約10分などであったり、1分以上10分以下などであっても構わない。
尚、電気自動車などのバッテリの容量も、特に限定はないが、例えば、100kWhや180kWh(90kWh×2)であったり、50kWh以上2000kWh以下、好ましくは70kWh以上1500kWh以下、更に好ましくは90kWh以上1000kWh以下であっても良い。
In one power reception and distribution system 1, the number of chargers 2B is not particularly limited, but may be one or more, for example.
The capacity of the charger 2B may be 30 kW or 50 kW, 100 kW or 180 kW (90 kW x 2), or 200 kW or more.
The charging time of charger 2B depends on the capacity of the battery of the electric vehicle, etc., but if it is a quick charger, it will take about 10 minutes, about 20 minutes, about 30 minutes, or about 40 minutes until the battery is fully charged. or more than 10 minutes and less than 120 minutes, for example, about 5 hours, about 7 hours, about 8 hours, about 10 hours, about 12 hours, about 14 hours with a normal charger. , about 24 hours, 2 hours or more and 30 hours or less, etc., or an ultra-fast charger (for example, one that has a power storage unit and outputs the power stored in the power storage unit at a high voltage). For example, it may be about 3 minutes, about 5 minutes, about 10 minutes, or more than 1 minute and less than 10 minutes.
Note that the capacity of batteries for electric vehicles and the like is not particularly limited, but may be, for example, 100 kWh or 180 kWh (90 kWh x 2), 50 kWh or more and 2000 kWh or less, preferably 70 kWh or more and 1500 kWh or less, and more preferably 90 kWh or more and 1000 kWh or less. It may be.

<変圧器3>
図1~4、9、11に示されたように、変圧器3は、上述した系統Kからの交流電流を、上述した負荷2に適した電圧の交流電流に変圧するものであり、所謂、トランスである。尚、トランスとは、トランスフォーマーの略である。
変圧器3は、負荷2と系統Kの間に接続されており、1次巻線と2次巻線と3次巻線を備えた三巻線型の変圧器である。
変圧器3は、1次巻線が、系統Kに接続されていて、2次巻線が、上述した2次側負荷2aに接続されていて、3次巻線が上述した3次側負荷2bに接続されている。
変圧器3は、後述する高圧盤筐体8Aの重量と、後述する低圧盤筐体8Bの重量を支持しているとも言え、又、後述する吊下具3aを有していても良い。
<Transformer 3>
As shown in FIGS. 1 to 4, 9, and 11, the transformer 3 transforms the above-mentioned alternating current from the system K into an alternating current of a voltage suitable for the above-mentioned load 2, and is so-called. It's trance. Note that "trans" is an abbreviation for "transformer".
The transformer 3 is connected between the load 2 and the system K, and is a three-winding type transformer including a primary winding, a secondary winding, and a tertiary winding.
The transformer 3 has a primary winding connected to the system K, a secondary winding connected to the above-mentioned secondary load 2a, and a tertiary winding connected to the above-mentioned tertiary load 2b. It is connected to the.
It can be said that the transformer 3 supports the weight of a high voltage panel casing 8A, which will be described later, and the weight of a low voltage panel casing 8B, which will be described later, and may also include a hanging tool 3a, which will be described later.

変圧器3は、その1~3次巻線の各結線方式についても特に制限はないが、例えば、系統K側である1次巻線が星型結線(Y結線)で、2次側負荷2aである2次巻線が三角形結線(Δ結線)で(つまり、1次側・2次側の順でY-Δ結線)、3次側負荷2bである3次巻線が星型結線(Y結線)で(つまり、1次側・3次側の順でY-Y結線)あっても良く、その他、1次・2次の順で、Y-Y結線やΔ-Y結線、Δ-Δ結線であったり、1次・3次の順で、Y-Δ結線やΔ-Y結線、Δ-Δ結線であっても構わない。
尚、2次巻線の結線方式がΔ結線である場合、このΔ結線から、単相3線(1φ3W)と三相3線(3φ3W)の2つの出力が設けられていて、これら単相3線と三相3線を同時使用可能としても良く、その他、単相2線(1φ2W)の出力などが、1つだけ設けられていたり、上述した単相3線か三相3線の代わりに設けられたり、単相3線と三相3線に加えて合計3つが同時使用可能に設けられていても構わない。以下、2次巻線のΔ結線からは、主に、単相3線と三相3線を同時使用可能に設けられているとして述べる。
The transformer 3 has no particular restrictions on the connection system of its primary to tertiary windings, but for example, the primary winding on the system K side is a star connection (Y connection), and the secondary side load 2a The secondary winding, which is the tertiary load 2b, has a triangular connection (Δ connection) (that is, the primary side and the secondary side are connected in the order of Y-Δ), and the tertiary winding, which is the tertiary side load 2b, has a star connection (Y-Δ connection). In other words, Y-Y connection, Δ-Y connection, Δ-Δ It may be a Y-Δ connection, a Δ-Y connection, or a Δ-Δ connection in the order of primary and tertiary.
In addition, when the connection method of the secondary winding is Δ connection, two outputs are provided from this Δ connection: single-phase 3-wire (1φ3W) and three-phase 3-wire (3φ3W), and these single-phase 3-wire It may be possible to use wire and three-phase three-wire at the same time, and in addition, only one single-phase two-wire (1φ2W) output may be provided, or instead of the single-phase three-wire or three-phase three-wire described above. Alternatively, in addition to the single-phase three-wire and three-phase three-wire, a total of three wires may be provided so that they can be used simultaneously. Hereinafter, the Δ connection of the secondary winding will mainly be described assuming that it is provided so that single-phase three-wire and three-phase three-wire can be used simultaneously.

変圧器3は、2次巻線側の定格電圧と3次巻線側の定格電圧のそれぞれ(あわせて、負荷2側の定格電圧)が、1次巻線側の定格電圧(系統K側の定格電圧)より低圧であり、謂わば、変圧器3は降圧変圧器であるとも言える。
系統K側である1次巻線側の定格電圧は、具体的な値は特に制限はないが、例えば、高圧の6000Vや6600Vや、特高の22000V等であったり、その他、210Vや200V、105V、100V等の低圧であっても良い。
2次側負荷2aである2次巻線側の定格電圧も、具体的な値は特に制限はないが、例えば、105V以上210V以下や、105V、210V、100Vなどであったり、70V以上260V以下、好ましくは80V以上240V以下、更に好ましくは90V以上220V以下であっても良い。
3次側負荷2bである3次巻線側の定格電圧も、具体的な値は特に制限はないが、例えば、242V以上420V以下や、242V、420V、440Vなどであったり、90V以上1000V以下、好ましくは100V以上800V以下、更に好ましくは150V以上600V以下であっても良い。
変圧器3において、2、3次巻線側である負荷2側の定格電圧と、1次巻線側である系統K側の定格電圧の差は、特に限定はないが、例えば、6180Vや、6358V、6390V、6495Vなどであったり、0Vより大きく22000V以下、好ましくは1000V以上6600V以下、更に好ましくは5000V以上6550V以下であっても良い。
In the transformer 3, the rated voltage of the secondary winding side and the rated voltage of the tertiary winding side (together, the rated voltage of the load 2 side) are equal to the rated voltage of the primary winding side (the rated voltage of the system K side). The voltage is lower than the rated voltage), and it can be said that the transformer 3 is a step-down transformer.
The rated voltage of the primary winding side, which is the system K side, is not specifically limited, but for example, it may be high voltage 6000V or 6600V, extra high voltage 22000V, etc., or 210V or 200V, etc. A low voltage such as 105V or 100V may be used.
The rated voltage of the secondary winding side, which is the secondary load 2a, is not particularly limited to a specific value, but for example, it may be 105V or more and 210V or less, 105V, 210V, 100V, etc., or 70V or more and 260V or less. , preferably 80V or more and 240V or less, more preferably 90V or more and 220V or less.
The rated voltage on the tertiary winding side, which is the tertiary load 2b, is not specifically limited, but for example, it may be 242V or more and 420V or less, 242V, 420V, 440V, etc., or 90V or more and 1000V or less. , preferably 100V or more and 800V or less, more preferably 150V or more and 600V or less.
In the transformer 3, the difference between the rated voltage on the load 2 side, which is the secondary and tertiary winding side, and the rated voltage on the system K side, which is the primary winding side, is not particularly limited, but may be, for example, 6180V, It may be 6358V, 6390V, 6495V, etc., or more than 0V and less than 22000V, preferably more than 1000V and less than 6600V, more preferably more than 5000V and less than 6550V.

変圧器3は、2次巻線側の定格容量と3次巻線側の定格容量の和が、1次巻線側の定格容量より大きい。尚、変圧器3の各巻線側の定格容量の単位は、VA(ブイエー)となる。
系統K側である1次巻線側の定格容量は、具体的な値は特に制限はないが、例えば、200kVAなどであったり、5kVA以上2000kVA以下、好ましくは30kVA以上1500kVA以下、更に好ましくは50kVA以上1000kVA以下であっても良い。
2次側負荷2aである2次巻線側の定格容量も、具体的な値は特に制限はないが、例えば、100kVAなどであったり、2kVA以上1000kVA以下、好ましくは15kVA以上750kVA以下、更に好ましくは25kVA以上500kVA以下であっても良い。
3次側負荷2bである3次巻線側の定格容量も、具体的な値は特に制限はないが、例えば、200kVAなどであったり、5kVA以上2000kVA以下、好ましくは30kVA以上1500kVA以下、更に好ましくは50kVA以上1000kVA以下であっても良い。
尚、2次巻線側の定格容量と、3次巻線側の定格容量の大小関係は、特に限定はなく、3次巻線側の定格容量が、2次巻線側の定格容量より大きくとも良く、又、その逆や、略同じでも構わない。
又、2次巻線側の定格容量と、上述した2次側負荷2aの定格消費電力(定格容量)の大小関係も、特に限定はなく、2次巻線側の定格容量が、2次側負荷2aの定格消費電力より大きくとも良く、又、その逆や、略同じでも構わない。
更に、3次巻線側の定格容量と、上述した3次側負荷2bの定格消費電力(定格容量)の大小関係も、特に限定はなく、3次巻線側の定格容量が、3次側負荷2bの定格消費電力より大きくとも良く、又、その逆や、略同じでも構わない。
In the transformer 3, the sum of the rated capacity on the secondary winding side and the rated capacity on the tertiary winding side is larger than the rated capacity on the primary winding side. Note that the unit of the rated capacity of each winding of the transformer 3 is VA.
The rated capacity of the primary winding side, which is the system K side, is not particularly limited to a specific value, but may be, for example, 200 kVA, or 5 kVA or more and 2000 kVA or less, preferably 30 kVA or more and 1500 kVA or less, and more preferably 50 kVA. It may be more than 1000 kVA or less.
The rated capacity of the secondary winding side, which is the secondary side load 2a, is also not specifically limited, but may be, for example, 100 kVA, or more preferably 2 kVA or more and 1000 kVA or less, preferably 15 kVA or more and 750 kVA or less, and more preferably. may be 25 kVA or more and 500 kVA or less.
The rated capacity of the tertiary winding, which is the tertiary load 2b, is not particularly limited to a specific value, but may be, for example, 200 kVA, or 5 kVA or more and 2000 kVA or less, preferably 30 kVA or more and 1500 kVA or less, and more preferably 30 kVA or more and 1500 kVA or less. may be 50 kVA or more and 1000 kVA or less.
There is no particular limitation on the magnitude relationship between the rated capacity of the secondary winding side and the rated capacity of the tertiary winding side, and the rated capacity of the tertiary winding side is larger than the rated capacity of the secondary winding side. It may be the same, or it may be the opposite, or it may be substantially the same.
Moreover, there is no particular limitation on the magnitude relationship between the rated capacity of the secondary winding side and the rated power consumption (rated capacity) of the secondary side load 2a mentioned above, and the rated capacity of the secondary winding side is It may be larger than the rated power consumption of the load 2a, or vice versa, or substantially the same.
Furthermore, there is no particular limitation on the magnitude relationship between the rated capacity of the tertiary winding side and the rated power consumption (rated capacity) of the tertiary side load 2b mentioned above, and the rated capacity of the tertiary winding side is It may be larger than the rated power consumption of the load 2b, or vice versa, or substantially the same.

ここまで述べたように、変圧器3は、2次巻線側の定格容量と3次巻線側の定格容量の和が、1次巻線側の定格容量より大きいため、2、3次巻線側で負荷分担を行っても良く、例えば、図11(a)は、1次巻線側の定格容量が200kVAで、2次巻線側の定格容量が100kVAで、3次巻線側の定格容量が200kVAである変圧器3における2次巻線側と3次巻線側の負荷分担の関係を示すグラフである。
この図11(a)を詳解すれば、変圧器3において、2次巻線側を定格容量と同じ100kVAで使用(詳しくは、単相3線を20kVAで、三相3線を80kVAで同時使用するなど、単相3線の使用容量と三相3線の使用容量の比が1:4となるように同時使用)した場合、3次巻線側は定格容量より小さい80kVAで使用されることとなる(図11(a)中の点X参照)。尚、主に充電器2B等が接続される3次巻線側は、2次巻線側で使用される容量を問わず、最低でも80kVAの容量は確保されると言える。一方、3次巻線側を定格容量と同じ200kVAで使用した場合、2次巻線側は定格容量より圧倒的に小さい0kVAで使用(当然、単相3線と三相3線の何れも0kVAで使用)されることとなる(図11(a)中の点Y参照)。その他、2次巻線側や3次巻線側は、それぞれの定格容量と同じ容量で使用していない(図11(a)中の点Xでも点Yでもない)場合には、図11(a)中の点Xと点Yを結んだ線分(線分XY)上にて示される負荷分担にて、それぞれが使用される。
ここで、上述では、2次巻線側の定格容量が100kVAで、3次巻線側の定格容量が200kVAであった場合だが、各定格容量がそれら以外の値であった場合も含めて言及すれば、2次巻線側の定格容量と3次巻線側の定格容量の比が1:2の場合、具体的な各値は問わず、図11(a)中の点Xにおいては、2次巻線側の容量と3次巻線側の定格容量の比が100:80であり、図11(a)中の点Yにおいては、2次巻線側の定格容量と3次巻線側の定格容量の比が0:100であっても良い。その他、2次巻線側と3次巻線側の負荷分担の関係は、2次巻線側と3次巻線側の一方が、その定格容量一杯まで所定時間だけ使用していれば、2次巻線側と3次巻線側の他方は、その定格容量を下回って前記所定時間だけ使用されても良く、更に、充電器2Bが少なくとも接続されている3次巻線側は、2次巻線側がその定格容量一杯まで所定時間だけ使用していても、最低でも0kVAより大きい容量(例えば、3次巻線側の定格容量の2割以上8割以下、好ましくは3割以上6割以下(4割など))は確保されるような負荷分担がされても構わない。尚、充電器2Bが少なくとも接続されている側が、逆に、2次巻線側であれば、上述の関係は逆となる。
又、2次巻線側における単相3線と三相3線も、負荷分担を行っても良く、例えば、図11(b)は、2次巻線側全体としての定格容量が100kVAで、単相3線の電圧が105V以上210Vであって、同時使用可能な単相3線と三相3線の負荷分担の関係を示すグラフである。
この図11(b)を詳解すれば、変圧器3の2次巻線側において、単相3線を60kVAで使用した場合、三相3線は0kVAで使用されることとなる(図11(b)中の点x参照)。一方、三相3線を100kVAで使用した場合、単相3線は0kVAで使用されることとなる(図11(b)中の点y参照)。尚、主に電灯負荷2a1や動力負荷2a2が接続される単相3線と三相3線においては、一方が2次巻線側の定格容量一杯(100kVA)を使用し、他方はその分0kVAとなることを許容していると言える。又、三相3線を80kVAで使用した場合、単相3線は20kVAで使用される(逆に言えば、単相3線を20kVAで使用すれば、三相3線は80kVAで使用される)こととなる(図11(b)中の点z参照)。その他、単相3線や三相3線は、それぞれが2次巻線側の定格容量と同じ容量で使用していない(図11(b)中の点xでも点yでもない)場合には、図11(b)中の点xと点zを結んだ線分(線分xz)上や、点zと点yを結んだ線分(線分zy)上にて示される負荷分担にて、それぞれが使用される。
ここで、上述では、2次巻線側の定格容量が100kVAであった場合だが、その定格容量がそれ以外の値であった場合も含めて言及すれば、図11(b)中の点xにおいては、単相3線の使用容量と三相3線の使用容量の比が60:0であり、図11(b)中の点yにおいては、単相3線の使用容量と三相3線の使用容量の比が0:100であり、図11(b)中の点zにおいては、単相3線の使用容量と三相3線の使用容量の比が20:80であっても良い。その他、単相3線と三相3線の負荷分担の関係は、動力負荷2a2が少なくとも接続される三相3線は、2次巻線側の定格容量一杯を使用可能にする一方で、電灯負荷2a1が少なくとも接続される単相3線は、三相3線の使用容量が0kVAであってm、2次巻線側の定格容量一杯を使用できないようにしていても良く、大まかには、三相3線の使用容量が、単相3線の使用容量より大き目になるような負荷分担がなされているとも言える。
As described above, the transformer 3 has a rated capacity of 2 and 3 because the sum of the rated capacity of the secondary winding and the rated capacity of the tertiary winding is greater than the rated capacity of the primary winding. Load sharing may be performed on the wire side. For example, in Fig. 11(a), the rated capacity of the primary winding side is 200 kVA, the rated capacity of the secondary winding side is 100 kVA, and the rated capacity of the tertiary winding side is 200 kVA. It is a graph showing the relationship between load sharing between the secondary winding side and the tertiary winding side in the transformer 3 whose rated capacity is 200 kVA.
If we explain this figure 11(a) in detail, in transformer 3, the secondary winding side is used at 100 kVA, which is the same as the rated capacity (in detail, single-phase 3-wire is used at 20 kVA, and three-phase 3-wire is used at 80 kVA at the same time). (e.g., when used simultaneously so that the ratio of single-phase 3-wire capacity to 3-phase 3-wire capacity is 1:4), the tertiary winding side must be used at 80 kVA, which is smaller than the rated capacity. (See point X in FIG. 11(a)). Incidentally, it can be said that the capacity of at least 80 kVA is secured on the tertiary winding side to which the charger 2B etc. are mainly connected, regardless of the capacity used on the secondary winding side. On the other hand, if the tertiary winding side is used at 200 kVA, which is the same as the rated capacity, the secondary winding side is used at 0 kVA, which is overwhelmingly smaller than the rated capacity (of course, both single-phase 3-wire and three-phase 3-wire (see point Y in FIG. 11(a)). In addition, if the secondary winding side and the tertiary winding side are not used at the same capacity as their respective rated capacities (neither point X nor point Y in Fig. 11(a)), Each is used in the load sharing shown on the line segment (line segment XY) connecting point X and point Y in a).
Here, in the above case, the rated capacity of the secondary winding side is 100 kVA and the rated capacity of the tertiary winding side is 200 kVA, but the case where each rated capacity is a value other than these is also mentioned. Then, if the ratio of the rated capacity on the secondary winding side to the rated capacity on the tertiary winding side is 1:2, at point X in FIG. 11(a), regardless of the specific values, The ratio of the capacity on the secondary winding side and the rated capacity on the tertiary winding side is 100:80, and at point Y in Fig. 11(a), the rated capacity on the secondary winding side and the rated capacity on the tertiary winding side are 100:80. The ratio of the rated capacities on both sides may be 0:100. In addition, the relationship of load sharing between the secondary winding side and the tertiary winding side is that if one of the secondary winding side and the tertiary winding side is used for a predetermined period of time until it reaches its rated capacity, The other of the secondary winding side and the tertiary winding side may be used only for the predetermined time below its rated capacity, and furthermore, the tertiary winding side to which at least the charger 2B is connected is Even if the winding side is used to its rated capacity for a specified period of time, the capacity is at least 0 kVA (for example, 20% to 80% of the rated capacity of the tertiary winding side, preferably 30% to 60% of the rated capacity of the tertiary winding side) (40%, etc.)) may be shared in such a way as to ensure that. Note that if the side to which at least the charger 2B is connected is the secondary winding side, the above-mentioned relationship will be reversed.
In addition, the single-phase 3-wire and three-phase 3-wire on the secondary winding side may also perform load sharing. For example, in FIG. 11(b), the rated capacity of the entire secondary winding is 100 kVA, It is a graph showing the relationship of load sharing between single-phase three-wire and three-phase three-wire that can be used simultaneously when the voltage of single-phase three-wire is 105V or more and 210V.
If we explain this Fig. 11(b) in detail, if the single-phase 3-wire is used at 60 kVA on the secondary winding side of the transformer 3, the 3-phase 3-wire will be used at 0 kVA (Fig. 11 ( (see point x in b)). On the other hand, when three-phase three-wire is used at 100 kVA, single-phase three-wire is used at 0 kVA (see point y in FIG. 11(b)). In addition, for single-phase 3-wire and three-phase 3-wire, which are mainly connected to lighting load 2a1 and power load 2a2, one side uses the full rated capacity (100kVA) of the secondary winding, and the other uses 0kVA by that amount. It can be said that this is allowed. Also, if three-phase three-wire is used at 80kVA, single-phase three-wire will be used at 20kVA. (Conversely, if one-phase three-wire is used at 20kVA, three-phase three-wire will be used at 80kVA. ) (see point z in FIG. 11(b)). In addition, if single-phase 3-wire or three-phase 3-wire is not used with the same capacity as the rated capacity of the secondary winding side (neither point x nor point y in Figure 11(b)), , in the load sharing shown on the line segment connecting points x and point z (line segment xz) and on the line segment connecting point z and point y (line segment zy) in Figure 11(b). , each used.
Here, in the above case, the rated capacity on the secondary winding side is 100 kVA, but if we also mention the case where the rated capacity is other than that, the point x in Fig. 11(b) , the ratio of the single-phase three-wire capacity to the three-phase three-wire capacity is 60:0, and at point y in Figure 11(b), the single-phase three-wire capacity and three-phase three-wire capacity are 60:0. Even if the ratio of the used capacity of the lines is 0:100 and the ratio of the used capacity of single-phase 3-wire to the used capacity of 3-phase 3-wire is 20:80 at point z in Fig. 11(b), good. In addition, the relationship of load sharing between single-phase 3-wire and three-phase 3-wire is that the three-phase 3-wire, to which at least the power load 2a2 is connected, allows the full rated capacity of the secondary winding to be used, while the The single-phase three-wire to which at least the load 2a1 is connected has a three-phase three-wire capacity of 0 kVA, and the full rated capacity of the secondary winding side may not be used, and roughly speaking, It can be said that the load is shared in such a way that the usage capacity of three-phase three-wire is larger than the usage capacity of single-phase three-wire.

変圧器3の平面視形状は、略正方形状や略矩形状であっても(つまり、側面が4つあっても)良いが、これら4つの側面等に、放熱フィンが外方突出状に設けられていても良く、この放熱フィンの突出長さは、各側面とも略同じであったり、又、4つの側面中、1つの側面の突出長さが、他の3つの側面の突出長さより短かったり、1つの側面にだけ放熱フィンが設けられていなくとも構わない。この放熱フィンの突出長さが短い等の側面を、後述する低圧盤筐体8Bの後面に対して所定間隔を空けて対向させることによって、受配電盤10としてのコンパクト化が図れると共に、変圧器3と低圧盤筐体8Bの間に間隔(隙間)が確保し易くなり、変圧器3と低圧盤筐体8Bの間に溜まる錆やゴミ等を落とし易くなる。
又、変圧器3には、接地端子や混触防止板などが設けられていても良い。
更に、変圧器3は、油入式変圧器(自冷式や風冷式、水冷式など)であったり、乾式変圧器(自冷式や風冷式、水冷式など)であっても良い。以下は、変圧器3は、主に油入式変圧器であるとして述べる。尚、この場合、変圧器3の下部には排油弁が設けられていても良い。
The shape of the transformer 3 in plan view may be approximately square or rectangular (in other words, it may have four side surfaces), but radiation fins may be provided on these four side surfaces in an outwardly protruding manner. The protruding length of the radiation fins may be approximately the same on each side, or the protruding length of one of the four side surfaces may be shorter than the protruding length of the other three sides. Alternatively, the radiation fins may not be provided on only one side. By arranging the side surface of the radiation fin, such as a short projecting length, to face the rear surface of a low-voltage panel housing 8B, which will be described later, at a predetermined distance, the power distribution board 10 can be made more compact, and the transformer 3 It becomes easier to secure a space (gap) between the transformer 3 and the low-voltage panel housing 8B, and it becomes easier to remove rust, dirt, etc. that accumulate between the transformer 3 and the low-voltage panel housing 8B.
Further, the transformer 3 may be provided with a grounding terminal, a cross-contact prevention plate, and the like.
Further, the transformer 3 may be an oil-immersed transformer (self-cooled type, air-cooled type, water-cooled type, etc.) or a dry type transformer (self-cooled type, air-cooled type, water-cooled type, etc.). . In the following, the transformer 3 will be mainly described as an oil-immersed transformer. In this case, an oil drain valve may be provided at the bottom of the transformer 3.

<変圧器3の2、3次巻線側の一方の所定時間の定格容量を超えた使用>
変圧器3としては、2次巻線側と3次巻線側の一方が、当該一方の定格容量を超えて所定時間だけ使用されても良い。
これは、上述したように、変圧器3が油入式変圧器であれば、定格容量を越えて使用されても、所定時間の間であれば、当該変圧器3内の油はすぐに温度は上がらないためであり、その他、変圧器3が水冷式などの場合であっても、当該水などの温度がすぐに上がらないことから、同様であるとも言える。
ここで、この場合の所定時間とは、特に限定はないが、例えば、1時間や30分であったり、1時間30分や2時間、4時間などであったり、10分以上6時間以下、好ましくは20分以上5時間以下などであっても良く、定格容量を越える割合も、特に限定はないが、例えば、125%や、120%、130%などであったり、100%より大きく140%以下、好ましくは110%以上135%以下であっても構わない。この場合の所定時間・定格容量を超える割合の具体的な値も、特に限定はないが、例えば、2次巻線側又は3次巻線側を、その定格容量が200kVA(100%)であれば、実際の容量としては125kVA(125%)で1時間運転(使用)しても良い。
<Usage exceeding the rated capacity of one of the secondary and tertiary windings of the transformer 3 for a predetermined period of time>
As for the transformer 3, one of the secondary winding side and the tertiary winding side may be used for a predetermined period of time exceeding the rated capacity of the one side.
This is because, as mentioned above, if the transformer 3 is an oil-immersed transformer, even if it is used beyond its rated capacity, the oil in the transformer 3 will quickly reach its temperature within a predetermined period of time. This is because the temperature does not rise, and even if the transformer 3 is of a water-cooled type, the temperature of the water does not rise immediately, so it can be said that the same is true.
Here, the predetermined time in this case is not particularly limited, but for example, it may be 1 hour or 30 minutes, 1 hour 30 minutes, 2 hours, 4 hours, etc., 10 minutes or more and 6 hours or less, Preferably, the period may be 20 minutes or more and 5 hours or less, and the percentage exceeding the rated capacity is not particularly limited, but may be, for example, 125%, 120%, 130%, or greater than 100% and 140%. Below, preferably it may be 110% or more and 135% or less. In this case, the specific value of the ratio exceeding the predetermined time and rated capacity is not particularly limited, but for example, if the rated capacity of the secondary winding side or the tertiary winding side is 200 kVA (100%), For example, the actual capacity may be operated (used) for one hour at 125 kVA (125%).

尚、2、3次巻線側の一方の所定時間の定格容量を超えた使用をする前には、定格容量以下で連続使用(連続運転)しておいても良く、この定格容量以下の割合も、特に限定はないが、例えば、80%や70%、90%などであったり、60%以上100%以下、好ましくは65%以上95%以下であったり、連続使用される時間も、特に限定はないが、例えば、24時間や、12時間、36時間などであったり、6時間以上48時間以下、好ましくは9時間以上42時間以下であっても構わない。
このような2、3次巻線側の一方の所定時間の定格容量を超えた使用が可能となることで、例えば、複数の充電器2Bを有した受配電システム1において、当該複数の充電器2Bが同時に使用される場合などにも対応が出来、使用者もより安心して、変圧器3や受配電システム1、受配電盤10を使用できると言える。
よって、受配電システム1においては、変圧器3は、充電器2Bが少なくとも接続されている3次巻線側が、その定格容量を超えて所定時間だけ使用されるものとしても良い。
In addition, before using one of the secondary and tertiary windings beyond the rated capacity for a predetermined time, it may be used continuously (continuous operation) below the rated capacity, and the percentage below this rated capacity Although there is no particular limitation, for example, it may be 80%, 70%, 90%, etc., it may be 60% or more and 100% or less, preferably 65% or more and 95% or less, and the period of continuous use may also be particularly limited. Although there is no limitation, it may be, for example, 24 hours, 12 hours, 36 hours, etc., or 6 hours or more and 48 hours or less, preferably 9 hours or more and 42 hours or less.
By making it possible to use the rated capacity of one of the secondary and tertiary windings for a predetermined time, for example, in a power distribution system 1 having a plurality of chargers 2B, 2B can be used at the same time, and users can use the transformer 3, the power receiving and distribution system 1, and the power receiving and distribution board 10 with greater peace of mind.
Therefore, in the power reception and distribution system 1, the transformer 3 may be used only for a predetermined time when at least the tertiary winding side to which the charger 2B is connected exceeds its rated capacity.

<変圧器3の上面(天板)3A>
ここまで述べた変圧器3の上面3Aの具体的な構成については、特に限定はないが、例えば、図9に示したように、上面3Aは平面視で略矩形状であって、上述した1~3次巻線の端子が、上方突出状に設けられていても良く、1~3次巻線それぞれにおける端子の個数は、少なくとも3つ以上であり、例えば、1次巻線の端子は、高圧側の端子(高圧端子3H)であって、3つ(U端子、V端子、W端子)又は4つ(U端子、V端子、W端子と、巻線中点から引き出したO端子)である。
2次巻線の端子は、低圧側の端子(低圧端子3L、又は、3L1)であって、単相3線と三相3線がある場合は4つ(単相3線はu端子、巻線中点から引き出したo端子、v端子であり、三相3線はu端子、v端子、w端子であり、u端子とv端子は兼用され、u端子、v端子、w端子、o端子の合計4つ)、又は、単相3線のみがある場合は3つ(u端子、o端子、v端子)で、三相3線のみがある場合は3つ(u端子、v端子、w端子)である。
3次巻線の端子も、低圧側の端子(低圧端子3L、又は、3L2)であって、3つ(a端子、b端子、c端子)又は4つ(a端子、b端子、c端子と、巻線中点から引き出したn端子)である。
<Top surface (top plate) 3A of transformer 3>
Although there is no particular limitation on the specific configuration of the upper surface 3A of the transformer 3 described above, for example, as shown in FIG. 9, the upper surface 3A is approximately rectangular in plan view, and ~The terminals of the tertiary winding may be provided in an upwardly projecting manner, and the number of terminals in each of the primary to tertiary windings is at least three or more, for example, the terminals of the primary winding are High-voltage side terminals (high-voltage terminal 3H), with three (U terminal, V terminal, W terminal) or four (U terminal, V terminal, W terminal, and O terminal pulled out from the midpoint of the winding). be.
The terminals of the secondary winding are the terminals on the low voltage side (low voltage terminal 3L or 3L1), and if there are single-phase 3-wire and three-phase 3-wire, there are four terminals (the u terminal for single-phase 3-wire, the winding These are the o terminal and v terminal pulled out from the midpoint of the line, and the three-phase three-wire is the u terminal, v terminal, and w terminal, and the u terminal and v terminal are also used as the u terminal, v terminal, w terminal, and o terminal. (total of 4), or if there is only single-phase 3-wire, 3 (u terminal, o terminal, v terminal), and if only 3-phase 3-wire is available, 3 (u terminal, v terminal, w terminal) terminal).
The terminals of the tertiary winding are also low voltage side terminals (low voltage terminal 3L or 3L2), and there are three (a terminal, b terminal, c terminal) or four (a terminal, b terminal, c terminal and , the n terminal drawn out from the midpoint of the winding).

これらの1~3次巻線の端子の配置についても、特に限定はないが、例えば、変圧器3が高圧盤筐体8Aの重量と低圧盤筐体8Bの重量を支持している場合(特に、高圧盤筐体8Aが変圧器3に上方から取り付けられ、低圧盤筐体8Bが高圧盤筐体8Aに平面視一方から取り付けられ、低圧盤筐体8Bの下端が変圧器3の下部まで延びている場合)であれば、上面3Aにおける平面視一方側の辺(例えば、前側の辺)に略沿って、2次巻線の端子と3次巻線の端子が一列に並んで配置されていても良く、これら平面視一方側の端子は、負荷側(低圧側)の端子であるとも言える。
又、上面3Aにおける平面視一方側とは反対側の平面視他方側の辺(例えば、後側の辺)に略沿って、1次巻線の端子が一列に並んで配置されていても良く、これら平面視他方側の端子は、負荷側(高圧側)の端子であるとも言える。
その他、上面3Aには、油面温度計などが設けられていても良い。
There are no particular limitations on the arrangement of the terminals of these primary to tertiary windings, but for example, if the transformer 3 supports the weight of the high voltage panel casing 8A and the weight of the low voltage panel casing 8B (especially , the high voltage panel casing 8A is attached to the transformer 3 from above, the low voltage panel casing 8B is attached to the high voltage panel casing 8A from one side in plan view, and the lower end of the low voltage panel casing 8B extends to the bottom of the transformer 3. ), the terminals of the secondary winding and the terminals of the tertiary winding are arranged in a line approximately along one side (for example, the front side) in plan view of the top surface 3A. The terminals on one side in plan view can also be said to be terminals on the load side (low voltage side).
Further, the terminals of the primary winding may be arranged in a line approximately along the other side (for example, the rear side) in the upper surface 3A in the plan view, which is opposite to the one side in the plan view. , these terminals on the other side in plan view can also be said to be terminals on the load side (high voltage side).
In addition, an oil level thermometer or the like may be provided on the upper surface 3A.

<吊下具3aなど>
図3に示したように、吊下具3aは、変圧器3そのもの、又は、受配電盤10全体をクレーン等にて吊り下げて運搬や積載、設置などの際に、ワイヤーロープの先についているクレーンフック自体や、玉掛用のワイヤー、リングなどを引っかける部分である。
吊下具3aの具体的な構成は、特に限定はないが、例えば、フック状であったり、環状などであっても良い。
吊下具3aが設けられた位置は、少なくとも変圧器3における平面視一方に偏心した位置であっても良く、この偏心距離は、片持ちされた後述の低圧盤筐体8Bの重量などに応じて、吊り下げられた際、受配電盤10全体が略水平となるような距離であると言える。
<Hanging tool 3a, etc.>
As shown in FIG. 3, the hanging tool 3a is a crane attached to the end of a wire rope when the transformer 3 itself or the entire power distribution board 10 is suspended by a crane or the like for transportation, loading, installation, etc. This is the part for hooking the hook itself, slinging wire, rings, etc.
The specific structure of the hanging tool 3a is not particularly limited, but may be, for example, hook-shaped or ring-shaped.
The position where the hanging tool 3a is provided may be at least a position eccentric to one side in a plan view of the transformer 3, and this eccentric distance may be determined depending on the weight of a cantilevered low-voltage panel casing 8B, which will be described later. It can be said that the distance is such that the entire power receiving and distribution board 10 becomes approximately horizontal when it is suspended.

吊下具3aは、1つの変圧器3に対して、2つ以上設けられていても良く、例えば、上述した上面3Aにおける平面視一方側及び平面視他方側の辺(前側の辺と後側の辺)以外の残り2つの辺(左側の辺と右側の辺)の近傍に、左右一対に設けられていても良く、その他、1つだけ設けられ(つまり、上述した上面3Aの平面視略中央付近など)ても構わない。
又、吊下具3aは、変圧器3における平面視一方に偏心した位置以外に設けられても良く、例えば、平面視一方に偏心していない位置(前後方向略中央位置など)にも設けられていても構わず、この偏心していない位置の吊下具の図3中の符号は、3a’とする。
ここまで述べた変圧器3は、その重量が、後述する盤筐体8の重量(高圧盤筐体8Aの重量と低圧盤筐体8Bの重量の和)より重くても良く、変圧器3の重量の具体的な値は、特に限定はないが、例えば、1000kg以上2000kg以下、好ましくは1300kg以上1800kg以下、更に好ましくは1400kg以上1700kg以下(1550kgなど)であっても構わない。
Two or more hanging tools 3a may be provided for one transformer 3, and for example, one side of the upper surface 3A mentioned above and the other side in a plan view (front side and rear side) They may be provided in a pair on the left and right in the vicinity of the remaining two sides (the left side and the right side) other than the side of (near the center, etc.) is fine.
Further, the hanging tool 3a may be provided at a position other than the position eccentric to one side of the transformer 3 in plan view, for example, it may be provided at a position not eccentric to one side in plan view (such as a substantially central position in the front-rear direction). However, the reference numeral 3a' in FIG. 3 is used to indicate the hanging tool in the non-eccentric position.
The transformer 3 described so far may be heavier than the weight of the panel casing 8 (the sum of the weight of the high voltage panel casing 8A and the weight of the low voltage panel casing 8B), which will be described later. The specific value of the weight is not particularly limited, but may be, for example, 1000 kg or more and 2000 kg or less, preferably 1300 kg or more and 1800 kg or less, and more preferably 1400 kg or more and 1700 kg or less (such as 1550 kg).

<蓄電装置4>
図1、2に示されたように、蓄電装置4は、上述した系統Kから変圧器3を経ての電力や、後述する発電装置5からの電力(発電力)Hなどを蓄電する装置である。
蓄電装置4は、例えば、鉛蓄電池やリチウムイオン蓄電池、ニッケル・水素蓄電池、ニッケル・カドミウム蓄電池などの蓄電池(バッテリ)であったり、発電装置5からの発電力H等を用いた水の電気分解等により生成した水素を貯蔵し、必要なときに燃料電池等にて電力を取り出す他、フライホール等にて運動エネルギーとしての蓄電(貯蔵)や、揚水にて位置エネルギーとしての蓄電(貯蔵)、キャパシタ等にてそのまま電気エネルギーとしての蓄電(貯蔵)などをする装置であっても構わない。
蓄電装置4は、後述する負荷側電路6b(3次負荷側電路6b2)を介して、上述した変圧器3の3次巻線や、3次側負荷2bに接続されていて、この蓄電装置4からの蓄電力Tは、負荷側電路6bを介して、3次側負荷2bに消費されたり、更に、変圧器3を介して、2次側負荷2aに消費されても良い。
<Power storage device 4>
As shown in FIGS. 1 and 2, the power storage device 4 is a device that stores power from the above-mentioned system K via the transformer 3, power (generated power) H from the power generation device 5 described later, etc. .
The power storage device 4 is, for example, a storage battery (battery) such as a lead storage battery, a lithium ion storage battery, a nickel-hydrogen storage battery, a nickel-cadmium storage battery, or a water electrolysis device using the power generation H from the power generation device 5. In addition to storing the generated hydrogen and extracting electricity when necessary using fuel cells, etc., it can also be used to store electricity as kinetic energy in flyholes, store electricity as potential energy in pumped water, and use capacitors. It is also possible to use a device that directly stores electricity as electrical energy.
The power storage device 4 is connected to the above-mentioned tertiary winding of the transformer 3 and the tertiary load 2b via a load-side electrical circuit 6b (tertiary load-side electrical circuit 6b2), which will be described later. The stored power T may be consumed by the tertiary load 2b via the load-side electric line 6b, or may be further consumed by the secondary load 2a via the transformer 3.

1つの受配電システム1において、蓄電装置4の個数は、特に限定はないが、例えば、1つであったり、複数であっても良い。
蓄電装置4の畜電力Tも、特に限定はないが、例えば、50kWや100kWであったり、200kW(100kW×2)であったり、30kW以上2000kW以下、好ましくは50kW以上1500kW以下、更に好ましくは70kW以上1000kW以下であっても良い。
蓄電装置4の畜電力量(容量)Tも、特に限定はないが、例えば、100kWhや200kWhであったり、390kWh(195kWh×2)であったり、50kWh以上2000kWh以下、好ましくは100kWh以上1500kWh以下、更に好ましくは200kWh以上1000kWh以下であっても良い。
尚、蓄電装置4の蓄電力Tは、上述した3次側負荷2b等の消費電力より大きくとも良い。又、蓄電装置4は、自立運転機能を有していても良い。
In one power reception and distribution system 1, the number of power storage devices 4 is not particularly limited, and may be one or more than one, for example.
The stored power T of the power storage device 4 is also not particularly limited, but is, for example, 50 kW, 100 kW, 200 kW (100 kW x 2), 30 kW or more and 2000 kW or less, preferably 50 kW or more and 1500 kW or less, and more preferably 70 kW. It may be greater than or equal to 1000 kW or less.
The storage power amount (capacity) T of the power storage device 4 is also not particularly limited, but is, for example, 100 kWh, 200 kWh, 390 kWh (195 kWh x 2), 50 kWh or more and 2000 kWh or less, preferably 100 kWh or more and 1500 kWh or less, More preferably, it may be 200 kWh or more and 1000 kWh or less.
Note that the stored power T of the power storage device 4 may be larger than the power consumption of the tertiary side load 2b and the like described above. Further, the power storage device 4 may have a self-sustaining function.

<蓄電変換部4a>
図1に示されたように、上述した蓄電装置4への蓄電や、蓄電装置4からの放電は、直流の電流にて行われるため、蓄電装置4と3次側負荷2bとの間には、3次負荷側電路6b2からの交流電流を直流電流に変換したり、蓄電装置4からの直流電流を3次負荷側電路6b2への交流電流に変換する蓄電変換部4aが接続されていても良い。
蓄電変換部4aは、3次負荷側電路6b2からの交流電流を直流電流に変換するコンバータと、蓄電装置4からの直流電流を交流電流に変換するインバータを備えていても良く、その他、これらのコンバータやインバータが変換する交流の電圧や周波数を制御する制御機や、気中遮断機(ACB)等を備えていても構わない。蓄電変換部4aの制御機で、蓄電装置4としての自立運転を制御しても良い。
尚、蓄電変換部4aは、パワコン(パワーコンディショナーの略)とも呼ばれる。
<Electricity storage conversion unit 4a>
As shown in FIG. 1, since the storage of electricity in the electricity storage device 4 and the discharge from the electricity storage device 4 described above are performed using direct current, there is a gap between the electricity storage device 4 and the tertiary load 2b. , even if the power storage converter 4a that converts the alternating current from the tertiary load side electric circuit 6b2 into a direct current or converts the DC current from the power storage device 4 into an alternating current to the tertiary load side electric circuit 6b2 is connected. good.
The power storage conversion unit 4a may include a converter that converts the alternating current from the tertiary load side electric circuit 6b2 into a direct current, and an inverter that converts the direct current from the power storage device 4 into an alternating current. It is also possible to include a controller that controls the voltage and frequency of alternating current that is converted by the converter or inverter, an air circuit breaker (ACB), and the like. The autonomous operation of the power storage device 4 may be controlled by the controller of the power storage conversion unit 4a.
Note that the power storage conversion unit 4a is also called a power conditioner (abbreviation for power conditioner).

1つの受配電システム1において、蓄電変換部4aの個数も、特に限定はないが、例えば、1つであったり、複数であっても良く、上述した蓄電装置4の個数と同じであっても構わない。
蓄電変換部4aの変換できる蓄電変換電力(容量)T’も、特に限定はないが、例えば、50kWや100kWであったり、200kW(100kW×2)であったり、30kW以上2000kW以下、好ましくは100kW以上1500kW以下、更に好ましくは200kW以上1000kW以下であっても良い。
尚、蓄電変換部4aの蓄電変換電力T’は、上述した蓄電装置4の蓄電力Tより小さくとも良く、その他、上述した3次側負荷2b等の消費電力より大きくとも構わない。
その他、蓄電装置4は、蓄電池補器4’として、変圧器3の2次巻線に、2次負荷側電路6bを介して接続されていても良い。
In one power receiving and distribution system 1, the number of power storage converters 4a is not particularly limited, but for example, it may be one or more, and may be the same as the number of power storage devices 4 described above. I do not care.
The storage conversion power (capacity) T' that can be converted by the storage converter 4a is also not particularly limited, but is, for example, 50 kW, 100 kW, 200 kW (100 kW x 2), or 30 kW or more and 2000 kW or less, preferably 100 kW. It may be greater than or equal to 1,500 kW, and more preferably greater than or equal to 200 kW and less than or equal to 1,000 kW.
Note that the stored converted power T' of the power storage conversion unit 4a may be smaller than the stored power T of the power storage device 4 described above, or may be larger than the power consumption of the tertiary side load 2b and the like described above.
In addition, the power storage device 4 may be connected to the secondary winding of the transformer 3 via a secondary load-side electric line 6b as a storage battery auxiliary device 4'.

<発電装置5>
図1、2に示されたように、発電装置5は、発電するのであれば、何れの構成でも良く、発電装置5は、上述した後述する負荷側電路6b(3次負荷側電路6b2)を介して、上述した変圧器3の3次巻線や、3次側負荷2bに接続されていて、この発電装置5からの発電力Hは、負荷側電路6bを介して、3次側負荷2bに消費されたり、更に、変圧器3を介して、2次側負荷2aに消費されても良い。
発電装置5は、例えば、太陽光発電、風力発電、水力発電、地熱発電、太陽熱発電、大気中の熱その他の自然界に存する熱による発電、バイオマス(動植物に由来する有機物であってエネルギー源として利用することができるもの)による発電などを行うものであっても良い。
この他、発電装置5は、海洋温度差や波力、潮流(海流)、潮汐による発電を行うものであっても良い。
<Power generation device 5>
As shown in FIGS. 1 and 2, the power generation device 5 may have any configuration as long as it generates electricity, and the power generation device 5 connects the load-side electric line 6b (tertiary load-side electric line 6b2) mentioned above to be described later. The power generation device 5 is connected to the tertiary winding of the transformer 3 and the tertiary load 2b via the load line 6b. It may be consumed by the secondary load 2a via the transformer 3.
The power generation device 5 can be used, for example, to generate electricity using solar power, wind power, hydroelectric power, geothermal power, solar power, atmospheric heat or other heat existing in the natural world, biomass (organic matter derived from animals and plants and used as an energy source). It may also be a device that generates electricity using a device that can
In addition, the power generation device 5 may generate power using ocean temperature difference, wave power, tidal current (ocean current), or tide.

1つの受配電システム1において、発電装置5の個数は、特に限定はないが、例えば、1つであったり、複数であっても良い。
発電装置5の発電力(容量)Hも、特に限定はないが、例えば、50kWや100kWであったり、100kW以上200kW以下や、200kW以上400kW以下(100kW以上200kW以下×2)であったり、30kW以上2000kW以下、好ましくは100kW以上1500kW以下、更に好ましくは200kW以上1000kW以下であっても良い。
尚、発電装置5の発電力Hは、上述した3次側負荷2b等の消費電力と略同じであったり、より大きくとも良い。
以下は、特に、太陽光発電を行う太陽光発電装置5Aについて述べる。
In one power reception and distribution system 1, the number of power generation devices 5 is not particularly limited, and may be one or more than one, for example.
The generating power (capacity) H of the power generation device 5 is also not particularly limited, but for example, it may be 50 kW, 100 kW, 100 kW or more and 200 kW or less, 200 kW or more and 400 kW or less (100 kW or more and 200 kW or less x 2), or 30 kW. The power may be greater than or equal to 2000 kW and less than or equal to 2000 kW, preferably greater than or equal to 100 kW and less than or equal to 1500 kW, and more preferably greater than or equal to 200 kW and less than or equal to 1000 kW.
Note that the power generation H of the power generation device 5 may be approximately the same as the power consumption of the above-mentioned tertiary side load 2b, etc., or may be larger.
The following will particularly describe the solar power generation device 5A that performs solar power generation.

<太陽光発電装置5A>
図1に示されたように、太陽光発電装置5Aは、太陽電池5Aaと、この太陽電池5Aaからの直流電流を交流電流に変換する太陽光発電変換部5Abを備えている。
この他、太陽光発電装置5Aは、日射強度を測定する日射計や、太陽光発電変換部5Abや送電部を収容する配電盤や、この配電盤内の空調を行うエアコン、太陽電池5Aaや接続箱等からの直流電流を集めて太陽光発電変換部5Abへ送る集電部などを有していても良い。
太陽光発電装置5Aにおける太陽電池5Aaは複数であっても良く、これら複数の太陽電池5Aaが直列に繋がって太陽電池ストリングを形成していても良い。
太陽光発電装置5Aにおいて、複数の太陽電池ストリングが並列に接続された接続箱を有していても良く、このような接続箱は複数であっても構わない。
<Solar power generation device 5A>
As shown in FIG. 1, the solar power generation device 5A includes a solar cell 5Aa and a solar power conversion section 5Ab that converts direct current from the solar cell 5Aa into alternating current.
In addition, the solar power generation device 5A includes a pyranometer that measures solar radiation intensity, a switchboard that accommodates the solar power conversion unit 5Ab and the power transmission unit, an air conditioner that performs air conditioning in this switchboard, a solar cell 5Aa, a connection box, etc. It may also include a current collecting section that collects the direct current from the solar power generation conversion section 5Ab and sends it to the solar power generation conversion section 5Ab.
There may be a plurality of solar cells 5Aa in the solar power generation device 5A, and these plurality of solar cells 5Aa may be connected in series to form a solar cell string.
The solar power generation device 5A may include a connection box in which a plurality of solar cell strings are connected in parallel, and there may be a plurality of such connection boxes.

<太陽電池5Aa>
図1に示されたように、太陽電池5Aaそれぞれは、光が照射されることによって、正極(+極)と負極(-極)の間に直流電力を発生し、発生する電力は、100W以上300W以下(例えば、250Wなど)である。
太陽電池5Aaは、通常パネル状であり、その設置する際の角度(水平方向から太陽電池5Aaのパネルまでの角度、以下、設置角度)θによって、発電量が異なる(例えば、設置角度θ=30°のときの発電量を100%とすれば、θ=20°で約99%、θ=10°で約95%、θ=0°で約90%)。
又、複数ある太陽電池5Aaのうち、ある太陽電池5Aaの+極に別の太陽電池5Aaの-極を接続し、別の太陽電池5Aaの+極にまた別の太陽電池5Aaの-極を接続し、以下、これを繰り返して、複数(例えば、5枚以上20枚以下)の太陽電池5Aaを直列に接続して、1本の太陽電池ストリングとなる。
<Solar cell 5Aa>
As shown in FIG. 1, each solar cell 5Aa generates DC power between the positive electrode (+ electrode) and the negative electrode (- electrode) by being irradiated with light, and the generated power is 100 W or more. It is 300W or less (for example, 250W, etc.).
The solar cell 5Aa is usually panel-shaped, and the amount of power generated varies depending on the angle at which it is installed (the angle from the horizontal direction to the panel of the solar cell 5Aa, hereinafter referred to as the installation angle) (for example, the installation angle θ = 30 If the amount of power generated at θ is 100%, it is about 99% when θ=20°, about 95% when θ=10°, and about 90% when θ=0°).
Also, among the plurality of solar cells 5Aa, the + pole of one solar cell 5Aa is connected to the − pole of another solar cell 5Aa, and the − pole of another solar cell 5Aa is connected to the + pole of another solar cell 5Aa. Hereafter, this process is repeated to connect a plurality of solar cells 5Aa (for example, 5 to 20 solar cells) in series to form one solar cell string.

このように、複数の太陽電池5Aaが直列に繋がった太陽電池ストリング全体としての+極(電力出力端)と、-極(グランド端)の間の電圧は、各太陽電池5Aaで発生された直流電圧の和であって、天候、時刻などで変動するが、200V以上1000V以下となる。
太陽電池ストリングの電力出力端から出力される電力は、各太陽電池5Aaの電力の和であって、500W以上6000W以下(例えば、出力電力が250Wの太陽電池5Aaを14枚接続した場合、3500W=3.5kW)となる。
上述した複数(例えば、5本以上15本以下)の太陽電池ストリングが、1個の接続箱へ並列に接続されている。
従って、それぞれの太陽電池ストリングの電力出力端(+極)とグランド端(-極)の間の電圧は、同一となり、上述したように、約0.5kW以上6kW以下である。
但し、1個の接続箱に対して、複数の太陽電池ストリングの電流が流れ込むため、接続箱に集まる電力は、2.5kW以上90kW以下(例えば、接続箱に、出力電力が3.5kWの太陽電池ストリングを、6本接続していれば21kW、12本接続していれば42kW)である。
よって、複数の接続箱を持つ太陽光発電装置5Aであれば、その太陽光発電力HAは、上述したように、50kWや100kWであったり、100kW以上200kW以下や、200kW以上400kW以下(100kW以上200kW以下×2)であったり、30kW以上2000kW以下、好ましくは100kW以上1500kW以下、更に好ましくは200kW以上1000kW以下となると言える。
In this way, the voltage between the + pole (power output end) and the - pole (ground end) of the entire solar cell string in which a plurality of solar cells 5Aa are connected in series is the direct current generated by each solar cell 5Aa. It is the sum of voltages, and varies depending on the weather, time of day, etc., but is between 200V and 1000V.
The power output from the power output end of the solar cell string is the sum of the power of each solar cell 5Aa, and is 500W or more and 6000W or less (for example, if 14 solar cells 5Aa with an output power of 250W are connected, 3500W = 3.5kW).
The plurality of solar cell strings described above (for example, 5 to 15 solar cell strings) are connected in parallel to one connection box.
Therefore, the voltage between the power output end (+ pole) and the ground end (- pole) of each solar cell string is the same, and is about 0.5 kW or more and 6 kW or less, as described above.
However, since the current of multiple solar cell strings flows into one junction box, the power collected in the junction box is 2.5 kW or more and 90 kW or less (for example, if the junction box is connected to a solar cell with an output power of 3.5 kW) If six battery strings are connected, the output is 21 kW, and if 12 battery strings are connected, the output is 42 kW).
Therefore, in the case of a solar power generation device 5A having multiple connection boxes, the solar power generation power HA may be 50 kW or 100 kW, 100 kW or more and 200 kW or less, or 200 kW or more and 400 kW or less (100 kW or more and 400 kW or less), as described above. 200 kW or less x 2), 30 kW or more and 2000 kW or less, preferably 100 kW or more and 1500 kW or less, and more preferably 200 kW or more and 1000 kW or less.

<太陽光発電変換部5Ab>
図1に示されたように、上述した太陽電池5Aaからの出力は、直流の電流にて行われるため、太陽電池5Aaと大電力電路4との間には、太陽電池5Aaからの直流電流を大電力電路4への交流電流に変換する太陽光発電変換部5Abが接続されていても良い。
太陽光発電変換部5Abは、太陽電池5Aaからの直流電流を交流電流に変換するインバータ等を備えていても良く、その他、このインバータが変換する交流の電圧や周波数を制御する制御機や、気中遮断機(ACB)等を備えていても構わない。
尚、太陽光発電変換部5Abも、パワコン(パワーコンディショナーの略)とも呼ばれる。
<Solar power conversion unit 5Ab>
As shown in FIG. 1, since the output from the solar cell 5Aa described above is performed as a direct current, the direct current from the solar cell 5Aa is connected between the solar cell 5Aa and the high power circuit 4. A photovoltaic power conversion unit 5Ab that converts into alternating current to the high power circuit 4 may be connected.
The photovoltaic power conversion unit 5Ab may include an inverter or the like that converts the direct current from the solar cell 5Aa into alternating current, and may also include a controller that controls the voltage and frequency of the alternating current that this inverter converts, and an air conditioner. It does not matter if it is equipped with an intermediate circuit breaker (ACB), etc.
Note that the solar power conversion unit 5Ab is also called a power conditioner (abbreviation for power conditioner).

1つの受配電システム1において、太陽光発電変換部5Abの個数も、特に限定はないが、例えば、1つであったり、複数であっても良く、1つの太陽光発電装置5Aに1つずつ存在しても構わない。
太陽光発電変換部5Abの変換できる発電変換電力(太陽光発電変換電力、容量)H’も、特に限定はないが、例えば、10kWや30kWであったり、50kWや、62.5kW、100kW(50kW×2)、125kW(62.5kW×2)であったり、5kW以上1000kW以下、好ましくは10kW以上750kW以下、更に好ましくは20kW以上500kW以下であっても良い。
尚、太陽光発電変換部5Abの発電変換電力H’も、上述した3次側負荷2b等の消費電力と略同じであったり、より大きくとも良い。
更に、太陽光発電変換部5Abの発電変換電力H’は、上述した太陽光発電装置5Aとしての太陽光発電力HAより小さく(換言すれば、太陽光発電力HAが、発電変換電力H’より大きく)とも良く、この場合、太陽電池5Aaは、太陽光発電変換部5Abに対して過積載であるとも言え、過積載であれば、太陽光発電装置5Aからの電力で、3次側負荷2b等の消費電力をほぼ供給でき易くなるとも言える。
In one power reception and distribution system 1, the number of solar power generation conversion units 5Ab is not particularly limited, but for example, it may be one or more, one for each solar power generation device 5A. It doesn't matter if it exists.
There is no particular limitation on the power H' that can be converted by the solar power conversion unit 5Ab (solar power conversion power, capacity), but for example, it may be 10 kW, 30 kW, 50 kW, 62.5 kW, 100 kW (50 kW), etc. x2), 125 kW (62.5 kW x 2), or 5 kW or more and 1000 kW or less, preferably 10 kW or more and 750 kW or less, and more preferably 20 kW or more and 500 kW or less.
Note that the generated converted power H' of the photovoltaic power conversion unit 5Ab may also be approximately the same as the power consumption of the above-mentioned tertiary side load 2b, etc., or may be larger.
Furthermore, the generated converted power H' of the solar power conversion unit 5Ab is smaller than the solar generated power HA as the solar power generation device 5A described above (in other words, the solar generated power HA is smaller than the generated converted power H'). In this case, it can be said that the solar cell 5Aa is overloaded with respect to the solar power generation converter 5Ab, and if it is overloaded, the power from the solar power generation device 5A is used to reduce the tertiary side load 2b. It can also be said that it becomes easier to supply almost all of the power consumption.

<系統側電路6a、負荷側電路6bなど>
図1~4、7に示されたように、系統側電路6aは、系統Kと、上述した変圧器3の間を接続する電路である。
又、負荷側電路6bは、上述した変圧器3と、上述した負荷2の間を接続する電路であって、詳解すれば、変圧器3と、上述した2次側負荷2aの間を接続する電路が、2次負荷側電路6b1であり、変圧器3と、上述した3次側負荷2bの間を接続する電路が、3次負荷側電路6b2である。
尚、本発明における「電路」とは、電気を流すものであって、銅、アルミニウム、銀、金、ニクロム等の導体や、この導体を絶縁物で覆ったケーブル、一般的な電線などを含む。
<System side electric line 6a, load side electric line 6b, etc.>
As shown in FIGS. 1 to 4 and 7, the system-side electric line 6a is an electric line that connects the system K and the transformer 3 described above.
Further, the load-side electric line 6b is an electric line that connects the above-mentioned transformer 3 and the above-mentioned load 2, and more specifically, it connects between the transformer 3 and the above-mentioned secondary side load 2a. The electrical path is a secondary load-side electrical path 6b1, and the electrical path that connects the transformer 3 and the above-mentioned tertiary-side load 2b is a tertiary load-side electrical path 6b2.
In addition, the "electrical path" in the present invention is one that conducts electricity, and includes conductors such as copper, aluminum, silver, gold, and nichrome, cables in which these conductors are covered with insulators, and general electric wires. .

各電路6a、6b1、6b2における電圧は、上述した変圧器3の1~3次巻線側における電圧と同じであると言え、詳しくは、系統側電路6aの電圧は、変圧器3の1次巻線側の電圧(謂わば、系統Kの電圧)であり、2次負荷側電路6b1の電圧は、変圧器3の2次巻線側の電圧であり、3次負荷側電路6b2の電圧は、変圧器3の3次巻線側の電圧となる。
系統側電路6aや、各負荷側電路6b1、6b2で導通される電流は、三相3線(3φ3W)で60Hz又は50Hz等の交流であったり、その他、単相3線(1φ3W)や、単相2線(1φ2W)等の交流であっても良い。
It can be said that the voltage in each of the electric lines 6a, 6b1, and 6b2 is the same as the voltage on the first to third winding sides of the transformer 3 described above. The voltage on the winding side (so to speak, the voltage of the system K), the voltage on the secondary load side electric line 6b1 is the voltage on the secondary winding side of the transformer 3, and the voltage on the tertiary load side electric line 6b2 is , the voltage on the tertiary winding side of the transformer 3.
The current conducted in the system side electric circuit 6a and each of the load side electric circuits 6b1 and 6b2 may be a three-phase three-wire (3φ3W) AC of 60Hz or 50Hz, or a single-phase three-wire (1φ3W) or single current. An alternating current such as a two-phase wire (1φ2W) may also be used.

<系統遮断器7a、負荷遮断器7bなどの各遮断器>
図1~5、7、10(b)に示されたように、受配電システム1や受配電盤10は、後述する系統遮断器7aや負荷遮断器7bを有していたり、その他、蓄電遮断器7cや蓄電補器遮断器7c’、発電遮断器7dを有していても構わない。
系統遮断器7aは、上述した系統側電路6aを遮断可能な遮断器であり、負荷遮断器7bは、上述した負荷側電路6bを遮断可能な遮断器であって、負荷側電路6bについて詳解すれば、上述した2次負荷側電路6b1を遮断可能な遮断器が、2次負荷遮断器7b1であり、上述した3次負荷側電路6b2を遮断可能な遮断器が、3次負荷遮断器7b2である。
尚、2次負荷遮断器7b1について更に詳解すれば、2次負荷側電路6b1のうち、特に、変圧器3の2次巻線と電灯負荷2a1の間を接続する電路(電灯負荷側電路(一般電灯負荷側電路)6b11)を遮断可能な遮断器が、電灯負荷遮断器(一般電灯負荷遮断器)7b11であり、変圧器3の2次巻線と動力負荷2a2の間を接続する電路(動力負荷側電路(一般動力負荷側電路)6b12)を遮断可能な遮断器が、動力負荷遮断器(一般動力負荷遮断器)7b12である。
又、蓄電遮断器7cは、上述した3次負荷側電路6b2と蓄電装置4の間の電路を遮断可能な遮断器であり、発電遮断器7dは、上述した3次負荷側電路6b2と発電装置5の間の電路を遮断可能な遮断器である。
その他、変圧器3の2次巻線に、充電器2Bや蓄電池補器4’が接続されている場合には、変圧器3の2次巻線と充電器2Bの間を接続する電路(2次負荷側電路6b1)を遮断可能な遮断器は、やはり2次負荷遮断器7b1であると言え、変圧器3の2次巻線と蓄電池補器4’の間の電路を遮断可能な遮断器が、蓄電補器遮断器7c’である。
<Each circuit breaker such as the system breaker 7a and the load breaker 7b>
As shown in FIGS. 1 to 5, 7, and 10(b), the power receiving and distributing system 1 and the power receiving and distributing board 10 include a system breaker 7a and a load breaker 7b, which will be described later. 7c, a power storage auxiliary circuit breaker 7c', and a power generation circuit breaker 7d.
The system breaker 7a is a circuit breaker capable of interrupting the above-mentioned system-side electric circuit 6a, and the load-side circuit breaker 7b is a circuit breaker capable of interrupting the above-mentioned load-side electric circuit 6b. For example, the circuit breaker capable of interrupting the secondary load side circuit 6b1 described above is the secondary load circuit breaker 7b1, and the circuit breaker capable of interrupting the tertiary load circuit 6b2 described above is the tertiary load circuit breaker 7b2. be.
In addition, to explain the secondary load breaker 7b1 in more detail, among the secondary load side electric circuits 6b1, especially the electric line connecting between the secondary winding of the transformer 3 and the lighting load 2a1 (lighting load side electric circuit (general The circuit breaker capable of interrupting the electrical circuit (lighting load side electrical circuit) 6b11) is the electrical lighting load circuit breaker (general electrical lighting load circuit breaker) 7b11. A circuit breaker capable of interrupting the load-side electrical circuit (general power load-side electrical circuit 6b12) is a power load circuit breaker (general power load circuit breaker) 7b12.
Further, the power storage circuit breaker 7c is a circuit breaker capable of interrupting the electrical circuit between the above-mentioned tertiary load-side electrical circuit 6b2 and the electrical storage device 4, and the power generation circuit breaker 7d is a circuit breaker capable of interrupting the electrical circuit between the above-mentioned tertiary load-side electrical circuit 6b2 and the power generating device. This is a circuit breaker that can interrupt the electrical circuit between 5 and 5.
In addition, if a charger 2B or a storage battery auxiliary device 4' is connected to the secondary winding of the transformer 3, an electric line (2 The circuit breaker capable of interrupting the secondary load circuit 6b1) can be said to be the secondary load circuit breaker 7b1, which is a circuit breaker capable of interrupting the circuit between the secondary winding of the transformer 3 and the storage battery auxiliary device 4'. is the electricity storage auxiliary circuit breaker 7c'.

これらの遮断器のうち、系統遮断器7aは、真空遮断器(VCB、Vacuum Circuit Breaker)であっても良く、3次負荷遮断器7b2や、蓄電遮断器7c、発電遮断器7dは、漏電遮断器(ELCB、Earth Leakage Circuit Breaker、特に、母線プラグインブレーカ(BPM、Bus Plug in Mccb(Molded Case Circuit Break))であっても良く、その他、電灯負荷遮断器7b11や動力負荷遮断器7b12を含む2次負荷遮断器7b1や、蓄電補器遮断器7c’は、配線用遮断器(MCCB、Molded Case Circuit Break 、特に、母線プラグインブレーカ)であっても良い。
これら遮断器の定格容量も、特に限定はないが、例えば、6kWや20kW、50kW、100kW、111kW、180kW、250kWであったり、1kW以上1000kW以下、好ましくは10kW以上600kW以下、更に好ましくは40kW以上400kW以下であっても良い。
詳解すれば、3次負荷遮断器7b2は、他の遮断器より最も定格容量が大きくても(250kWや、180kWなど)良く、発電遮断器7dが、その次に定格容量が大きくても(111kWなど)良く、蓄電遮断器7cが、更にその次に定格容量が大きくても(100kWなど)良く、その他、2次負荷遮断器7b1と動力負荷遮断器7b12は、略同じ定格容量(50kWなど)であって、動力負荷遮断器7b12が、更に小さい定格容量(20kWなど)で、蓄電補器遮断器7c’が、最も小さい定格容量(6kWなど)であっても構わない。
1つの各遮断器を介して、複数の負荷2や、複数の蓄電装置4、複数の発電装置5等が、3次負荷側電路6b2や2次負荷側電路6b1に接続されていても良く、又、1つの各遮断器を介して、1つの負荷2や、1つの蓄電装置4、1つの発電装置5等が、3次負荷側電路6b2や2次負荷側電路6b1に接続されていても構わない。
Among these circuit breakers, the system breaker 7a may be a vacuum circuit breaker (VCB), and the tertiary load circuit breaker 7b2, the power storage circuit breaker 7c, and the power generation circuit breaker 7d are earth leakage circuit breakers. (ELCB, Earth Leakage Circuit Breaker, in particular, bus plug-in breaker (BPM, Bus Plug in Mccb (Molded Case Circuit Break)), and also includes electric light load breakers 7b11 and power load breakers 7b12. The secondary load breaker 7b1 and the power storage auxiliary circuit breaker 7c' may be molded case circuit breakers (MCCBs, particularly busbar plug-in breakers).
The rated capacity of these circuit breakers is also not particularly limited, but may be, for example, 6 kW, 20 kW, 50 kW, 100 kW, 111 kW, 180 kW, 250 kW, 1 kW or more and 1000 kW or less, preferably 10 kW or more and 600 kW or less, and more preferably 40 kW or more. It may be 400kW or less.
To explain in detail, the tertiary load circuit breaker 7b2 may have the largest rated capacity (250kW, 180kW, etc.) compared to other circuit breakers, and the power generation circuit breaker 7d may have the next largest rated capacity (111kW, etc.). etc.), the storage circuit breaker 7c may have the next highest rated capacity (such as 100kW), and the secondary load circuit breaker 7b1 and the power load circuit breaker 7b12 may have approximately the same rated capacity (such as 50kW). In this case, the power load circuit breaker 7b12 may have an even smaller rated capacity (such as 20 kW), and the power storage auxiliary circuit breaker 7c' may have the smallest rated capacity (such as 6 kW).
A plurality of loads 2, a plurality of power storage devices 4, a plurality of power generation devices 5, etc. may be connected to the tertiary load-side electrical circuit 6b2 and the secondary load-side electrical circuit 6b1 via one circuit breaker, Furthermore, even if one load 2, one power storage device 4, one power generation device 5, etc. are connected to the tertiary load side electric circuit 6b2 or the secondary load side electric circuit 6b1 via one circuit breaker, I do not care.

<盤筐体8>
図1~8に示されたように、盤筐体8は、後述する受配電盤10の機器を内蔵する筐体であって、1つの受配電システム1において、1つだけ存在しても良いし、複数存在しても構わない。
盤筐体8の具体的な構成は、特に限定はないが、例えば、後述する高圧盤筐体8Aと、後述する低圧盤筐体8Bを含んでいても良い。
尚、盤筐体8は、高圧盤筐体8Aや低圧盤筐体8B以外の盤の筐体を含んでいても良く、例えば、後述する制御装置20や通信装置などを内蔵したコントロールボックスやキュービクル等の機器筐体などを含んでも構わない。
又、盤筐体8の重量(高圧盤筐体8Aの重量と低圧盤筐体8Bの重量の和)は、上述した変圧器3の重量より軽くても良く、盤筐体8の重量の具体的な値は、特に限定はないが、例えば、100kg以上500kg以下、好ましくは150kg以上450kg以下、更に好ましくは200kg以上400kg以下(300kgなど)であっても構わない。
<Panel housing 8>
As shown in FIGS. 1 to 8, the panel casing 8 is a casing that houses equipment of a power receiving and distribution board 10, which will be described later, and there may be only one in one power receiving and distributing system 1. , there may be more than one.
The specific configuration of the panel casing 8 is not particularly limited, but may include, for example, a high voltage panel casing 8A described later and a low voltage panel casing 8B described below.
The panel casing 8 may include a panel casing other than the high voltage panel casing 8A and the low voltage panel casing 8B, such as a control box or cubicle containing a control device 20, a communication device, etc., which will be described later. It may also include equipment casings such as.
Further, the weight of the panel casing 8 (the sum of the weight of the high voltage panel casing 8A and the weight of the low voltage panel casing 8B) may be lighter than the weight of the transformer 3 described above, and the specific weight of the panel casing 8 Although the value is not particularly limited, it may be, for example, 100 kg or more and 500 kg or less, preferably 150 kg or more and 450 kg or less, and more preferably 200 kg or more and 400 kg or less (such as 300 kg).

<高圧盤筐体8A、低圧盤筐体8B>
図1~8、10に示されたように、高圧盤筐体8Aは、上述した盤筐体8に含まれると共に、上述した系統遮断器7aが内部に設けられた盤筐体である。
又、低圧盤筐体8Bは、上述した盤筐体8に含まれると共に、上述した負荷遮断器7bが内部に設けられた盤筐体である。
尚、これらの盤筐体8A、8Bの重量は、上述した変圧器3に支持されていても良く、このような支持として、高圧盤筐体8Aが、上述した変圧器3に上方から取り付けられ、低圧盤筐体8Bが、高圧盤筐体8Aに平面視一方(例えば、前方から)から取り付けられ、低圧盤筐体8Bの下端が、変圧器3の下部まで延びていても構わない。
ここで、「低圧盤筐体8Bの下端が、変圧器3の下部まで延びている」とは、低圧盤筐体8Bの下端が、変圧器3の下端の近傍(変圧器3の下端より上方で且つ変圧器3の上下方向長さにおける下から1/4(4分の1)以上1/3(3分の1)以下の部分の範囲内に入る)まで延びていることや、低圧盤筐体8Bの下端が、変圧器3の下端と略同じ高さであることを含むものの、低圧盤筐体8Bの下端が、変圧器3の下端より下方まで延びていることは含まない。又、低圧盤筐体8Bの下端が、変圧器3の下端と略同じ高さであっても、低圧盤筐体8Bは、設置面に対しては設置されておらず、変圧器3だけが設置面に対して設置されていても良く、逆に、低圧盤筐体8Bも、設置面に対して設置されていても構わない。
<High voltage panel housing 8A, low voltage panel housing 8B>
As shown in FIGS. 1 to 8 and 10, the high voltage panel casing 8A is a panel casing that is included in the above-described panel casing 8 and in which the above-described system breaker 7a is provided inside.
Furthermore, the low-voltage panel casing 8B is a panel casing that is included in the above-mentioned panel casing 8 and has the above-described load breaker 7b provided therein.
Note that the weight of these panel casings 8A and 8B may be supported by the transformer 3 described above, and as such support, the high voltage panel casing 8A may be attached to the transformer 3 described above from above. , the low voltage panel casing 8B may be attached to the high voltage panel casing 8A from one side in plan view (for example, from the front), and the lower end of the low voltage panel casing 8B may extend to the lower part of the transformer 3.
Here, "the lower end of the low voltage panel housing 8B extends to the lower part of the transformer 3" means that the lower end of the low voltage panel housing 8B is located near the lower end of the transformer 3 (above the lower end of the transformer 3). and extends within the range of 1/4 (1/4) or more and 1/3 (1/3) or less from the bottom of the vertical length of the transformer 3, and Although this includes that the lower end of the casing 8B is at approximately the same height as the lower end of the transformer 3, it does not include that the lower end of the low voltage panel casing 8B extends below the lower end of the transformer 3. Furthermore, even though the lower end of the low voltage panel casing 8B is approximately at the same height as the lower end of the transformer 3, the low voltage panel casing 8B is not installed relative to the installation surface, and only the transformer 3 It may be installed with respect to the installation surface, and conversely, the low voltage panel housing 8B may also be installed with respect to the installation surface.

高圧盤筐体8Aや低圧盤筐体8Bは、その各具体的な構成に、特に限定はないが、例えば、それぞれが、全体として略直方体状や、立方体状等に形成されていても良く、キュービクルとも呼ばれる。尚、高圧盤筐体8Aと低圧盤筐体8Bは、その上面(天板)が後傾していても良い。
以下、高圧盤筐体8Aや低圧盤筐体8Bは、それぞれ主に略直方体状であるとして述べる。
高圧盤筐体8Aや低圧盤筐体8Bは、それぞれ開閉自在な扉(2枚の観音開きの扉、1枚の横開きの扉など)8Aa、8Baを1つ又は複数有していても良く、特に、低圧盤筐体8Bにおいて扉8Baが設けられた側を、低圧盤筐体8B(だけでなく受配電盤10としても)前側としても良く、又、高圧盤筐体8Aにおいて扉8Aaが設けられた側を、高圧盤筐体8A(だけでなく受配電盤10としても)後側としても構わない。尚、高圧盤筐体8Aや低圧盤筐体8Bにおける扉は、8Aa、8Baは、それぞれを掃き出し窓状にしても良い。
その他、高圧盤筐体8Aと低圧盤筐体8Bの間は、仕切板8sで仕切られていても良く(図3、10(a)参照)。又、高圧盤筐体8Aの前後長さは、変圧器3の前後長さより長いため、高圧盤筐体8Aの後部8Abは、変圧器3より後方突出状となっていても良い(図3参照)。更に、低圧盤筐体8Bの上端部には、前方突出した庇部8Bbが設けられていても良い(図3参照)。
There is no particular limitation on the specific configuration of the high-voltage panel casing 8A and the low-voltage panel casing 8B; Also called a cubicle. Note that the upper surfaces (top plates) of the high-pressure panel housing 8A and the low-voltage panel housing 8B may be tilted backward.
Hereinafter, the high-voltage panel casing 8A and the low-voltage panel casing 8B will be described as each having a substantially rectangular parallelepiped shape.
The high voltage panel casing 8A and the low voltage panel casing 8B may each have one or more doors 8Aa and 8Ba that can be opened and closed (two double doors, one side door, etc.). In particular, the side where the door 8Ba is provided in the low voltage panel housing 8B may be the front side of the low voltage panel housing 8B (as well as the power distribution board 10), and the side where the door 8Aa is provided in the high voltage panel housing 8A may be the front side. The rear side of the high-voltage panel housing 8A (as well as the power receiving and distribution board 10) may be used as the rear side. Note that the doors 8Aa and 8Ba of the high-voltage panel housing 8A and the low-voltage panel housing 8B may each have a window shape.
In addition, the high-pressure panel housing 8A and the low-pressure panel housing 8B may be separated by a partition plate 8s (see FIGS. 3 and 10(a)). Furthermore, since the front-to-back length of the high-voltage panel casing 8A is longer than the front-to-back length of the transformer 3, the rear portion 8Ab of the high-voltage panel casing 8A may protrude rearward from the transformer 3 (see FIG. 3). ). Furthermore, an eaves portion 8Bb that projects forward may be provided at the upper end of the low-pressure panel housing 8B (see FIG. 3).

各盤筐体8A、8Bの大きさは、特に限定はないが、高圧盤筐体8Aであれば、例えば、左右長さ(幅)が990mmで、前後長さ(奥行)が950mmで、前面側における上下長さ(高さ)が1070mmで、後面側における上下長さが1040mmであったり、左右長さが700mm以上1600mm以下、好ましくは800mm以上1400mm以下、更に好ましくは900mm以上1200mm以下であったり、前後長さが650mm以上1550mm以下、好ましくは750mm以上1350mm以下、更に好ましくは850mm以上1150mm以下であったり、前面側や後面側における上下長さが800mm以上1700mm以下、好ましくは900mm以上1500mm以下、更に好ましくは1000mm以上1300mm以下であっても良い。
低圧盤筐体8Bの大きさについては、例えば、左右長さ(幅)が990mmで、庇部8Bbを除く前後長さ(奥行)が350mm(庇部8Bbを含めると、480mm)で、前面側における上下長さ(高さ)が1860mmで、後面側における上下長さが1850mmであったり、左右長さが700mm以上1600mm以下、好ましくは800mm以上1400mm以下、更に好ましくは900mm以上1200mm以下であったり、庇部8Bbを除く前後長さが200mm以上650mm以下、好ましくは250mm以上550mm以下、更に好ましくは300mm以上450mm以下(庇部8Bbを含めると、350mm以上800mm以下、好ましくは400mm以上700mm以下、更に好ましくは450mm以上600mm以下)であったり、前面側や後面側における上下長さが1550mm以上2450mm以下、好ましくは1650mm以上2250mm以下、更に好ましくは1750mm以上2050mm以下であっても良い。
The size of each panel housing 8A, 8B is not particularly limited, but if it is the high voltage panel housing 8A, for example, the left and right length (width) is 990 mm, the front and rear length (depth) is 950 mm, and the front The vertical length (height) on the side is 1070 mm, the vertical length on the rear side is 1040 mm, and the horizontal length is 700 mm or more and 1600 mm or less, preferably 800 mm or more and 1400 mm or less, and more preferably 900 mm or more and 1200 mm or less. or the longitudinal length is 650 mm or more and 1550 mm or less, preferably 750 mm or more and 1350 mm or less, more preferably 850 mm or more and 1150 mm or less, and the vertical length on the front side or rear side is 800 mm or more and 1700 mm or less, preferably 900 mm or more and 1500 mm or less. , more preferably 1000 mm or more and 1300 mm or less.
Regarding the size of the low-voltage panel housing 8B, for example, the left-right length (width) is 990 mm, the front-to-back length (depth) excluding the eaves part 8Bb is 350 mm (480 mm if the eaves part 8Bb is included), and the front side is 990 mm. The vertical length (height) on the rear side is 1860 mm, and the vertical length on the rear side is 1850 mm, and the horizontal length is 700 mm or more and 1600 mm or less, preferably 800 mm or more and 1400 mm or less, and more preferably 900 mm or more and 1200 mm or less. , the front and back length excluding the eaves part 8Bb is 200 mm or more and 650 mm or less, preferably 250 mm or more and 550 mm or less, more preferably 300 mm or more and 450 mm or less (including the eave part 8Bb, 350 mm or more and 800 mm or less, preferably 400 mm or more and 700 mm or less, and The vertical length on the front side or rear side may be 1550 mm or more and 2450 mm or less, preferably 1650 mm or more and 2250 mm or less, and more preferably 1750 mm or more and 2050 mm or less.

高圧盤筐体8Aや低圧盤筐体8Bは、その外部から内部へ空気を吸入する吸気口8’や、その内部から外部へ排出する排気口8”を有していても良い。
これら吸気口8’や排気口8”の位置は、特に限定はないが、例えば、吸気口8’は、高圧盤筐体8Aにおける後方突出状の後部8Abの下面や、低圧盤筐体8Bの後面(変圧器3との隙間に開口するように)設けられても良く、又、排気口8”は、低圧盤筐体8Bにおける庇部8Bbの下面に設けられていても構わず、これらの箇所に吸気口8’や排気口8”を設けることで、各盤筐体8A、8Bの側面にガラリ等を設ける場合より目立つことがなく、見栄えが向上すると言える。その他、一般的に、吸気口8’は、高圧盤筐体8Aや低圧盤筐体8Bの下部に設けられ、排気口8”は、高圧盤筐体8Aや低圧盤筐体8B(変圧器3より上方)に設けられていても良い。
ここで、高圧盤筐体8Aと低圧盤筐体8Bの間の仕切板8sにも、空気が通る開口部(謂わば、通気口)が設けられても良いが、この通気口は、高圧盤筐体8Aの内部の空気が、その外部である低圧盤筐体8Bの内部へ通るため、高圧盤筐体8Aにとっては排気口8”であると言え、低圧盤筐体8Bにとっては吸気口8’であると言える。
その他、低圧盤筐体8B内には、2次負荷側電路6b1や3次負荷側電路6b2に対して、母線プラグインブレーカである2次負荷遮断器7b1や3次負荷遮断器7b2を差し込む差込部8Bcを有していても良く(図3、4、7参照)、特に、この差込部8Bcに差し込んだ状態の母線プラグインブレーカの2次負荷遮断器7b1を、図10(b)に示す。尚、2次負荷遮断器7b1や3次負荷遮断器7b2は、この差込部8Bcに差し込まれているだけでなく、高圧盤筐体8A内(低圧盤筐体8Bからすれば、言わば、裏側)に配設されていても良く、この裏側に配設された2次負荷遮断器7b1や3次負荷遮断器7b2は、母線プラグインブレーカでなくとも構わない。
又、高圧盤筐体8Aにおける後方突出状の後部8Abの下面には、系統側電路6aである高圧ケーブルの挿通孔が設けられても良く、その結果、高圧ケーブルは、高圧盤筐体8Aの後部8Abの下面から下方に垂下することとなり、系統側電路6a(高圧ケーブル)を配設しても、受配電盤10の前後長さに支障はない。
更に、低圧盤筐体8Bの下面にも、負荷側電路6bである低圧ケーブルの挿通孔が設けられても良く、その結果、低圧ケーブルは、低圧盤筐体8Bの下面から下方に垂下することとなり、負荷側電路6b(低圧ケーブル)を配設しても、受配電盤10の前後長さに支障はない。
The high-pressure panel casing 8A and the low-pressure panel casing 8B may have an intake port 8' for sucking air into the inside from the outside, and an exhaust port 8'' for discharging air from the inside to the outside.
The positions of the intake port 8' and the exhaust port 8'' are not particularly limited; The exhaust port 8'' may be provided on the rear surface (opening into the gap with the transformer 3), and the exhaust port 8'' may be provided on the lower surface of the eaves section 8Bb in the low voltage panel housing 8B. By providing an intake port 8' and an exhaust port 8'' at a location, it is less noticeable than when a louver is provided on the side of each panel housing 8A, 8B, and the appearance is improved.In addition, in general, The port 8' is provided at the bottom of the high-voltage panel housing 8A and the low-voltage panel housing 8B, and the exhaust port 8'' is provided at the high-voltage panel housing 8A and the low-voltage panel housing 8B (above the transformer 3). It's okay.
Here, the partition plate 8s between the high-pressure panel housing 8A and the low-voltage panel housing 8B may also be provided with an opening (so-called a vent) through which air passes; Since the air inside the casing 8A passes into the outside of the low-pressure panel casing 8B, it can be said that it is the exhaust port 8'' for the high-pressure panel casing 8A, and the intake port 8 for the low-pressure panel casing 8B. '.
In addition, in the low voltage panel housing 8B, there is a gap for inserting a secondary load breaker 7b1 and a tertiary load breaker 7b2, which are bus bar plug-in breakers, into the secondary load side electric circuit 6b1 and the tertiary load side electric circuit 6b2. In particular, the secondary load breaker 7b1 of the bus bar plug-in breaker inserted into the insertion portion 8Bc may be inserted into the insertion portion 8Bc (see FIGS. 3, 4, and 7), as shown in FIG. 10(b). Shown below. The secondary load breaker 7b1 and the tertiary load breaker 7b2 are not only inserted into this insertion part 8Bc, but also inside the high voltage panel casing 8A (from the low voltage panel casing 8B, so to speak, on the back side). ), and the secondary load breaker 7b1 and tertiary load breaker 7b2 provided on the back side do not have to be busbar plug-in breakers.
Further, an insertion hole for a high voltage cable, which is the grid side electric circuit 6a, may be provided on the lower surface of the rearwardly projecting rear part 8Ab of the high voltage panel housing 8A, so that the high voltage cable can be inserted into the high voltage panel housing 8A. It will hang downward from the lower surface of the rear part 8Ab, and even if the system side electrical circuit 6a (high voltage cable) is arranged, there will be no problem in the longitudinal length of the switchboard 10.
Furthermore, an insertion hole for a low voltage cable, which is the load side electric circuit 6b, may be provided on the lower surface of the low voltage panel housing 8B, so that the low voltage cable hangs downward from the lower surface of the low voltage panel housing 8B. Therefore, even if the load-side electric line 6b (low-voltage cable) is arranged, there is no problem with the front-to-back length of the power receiving and distribution board 10.

<受配電盤10>
図1~8に示されたように、本発明に係る受配電盤10は、上述した盤筐体8と、上述した変圧器3を備えた盤である。
よって、受配電盤10の重量は、上述した変圧器3の重量と、上述した盤筐体8の重量(高圧盤筐体8Aの重量と低圧盤筐体8Bの重量の和)を足した値となり、その具体的な値は、特に限定はないが、例えば、1100kg以上2500kg以下、好ましくは1450kg以上2250kg以下、更に好ましくは1600kg以上2100kg以下(1850kgなど)であっても構わない。
このような受配電盤10は、盤筐体8(高圧盤筐体8Aと低圧盤筐体8B)の内部に、上述した系統側電路6a(の一部)と系統遮断器7a、及び、上述した負荷側電路6b(の一部)と負荷遮断器7bを有しており、その他、蓄電遮断器7cや蓄電補器遮断器7c’、発電遮断器7dを有していても良い。
又、受配電盤10は、1つの受配電システム1において、1つだけ存在しても良いし、複数存在しても構わない。
<Power receiving and distribution board 10>
As shown in FIGS. 1 to 8, a power receiving and distribution board 10 according to the present invention is a board that includes the above-described board casing 8 and the above-described transformer 3.
Therefore, the weight of the switchboard 10 is the sum of the weight of the transformer 3 described above and the weight of the panel casing 8 described above (the sum of the weight of the high voltage panel casing 8A and the weight of the low voltage panel casing 8B). The specific value thereof is not particularly limited, but may be, for example, 1100 kg or more and 2500 kg or less, preferably 1450 kg or more and 2250 kg or less, and more preferably 1600 kg or more and 2100 kg or less (such as 1850 kg).
Such a power distribution board 10 includes the above-mentioned grid-side electrical circuit 6a (a part of it) and the grid circuit breaker 7a, and the above-mentioned grid circuit breaker 7a, inside the board housing 8 (high-voltage board housing 8A and low-voltage board housing 8B). It has (a part of) a load-side electric circuit 6b and a load breaker 7b, and may also have a power storage breaker 7c, a power storage auxiliary circuit breaker 7c', and a power generation circuit breaker 7d.
Moreover, in one power reception and distribution system 1, only one power reception and distribution board 10 may exist, or a plurality of power reception and distribution boards 10 may exist.

尚、受配電盤10は、高圧盤筐体8Aの内部における系統側電路6aに、限流ヒューズ付高圧交流負荷開閉器(LBS、Load Break Switch、)10aや、零相電圧検出器(ZPD、Zero-Phase Potential Device)10b、電力ヒューズ(PF、Power Fuse)10c、計器用変圧器(VT、Voltage Transformer)10d、サーキットプロテクタ(CP、Circuit Protector)10e、同期検定器10f、計器用変流器(CT、Current Transformer)10g、デジタルマルチメータ(逆電力継電器(RPR、Reverse Power Relay)や、地絡過電圧継電器(OVGR、Over Voltage Ground Relay)の機能を有したもの)10h、単巻変圧器10j、無停電電源装置(UPS、Uninterruptible Power Supply)10kが設けられていても良い。
又、受配電盤10は、低圧盤筐体8Bの内部における負荷側電路6b(厳密には、2次負荷側電路6b1と3次負荷側電路6b2のそれぞれ)においては、計器用変流器10n(一部は、クランプ型変流器10n’)、ヒューズ(F、Fuse)10p、電圧計10q、電圧計切替開閉器(VS、Voltage change over Switch)10r、電流計10s、電流計切換開閉器(AS、Ammeter change over Switch)10t、電力計(例えば、電圧計10qの出力と各計器用変流器10nの出力に基づいて、負荷2(充電器2B)の電力と、蓄電装置4の電力(蓄電力T)と、発電装置5の電力(発電力H)を測定する各電力計など)10uが設けられていても良い。
更に、受配電盤10は、変圧器3からB種接地(EB)や、断路端子10vと抵抗10xを介してのD種接地(ED)がされていても良い。
The power distribution board 10 is equipped with a high voltage AC load switch (LBS, Load Break Switch) 10a with a current limiting fuse and a zero phase voltage detector (ZPD, Zero -Phase Potential Device) 10b, Power Fuse (PF) 10c, Voltage Transformer (VT) 10d, Circuit Protector (CP) 10e, Synchronous Verifier 10f, Current Transformer ( CT, Current Transformer) 10g, digital multimeter (with Reverse Power Relay (RPR) and Over Voltage Ground Relay (OVGR) functions) 10h, autotransformer 10j, An uninterruptible power supply (UPS) 10k may be provided.
In addition, the power receiving and distribution board 10 has an instrument current transformer 10n ( Some of the parts include a clamp type current transformer 10n'), a fuse (F, Fuse) 10p, a voltmeter 10q, a voltmeter change over switch (VS) 10r, an ammeter 10s, an ammeter change over switch ( AS, Ammeter change over Switch) 10t, wattmeter (for example, based on the output of the voltmeter 10q and the output of each instrument current transformer 10n, the power of the load 2 (charger 2B) and the power of the power storage device 4 ( A storage power T) and a power meter 10u for measuring the power (generated power H) of the power generating device 5 may be provided.
Further, the power receiving and distribution board 10 may be connected to class B grounding (EB) from the transformer 3 or to class D grounding (ED) via the disconnection terminal 10v and the resistor 10x.

<制御装置20>
図2に示されたように、制御装置20は、上述した受配電盤10における盤筐体8内のデジタルマルチメータ10hに接続され、デジタルマルチメータ10hからの出力(停止信号など)や、電力計(各電力計)uからの出力に基づき、上述した太陽光発電変換部5Abの変換を停止させる等の制御をする装置であって、1つの装置で構成されていても良いが、スマートロガー20aと、所定のプログラムを実行するシーケンサやコンピュータ等の制御部20bで構成されていても良い。
1つの受配電システム1において、制御装置20の個数は、1つ又は複数であっても良い。
制御装置20は、上述した盤筐体8の内部に設けられているが、盤筐体8(高圧盤筐体8Aや低圧盤筐体8B)の外部に設けられても良い。
制御装置20(スマートロガー20aと制御部20b)の電源は、上述した無停電電源装置10kに接続されて、当該無停電電源装置10kから入力される(スマートロガー20aは、無停電電源装置10kからACアダプター20cを介して電源を入力されていても良い)。又、制御装置20の監視・設定変更・操作等は、使用者が直接触れて行っても良いが、インターネットや電話回線等の通信装置を介して遠隔で行っても構わない。尚、スマートロガー20aは、ACアダプター20cを介さずに、電源を入力されていても良い。
その他、制御装置20は、系統K、負荷2、受配電盤10、蓄電装置4及び発電装置5の間の電流の流れも制御しても良い。
<Control device 20>
As shown in FIG. 2, the control device 20 is connected to the digital multimeter 10h in the panel housing 8 of the above-mentioned power distribution board 10, and outputs the output (stop signal, etc.) from the digital multimeter 10h, (Each wattmeter) A device that performs control such as stopping the conversion of the solar power conversion unit 5Ab described above based on the output from the smart logger 20a, although it may be configured as one device. and a control section 20b such as a sequencer or computer that executes a predetermined program.
In one power receiving and distribution system 1, the number of control devices 20 may be one or more.
Although the control device 20 is provided inside the panel casing 8 described above, it may be provided outside the panel casing 8 (high-voltage panel casing 8A or low-voltage panel casing 8B).
The power of the control device 20 (smart logger 20a and control unit 20b) is connected to the above-mentioned uninterruptible power supply 10k, and is input from the uninterruptible power supply 10k (the smart logger 20a receives power from the uninterruptible power supply 10k). (The power may be input via the AC adapter 20c). Further, monitoring, setting changes, operations, etc. of the control device 20 may be performed by the user directly, but may also be performed remotely via a communication device such as the Internet or a telephone line. Note that power may be input to the smart logger 20a without going through the AC adapter 20c.
In addition, the control device 20 may also control the flow of current between the system K, the load 2, the power distribution board 10, the power storage device 4, and the power generation device 5.

<盤筐体8と系統Kの間の機器30a~30e>
図2に示されたように、受配電システム1は、盤筐体8外の系統側電路6aにおいて、盤筐体8と系統Kの間に、取引用変成器(Voltage and Current Transformer、VCT)30aや、買電用電力量計30b、売電用電力量計30cを有していたり、電柱取付にて、柱上気中開閉器(Pole Air Switches、PAS)30dや、柱上気中開閉器30dに付属する保護継電器装置(Storage Over Current Ground、SOG)30eなどを有していても良い。
尚、図2中の取引用変成器30aにおけるKは、系統K側を示し、Lは、負荷(Load)側を示す。
又、各電力量計30b、30cは、乙種電気用品であっても良く、柱上気中開閉器30dは、別途、計器用変圧器(VT)や、零相電圧検出器(ZPD)、避雷器(Lighting Arrester、LA)を内蔵していても構わない。
これらの取引用変成器30a、買電用電力量計30b、売電用電力量計30c、柱上気中開閉器30d、保護継電器装置30eは、後述する系統K側(電力会社側)のシステムが有していることとしても良い。
<Equipment 30a to 30e between panel housing 8 and system K>
As shown in FIG. 2, the power receiving and distribution system 1 includes a voltage and current transformer (VCT) installed between the panel housing 8 and the grid K in the grid-side electrical circuit 6a outside the panel housing 8. 30a, a power meter for purchasing power 30b, and a power meter for selling power 30c, and when installed on utility poles, pole air switches (PAS) 30d, pole air switches, etc. A protective relay device (Storage Over Current Ground, SOG) 30e attached to the device 30d may be included.
In addition, in the transaction transformer 30a in FIG. 2, K indicates the system K side, and L indicates the load side.
In addition, each of the watt-hour meters 30b and 30c may be a class B electrical appliance, and the pole-mounted air switch 30d may be a voltage transformer (VT), a zero-phase voltage detector (ZPD), or a lightning arrester. (Lighting Arrester, LA) may be built-in.
These transaction transformer 30a, power purchasing power meter 30b, power selling power meter 30c, pole-mounted air switch 30d, and protective relay device 30e are part of a system on the grid K side (power company side), which will be described later. It may also be said that it has.

<その他>
本発明は、前述した実施形態に限定されるものではない。受配電システム1や受配電盤10、変圧器3等の各構成又は全体の構造、形状、寸法などは、本発明の趣旨に沿って適宜変更することが出来る。
受配電システム1は、蓄電装置4や発電装置5を有していなくとも良く、この場合、受配電システム1は、まず蓄電装置4や発電装置5なしで設置され、その後、蓄電装置4や発電装置5を後付けしても構わない。
受配電システム1は、充電器2Bが少なくとも接続されている3次巻線側が、その定格容量を超えて所定時間だけ使用されなくとも良く、又、変圧器3は、2次巻線側と3次巻線側の一方が、当該一方の定格容量を超えて所定時間だけ使用されなくとも構わない。
その他、受配電システム1は、充電器2Bが少なくとも接続されている3次巻線側が、その定格容量を超えて所定時間だけ使用されている際には、充電器2Bが少なくとも接続されていない2次巻線側が、その定格容量を下回って前記所定時間だけ使用されても良く、又、変圧器3は、2次巻線側と3次巻線側の一方が、当該一方の定格容量を超えて所定時間だけ使用されている際には、2次巻線側と3次巻線側の他方が、当該他方の定格容量を下回って前記所定時間だけ使用されても良い。尚、充電器2Bが少なくとも接続されている側が、逆に、2次巻線側であれば、上述の関係は逆となる。
高圧盤筐体8Aの重量と低圧盤筐体8Bの重量の変圧器3による支持として、高圧盤筐体8Aと低圧盤筐体8Bの配置が、上述と逆であっても良い。
変圧器3は、吊下具3aを有していなくとも良い。
<Others>
The present invention is not limited to the embodiments described above. Each configuration or the overall structure, shape, dimensions, etc. of the power receiving and distributing system 1, the power receiving and distributing board 10, the transformer 3, etc. can be changed as appropriate in accordance with the spirit of the present invention.
The power reception and distribution system 1 does not need to have the power storage device 4 or the power generation device 5. In this case, the power reception and distribution system 1 is first installed without the power storage device 4 or the power generation device 5, and then is installed without the power storage device 4 or the power generation device 5. The device 5 may be added later.
In the power receiving and distribution system 1, at least the tertiary winding side to which the charger 2B is connected does not have to be used for a predetermined time exceeding its rated capacity, and the transformer 3 has a secondary winding side and a tertiary winding side connected to the There is no need for one of the next windings to be used for a predetermined period of time exceeding the rated capacity of that one.
In addition, in the power receiving and distribution system 1, when the tertiary winding side to which the charger 2B is connected at least is used for a predetermined time exceeding its rated capacity, the power receiving and distribution system 1 is configured such that the charger 2B is not connected at least The secondary winding side may be used for the predetermined period of time below its rated capacity, and the transformer 3 may be used with either the secondary winding side or the tertiary winding side exceeding the rated capacity of the one. When the secondary winding side and the tertiary winding side are used for a predetermined time, the other one of the secondary winding side and the tertiary winding side may be used for the predetermined time period with a capacity lower than the rated capacity of the other. Note that if the side to which at least the charger 2B is connected is the secondary winding side, the above-mentioned relationship will be reversed.
In order to support the weight of the high voltage panel casing 8A and the weight of the low voltage panel casing 8B by the transformer 3, the arrangement of the high voltage panel casing 8A and the low voltage panel casing 8B may be reversed to that described above.
The transformer 3 does not need to have the hanging tool 3a.

変圧器3の2次巻線側の定格容量と3次巻線側の定格容量の和は、負荷2全体の消費電力(容量)より大きくても良く、又、その逆や、略同じでも構わない。
蓄電装置4の蓄電力Tは、負荷2の消費電力より小さくても良い。
蓄電変換部4aの蓄電変換電力T’は、蓄電装置4の蓄電力Tと略同じであったり、より大きくても良く、その他、負荷2の消費電力と略同じであったり、より小さくても構わない。
発電装置5の発電力Hは、負荷2の消費電力より小さくても良い。
太陽光発電変換部5Abの発電変換電力H’は、太陽光発電装置5Aの太陽光発電力HAと略同じであったり、より大きくても良く、その他、負荷2の消費電力と略同じであったり、より小さくても構わない。
受配電システム1や受配電盤10は、変圧器3と負荷側電路6bの間に、変圧器3からの交流電流を負荷側電路6bへの直流電流に変換したり、負荷側電路6bからの直流電流を変圧器3への交流電流に変換する変換部が接続される等によって、負荷側電路6bに直流の電流を導通させても良く、この場合、充電器2Bなどの負荷2中の変換部や、蓄電装置4中の蓄電変換部4a、発電装置5中の太陽光発電変換部5Ab等を有していなくとも構わない。
遮断器のうち、3次負荷遮断器7b2や、蓄電遮断器7c、発電遮断器7dも、配線用遮断器であっても良い。又、その他の電灯負荷遮断器7b11や動力負荷遮断器7b12を含む2次負荷遮断器7b1や、蓄電補器遮断器7c’が、漏電遮断器であっても良い。
受配電システム1や受配電盤10は、蓄電遮断器7cや蓄電補器遮断器7c’、発電遮断器7dを有していなくとも良い。
受配電システム1や受配電盤10は、電灯負荷遮断器7b11や動力負荷遮断器7b12を含む2次負荷遮断器7b1、3次負荷遮断器7b2や、蓄電遮断器7c、蓄電補器遮断器7c’、発電遮断器7d等の遮断器を有してはいるものの、それらの一部を使用していなくとも(謂わば、予備の遮断器を有していても)良い。
受配電システム1や受配電盤10は、制御装置20や、取引用変成器30a、買電用電力量計30b、売電用電力量計30c、柱上気中開閉器30d、保護継電器装置30eを有していなくとも良い。
その他、受配電システム1は、盤筐体8外の系統側電路6aにおいて、盤筐体8と系統Kの間に、上述した機器30a~30eの代わりに、別の遮断器や断路器、計器用変流器、電力ヒューズ、計器用変圧器、サーキットプロテクタ、電圧計、電圧計切替開閉器、デジタルマルチメータ(過電流継電器(OCR、Over Current Relay)や、不足電圧継電器(UVR、Under Voltage Relay)の機能を有したもの)などが、受配電盤10(盤筐体8)とは別の盤の内部に設けられていても良く、この別の盤の内部には、励磁突入電流抑制回路や、上述した太陽光発電変換部5Ab、当該太陽光発電変換部5Abと太陽電池5Aaの間の電路を遮断可能な遮断器なども設けられていても構わない。又、上述した別の遮断器などは、必ずしも、上述した別の盤の内部に設けられていなくとも良く、上述した別の遮断器などは、盤筐体8の内部に設けられていたり、何れの盤の内部にも設けられていなくとも構わない。尚、上述した励磁突入電流抑制回路は、盤筐体8の内部に設けられていても良く、この場合、励磁突入電流抑制回路は、盤筐体8の内部であれば、何れの箇所に設けられていても構わないが、例えば、上述した限流ヒューズ付高圧交流負荷開閉器10aの代わりに設けられていても良い。
ここまで述べた受配電システム1や受配電盤10、変圧器3に関わる系統Kについて、以下に詳解する。
The sum of the rated capacity on the secondary winding side and the rated capacity on the tertiary winding side of the transformer 3 may be larger than the power consumption (capacity) of the entire load 2, or vice versa, or may be substantially the same. do not have.
The stored power T of the power storage device 4 may be smaller than the power consumption of the load 2.
The stored converted power T' of the power storage conversion unit 4a may be approximately the same as or larger than the stored power T of the power storage device 4, or may be approximately the same as or smaller than the power consumption of the load 2. I do not care.
The power generation H of the power generation device 5 may be smaller than the power consumption of the load 2.
The generated converted power H' of the solar power conversion unit 5Ab may be approximately the same as the solar power generation power HA of the solar power generation device 5A, or may be larger, and may also be approximately the same as the power consumption of the load 2. or smaller.
The power receiving and distribution system 1 and the power receiving and distribution board 10 convert AC current from the transformer 3 into direct current to the load side electrical line 6b, and convert DC current from the load side electrical line 6b between the transformer 3 and the load side electrical line 6b. Direct current may be conducted to the load-side electrical circuit 6b by connecting a converting unit that converts the current to alternating current to the transformer 3. In this case, a converting unit in the load 2 such as the charger 2B may be connected. Alternatively, the power storage conversion unit 4a in the power storage device 4, the solar power generation conversion unit 5Ab in the power generation device 5, etc. may not be provided.
Among the circuit breakers, the tertiary load circuit breaker 7b2, the storage circuit breaker 7c, and the power generation circuit breaker 7d may also be molded circuit breakers. Further, the secondary load breakers 7b1 including the other lighting load breakers 7b11 and the power load breakers 7b12, and the power storage auxiliary circuit breaker 7c' may be earth leakage breakers.
The power reception and distribution system 1 and the power reception and distribution board 10 do not need to have the power storage circuit breaker 7c, the power storage auxiliary circuit breaker 7c', and the power generation circuit breaker 7d.
The power receiving and distribution system 1 and the power receiving and distribution board 10 include a secondary load breaker 7b1 and a tertiary load breaker 7b2 including a lighting load breaker 7b11 and a power load breaker 7b12, a power storage circuit breaker 7c, and a power storage auxiliary circuit breaker 7c'. Although it has circuit breakers such as the generation circuit breaker 7d, some of them may not be used (so to speak, it may have a spare circuit breaker).
The power receiving and distribution system 1 and the power receiving and distribution board 10 include a control device 20, a transaction transformer 30a, a power purchasing power meter 30b, a power selling power meter 30c, a pole-mounted air switch 30d, and a protective relay device 30e. It is not necessary to have it.
In addition, in the power receiving and distribution system 1, in the system-side electrical circuit 6a outside the panel housing 8, between the panel housing 8 and the system K, a separate circuit breaker, disconnector, or meter is installed between the panel housing 8 and the system K instead of the above-mentioned devices 30a to 30e. Current transformers, power fuses, instrument transformers, circuit protectors, voltmeters, voltmeter switching switches, digital multimeters (Over Current Relay (OCR), Under Voltage Relay (UVR)) ) may be provided inside a separate panel from the power receiving and distribution board 10 (board housing 8), and this separate board may include an excitation inrush current suppression circuit and the like. , the above-mentioned photovoltaic power conversion unit 5Ab, a circuit breaker capable of interrupting the electrical path between the photovoltaic power conversion unit 5Ab and the solar cell 5Aa, etc. may also be provided. Further, the other circuit breaker etc. mentioned above does not necessarily have to be provided inside the another panel mentioned above, and the other circuit breaker etc. mentioned above may be provided inside the panel housing 8, or any There is no need for it to be provided inside the board. The above-mentioned excitation inrush current suppression circuit may be provided inside the panel casing 8. In this case, the excitation inrush current suppression circuit may be provided anywhere inside the panel casing 8. However, for example, it may be provided in place of the above-described high voltage AC load switch with current limiting fuse 10a.
The system K related to the power reception and distribution system 1, the power reception and distribution board 10, and the transformer 3 described above will be explained in detail below.

<系統K>
図1、2に示されたように、系統Kは、受配電システム1や受配電盤10、変圧器3に送電する(受電させる)ものであって、電力会社などが電気を消費者に供給するためのシステム全体のことを言い、電力系統Kとも言える。系統Kは、具体的には、変電所・送電線・配電線などの設備を備え、発電所が含まれる場合もある。又、系統Kは、上述した取引用変成器30a、買電用電力量計30b、売電用電力量計30c、柱上気中開閉器30d、保護継電器装置30eを有していても良い。
このような系統Kで扱われる電力は、交流、直流の何れでも良いが、以下は、交流であるとして述べる。
系統Kでは、送電される電力の多くが交流であるため、送電線で三相3線(3φ3W)式により送電され、その送電の際の送電ロスを減らすため、基幹的な長距離送電の区間は出来るだけ高電圧(例えば、6600Vや22000Vなど)で送電される。
系統Kで送電される電力は、消費地に近い場所で何段かに分けて電圧が変圧(降圧)され、柱上変圧器等以降は単相2線(1φ2W)などでの配電も行なわれる。
系統Kは、電力会社などの系統(商用電力系統)であったり、企業・自治体などの組織が独自に有するシステムやプラント内部の系統(独立電力系統)であっても良い。
<Series K>
As shown in FIGS. 1 and 2, the grid K transmits (receives) power to the power receiving and distribution system 1, the power receiving and distribution board 10, and the transformer 3, and is used by electric power companies to supply electricity to consumers. This refers to the entire system for the purpose of the project, and can also be called the power system K. Specifically, system K includes equipment such as a substation, power transmission line, and distribution line, and may also include a power plant. Moreover, the system K may include the above-mentioned transaction transformer 30a, power purchasing watt-hour meter 30b, power selling watt-hour meter 30c, pole-mounted air switch 30d, and protective relay device 30e.
Although the power handled by such system K may be either alternating current or direct current, the following description will be made assuming that it is alternating current.
In System K, most of the power transmitted is AC, so the power is transmitted using a three-phase, three-wire (3φ3W) system, and in order to reduce power transmission losses during transmission, the main long-distance power transmission section is is transmitted at as high a voltage as possible (for example, 6600V or 22000V).
The power transmitted through grid K is transformed (stepped down) in several stages near the point of consumption, and after the pole transformer, power is distributed using single-phase, two-wire (1φ2W), etc. .
The system K may be a system of an electric power company (commercial power system), a system owned by an organization such as a company or a local government, or a system inside a plant (independent power system).

受配電システム、受配電盤、及び、変圧器は、負荷が充電器だけでなく、その他何れの負荷設備に対しても利用でき、又、何れの電力契約や引込態様であっても使用でき、屋外・屋内を問わず利用可能である。 Power receiving and distribution systems, power receiving and distribution boards, and transformers can be used not only for chargers but also for any other load equipment, and can be used regardless of the power contract or connection type, and can be used outdoors.・Can be used regardless of indoors.

1 受配電システム
2 負荷
2a 2次側負荷
2b 3次側負荷
3 変圧器
3a 吊下具
4 蓄電装置
5 発電装置
6a 系統側電路
6b 負荷側電路
7a 系統遮断器
7b 負荷遮断器
8 盤筐体
8A 高圧盤筐体
8B 低圧盤筐体
10 受配電盤
K 系統
1 Power reception and distribution system 2 Load 2a Secondary load 2b Tertiary load 3 Transformer 3a Hanging tool 4 Power storage device 5 Power generation device 6a System side electrical line 6b Load side electrical line 7a System breaker 7b Load breaker 8 Panel housing 8A High voltage panel casing 8B Low voltage panel casing 10 Power distribution board K System

Claims (5)

系統(K)から受電する電力を消費可能な負荷(2)と、前記負荷(2)と系統(K)の間に接続された変圧器(3)を有した受配電システムであって、
前記負荷(2)は、2次側負荷(2a)と3次側負荷(2b)を含み、
前記変圧器(3)は、1次巻線と2次巻線と3次巻線を備えた三巻線型の変圧器であり、
前記1次巻線は系統(K)に接続され、前記2次巻線は2次側負荷(2a)に接続され、前記3次巻線は3次側負荷(2b)に接続され、
前記2次巻線側の定格電圧と3次巻線側の定格電圧のそれぞれが、前記1次巻線側の定格電圧より低圧であり、
前記2次巻線側の定格容量と3次巻線側の定格容量の和が、前記1次巻線側の定格容量より大きく、
前記変圧器(3)の2次巻線には、前記2次側負荷(2a)として電灯負荷(2a1)及び/又は動力負荷(2a2)が少なくとも接続され、
前記変圧器(3)の3次巻線には、前記3次側負荷(2b)として蓄電池を内蔵した乗り物用の充電器(2B)が少なくとも接続されていると共に、蓄電装置(4)及び/又は発電装置(5)も接続されていて、
前記系統(K)と変圧器(3)の間の系統側電路(6a)を遮断可能な系統遮断器(7a)と前記変圧器(3)と負荷(2)の間の負荷側電路(6b)を遮断可能な負荷遮断器(7b)が内部に設けられた盤筐体(8)と、前記変圧器(3)を備えた受配電盤(10)を有していることを特徴とする受配電システム。
A power reception and distribution system comprising a load (2) capable of consuming power received from a grid (K), and a transformer (3) connected between the load (2) and the grid (K),
The load (2) includes a secondary load (2a) and a tertiary load (2b),
The transformer (3) is a three-winding type transformer including a primary winding, a secondary winding, and a tertiary winding,
The primary winding is connected to a system (K), the secondary winding is connected to a secondary load (2a), and the tertiary winding is connected to a tertiary load (2b),
Each of the rated voltage on the secondary winding side and the rated voltage on the tertiary winding side is lower than the rated voltage on the primary winding side,
The sum of the rated capacity of the secondary winding side and the rated capacity of the tertiary winding side is larger than the rated capacity of the primary winding side,
At least a lighting load (2a1) and/or a power load (2a2) is connected to the secondary winding of the transformer (3) as the secondary load (2a),
At least a vehicle charger (2B) having a built-in storage battery is connected as the tertiary load (2b) to the tertiary winding of the transformer (3), and a power storage device (4) and/or Or the power generator (5) is also connected,
A system breaker (7a) capable of interrupting the system side electric line (6a) between the system (K) and the transformer (3), and a load side electric line (6b) between the transformer (3) and the load (2). ), and a power receiving and distribution board (10) equipped with a load breaker (7b) capable of interrupting the transformer (3); power distribution system.
前記変圧器(3)は、前記充電器(2B)が少なくとも接続されている3次巻線側が、その定格容量を超えて所定時間だけ使用されることを特徴とする請求項に記載の受配電システム。 The receiver according to claim 1 , wherein the transformer (3) is used only for a predetermined time at a tertiary winding side to which at least the charger (2B) is connected, exceeding its rated capacity. power distribution system. 盤筐体(8)と、前記盤筐体(8)外において系統(K)と当該系統(K)から受電する電力を消費可能な負荷(2)の間に接続された変圧器(3)を備えた受配電盤であって、
前記変圧器(3)は、1次巻線と2次巻線と3次巻線を備えた三巻線型の変圧器であり、
前記1次巻線は系統(K)に接続され、前記2次巻線は2次側負荷(2a)に接続され、前記3次巻線は3次側負荷(2b)に接続され、
前記2次巻線側の定格電圧と3次巻線側の定格電圧のそれぞれが、前記1次巻線側の定格電圧より低圧であり、
前記2次巻線側の定格容量と3次巻線側の定格容量の和が、前記1次巻線側の定格容量より大きく、
前記盤筐体(8)は、前記系統(K)と変圧器(3)の間の系統側電路(6a)を遮断可能な系統遮断器(7a)が内部に設けられた高圧盤筐体(8A)と、前記変圧器(3)と負荷(2)の間の負荷側電路(6b)を遮断可能な負荷遮断器(7b)が内部に設けられた低圧盤筐体(8B)を含み、
前記高圧盤筐体(8A)の重量と低圧盤筐体(8B)の重量を、前記変圧器(3)が支持していることを特徴とする受配電盤。
A transformer (3) connected between a panel casing (8) and a load (2) that can consume power received from the grid (K) and the grid (K) outside the panel casing (8). A power receiving and distribution board comprising:
The transformer (3) is a three-winding type transformer including a primary winding, a secondary winding, and a tertiary winding,
The primary winding is connected to a system (K), the secondary winding is connected to a secondary load (2a), and the tertiary winding is connected to a tertiary load (2b),
Each of the rated voltage on the secondary winding side and the rated voltage on the tertiary winding side is lower than the rated voltage on the primary winding side,
The sum of the rated capacity of the secondary winding side and the rated capacity of the tertiary winding side is larger than the rated capacity of the primary winding side,
The panel casing (8) is a high voltage panel casing (8) in which a system breaker (7a) capable of interrupting the system side electric circuit (6a) between the system (K) and the transformer (3) is provided. 8A) and a low voltage panel housing (8B) in which a load breaker (7b) capable of interrupting the load-side electric circuit (6b) between the transformer (3) and the load (2) is provided,
A power distribution board characterized in that the transformer (3) supports the weight of the high-voltage panel casing (8A) and the weight of the low-voltage panel casing (8B).
前記高圧盤筐体(8A)の重量と低圧盤筐体(8B)の重量の変圧器(3)による支持として、
前記高圧盤筐体(8A)が、前記変圧器(3)に上方から取り付けられ、
前記低圧盤筐体(8B)が、前記高圧盤筐体(8A)に平面視一方から取り付けられ、
前記低圧盤筐体(8B)の下端が、前記変圧器(3)の下部まで延びていることを特徴とする請求項に記載の受配電盤。
As support for the weight of the high voltage panel casing (8A) and the weight of the low voltage panel casing (8B) by the transformer (3),
The high voltage panel housing (8A) is attached to the transformer (3) from above,
The low-voltage panel housing (8B) is attached to the high-voltage panel housing (8A) from one side in plan view,
The power distribution board according to claim 3 , wherein a lower end of the low-voltage board housing (8B) extends to a lower part of the transformer (3).
前記変圧器(3)における平面視一方に偏心した位置に、吊下具(3a)が設けられていることを特徴とする請求項に記載の受配電盤。 The power distribution board according to claim 4 , characterized in that a hanging tool (3a) is provided at a position eccentric to one side of the transformer (3) in a plan view.
JP2023147239A 2023-09-11 2023-09-11 Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc. Active JP7382106B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023147239A JP7382106B1 (en) 2023-09-11 2023-09-11 Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023147239A JP7382106B1 (en) 2023-09-11 2023-09-11 Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc.

Publications (1)

Publication Number Publication Date
JP7382106B1 true JP7382106B1 (en) 2023-11-16

Family

ID=88729201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023147239A Active JP7382106B1 (en) 2023-09-11 2023-09-11 Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc.

Country Status (1)

Country Link
JP (1) JP7382106B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211351263U (en) 2020-01-10 2020-08-25 东莞电力设计院 110kV transformer substation main wiring structure applying split transformer
JP2022052954A (en) 2020-09-24 2022-04-05 株式会社ダイヘン Power system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211351263U (en) 2020-01-10 2020-08-25 东莞电力设计院 110kV transformer substation main wiring structure applying split transformer
JP2022052954A (en) 2020-09-24 2022-04-05 株式会社ダイヘン Power system

Similar Documents

Publication Publication Date Title
US11539192B2 (en) Electrical service adapter for supply side interconnect
CN109995083B (en) Hybrid inverter power control system for PV strings, batteries, grids and backup loads
US11428710B2 (en) Methods and systems for connecting and metering distributed energy resource devices
US9214832B2 (en) Parallel electric service system and method using meter socket and load center combination
Toliyat et al. Effects of high penetration levels of residential photovoltaic generation: Observations from field data
Hashmi et al. Towards phase balancing using energy storage
Möller et al. Impact of a high penetration of electric vehicles and photovoltaic inverters on power quality in an ürban residential grid Part I-Unbalance
JP7382106B1 (en) Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc.
JP6526305B1 (en) In-house power generation control system, switchboard
AL-Hamad et al. Smart PV grid to reinforce the electrical network
Adesina et al. Design, implementation and performance analysis of an off-grid solar powered system for a Nigerian household
JP7001282B2 (en) Wattmeter relays, panels, and self-consumed power systems
KR101737970B1 (en) Hybrid distributing board
Cao et al. A solar-based Versatile Charging Station for Consumer AC-DC Portable Devices
da Silva et al. Line losses and power capacity in low voltage AC and DC distribution systems: A numerical comparative study
JP2020137382A (en) Extension type captive consumption system, power generation device, and extension type high voltage branch panel
TWI443927B (en) Cable system with phase switch apparatuses
JP2024091447A (en) Smart panels (switchboards and power distribution panels), power distribution systems, and power distribution systems
JP2024083157A (en) Power receiving system for rapid charging, small-scale power receiving, etc., power receiving panel, power control program, and power control method
Mägi Analysis of distribution substation topologies for energy exchanging between EV and utility networks
CN214900194U (en) Light stores up direct current room power supply system
JP7370850B2 (en) Power supply system and substation equipment
JP2024096643A (en) Power System
Wu An Efficient Low Voltage DC Microgrid with Power Array Conversion for Commercial Buildings
Ferronato et al. Case study on distributed generation for electric vehicle and energy storage integration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230912

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230923

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231027

R150 Certificate of patent or registration of utility model

Ref document number: 7382106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350