JP2020137382A - Extension type captive consumption system, power generation device, and extension type high voltage branch panel - Google Patents

Extension type captive consumption system, power generation device, and extension type high voltage branch panel Download PDF

Info

Publication number
JP2020137382A
JP2020137382A JP2019032378A JP2019032378A JP2020137382A JP 2020137382 A JP2020137382 A JP 2020137382A JP 2019032378 A JP2019032378 A JP 2019032378A JP 2019032378 A JP2019032378 A JP 2019032378A JP 2020137382 A JP2020137382 A JP 2020137382A
Authority
JP
Japan
Prior art keywords
power
power generation
board
load
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019032378A
Other languages
Japanese (ja)
Other versions
JP2020137382A5 (en
Inventor
正雄 本家
Masao Honke
正雄 本家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wave Energy Inc
Original Assignee
Wave Energy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wave Energy Inc filed Critical Wave Energy Inc
Priority to JP2019032378A priority Critical patent/JP2020137382A/en
Publication of JP2020137382A publication Critical patent/JP2020137382A/en
Publication of JP2020137382A5 publication Critical patent/JP2020137382A5/ja
Pending legal-status Critical Current

Links

Abstract

To realize "the reduction of the cost, a construction period, and a power stop period" or "the suppression of a reverse power" by attaching a power generation connection board with a built-in a power generation connection device to a system board with a built-in system connector.SOLUTION: An extension type captive consumption system is an electric power system 1 having a system board U with a built-in a system connector S and a load F. A board housing 4' of a power generation connection board 4 with a built-in a power generation conductor 3 that connects a power generation device 2 to the system connector S and the load F is attached to a board housing U of the system board U. The power generation conductor 3 may be connected to a bus bar cable way M, and may have a power storage part 5. A control part 9 may set zero or the like as a power generation target value TH once when reducing a generated power H. In addition, the power generation connection board 4 with the built-in power generation conductor 3 comprises: the power generation device 2 in which zero or the like is set as the power generation target value TH once when reducing the generated power H; a reverse power relay 10; a power reception counter 11; and a power generation counter 12.SELECTED DRAWING: Figure 1

Description

本発明は、系統接続機器が内蔵された系統盤と、系統接続機器に接続された負荷と、系統接続機器及び負荷に発電装置を接続させる発電接続機器を内蔵する発電接続盤を有した電力システムであったり、その他、発電部とパワーコンディショナと変圧器と制御部を備えた発電装置や、系統接続機器及び負荷に発電装置を接続させる発電接続機器が盤筐体に内蔵された発電接続盤に関する。 The present invention is a power system having a grid board with a built-in grid connection device, a load connected to the grid connection device, and a power generation connection board with a built-in power generation connection device for connecting the power generation device to the grid connection device and the load. In addition, a power generation device equipped with a power generation unit, a power conditioner, a transformer, and a control unit, and a power generation connection device for connecting a power generation device to a grid connection device and a load are built in the panel housing. Regarding.

従来、電力管理装置が知られている(特許文献1参照)。
この電力管理装置は、第一の時点における、発電機能又は蓄電機能を有する特定機器が導入された需要家の電力の使用状況に関連する第一情報を取得する第一取得部と、前記第一の時点よりも後の第二の時点における、前記需要家の電力の使用状況に関連する第二情報を取得する第二取得部と、前記需要家に導入される候補となる、前記特定機器とは別の機器であって発電機能又は蓄電機能を有する機器である候補機器の機器情報を取得する機器情報取得部と、取得された前記第一情報及び前記第二情報を比較することによって得られる電力の使用状況の変化に応じて、前記候補機器の機器情報を含む提示情報を出力する情報出力部とを備える。
Conventionally, a power management device is known (see Patent Document 1).
This power management device includes a first acquisition unit that acquires first information related to the power usage status of a consumer who has introduced a specific device having a power generation function or a power storage function at the first time point, and the first acquisition unit. The second acquisition unit that acquires the second information related to the electric power usage status of the consumer at the second time point after the time point, and the specific device that is a candidate to be introduced to the customer. Is obtained by comparing the acquired first information and the second information with the device information acquisition unit that acquires device information of a candidate device that is another device and has a power generation function or a power storage function. It includes an information output unit that outputs presentation information including device information of the candidate device according to a change in the power usage status.

又、従来、出力制御システムが知られている(特許文献2参照)。
この出力制御システムは、太陽光発電を行う太陽電池モジュールと、発電電力を出力するパワーコンディショナと、前記パワーコンディショナを制御して発電電力の出力制御を行う出力制御装置と、前記発電電力とこれを消費する宅内負荷による消費電力との差分である余剰電力を計測する電力計測装置と、を備え、電力会社が取り決める仕様に従いゆるやかに制御する制御モードと、宅内電力需要が変化した場合に、発電量を高速に制御する制御モードとを備える。
Further, conventionally, an output control system is known (see Patent Document 2).
This output control system includes a solar cell module that generates photovoltaic power generation, a power conditioner that outputs generated power, an output control device that controls the power conditioner to control the output of generated power, and the generated power. It is equipped with a power measuring device that measures surplus power, which is the difference from the power consumption due to the in-house load that consumes this, and a control mode that gently controls according to the specifications agreed by the power company, and when the in-house power demand changes. It has a control mode that controls the amount of power generation at high speed.

特開2016−095598号公報Japanese Unexamined Patent Publication No. 2016-095598 特開2018−088784号公報Japanese Unexamined Patent Publication No. 2018-08784

しかしながら、特許文献1に記載された電力管理装置では、発電装置等の追加などを行うか否かの判断はされているものの、実際に発電装置等の追加を行う際には、追加する発電装置を据え付ける基礎を別途作ったり、作った基礎と既存の基礎のレベル合わせを行う必要があるため、別途の基礎作りやレベル合わせの分だけ、経費増大や、発電装置追加の工期延長を招く。
更に、特許文献1の電力管理装置において、発電装置を追加している間は需要家が電力を使用できないため、別途の基礎作りやレベル合わせの分だけ工期が延長すれば、需要家の電力使用を停止する期間が長引く問題がある。
However, in the power management device described in Patent Document 1, although it is determined whether or not to add a power generation device or the like, when actually adding a power generation device or the like, the power generation device to be added is added. Since it is necessary to separately create the foundation for installing the power generation or to match the level of the created foundation with the existing foundation, the cost will increase and the construction period for adding the power generation device will be extended by the amount of the separate foundation preparation and level matching.
Further, in the electric power management device of Patent Document 1, the electric power cannot be used by the consumer while the power generation device is added. Therefore, if the construction period is extended by the amount of separate foundation preparation and level adjustment, the electric power of the consumer is used. There is a problem that the period of stopping is prolonged.

又、特許文献1の電力管理装置などでは、特許文献2に記載された出力制御システム等が用いられる。
しかしながら、特許文献2の出力制御システムでは、パワーコンディショナを制御して発電電力の出力を下げる目標値を与えても、実際の発電電力の出力はすぐに下がらない(発電電力の出力低下が遅れる)ため、遅れた分だけ、発電電力の出力が負荷の消費電力より大きくなり、逆電力が発生する(負荷で消費できない電力が系統に流れる)虞がある。
Further, in the power management device of Patent Document 1, the output control system or the like described in Patent Document 2 is used.
However, in the output control system of Patent Document 2, even if the power conditioner is controlled to give a target value for reducing the output of the generated power, the actual output of the generated power does not decrease immediately (the decrease in the output of the generated power is delayed). Therefore, there is a risk that the output of the generated power will be larger than the power consumption of the load due to the delay, and reverse power will be generated (power that cannot be consumed by the load will flow to the grid).

本発明は、このような点に鑑み、発電接続機器が内蔵された発電接続盤の盤筐体を、系統接続機器が内蔵された系統盤の盤筐体に取り付けたり、発電力を下げる際には、発電力をゼロとする値等を一旦は発電力の目標値とすることなどによって、「経費、工期及び電力停止期間の低減」や、「逆電力発生の抑制」を図れる電力システムや、発電装置、発電接続盤を提供することを目的とする。 In view of these points, the present invention relates to the case where the board housing of the power generation connection board in which the power generation connection device is built is attached to the board housing of the system board in which the system connection device is built, or when the power generation is reduced. Is a power system that can "reduce costs, construction period and power outage period" and "suppress reverse power generation" by temporarily setting the value of power generation to zero as the target value of power generation. The purpose is to provide a power generation device and a power generation connection board.

本発明に係る電力システム1は、系統Kに接続する系統接続機器Sが内蔵された系統盤Uと、前記系統接続機器Sに接続された負荷Fとを有した電力システムであって、前記系統接続機器S及び負荷Fに発電装置2を接続させる発電接続機器3が内蔵された発電接続盤4を有し、この発電接続盤4の盤筐体4’は、前記系統盤Uの盤筐体U’に取り付けられていることを第1の特徴とする。 The power system 1 according to the present invention is a power system having a system board U in which a system connection device S connected to the system K is built and a load F connected to the system connection device S. It has a power generation connection board 4 in which a power generation connection device 3 for connecting the power generation device 2 to the connection device S and the load F is built, and the board housing 4'of the power generation connection board 4 is the board housing of the system board U. The first feature is that it is attached to the U'.

本発明に係る電力システム1の第2の特徴は、上記第1の特徴に加えて、前記発電接続機器3は、前記系統接続機器Sと負荷Fの間を接続する母線電路Mに接続されている点にある。 The second feature of the power system 1 according to the present invention is that, in addition to the first feature, the power generation connection device 3 is connected to a bus line M connecting between the system connection device S and the load F. There is a point.

本発明に係る電力システム1の第3の特徴は、上記第1又は2の特徴に加えて、前記系統接続機器Sと発電装置2の間の電路に、電力を蓄電する蓄電部5が接続されている点にある。 The third feature of the electric power system 1 according to the present invention is that, in addition to the above-mentioned first or second feature, a power storage unit 5 for storing electric power is connected to the electric circuit between the system connection device S and the power generation device 2. There is a point.

本発明に係る電力システム1の第4の特徴は、上記第1〜3の特徴に加えて、前記発電装置2は、電力を発電する発電部6と、この発電部6からの直流電流又は交流電流を交流電流に変換するパワーコンディショナ7と、このパワーコンディショナ7から入力される交流電流をより高圧な交流電流に変圧する変圧器8と、この変圧器8からのより高圧な交流電流を前記発電装置2から出力される発電力Hとして制御する制御部9を備え、この制御部9は、前記発電力Hを下げる際には、当該発電力Hをゼロとする値、及び/又は、当該発電力Hを下げる際における負荷Fの消費電力Dより低い値を、一旦は当該発電力Hの目標値THとする点にある。 The fourth feature of the power system 1 according to the present invention is that, in addition to the above-mentioned first to third features, the power generation device 2 has a power generation unit 6 that generates power and a DC current or AC from the power generation unit 6. A power conditioner 7 that converts a current into an AC current, a transformer 8 that transforms an AC current input from the power conditioner 7 into a higher-voltage AC current, and a higher-voltage AC current from the transformer 8. A control unit 9 that controls as the power generation H output from the power generation device 2 is provided, and the control unit 9 sets the power generation H to zero when the power generation H is lowered, and / or. A value lower than the power consumption D of the load F when the power generation H is lowered is once set as the target value TH of the power generation H.

これらの特徴により、発電接続機器3が内蔵された発電接続盤4の盤筐体4’を、系統盤Uの盤筐体U’に取り付けていることによって、特許文献1とは異なり、発電装置2を追加(増設)しても、追加する発電装置2を据え付ける基礎を別途作ったり、作った基礎と既存の基礎Nのレベル合わせを行う必要はないため、経費や発電装置2追加の工期、需要家の電力使用を停止する期間を低減できる(「経費、工期及び電力停止期間の低減」)。
尚、このような電力システム1は、当該電力システム1の使用者が発電装置2発電した電力を負荷Fで自ら消費するのに適した「自家消費システム」であるとも言え、更に、既存の系統盤U(買電盤)などに発電接続盤4を後付け(増設)できることから、「増設型の自家消費システム」であるとも言える。
Due to these features, unlike Patent Document 1, the power generation device is different from Patent Document 1 in that the board housing 4'of the power generation connection board 4 in which the power generation connection device 3 is built is attached to the board housing U'of the system board U. Even if 2 is added (expanded), it is not necessary to separately create a foundation for installing the power generation device 2 to be added, or to match the level of the created foundation with the existing foundation N, so the cost and the construction period for adding the power generation device 2 are required. It is possible to reduce the period during which consumers stop using electricity (“Reduction of costs, construction period and electricity suspension period”).
It can be said that such an electric power system 1 is a "self-consumption system" suitable for the user of the electric power system 1 to consume the electric power generated by the power generation device 2 by the load F, and further, the existing system. Since the power generation connection board 4 can be retrofitted (expanded) to the board U (power purchase board) or the like, it can be said that it is an "expansion type self-consumption system".

又、発電接続機器3を、系統接続機器Sと負荷F間の母線電路Mに接続することによって、例えば、6600Vの高圧や、22000Vの特別高圧(特高)などの系統接続機器Sや母線電路Mと同じ高電圧で、発電接続機器3を接続することが可能となり、この高電圧での接続によって、発電装置2から負荷F等に流れる電力の容量を大きくできる。
尚、本発明において、母線電路Mなどを含む「電路」とは、電気を流すものであって、銅、アルミニウム、銀、金、ニクロム等の導体や、この導体を絶縁物で覆ったケーブル、一般的な電線などを含む。
Further, by connecting the power generation connection device 3 to the bus line M between the system connection device S and the load F, for example, a system connection device S such as a high voltage of 6600 V or an extra high voltage (extra high voltage) of 22000 V or a bus line electric circuit. The power generation connection device 3 can be connected at the same high voltage as M, and the capacity of the power flowing from the power generation device 2 to the load F or the like can be increased by the connection at this high voltage.
In the present invention, the "electric line" including the bus M and the like is a conductor through which electricity is passed, such as copper, aluminum, silver, gold, and nichrome, and a cable in which this conductor is covered with an insulating material. Including general electric wires.

更に、系統接続機器Sと発電装置2の間の電路に蓄電部5を接続することによって、負荷Fで消費できる消費電力Dを越えて、発電装置2の発電量を増大させても、負荷Fで消費できない電力を蓄電部5で蓄電することが可能となり、「発電量の増大」と「電力ロス」の両立が図れる。 Further, by connecting the power storage unit 5 to the electric path between the grid connection device S and the power generation device 2, even if the power generation amount of the power generation device 2 is increased beyond the power consumption D that can be consumed by the load F, the load F The power storage unit 5 can store the power that cannot be consumed by the power storage unit 5, and both "increase in power generation amount" and "power loss" can be achieved.

そして、制御部9で、発電力Hを下げる際には、発電力Hをゼロとする値、及び/又は、発電力Hを下げる際における負荷Fの消費電力Dより低い値を、一旦は発電力Hの目標値THとすることによって、特許文献2とは異なり、実際の発電力Hの低下が遅れず、発電力Hが負荷Fの消費電力Dより大きくなり難くなるため、逆電力Gの発生(負荷Fで消費できない電力が系統Kに流れること)を抑制できる(「逆電力発生の抑制」)。 Then, when the power generation H is lowered, the control unit 9 once generates a value at which the power generation H is zero and / or a value lower than the power consumption D of the load F when the power generation H is lowered. By setting the target value TH of the force H, unlike Patent Document 2, the actual decrease in the power generation H is not delayed, and the power generation H is less likely to be larger than the power consumption D of the load F. It is possible to suppress the generation (power that cannot be consumed by the load F flows to the system K) (“suppression of reverse power generation”).

本発明に係る発電装置2は、電力を発電する発電部6と、この発電部6からの直流電流又は交流電流を交流電流に変換するパワーコンディショナ7と、このパワーコンディショナ7から入力される交流電流をより高圧な交流電流に変圧する変圧器8と、この変圧器8からのより高圧な交流電流を前記発電装置2から出力される発電力Hとして制御する制御部9を備えた発電装置であって、前記制御部9は、前記発電力Hを下げる際には、当該発電力Hをゼロとする値、及び/又は、当該発電力Hを下げる際における負荷Fの消費電力Dより低い値を、一旦は当該発電力Hの目標値THとすることを第1の特徴とする。 The power generation device 2 according to the present invention is input from a power generation unit 6 that generates electric power, a power conditioner 7 that converts a DC current or an AC current from the power generation unit 6 into an AC current, and the power conditioner 7. A power generation device including a transformer 8 that transforms an AC current into a higher-pressure AC current, and a control unit 9 that controls a higher-pressure AC current from the transformer 8 as a power generation H output from the power generation device 2. The control unit 9 is lower than the value at which the power generation H is set to zero when the power generation H is lowered and / or the power consumption D of the load F when the power generation H is lowered. The first feature is that the value is once set to the target value TH of the power generation H.

この特徴により、制御部9で、発電力Hを下げる際には、発電力Hをゼロとする値、及び/又は、発電力Hを下げる際における負荷Fの消費電力Dより低い値を、一旦は発電力Hの目標値THとすることとなって、特許文献2とは異なり、実際の発電力Hの低下が遅れず、発電力Hが負荷Fの消費電力Dより大きくなり難くなるため、逆電力の発生(負荷Fで消費できない電力が系統Kに流れること)を抑制できる(「逆電力発生の抑制」)。 Due to this feature, when the power generation H is lowered, the control unit 9 once sets a value at which the power generation H is zero and / or a value lower than the power consumption D of the load F when the power generation H is lowered. Is the target value TH of the power generation H, and unlike Patent Document 2, the actual decrease in the power generation H is not delayed, and the power generation H is less likely to be larger than the power consumption D of the load F. It is possible to suppress the generation of reverse power (power that cannot be consumed by the load F flows to the system K) (“suppression of reverse power generation”).

本発明に係る発電接続盤4は、系統Kに接続する系統接続機器S及び負荷Fに発電装置2を接続させる発電接続機器3が、盤筐体4’に内蔵された発電接続盤であって、前記発電接続機器3として、前記系統接続機器Sから系統Kへ逆流する逆電力Gを検知する逆電力継電器10と、前記系統Kから系統接続機器Sへ受電される受電力Jを測定する受電力計11と、前記発電装置2から出力される発電力Hを測定する発電力計12を備えていることを第1の特徴とする。 The power generation connection board 4 according to the present invention is a power generation connection board in which the power generation connection device 3 for connecting the power generation device 2 to the system connection device S and the load F connected to the system K is built in the board housing 4'. As the power generation connection device 3, the reverse power relay 10 for detecting the reverse power G flowing back from the system connection device S to the system K and the receiving power J for measuring the received power J received from the system K to the system connection device S. The first feature is that the power meter 11 and the power generation meter 12 for measuring the power generation H output from the power generation device 2 are provided.

この特徴により、発電接続盤4に逆電力継電器10と受電力計11と発電力計12が内蔵されることによって、発電接続盤4の盤筐体4’を系統盤Uの盤筐体U’に取り付けるだけで容易に、発電装置2を追加(増設)した際に必要な逆電力Gの抑制や、受電力Jと発電力Hの利用(制御等への利用)が可能となるため、「経費、工期及び電力停止期間の低減」を図れる。
これは同時に、発電接続盤4の盤筐体4’を系統盤Uの盤筐体U’に取り付ければ、特許文献1とは異なり、発電装置2を追加(増設)しても、追加する発電装置2を据え付ける基礎を別途作ったり、作った基礎と既存の基礎Nのレベル合わせを行う必要はないため、「経費、工期及び電力停止期間の低減」を図れることも意味する。
尚、このような発電接続盤4は、当該発電接続盤4に内蔵された発電接続機器3を母線電路Mに接続すれば、6600Vなどの高電圧で発電接続機器3を接続する(換言すれば、母線電路Mから分岐する分岐電路20を有する)ことから「高圧分岐盤」であるとも言え、更に、既存の系統盤U(買電盤)などに発電接続盤4を後付け(増設)できることから、「増設型の高圧分岐盤」であるとも言える。
Due to this feature, the reverse power relay 10, the power receiving meter 11, and the power generation meter 12 are built in the power generation connection board 4, so that the board housing 4'of the power generation connection board 4 is replaced with the board housing U'of the system board U. Since it is possible to easily suppress the reverse power G required when the power generation device 2 is added (expanded) and to use the received power J and the generated power H (use for control, etc.) simply by attaching to the power generation device 2, " It is possible to reduce costs, construction period, and power outage period.
At the same time, if the board housing 4'of the power generation connection board 4 is attached to the board housing U'of the system board U, unlike Patent Document 1, even if the power generation device 2 is added (expanded), the power generation is added. Since it is not necessary to separately create a foundation for installing the device 2 or to match the level of the created foundation with the existing foundation N, it also means that "reduction of cost, construction period and power outage period" can be achieved.
If the power generation connection device 3 built in the power generation connection board 4 is connected to the bus line M, the power generation connection board 4 connects the power generation connection device 3 at a high voltage such as 6600V (in other words,). It can be said that it is a "high-voltage branch board" because it has a branch line 20 that branches off from the bus line M), and since the power generation connection board 4 can be retrofitted (added) to the existing system board U (power purchase board) or the like. , It can be said that it is an "expansion type high voltage branch board".

本発明に係る電力システムや、発電装置、発電接続盤によると、発電接続機器が内蔵された発電接続盤の盤筐体を、系統接続機器が内蔵された系統盤の盤筐体に取り付けたり、発電力を下げる際には、発電力をゼロとする値等を一旦は発電力の目標値とすることなどによって、「経費、工期及び電力停止期間の低減」や、「逆電力の抑制」を実現できる。 According to the power system, the power generation device, and the power generation connection board according to the present invention, the board housing of the power generation connection board in which the power generation connection device is built can be attached to the board housing of the system board in which the system connection device is built. When lowering the power generation, by temporarily setting the value to zero the power generation as the target value of the power generation, "reduction of cost, construction period and power outage period" and "suppression of reverse power" can be achieved. realizable.

本発明に係る電力システムや、発電装置、発電接続盤を示す概要図である。It is a schematic diagram which shows the electric power system which concerns on this invention, a power generation apparatus, and a power generation connection board. 本発明に係る発電接続盤を示す図であって、(a)は正面図を示し、(b)は側面図を示し、(c)は(a)におけるX−X矢視図で且つ発電接続盤の上下方向下部における平面断面図を示す。It is a figure which shows the power generation connection board which concerns on this invention, (a) shows the front view, (b) shows the side view, (c) is the XX arrow view in (a) and power generation connection. A plan sectional view of the lower part of the board in the vertical direction is shown. 本発明に係る発電接続盤が、系統盤に取り付けられた状態を示す正面概要図である。It is a front schematic diagram which shows the state which the power generation connection board which concerns on this invention is attached to a system board. 本発明に係る電力システムにおける受電力(受電力がマイナス値の場合は逆電力の発生を示す)、発電力、負荷の消費電力、及び、発電力の目標値の変化を例示するグラフである。It is a graph which illustrates the change of the received power (when the received power is a negative value, the occurrence of reverse power), the power generation, the power consumption of a load, and the target value of the power generation in the power system according to the present invention. 本発明に係る電力システムにおける負荷が消費できる消費電力が一定で且つ発電装置の発電力を増加させた場合の、発電装置による1年間の発電力量と、負荷が1年間で消費できる消費電力量を例示するグラフである。When the power consumption that can be consumed by the load in the power system according to the present invention is constant and the power generation of the power generation device is increased, the amount of power generated by the power generation device for one year and the amount of power consumption that the load can consume in one year are determined. It is an example graph.

以下、本発明の実施形態を、図面を参照して説明する。
<電力システム1>
図1、3には、本発明に係る電力システム1が示されている。
この電力システム1は、後述する系統Kに接続する系統接続機器Sが内蔵された系統盤Uや、負荷Fと、後述する発電装置2や、発電接続機器3が内蔵された発電接続盤4を有している。
以下は、まず系統Kや、系統接続機器Sを内蔵した系統盤U、負荷F等について述べる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Power system 1>
FIGS. 1 and 3 show the electric power system 1 according to the present invention.
This power system 1 includes a system board U and a load F in which a system connection device S connected to the system K described later is built, and a power generation connection board 4 in which a power generation device 2 and a power generation connection device 3 to be described later are built. Have.
The following first describes the system K, the system board U incorporating the system connection device S, the load F, and the like.

<系統K>
図1に示したように、系統Kは、商用電力系統とも言い、電力を需要家の受電設備に供給するための、発電・変電・送電・配電を統合したシステムである。
系統Kは、三相3線(3φ3W)で、6600Vや22000V等、60Hz又は50Hz等の電力を、電力会社の変電所等から供給する。尚、柱上変圧器以降は、単相2線(1φ2W)や、1φ3W(単相3線)等の電力を供給しても良い。
<System K>
As shown in FIG. 1, the system K is also called a commercial power system, and is a system that integrates power generation, substation, power transmission, and distribution for supplying electric power to a consumer's power receiving equipment.
The system K is a three-phase three-wire system (3φ3W) and supplies electric power of 6600V, 22000V, etc., 60Hz, 50Hz, etc. from a substation of an electric power company. After the pole transformer, electric power such as single-phase two-wire (1φ2W) or 1φ3W (single-phase three-wire) may be supplied.

<系統接続機器S、系統盤U、母線電路M>
図1、3に示したように、系統接続機器Sは、上述した系統Kに接続する機器であって、この系統接続機器Sは、系統盤Uの盤筐体(系統盤筐体)U’に内蔵されている。
系統接続機器Sは、系統Kに接続され且つ系統盤筐体U’に内蔵されているのであれば、何れの構成であっても良いが、例えば、真空遮断器(VCB)等の遮断器(謂わば、系統遮断器又は高圧遮断器)S1や、避雷器(SAR)、計器用変成器(VT、Voltage Transformer 、謂わば、電圧変成器)S2などを備えていても良い。
<System connection device S, system board U, bus circuit M>
As shown in FIGS. 1 and 3, the system connection device S is a device connected to the system K described above, and the system connection device S is a board housing (system board housing) U'of the system board U. Built into.
The system connection device S may have any configuration as long as it is connected to the system K and built in the system panel housing U', but for example, a circuit breaker (VCB) or the like is used. A so-called system circuit breaker or high-voltage circuit breaker) S1, a lightning arrester (SAR), an instrument transformer (VT, Voltage Transformer, so-called voltage transformer) S2, or the like may be provided.

系統接続機器Sにおける系統遮断器S1は、後述する制御部9(又は、後述する逆電力継電器10)からの信号によって、引外しトリップコイル等を介して、遮断する構成としても良い。
このような系統遮断器S1は、系統盤U(系統盤筐体U’)内に設けられていることによって、発電装置2から系統Kまでの系統盤U内の電路(母線電路Mのうち系統盤U内の電路)を遮断することとなる。
The system circuit breaker S1 in the system connection device S may be configured to cut off a signal from a control unit 9 (or a reverse power relay 10 described later) described later via a trip coil or the like.
Since such a system circuit breaker S1 is provided in the system board U (system board housing U'), the electric circuit in the system board U from the power generation device 2 to the system K (the system of the bus electric circuit M). The electric circuit in the board U) will be cut off.

ここで、母線電路Mとは、系統接続機器Sと後述する負荷Fの間を接続する電路であって、この母線電路Mにおける電位は、系統Kにおける電位と同じ(6600Vや22000V等)であっても良く、後述する負荷Fが変圧器(降圧変圧器)F1を有している場合は、この変圧器F1(の高圧側)と系統接続機器Sの間を接続する電路が母線電路Mであると言える。
この母線電路Mには、後述する発電接続機器3(特に、分岐電路20)を接続しても良い。
Here, the bus electric circuit M is an electric circuit connecting between the system connection device S and the load F described later, and the potential in the bus electric circuit M is the same as the electric potential in the system K (6600V, 22000V, etc.). If the load F described later has a transformer (step-down transformer) F1, the electric circuit connecting the transformer F1 (high-voltage side) and the system connection device S is a bus electric circuit M. It can be said that there is.
A power generation connection device 3 (particularly, a branch electric circuit 20) described later may be connected to the bus electric circuit M.

系統接続機器Sにおける計器用変成器S2は、後述する発電装置2と系統Kの間で且つ系統盤U内の電路において、上述した系統遮断器S1より系統K寄り(系統Kに近い側)の電路に設けられている。
このような計器用変成器S2は、その高圧側が、系統遮断器S1より系統K寄り(系統Kに近い側)の電路と、当該電路における分岐点(変成分岐点)S3から分岐電路(変成分岐電路)S4を介して接続され、計器用変成器S2の低圧側は、後述する逆電力継電器10や、受電力計11、発電力計12に接続されている。
The instrument transformer S2 in the system connection device S is located closer to the system K (closer to the system K) than the above-mentioned system circuit breaker S1 in the electric circuit between the power generation device 2 and the system K, which will be described later, and in the system panel U. It is installed in the electric circuit.
In such an instrument transformer S2, the high-voltage side thereof is an electric circuit closer to the system K (closer to the system K) than the system circuit breaker S1 and a branch electric circuit (transformed branch) from the branch point (transformed branch point) S3 in the electric circuit. (Electrical circuit) It is connected via S4, and the low voltage side of the instrument transformer S2 is connected to the reverse power relay 10, the power receiving meter 11, and the power generating meter 12, which will be described later.

系統接続機器Sにおける計器用変成器S2の構成も、特に限定はないが、例えば、6600Vや22000V等を110V等に降圧する構成であっても良い。
系統接続機器Sでは、この計器用変成器S2と変成分岐点S3の間の電路に、高圧限流ヒューズ(PF、Power Fuse)が設けられていても良い。
The configuration of the instrument transformer S2 in the system connection device S is also not particularly limited, but may be, for example, a configuration in which 6600V, 22000V, etc. are stepped down to 110V or the like.
In the system connection device S, a high-pressure current limiting fuse (PF, Power Fuse) may be provided in the electric path between the instrument transformer S2 and the transformation branch point S3.

<系統接続機器Sにおける他の機器>
図1に示したように、系統接続機器Sには、その他、断路器(謂わば、高圧開閉器)S5、計器用変流器(謂わば、高圧系統電流変成器)S6、計器用変圧変流器(謂わば、高圧変成電圧電流器)S7が設けられていても良い。
更に加えて、系統接続機器Sには、不足電圧継電器や過電圧継電器、不足周波数継電器(周波数低下継電器とも言う)、過周波数継電器であったり、電力量計や、柱上気中開閉器が設けられていても良い。
<Other devices in grid connection device S>
As shown in FIG. 1, other system connection devices S include a circuit breaker (so-called high-voltage switch) S5, an instrument current transformer (so-called high-voltage system current transformer) S6, and a current transformer for instruments. A current transformer (so-called high-voltage modified voltage current transformer) S7 may be provided.
In addition, the system connection device S is provided with an undervoltage relay, an overvoltage relay, an undervoltage relay (also referred to as a frequency-decreasing relay), an overfrequency relay, a watt-hour meter, and a pillar-mounted air switch. You may be.

系統接続機器Sにおける断路器(DS、Disconnecting Switch)S5は、電力システム1や、この電力システム1における回路に電流が流れていない状態で、当該回路を開閉する機器であって、断路器S5には、電流を遮断する機能はなく、別の遮断器(系統遮断器S1や発電遮断器21等)で電流を遮断してから、断路器の開閉を行う。
断路器S5は、電流が流れていない状態で回路を開閉できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器S2への分岐点(変成分岐点)S3と系統Kの間の電路に設けられていても良い。
The disconnector (DS, Disconnecting Switch) S5 in the system connection device S is a device that opens and closes the circuit in the power system 1 and the circuit in the power system 1 in a state where no current is flowing, and the disconnector S5 Does not have a function of cutting off the current, and opens and closes the disconnector after cutting off the current with another circuit breaker (system circuit breaker S1, power generation circuit breaker 21, etc.).
The disconnector S5 may have any configuration as long as the circuit can be opened and closed while no current is flowing. For example, the disconnector S5 has a branch point (transformation branch point) S3 to the instrument transformer S2 described above. It may be provided in the electric circuit between the system K.

系統接続機器Sにおける計器用変流器(CT、Current Transformer )S6は、後述する発電装置2と系統Kの間で且つ系統盤U内の電路(母線電路Mのうち系統盤U内の電路)において、上述した系統遮断器S1より発電装置2寄り(発電装置2に近い側)の電路に設けられている。
このような計器用変流器S6の構成も、特に限定はないが、例えば、計器用変流器S6の出力側が、後述する逆電力継電器10や受電力計11に直接接続されていたり、又は、計器用変流器S6が電流計(謂わば、受電電流計)等を介して、逆電力継電器10や、受電力計11に接続されていても良い。
The current transformer (CT) S6 in the system connection device S is an electric circuit between the power generation device 2 and the system K, which will be described later, and in the system board U (the electric circuit in the system board U of the bus bar M). In the above-mentioned system breaker S1, it is provided in the electric circuit closer to the power generation device 2 (the side closer to the power generation device 2).
The configuration of such an instrument current transformer S6 is also not particularly limited, but for example, the output side of the instrument current transformer S6 is directly connected to the reverse power relay 10 or the power receiving meter 11 described later, or The current transformer S6 for an instrument may be connected to the reverse power relay 10 or the power receiving meter 11 via an ammeter (so-called power receiving ammeter) or the like.

系統接続機器Sにおける計器用変圧変流器(VCT、Combined Voltage and Current Transformer)S7は、計器用変圧器(VT)と計器用変流器(CT)を一つに組み合わせた機器であって、系統Kから系統接続機器Sに流れ込む(又は、系統Kへ流れ出す)電流や電圧の測定を行う機器であって、電力量計は、上述した計器用変圧変流器S7と組み合わせて、系統Kから系統接続機器Sに流れ込む(又は、系統接続機器Sから系統Kへ流れ出す)電力量の測定を行う機器であって、取引用メータであるとも言える。
計器用変圧変流器S7は、系統Kから系統盤Uに流れ込む等の電流や電圧を測定できるのであれば、何れの構成であっても良いが、例えば、計器用変圧変流器S7は、上述した断路器S5と系統Kの間の電路に設けられていても良い。
The instrument transformer (VCT, Combined Voltage and Current Transformer) S7 in the grid connection device S is a device that combines an instrument transformer (VT) and an instrument transformer (CT) into one. It is a device that measures the current and voltage that flows from the system K into the system connection device S (or flows out to the system K), and the power meter is combined with the above-mentioned instrument transformer current transformer S7 and is used from the system K. It is a device that measures the amount of power that flows into the system connection device S (or flows out from the system connection device S to the system K), and can be said to be a trading meter.
The instrument transformer S7 may have any configuration as long as it can measure the current and voltage flowing from the system K to the system panel U. For example, the instrument transformer S7 has a configuration. It may be provided in the electric circuit between the disconnector S5 and the system K described above.

その他、系統接続機器Sに不足電圧継電器が設けられている場合、この不足電圧継電器(UVR、Under Voltage Relay )は、不足電圧を検知する継電器であって、不足電圧を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器S2の低圧側に接続されていても良い。
不足電圧継電器で検知される不足電圧が、所定値(6600Vや22000V等から、所定の電圧(例えば、100Vや200V等)を引いた値)以下になると、後述する制御部9によって、上述した発電装置2から系統Kまでの何れかの遮断器(系統遮断器S1や発電遮断器21等)を遮断しても良いが、この遮断は、後述する逆電力発生状態C1になった場合より、優先度が低いとも言える。
尚、不足電圧継電器で不足電圧が検知された際、上述した遮断器をハードウェア的に(例えば、引外しトリップコイル等を介して)遮断する場合、当該不足電圧継電器自体が、後述する制御部9であるとも言える。
In addition, when the system connection device S is provided with an undervoltage relay, this undervoltage relay (UVR, Under Voltage Relay) is a relay that detects the undervoltage, and if it can detect the undervoltage, any of them. However, for example, it may be connected to the low voltage side of the instrument transformer S2 described above.
When the undervoltage detected by the undervoltage relay breaker becomes equal to or less than a predetermined value (a value obtained by subtracting a predetermined voltage (for example, 100V, 200V, etc.) from 6600V, 22000V, etc.), the above-mentioned power generation is performed by the control unit 9 described later. Any circuit breaker (system circuit breaker S1, power generation circuit breaker 21, etc.) from the device 2 to the system K may be interrupted, but this circuit breaker has priority over the case where the reverse power generation state C1 described later is reached. It can be said that the degree is low.
When the undervoltage relay detects an undervoltage, when the above-mentioned circuit breaker is cut off by hardware (for example, via a trip coil or the like), the undervoltage relay itself is a control unit described later. It can be said that it is 9.

系統接続機器Sに過電圧継電器が設けられている場合、この過電圧継電器(OVR、Over Voltage Relay)は、過電圧を検知する継電器であって、過電圧を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器S2の低圧側に接続されていても良い。
過電圧継電器で検知される過電圧が、所定値(6600Vや22000V等から、所定の電圧(例えば、100Vや200V等)を足した値)以上になると、後述する制御部9によって、上述した発電装置2から系統Kまでの何れかの遮断器を遮断しても良いが、この遮断も、後述する逆電力発生状態C1になった場合より、優先度が低いとも言える。
尚、過電圧継電器で過電圧が検知された際、上述した遮断器をハードウェア的に遮断する場合、当該過電圧継電器自体が、後述する制御部9であるとも言える。
When the grid connection device S is provided with an overvoltage relay, this overvoltage relay (OVR, Over Voltage Relay) is a relay that detects overvoltage, and any configuration can be used as long as it can detect overvoltage. It may be good, but for example, it may be connected to the low voltage side of the instrument transformer S2 described above.
When the overvoltage detected by the overvoltage relay exceeds a predetermined value (a value obtained by adding a predetermined voltage (for example, 100V, 200V, etc.) from 6600V, 22000V, etc.), the power generation device 2 described above is operated by the control unit 9 described later. Any circuit breaker from to system K may be cut off, but it can be said that this cutoff also has a lower priority than the case where the reverse power generation state C1 described later is reached.
When an overvoltage is detected by the overvoltage relay and the above-mentioned circuit breaker is cut off by hardware, it can be said that the overvoltage relay itself is the control unit 9 described later.

系統接続機器Sに不足周波数継電器が設けられている場合、この不足周波数継電器(UFR、Under Frequency Relay )は、不足周波数を検知する継電器であって、不足周波数を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器S2の低圧側に接続されていても良い。
不足周波数継電器で検知される不足周波数が、所定値(60Hzや50Hz等から、所定の周波数(例えば、1Hz以上10Hz以下等)を引いた値)以下になると、後述する制御部9によって、上述した発電装置2から系統Kまでの何れかの遮断器を遮断しても良いが、この遮断も、後述する逆電力発生状態C1になった場合より、優先度が低いとも言える。
尚、不足周波数継電器で不足周波数が検知された際、上述した遮断器をハードウェア的に遮断する場合、当該不足周波数継電器自体が、後述する制御部9であるとも言える。
When the grid connection device S is provided with a shortage frequency relay, this shortage frequency relay (UFR, Under Frequency Relay) is a relay that detects the shortage frequency, and any configuration can be used as long as the shortage frequency can be detected. However, for example, it may be connected to the low pressure side of the instrument transformer S2 described above.
Insufficient frequency When the insufficient frequency detected by the relay becomes less than or equal to a predetermined value (a value obtained by subtracting a predetermined frequency (for example, 1 Hz or more and 10 Hz or less) from 60 Hz, 50 Hz, etc.) Any circuit breaker from the power generation device 2 to the system K may be cut off, but it can be said that this cutoff also has a lower priority than the case where the reverse power generation state C1 described later is reached.
When the shortage frequency is detected by the shortage frequency relay and the above-mentioned circuit breaker is cut off by hardware, it can be said that the shortage frequency relay itself is the control unit 9 described later.

系統接続機器Sに過周波数継電器が設けられている場合、この過周波数継電器(OFR、Over Frequency Relay)は、過周波数を検知する継電器であって、過周波数を検知できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変成器S2の低圧側に接続されていても良い。
過周波数継電器で検知される過周波数が、所定値(60Hzや50Hz等から、所定の周波数(例えば、1Hz以上10Hz以下等)を足した値)以上になると、後述する制御部9によって、上述した発電装置2から系統Kまでの何れかの遮断器を遮断しても良いが、この遮断も、後述する逆電力発生状態C1になった場合より、優先度が低いとも言える。
尚、過周波数継電器で過周波数が検知された際、上述した遮断器をハードウェア的に遮断する場合、当該過周波数継電器自体も、後述する制御部9であるとも言える。
When the grid connection device S is provided with an overfrequency relay, this overfrequency relay (OFR, Over Frequency Relay) is a relay that detects overfrequency, and any configuration can be used as long as it can detect overfrequency. However, for example, it may be connected to the low pressure side of the instrument transformer S2 described above.
When the overfrequency detected by the overfrequency relay exceeds a predetermined value (a value obtained by adding a predetermined frequency (for example, 1 Hz or more and 10 Hz or less) from 60 Hz, 50 Hz, etc.), the control unit 9 described later describes the above. Any circuit breaker from the power generation device 2 to the system K may be cut off, but it can be said that this cutoff also has a lower priority than the case where the reverse power generation state C1 described later is reached.
When an overfrequency is detected by the overfrequency relay and the above-mentioned circuit breaker is cut off by hardware, it can be said that the overfrequency relay itself is also a control unit 9 described later.

系統接続機器Sに電力量計が設けられている場合、この電力量計は、系統Kから系統盤Uに流れ込む際等の電力量の測定ができるのであれば、何れの構成であっても良いが、例えば、計器用変圧変流器S7に接続されて、当該計器用変圧変流器S7から出力される電流及び電圧の測定値を入力し、これら電流と電圧をかけた値(電圧と電流の積)を積算して電力量を測定しても良い。
ここで、電力量計は、系統Kから系統盤Uに流れ込む電力量を測定する際は買電用であると言え、逆に、系統接続機器Sから系統Kへ流れ出す電力量を測定する際は売電用であるとも言える。尚、この電力量計は、電気用品安全法で規定された乙種電気用品であっても良い。
When the grid connection device S is provided with a watt-hour meter, the watt-hour meter may have any configuration as long as it can measure the amount of current when flowing from the grid K to the grid board U. Is connected to the instrument transformer transformer S7, for example, the measured values of the current and the voltage output from the instrument transformer transformer S7 are input, and the value obtained by multiplying these currents and voltages (voltage and current). The amount of power may be measured by integrating the product of).
Here, it can be said that the watt-hour meter is for purchasing power when measuring the amount of power flowing from the system K to the system board U, and conversely, when measuring the amount of power flowing out from the system connection device S to the system K. It can be said that it is for selling electricity. It should be noted that this watt-hour meter may be a Class B electrical appliance specified by the Electrical Appliance and Material Safety Law.

系統接続機器Sに柱上気中開閉器が設けられている場合、この柱上気中開閉器(PAS、Pole Air Switches )は、電力システム1と系統Kとの責任分界点等の開閉に用いる機器である。
柱上気中開閉器は、電力システム1と系統Kとの責任分界点等を開閉できるのであれば、何れの構成であっても良いが、例えば、上述した計器用変圧変流器S7と系統Kの間の電路に設けられていても良い。
When the system connection device S is provided with a pole air switch, this pole air switch (PAS, Pole Air Switches) is used to open / close the demarcation point of responsibility between the power system 1 and the system K. It is a device.
The pole-mounted air switch may have any configuration as long as it can open and close the demarcation point of responsibility between the power system 1 and the system K. For example, the pole transformer S7 and the system may be configured. It may be provided in the electric circuit between K.

<系統盤Uの盤筐体(系統盤筐体)U’>
図1、3に示したように、系統盤筐体U’は、上述した系統接続機器Sを内蔵する筐体であって、1つの電力システム1(又は後述する発電装置2)において、系統Kに接続されるために1つだけ存在する(系統盤Uも1つだけ存在する)ものであるとも言える。
系統盤筐体U’は、系統接続機器Sを内蔵するのであれば、何れの構成であっても良いが、例えば、全体として略直方体状等に形成されていても良く、その他、系統盤筐体U’の体積(外面の体積)や容積(内面の容積)は、後述する発電接続盤筐体4’の体積や容積より大きくても良い(尚、図1においては、便宜的に系統盤筐体U’の体積や容積が発電接続盤筐体4’の体積や容積より小さく表示している)。
<System board U board housing (system board housing) U'>
As shown in FIGS. 1 and 3, the system board housing U'is a housing incorporating the system connection device S described above, and is a system K in one power system 1 (or a power generation device 2 described later). It can be said that there is only one (there is only one system board U) because it is connected to.
The system board housing U'may have any configuration as long as it incorporates the system connection device S. For example, the system board housing U'may be formed in a substantially rectangular shape as a whole, and other system board housings. The volume (volume on the outer surface) and volume (volume on the inner surface) of the body U'may be larger than the volume and volume of the power generation connection board housing 4'described later (note that in FIG. 1, the system board is for convenience. The volume and volume of the housing U'is displayed smaller than the volume and volume of the power generation connection board housing 4').

系統盤筐体U’全体が略直方体状である場合、系統盤筐体U’は、その側面材(前面材、後面材、左面材、右面材等)には、それぞれ開閉可能な扉(前扉等)が設けられていても良い。
又、系統盤筐体U’は、側面材の他に、天井面材、床面材などを有していても良い。
When the entire system board housing U'is substantially rectangular parallelepiped, the system board housing U'has doors (front) that can be opened and closed on its side materials (front material, rear surface material, left surface material, right surface material, etc.). Doors, etc.) may be provided.
Further, the system board housing U'may have a ceiling surface material, a floor surface material, and the like in addition to the side material.

尚、略直方体状の系統盤筐体U’における「前後」とは、扉がある側を「前」とし、扉がある側とは反対の側を「後」とする(前後に扉がある場合は、何れか一方の扉がある側を「前」とする)。
更に、系統盤筐体U’における「左右」とは、仮に系統盤筐体U’に入った使用者が、系統盤筐体U’における「後」から「前」へ向いた時の左手側を「左」とし、「後」から「前」へ向いた時の右手側を「右」とする。
The "front and back" in the substantially rectangular parallelepiped system board housing U'refers to the side with the door as "front" and the side opposite to the side with the door as "rear" (there are doors in front and behind). In that case, the side with one of the doors is the "front").
Further, "left and right" in the system board housing U'means the left hand side when the user who has entered the system board housing U'turns from "rear" to "front" in the system board housing U'. Is "left", and the right hand side when facing from "rear" to "front" is "right".

系統盤筐体U’の側面材や天井面材には、後述する発電接続盤4の盤筐体4’における後面材の後面貫通孔4a’や、後面の開口部に対応する(略同じの数や大きさ、形状である)貫通孔Ua’や開口部を有していても良い。
尚、これらの貫通孔Ua’や開口部は、既設の系統盤筐体U’には当然設けられていないが、発電接続盤筐体4’を取り付ける際には、取り付ける発電接続盤筐体4’の後面貫通孔4a’や開口部に応じて設けても良いが、極力小さくすることとしても良い。
The side material and ceiling surface material of the system board housing U'correspond to the rear through hole 4a'of the rear surface material in the board housing 4'of the power generation connection board 4, which will be described later, and the opening on the rear surface (substantially the same). It may have through holes Ua'or openings (which are number, size, and shape).
Of course, these through holes Ua'and openings are not provided in the existing system board housing U', but when the power generation connection board housing 4'is attached, the power generation connection board housing 4 is attached. It may be provided according to the'rear surface through hole 4a'and the opening, but it may be made as small as possible.

系統盤筐体U’の側面材(前面材、後面材、左面材、右面材等)や天井面材の少なくとも1つに、後述する発電接続盤筐体4’(特に、その後面側)が取り付けられる。
系統盤筐体U’は、その側面材(前面材、後面材、左面材、右面材等)の少なくとも1つが、後述する発電接続盤筐体4’の後面材より広くとも良く、系統盤筐体U’の天井面材は、発電接続盤筐体4’の後面材と同じ広さ、又は、後面材より広くても構わない。
仮に、系統盤筐体U’の体積や容積が、後述する発電接続盤筐体4’の体積や容積より小さい場合であっても、系統盤筐体U’の側面材や天井面材の少なくとも1つが、後述する発電接続盤筐体4’の後面材より広くても良い。
1つの系統盤筐体U’に対して、後述する発電接続盤筐体4’が1つだけ取り付けられても良いし、複数の発電接続盤筐体4’が1つの系統盤筐体U’に取り付けられても構わない。
At least one of the side materials (front material, rear surface material, left surface material, right surface material, etc.) and ceiling surface material of the system panel housing U'is a power generation connection panel housing 4'(especially the rear surface side) described later. It is attached.
At least one of the side members (front material, rear surface material, left surface material, right surface material, etc.) of the system board housing U'may be wider than the rear surface material of the power generation connection board housing 4'described later, and the system board housing The ceiling surface material of the body U'may be the same size as the rear surface material of the power generation connection board housing 4', or may be wider than the rear surface material.
Even if the volume or volume of the system board housing U'is smaller than the volume or volume of the power generation connection board housing 4'described later, at least the side material or ceiling surface material of the system board housing U' One may be wider than the rear surface material of the power generation connection board housing 4'described later.
Only one power generation connection board housing 4'described later may be attached to one system board housing U', or a plurality of power generation connection board housings 4'are one system board housing U'. It may be attached to.

系統盤筐体U’の天井面材外面には、クレーン等で吊上可能なフックを設けていても良く、このフックを介して吊り上げた系統盤筐体U’全体を、事前に施工した基礎(土台)N上に据え付け(取り付け)ても構わない。
この基礎Nは、コンクリート製や、鋼材(H鋼)製など何れの素材でも良く、その形状も、一様な厚みを持つベタ基礎や、系統盤筐体U’の床面材下方に空間を形成するよう凹み等を有したゲタ基礎であっても構わない。
A hook that can be lifted by a crane or the like may be provided on the outer surface of the ceiling surface material of the system board housing U', and the entire system board housing U'lifted via this hook is constructed in advance. (Base) It may be installed (installed) on N.
The foundation N may be made of any material such as concrete or steel (H steel), and its shape may be a solid foundation having a uniform thickness or a space below the floor material of the system board housing U'. It may be a geta foundation having a dent or the like so as to form.

<負荷F>
図1に示したように、負荷Fは、系統Kから系統盤Uを介しての受電力Jや、発電装置2から出力された発電力H等を消費する機器であって、このような負荷Fが消費する電力を負荷電力(消費電力とも言える)Dとする。
負荷Fは、受電力Jや発電力Hを消費するのであれば、何れの構成でも良いが、例えば、工場内等の照明(電灯負荷設備)Fであったり、工場内などのインダストリアルモータ(IM、Industrial Motor、動力負荷設備)Fであったり、上述した照明F複数と接続された照明分電盤などであっても良い。
<Load F>
As shown in FIG. 1, the load F is a device that consumes the received power J from the system K via the system board U, the generated power H output from the power generation device 2, and the like, and such a load. Let the power consumed by F be the load power (which can also be said to be power consumption) D.
The load F may have any configuration as long as it consumes the received power J and the generated power H. For example, the load F may be a lighting (light load equipment) F in a factory or an industrial motor (IM) in a factory. , Industrial Motor, power load equipment) F, or an illumination distribution board connected to a plurality of the above-mentioned illuminations F.

負荷Fは、工場内の機器の他、住宅やビル等の建物内のエアコン、蛍光灯、家電、電気自動車やガソリン自動車等の車両、当該車両内の機器などであっても良い。
その他、負荷Fは、系統Kから系統接続機器Sを介しての受電力Jや発電装置2からの発電力Hを変圧(降圧)する変圧器(謂わば、降圧変圧器や、電灯変圧器、動力変圧器)F1を有していたり、この変圧器F1と系統接続機器Sとの間の母線電路Mに高圧交流負荷開閉器(LBS、Load Break Switch )F2を有していたり、変圧器F1と上述したインダストリアルモータ(又は照明)Fとの間の電路等に配線用遮断器(MCCB、Molded Case Circuit Break )F3を有していても良い。
尚、高圧交流負荷開閉器F2は、高圧限流ヒューズ等のヒューズを有していても良い。
The load F may be a device in a factory, an air conditioner in a building such as a house or a building, a fluorescent lamp, a home appliance, a vehicle such as an electric vehicle or a gasoline vehicle, or a device in the vehicle.
In addition, the load F is a transformer (so-called step-down transformer, electric light transformer, etc.) that transforms (steps down) the power received J from the system K via the system connection device S and the power generated H from the power generation device 2. Power transformer) F1 or a high-voltage AC load switch (LBS, Load Break Switch) F2 in the bus M between this transformer F1 and the system connection device S, or a transformer F1 A wiring breaker (MCCB, Molded Case Circuit Break) F3 may be provided in an electric circuit or the like between the above-mentioned industrial motor (or lighting) F and the above-mentioned industrial motor (or lighting) F.
The high-voltage AC load switch F2 may have a fuse such as a high-voltage current limiting fuse.

負荷Fにおける変圧器F1の構成も、特に限定はないが、例えば、インダストリアルモータ用(動力用)であれば、三相3線(3φ3W)で、6600Vや22000V等を440Vや210V等に降圧する構成であったり、照明用(電灯用)であれば、単相3線(1φ3W)で、6600Vや22000V等を、105V以上210V以下等に降圧する構成であっても良い。
負荷Fは、このような変圧器F1が設けられていなくとも良く、この場合は、系統盤U側に別の変圧器が設けられていたり、発電装置2からの出力が、変圧器F1を介すことなく、負荷Fに直接接続する構成であっても良い。
The configuration of the transformer F1 in the load F is also not particularly limited, but for example, in the case of an industrial motor (for power), 6600V, 22000V, etc. are stepped down to 440V, 210V, etc. with a three-phase three-wire (3φ3W). If it is for lighting (for electric lamps), it may be configured to step down 6600V, 22000V, etc. to 105V or more and 210V or less with a single-phase three-wire (1φ3W).
The load F does not have to be provided with such a transformer F1. In this case, another transformer is provided on the system panel U side, or the output from the power generation device 2 is transmitted via the transformer F1. It may be configured to be directly connected to the load F without any trouble.

<負荷Fの消費電力(負荷電力)D、その算出や変化>
このような負荷F全体で消費される電力が、負荷電力Dであり、各負荷Fそのもので消費される電力の合計だけでなく、変圧器F1における電力ロス分や、照明分電盤で消費される電力を含んでも良く、この他、ケーブルロス(各機器間を接続するケーブルにおける電力ロス)や、空調ロス(上述した系統盤Uや後述する配電盤30等内の空調による電力ロス))などの発電時ロス電力も負荷電力Dに含まれていても構わない。
尚、負荷Fの数は、1又は複数であっても良いが、たとえ負荷Fが1つであっても、変圧器F1も有していれば、その電力ロス分も含めた電力が、負荷電力Dとなる。
<Power consumption (load power) D of load F, its calculation and change>
The power consumed by the entire load F is the load power D, which is consumed not only by the total power consumed by each load F itself, but also by the power loss in the transformer F1 and in the lighting distribution board. In addition to this, cable loss (power loss in the cable connecting each device), air conditioning loss (power loss due to air conditioning in the system board U described above and the switchboard 30 described later), etc. The loss power during power generation may also be included in the load power D.
The number of loads F may be one or more, but even if the load F is one, if the transformer F1 is also possessed, the power including the power loss is the load. It becomes electric power D.

このように、1つ又は複数の負荷Fの各消費電力を直接測定し、電力ロス分も含め、それらの合計した負荷電力Dを算出することは、ハードウェア的に困難であり、正確に負荷電力Dを測定し難いと言える。
そこで、受電力Jと発電力Hとの和から負荷電力Dを算出することで、負荷電力Dを直接測定する必要がなく、受電力Jと発電力Hの測定はハードウェア的にシンプルな構造となって測定し易く、正確性も上がると言える。
このような負荷電力Dの算出の基となる受電力Jや発電力Hを測定する受電力計11や発電力計12については、後に詳解する。
In this way, it is difficult in terms of hardware to directly measure the power consumption of one or more loads F and calculate the total load power D including the power loss, and the load is accurate. It can be said that it is difficult to measure the power D.
Therefore, by calculating the load power D from the sum of the received power J and the generated power H, it is not necessary to directly measure the load power D, and the measurement of the received power J and the generated power H has a simple hardware structure. It can be said that it is easy to measure and the accuracy is improved.
The power receiving meter 11 and the power generation meter 12 for measuring the received power J and the generated power H, which are the basis for calculating the load power D, will be described in detail later.

負荷Fの消費電力(負荷電力)Dは、昼か夜か等の時間帯などによって、使用する電灯負荷設備Fの数が変わったり、工場内等で使用する動力負荷設備Fの種類・数も作業の目的等によって変わるため、当然、負荷電力Dは低下したり上昇するなど変化する。
このように変化する負荷電力Dに極力近い発電力H等を発電装置2で発電させる(換言すると、後述する制御部9にて、制限係数A(t)を極力100%に近づける)ことが出来れば、受電力(買電する電力)Jが極力抑えられ(経費が低減でき)て望ましい。
The power consumption (load power) D of the load F varies depending on the time of day, night, etc., and the type and number of the power load equipment F used in the factory, etc. Since it changes depending on the purpose of the work and the like, the load power D naturally changes such as decreasing or increasing.
The power generation device 2 can generate power H or the like that is as close as possible to the load power D that changes in this way (in other words, the control unit 9 described later makes the limiting coefficient A (t) as close to 100% as possible). For example, it is desirable that the received power (power to be purchased) J is suppressed as much as possible (cost can be reduced).

一方、図4に示したように、負荷電力Dに極力近い発電力H等を発電装置2で発電している場合、負荷電力Dが低下した際には、パワーコンディショナ7を制御して発電力Hを下げる発電力Hの目標値THを与えても、実際の発電力Hはすぐに下がらない(発電力Hの低下が遅れる)ため、遅れた分だけ、発電力Hが負荷電力Dより大きくなり、逆電力Gが発生する(負荷Fで消費できない電力が系統Kに流れる)ことを抑制する必要がある。
ここまで述べた負荷Fや系統接続機器Sに対して、後述する発電装置2を接続させるための発電接続機器3を内蔵した発電接続盤4について、以下に述べる。
On the other hand, as shown in FIG. 4, when the power generation device 2 is generating power generation H or the like as close as possible to the load power D, when the load power D decreases, the power conditioner 7 is controlled to generate power. Even if the target value TH of the power generation H that lowers the force H is given, the actual power generation H does not decrease immediately (the decrease in the power generation H is delayed), so the power generation H is greater than the load power D by the delay. It is necessary to prevent the reverse power G from being generated (power that cannot be consumed by the load F flows into the system K).
The power generation connection board 4 incorporating the power generation connection device 3 for connecting the power generation device 2 described later to the load F and the system connection device S described so far will be described below.

<発電接続機器3、発電接続盤4>
図1〜3に示したように、発電接続機器3は、上述した系統接続機器S及び負荷Fに、後述する発電装置2を接続させる機器である。
本発明に係る発電接続盤4は、その盤筐体(発電接続盤筐体)4’に発電接続機器3を内蔵しており、この発電接続盤4(発電接続盤筐体4’)内には、系統接続機器S及び負荷Fに発電装置2を接続して、当該電力システム1の使用者が発電装置2発電した電力を負荷Fで自ら消費する「自家消費」を行うために必要な機器を集約しているとも言える。
発電接続機器3は、系統接続機器S及び負荷Fに発電装置2を接続し且つ発電接続盤筐体4’に内蔵されているのであれば、何れの構成であっても良いが、例えば、分岐電路20や、逆電力継電器10、受電力計11、発電力計12、発電遮断器21、計器用変流器(謂わば、発電流変成器)22などを備えていても良い。
<Power generation connection device 3, power generation connection board 4>
As shown in FIGS. 1 to 3, the power generation connection device 3 is a device for connecting the power generation device 2 described later to the system connection device S and the load F described above.
The power generation connection board 4 according to the present invention has a power generation connection device 3 built in the board housing (power generation connection board housing) 4', and is contained in the power generation connection board 4 (power generation connection board housing 4'). Is a device necessary for connecting the power generation device 2 to the grid connection device S and the load F and performing "self-consumption" in which the user of the power system 1 consumes the power generated by the power generation device 2 by the load F. It can be said that they are aggregating.
The power generation connection device 3 may have any configuration as long as the power generation device 2 is connected to the system connection device S and the load F and is built in the power generation connection panel housing 4'. For example, the power generation connection device 3 may be branched. The electric circuit 20, the reverse power relay 10, the power receiving meter 11, the power generation meter 12, the power generation breaker 21, the current transformer for the instrument (so-called current transformer) 22, and the like may be provided.

<分岐電路20>
図1に示したように、分岐電路20は、後述する発電装置2を、上述した系統接続機器S及び負荷Fに接続可能とする電路であり、例えば、その素材が電気機器用ビニル絶縁電線などであっても良い。
分岐電路20(換言すれば、発電接続機器3)は、上述したように、母線電路Mに接続可能とされても良く、この場合、分岐電路20における電位は、母線電路Mや系統Kにおける電位と同じ高電圧(6600Vや22000V等)となる。このため、仮に系統盤Uや負荷Fと発電装置2との間の距離が遠くなっても(遠距離になっても)、分岐電路20が高電圧となるため、ケーブルロスが低減でき、発電装置2の設置場所を選ばない(設置場所の選択肢が増える)。
<Branch line 20>
As shown in FIG. 1, the branch electric circuit 20 is an electric circuit that enables the power generation device 2 described later to be connected to the above-mentioned system connection device S and load F. For example, the material thereof is a vinyl insulated wire for electric device or the like. It may be.
As described above, the branch electric circuit 20 (in other words, the power generation connection device 3) may be connected to the bus electric circuit M. In this case, the electric potential in the branch electric circuit 20 is the electric potential in the bus electric circuit M or the system K. The same high voltage (6600V, 22000V, etc.) is obtained. Therefore, even if the distance between the system board U or the load F and the power generation device 2 is long (even if the distance is long), the branch electric circuit 20 has a high voltage, so that cable loss can be reduced and power generation can be performed. The installation location of the device 2 can be selected (the choice of installation location increases).

尚、分岐電路20は、発電接続盤筐体4’内に位置する部分だけでなく、発電接続盤筐体4’からはみ出した部分を有していても良い。
又、分岐電路20の一端側は、母線電路M(SとFの間の何れかの箇所の電路)に接続され、分岐電路20の他端側は、発電装置2の出力側(変圧器8の出力側(高圧側))に接続されても良い。
The branch electric circuit 20 may have not only a portion located in the power generation connection board housing 4'but also a portion protruding from the power generation connection board housing 4'.
Further, one end side of the branch electric circuit 20 is connected to the bus electric circuit M (an electric circuit at any position between S and F), and the other end side of the branch electric circuit 20 is the output side (transformer 8) of the power generation device 2. It may be connected to the output side (high voltage side) of.

<逆電力継電器10、逆電力G>
図1、2に示したように、逆電力継電器(RPR、Reverse Power Relay )10は、逆電力Gを検知する継電器であって、発電接続盤4に内蔵されている。
ここで、逆電力Gとは、上述した系統接続機器Sから系統Kへ逆流する電力であり、逆流電力Gとも言える。
<Reverse power relay 10, reverse power G>
As shown in FIGS. 1 and 2, the reverse power relay (RPR, Reverse Power Relay) 10 is a relay that detects the reverse power G, and is built in the power generation connection panel 4.
Here, the reverse power G is the power that flows back from the system connection device S described above to the system K, and can also be said to be the backflow power G.

逆電力継電器10は、逆電力Gを検知できるのであれば、何れの構成であっても良いが、例えば、上述した系統盤Uに内蔵された計器用変成器S2の低圧側と接続可能で、且つ、上述した系統盤Uに内蔵された計器用変流器S6の出力側と接続可能な状態で、発電接続盤4に内蔵されていても良い。
逆電力継電器10で検知される逆電力Gが0より大きくなると(謂わば「逆電力発生状態C1になると」)、後述する制御部9によって、後述する発電装置2から系統Kまでの何れかの遮断器(発電遮断器21や系統遮断器S1等)を遮断し、又は、後述するパワーコンディショナ7の変換を停止しても良い。
The reverse power relay 10 may have any configuration as long as it can detect the reverse power G. For example, the reverse power relay 10 can be connected to the low voltage side of the instrument transformer S2 built in the system board U described above. Moreover, it may be built in the power generation connection board 4 in a state where it can be connected to the output side of the instrument transformer S6 built in the system board U described above.
When the reverse power G detected by the reverse power relay 10 becomes larger than 0 (so-called "reverse power generation state C1"), the control unit 9 described later causes any of the power generation devices 2 to the system K described later. The circuit breaker (power generation circuit breaker 21, system circuit breaker S1, etc.) may be cut off, or the conversion of the power conditioner 7 described later may be stopped.

尚、逆電力継電器10で逆電力Gが検知された際、上述した遮断器をハードウェア的に(例えば、引外しトリップコイル等を介して)遮断する場合、当該逆電力継電器10自体が、後述する制御部9であるとも言える。
ここで、本発明における「逆電力Gが0より大きくなる」とは、逆電力Gが、厳密に0W(0mWや0μW等)より大きくなる(当然に、0Wを含まない)ことを意味するものの、用いる逆電力継電器10の分解能や設定等によっては、その逆電力Gが「0Wより大きく」且つ「0Wとみなせる値以下となる」ことを意味しても許容し、本発明における「0Wとみなせる値」とは、用いる逆電力継電器10の分解能に応じたり、所定の不足電力の値に設定する等をしても構わず、例えば、1mWや1μW、1nWなどであっても良い。
When the reverse power G is detected by the reverse power relay 10, when the above-mentioned circuit breaker is cut off in terms of hardware (for example, via a trip coil or the like), the reverse power relay 10 itself will be described later. It can also be said that the control unit 9 is used.
Here, "the reverse power G becomes larger than 0" in the present invention means that the reverse power G is strictly larger than 0 W (0 mW, 0 μW, etc.) (naturally, does not include 0 W). Depending on the resolution and settings of the reverse power relay 10 used, it is permissible to mean that the reverse power G is "greater than 0W" and "less than or equal to a value that can be regarded as 0W", and can be regarded as "0W" in the present invention. The “value” may be set according to the resolution of the reverse power relay 10 to be used, a predetermined value of insufficient power, or the like, and may be, for example, 1 mW, 1 μW, 1 nW, or the like.

その他、本発明における「逆電力発生状態C1」とは、系統Kから系統接続機器Sに流れ込む電力(後述する受電力J)の2〜10%以上(5%以上など)の電力が、例えば、1〜2秒以上(2秒以上など)、系統接続機器Sから系統Kに逆流した場合を意味しても良い。
例えば、系統Kから系統接続機器Sに流れ込む(受電される)三相3線の電力における電流値が50Aで且つ電圧値が6600Vである場合には、受電力Jは、√3×50×6600=571576.766・・・W≒571.6kWとなり、この受電力Jの5%は、571.6kW×0.05≒28.6kWとなることから、28.6kW以上の逆電力Gが、2秒以上発生した際に「逆電力発生状態C1」になるとも言える。
尚、逆電力継電器10は、後述する受電力計11と一体になっている、又は、受電力計11に内蔵されていても(換言すれば、受電力計11が逆電力継電器10の機能を内蔵していても)良く、これらの場合でも、逆電力継電器10と受電力計11が一体となった機器や、逆電力継電器10を内蔵する受電力計11が、発電接続盤4に内蔵されていれば、当該逆電力継電器10が発電接続盤4に内蔵されていることに変わりはない(逆電力継電器10と受電力計11が別々に設けられている場合と同様である)。
In addition, the "reverse power generation state C1" in the present invention means that, for example, 2 to 10% or more (5% or more, etc.) of the power flowing from the system K to the system connection device S (received power J described later) is, for example. It may mean the case where the power flows back from the system connection device S to the system K for 1 to 2 seconds or more (2 seconds or more, etc.).
For example, when the current value of the power of the three-phase three-wire flowing (received) from the system K to the system connection device S is 50 A and the voltage value is 6600 V, the received power J is √3 × 50 × 6600. = 571576.766 ... W ≈ 571.6 kW, and 5% of this received power J is 571.6 kW × 0.05 ≈ 28.6 kW. Therefore, the reverse power G of 28.6 kW or more is 2 It can be said that the "reverse power generation state C1" is reached when the power is generated for more than a second.
Even if the reverse power relay 10 is integrated with the power receiving meter 11 described later or is built in the power receiving meter 11 (in other words, the power receiving meter 11 functions as the reverse power relay 10). (Even if it is built-in), even in these cases, a device in which the reverse power relay 10 and the power receiving meter 11 are integrated, and a power receiving meter 11 having a built-in reverse power relay 10 are built in the power generation connection board 4. If so, the reverse power relay 10 is still built in the power generation connection panel 4 (similar to the case where the reverse power relay 10 and the power receiving meter 11 are separately provided).

<受電力計11、受電力J>
図1、2に示したように、受電力計11は、受電力Jを測定する電力計であって、発電接続盤4に内蔵されている。
ここで、受電力Jとは、上述した系統Kから系統接続機器Sへ受電される電力であり、受電電力Jとも言える。
<Power receiving meter 11, power receiving J>
As shown in FIGS. 1 and 2, the power receiving meter 11 is a power meter for measuring the received power J, and is built in the power generation connection board 4.
Here, the received power J is the power received from the system K described above to the system connection device S, and can also be said to be the received power J.

受電力計11は、受電力Jを測定できるのであれば、何れの構成であっても良いが、例えば、上述した系統盤Uに内蔵された計器用変成器S2の低圧側と接続可能で、且つ、上述した系統盤Uに内蔵された計器用変流器S6の出力側と接続可能な状態で、発電接続盤4に内蔵されていても良い。
このような受電力計11は、例えば、上述した系統接続機器Sにおける計器用変流器S6の出力側に接続された過電流継電器(OCR、Over Current Relay、謂わば、受電OCR)や、計器用変流器S6の出力側に接続された電流計(謂わば、受電電流計)、この電流計の出力側と上述した計器用変成器S2の低圧側に接続された電力計(狭義の受電力計とも言える)、この電力計からの測定値をデジタル化等して制御部9へ出力する出力部も有する構成であっても良い。
The power receiving meter 11 may have any configuration as long as it can measure the receiving power J. For example, the power receiving meter 11 can be connected to the low voltage side of the instrument transformer S2 built in the system board U described above. Moreover, it may be built in the power generation connection board 4 in a state where it can be connected to the output side of the instrument transformer S6 built in the system board U described above.
Such a power receiving meter 11 is, for example, an overcurrent relay (OCR, Over Current Relay, so to speak, power receiving OCR) connected to the output side of the current transformer S6 for the instrument in the system connection device S described above, or an instrument. An ammeter (so-called power receiving ammeter) connected to the output side of the current transformer S6, and a wattmeter (receiver in a narrow sense) connected to the output side of this ammeter and the low pressure side of the above-mentioned current transformer S2. It can also be said to be an ammeter), and may also have an output unit that digitizes the measured value from this ammeter and outputs it to the control unit 9.

その他、受電力計11は、発電接続盤筐体4’外に露出し且つ測定した受電力Jを表示する受電力パネル11aを有していても良い。
受電力計11で測定される受電力Jの値と、後述する発電力計12で測定される発電力Hに基づいて、後述する制御部9によって、後述するパワーコンディショナ7からの出力が制御される。尚、制御部9が後述する配電盤30等の内部に設けられている場合は、受電力計11で測定された受電力Jの値は、通信ケーブル25等による有線か、無線によって、制御部9へ出力されても良い。
尚、受電力計11は、上述した逆電力継電器10と一体になっている、又は、逆電力継電器10に内蔵されていても(換言すれば、逆電力継電器10が受電力計11の機能を内蔵していても)良く、これらの場合でも、受電力計11と逆電力継電器10が一体となった機器や、受電力計11を内蔵する逆電力継電器10が、発電接続盤4に内蔵されていれば、当該受電力計11が発電接続盤4に内蔵されていることに変わりはない(受電力計11と逆電力継電器10が別々に設けられている場合と同様である)。
In addition, the power receiving meter 11 may have a power receiving panel 11a exposed to the outside of the power generation connection panel housing 4'and displaying the measured power receiving J.
The output from the power conditioner 7 described later is controlled by the control unit 9 described later based on the value of the received power J measured by the power receiving meter 11 and the power generation H measured by the power generation meter 12 described later. Will be done. When the control unit 9 is provided inside the switchboard 30 or the like described later, the value of the power reception J measured by the power reception meter 11 is the control unit 9 by wire or wirelessly by the communication cable 25 or the like. It may be output to.
Even if the power receiving meter 11 is integrated with the reverse power relay 10 described above or is built in the reverse power relay 10 (in other words, the reverse power relay 10 functions as the power receiving meter 11). Even in these cases, a device in which the power receiving meter 11 and the reverse power relay 10 are integrated, and the reverse power relay 10 having the power receiving meter 11 built in are built in the power generation connection board 4. If so, the power receiving meter 11 is still built in the power generation connection board 4 (similar to the case where the power receiving meter 11 and the reverse power relay 10 are separately provided).

<発電力計12、発電力H>
図1、2に示したように、発電力計12は、発電力Hを測定する電力計であって、後述する発電接続盤4に内蔵されている。
ここで、発電力Hとは、後述する発電装置2から出力される電力であり、発電電力Hであるとも言える。
<Power generation meter 12, power generation H>
As shown in FIGS. 1 and 2, the power generation meter 12 is a power meter that measures the power generation H, and is built in the power generation connection panel 4 described later.
Here, the generated power H is the power output from the power generation device 2 described later, and can be said to be the generated power H.

発電力計12は、発電力Hを測定できるのであれば、何れの構成であっても良いが、例えば、上述した系統盤Uに内蔵された計器用変成器S2の低圧側と接続可能で、且つ、発電接続盤4内の分岐電路20に設けられた後述する発電流変成器22の出力側と接続された状態で、発電接続盤4に内蔵されていても良い。
このような発電力計12は、例えば、後述する発電流変成器22に接続された過電流継電器(OCR、Over Current Relay、謂わば、発電OCR)や、この過電流継電器に接続された電流計(謂わば、発電電流計)、この電流計の出力側と上述した計器用変成器S2の低圧側に接続された電力計(狭義の発電力計とも言える)、この電力計からの測定値をデジタル化等して制御部9へ出力する出力部も有する構成であっても良い。
The power generation meter 12 may have any configuration as long as it can measure the power generation H. For example, the power generation meter 12 can be connected to the low voltage side of the instrument transformer S2 built in the system board U described above. Moreover, it may be built in the power generation connection board 4 in a state of being connected to the output side of the current generation transformer 22 provided in the branch electric circuit 20 in the power generation connection board 4.
Such a wattmeter 12 is, for example, an overcurrent relay (OCR, Over Current Relay, so to speak, power generation OCR) connected to a current generation transformer 22 described later, or an ammeter connected to the overcurrent relay. (So-called power generation ammeter), a wattmeter connected to the output side of this ammeter and the low-voltage side of the instrument transformer S2 described above (also called a wattmeter in a narrow sense), and the measured values from this wattmeter. The configuration may also include an output unit that is digitized and output to the control unit 9.

その他、発電力計12は、発電接続盤筐体4’外に露出し且つ測定した発電力Hを表示する発電力パネル12aを有していても良い。
発電力計12で測定される発電力Hの値と、上述した受電力計11で測定される受電力Jに基づいて、後述する制御部9によって、後述するパワーコンディショナ7からの出力が制御される。
尚、後述する発電装置2における変圧器8の出力側(高圧側)と、上述した分岐電路20が接続されることとなり、この場合、変圧器8からの出力である発電力計12の測定値を、発電装置2から出力される発電力Hとする(とみなす)こととなる。
又、制御部9が後述する配電盤30等の内部に設けられている場合は、発電力計12で測定された発電力Hの値は、通信ケーブル25等による有線か、無線によって、制御部9へ出力されても良い。
In addition, the power generation meter 12 may have a power generation panel 12a exposed to the outside of the power generation connection panel housing 4'and displaying the measured power generation H.
Based on the value of the power generation H measured by the power generation meter 12 and the power reception J measured by the power reception meter 11 described above, the output from the power conditioner 7 described later is controlled by the control unit 9 described later. Will be done.
The output side (high voltage side) of the transformer 8 in the power generation device 2 described later is connected to the branch electric circuit 20 described above. In this case, the measured value of the power generation meter 12 which is the output from the transformer 8. Is (considered) the generated power H output from the power generation device 2.
When the control unit 9 is provided inside the switchboard 30 or the like, which will be described later, the value of the power generation H measured by the power generation meter 12 is the control unit 9 by wire or wirelessly by the communication cable 25 or the like. It may be output to.

<遮断器(発電遮断器)21>
図1、2に示したように、発電遮断器21は、発電接続盤4内の分岐電路20(つまり、発電装置2と系統Kの間)を遮断する高圧交流負荷開閉器(LBS、Load Break Switch )等の遮断器である。
発電遮断器21は、分岐電路20を遮断するのであれば、何れの構成であっても良いが、例えば、メンテナンス性の向上のため、前後方向に回動可能となっていても良く、後述する制御部9(又は、逆電力継電器10)からの信号によって、後述するコンデンサ引き外し電源装置23や、引外しトリップコイル等を介して、遮断する構成としても良い。
<Circuit breaker (power generation circuit breaker) 21>
As shown in FIGS. 1 and 2, the power generation circuit breaker 21 is a high-pressure AC load switch (LBS, Load Break) that cuts off the branch electric circuit 20 (that is, between the power generation device 2 and the system K) in the power generation connection panel 4. Switch) and other circuit breakers.
The power generation circuit breaker 21 may have any configuration as long as it cuts off the branch electric circuit 20, but for example, it may be rotatable in the front-rear direction in order to improve maintainability, which will be described later. The signal from the control unit 9 (or the reverse power relay 10) may be cut off via a capacitor tripping power supply device 23, which will be described later, a tripping coil, or the like.

このような発電遮断器21は、発電接続盤4(発電接続盤筐体4’)内に設けられていることによって、発電接続盤筐体4’を系統盤筐体U’に取り付けるだけで、分岐電路20を遮断する遮断器も取り付けることとなる。
この発電遮断器21や上述した系統遮断器S1等を遮断することで、発電装置2から発電力Hが出力されなくなる、又は、系統接続機器Sから系統Kへ電流が流れ込まなくなるとも言える。
Since such a power generation circuit breaker 21 is provided in the power generation connection board 4 (power generation connection board housing 4'), the power generation connection board housing 4'is simply attached to the system board housing U'. A circuit breaker that cuts off the branch electric circuit 20 will also be installed.
By shutting off the power generation circuit breaker 21 and the system circuit breaker S1 described above, it can be said that the power generation H is not output from the power generation device 2 or the current does not flow from the system connection device S to the system K.

<計器用変流器(発電流変成器)22>
図1、2に示したように、計器用変流器(CT、Current Transformer )22は、分岐電路20で且つ発電接続盤4内の電路(分岐電路20のうち発電接続盤4内の電路)において、上述した発電遮断器21より系統Kに近い側(発電装置2からより遠い側)の電路に設けられている。
このような発電流変成器22の構成も、特に限定はないが、例えば、発電流変成器22の出力側が、上述した発電力計12に直接接続されていたり、又は、発電流変成器22が電流計(謂わば、発電電流計)等を介して、発電力計12に接続されていても良い。
尚、図2では、分岐電路20に三相3線の電力(R相、S相、T相)が流れる場合を示しており、この場合、3つの相のうち、2つの相(例えば、R相、T相)の線のみに、発電流変成器22を設けても良い。
<Instrument transformer (current transformer) 22>
As shown in FIGS. 1 and 2, the current transformer (CT) 22 for an instrument is a branch electric circuit 20 and an electric circuit in the power generation connection board 4 (the electric circuit in the power generation connection board 4 in the branch electric circuit 20). The electric circuit is provided on the side closer to the system K (the side farther from the power generation device 2) than the power generation breaker 21 described above.
The configuration of such a power generation transformer 22 is also not particularly limited, but for example, the output side of the current generation transformer 22 is directly connected to the above-mentioned power generation meter 12, or the current generation transformer 22 is used. It may be connected to the power generation meter 12 via an ammeter (so-called power generation ammeter) or the like.
Note that FIG. 2 shows a case where electric power (R phase, S phase, T phase) of three phases and three lines flows through the branch electric circuit 20. In this case, two phases (for example, R phase) out of the three phases are shown. The current generation transformer 22 may be provided only on the (phase, T-phase) line.

<発電接続機器3における他の機器>
図1、2に示したように、発電接続機器3には、その他、コンデンサ引き外し電源装置23や、ケーブルブラケット24が設けられていても良い。
更に加えて、発電接続機器3には、不足電力継電器が設けられていても良い。
<Other devices in power generation connection device 3>
As shown in FIGS. 1 and 2, the power generation connection device 3 may also be provided with a capacitor stripping power supply device 23 and a cable bracket 24.
Furthermore, the power generation connection device 3 may be provided with an insufficient power relay.

発電接続機器3におけるコンデンサ引き外し電源装置(CTD、Condenser Trip Device )23は、交流入力電圧を整流しコンデンサに放電した際のエネルギーを利用して、高圧交流負荷開閉器や真空遮断器などの引き外しを行う装置であって、このコンデンサ引き外し電源装置23によって、上述した発電遮断器21で分岐電路20の遮断が行われる。
この場合、コンデンサ引き外し電源装置23は、後述する制御部9(又は、逆電力継電器10)からの信号を受けて、発電遮断器21によって分岐電路20を遮断していると言える。
The capacitor tripping power supply device (CTD, Condenser Trip Device) 23 in the power generation connection device 3 uses the energy generated when the AC input voltage is rectified and discharged to the capacitor to pull a high-pressure AC load switch or a vacuum breaker. It is a device for removing the capacitor, and the power generation device 23 for removing the capacitor cuts off the branch electric circuit 20 at the power generation breaker 21 described above.
In this case, it can be said that the capacitor stripping power supply device 23 receives a signal from the control unit 9 (or the reverse power relay 10) described later and cuts off the branch electric circuit 20 by the power generation circuit breaker 21.

その他、発電接続機器3に不足電力継電器が設けられている場合、この不足電力継電器(UPR、Under Power Relay )は、不足電力を検知する継電器である。
ここで、不足電力とは、上述した系統K側において短絡(ショート)が起こった際に、系統接続機器(系統接続端)Sでの受電力Jの不足分を表す電力であって、上述した発電装置2からの発電力Hが大きくなり過ぎると、不足電力は0に近づくとも言える。
不足電力継電器は、不足電力を検知できるのであれば、何れの構成であっても良いが、例えば、上述した系統盤Uに内蔵された計器用変成器S2の低圧側と接続可能で、且つ、上述した系統盤Uに内蔵された計器用変流器S6の出力側と接続可能な状態で、発電接続盤4に内蔵されていても良い。
不足電力継電器で検知される不足電力が0に近づくと(謂わば「不足電力略零状態になると」)、後述する制御部9によって、上述したパワーコンディショナ7の変換を停止し、又は、上述した発電装置2から系統Kまでの電路における何れかの遮断器(発電遮断器21や系統遮断器S1等)を遮断しても良い。
尚、不足電力継電器で検知される不足電力が0に近づいた際、上述した遮断器をハードウェア的に(例えば、引外しトリップコイル等を介して)遮断する場合、当該不足電力継電器自体が、後述する制御部9であるとも言える。
ここで、本発明における「不足電力が0(ゼロ)に近づく」とは、不足電力が、「0W(ワット)より大きく(つまり、0Wを含まない)」且つ「0W近傍の値以下となる」ことを意味し、本発明における「0W近傍の値」とは、0Wより大きい値であれば良く、用いる不足電力継電器の分解能に応じたり、所定の不足電力の値に設定する等をしても構わず、例えば、1kW(1000W)や1W、1mW、1μWなどであっても良い。
In addition, when the power generation connection device 3 is provided with a shortage power relay, this shortage power relay (UPR, Under Power Relay) is a relay that detects the shortage power.
Here, the insufficient power is the power representing the shortage of the received power J at the system connection device (system connection end) S when a short circuit occurs on the system K side described above, and is described above. It can be said that when the generated power H from the power generation device 2 becomes too large, the insufficient power approaches zero.
The insufficient power relay may have any configuration as long as it can detect the insufficient power. For example, the insufficient power relay can be connected to the low voltage side of the instrument transformer S2 built in the system board U described above, and can be connected to the low voltage side. It may be built in the power generation connection board 4 in a state where it can be connected to the output side of the instrument transformer S6 built in the system board U described above.
When the shortage power detected by the shortage power relay approaches 0 (so-called "when the shortage power becomes almost zero"), the control unit 9 described later stops the conversion of the power conditioner 7 described above, or the above-mentioned Any circuit breaker (power generation circuit breaker 21, system circuit breaker S1, etc.) in the electric circuit from the power generation device 2 to the system K may be cut off.
When the shortage power detected by the shortage power relay approaches 0 and the above-mentioned circuit breaker is cut off in terms of hardware (for example, via a trip coil or the like), the shortage power relay itself is used. It can also be said that the control unit 9 will be described later.
Here, "the shortage power approaches 0 (zero)" in the present invention means that the shortage power is "greater than 0W (watt) (that is, does not include 0W)" and "is equal to or less than the value near 0W". This means that the "value near 0 W" in the present invention may be a value larger than 0 W, and may be set to a predetermined insufficient power value according to the resolution of the insufficient power relay to be used. It does not matter, and may be, for example, 1 kW (1000 W), 1 W, 1 mW, 1 μW, or the like.

<発電接続盤4の盤筐体(発電接続盤筐体)4’>
図1〜3に示したように、発電接続盤筐体4’は、上述した発電接続機器3を内蔵する筐体であって、1つの電力システム1において、1つだけ存在する(発電接続盤4も1つだけ存在する)ものであっても良いが、複数存在(発電接続盤4も複数存在)しても構わない。
発電接続盤筐体4’は、発電接続機器3を内蔵するのであれば、何れの構成であっても良いが、例えば、全体として略直方体状等に形成されていても良く、その他、発電接続盤筐体4’の体積(外面の体積)や容積(内面の容積)は、上述した系統盤筐体U’の体積や容積より小さくても良い(尚、図1においては、便宜的に発電接続盤筐体4’の体積や容積が系統盤筐体U’の体積や容積がより大きく表示している)。
<Board of power generation connection board 4 (power generation connection board housing) 4'>
As shown in FIGS. 1 to 3, the power generation connection board housing 4'is a housing in which the power generation connection device 3 described above is built, and there is only one in one power system 1 (power generation connection board). There may be only one 4 (there is only one), but there may be a plurality (there are a plurality of power generation connection boards 4).
The power generation connection board housing 4'may have any configuration as long as it incorporates the power generation connection device 3, but for example, it may be formed in a substantially rectangular shape as a whole, and other power generation connections. The volume (volume on the outer surface) and volume (volume on the inner surface) of the board housing 4'may be smaller than the volume and volume of the system board housing U'described above (note that in FIG. 1, power is generated for convenience). The volume and volume of the connection board housing 4'shows a larger volume and volume of the system board housing U').

発電接続盤筐体4’全体が略直方体状である場合、発電接続盤筐体4’は、その側面材(前面材、後面材、左面材、右面材等のうち、特に、前面材)には、開閉可能な扉が設けられていなくとも良く、その他、開閉可能な扉(前扉等)が設けられていたり、発電接続盤筐体4’の前面そのものが、開閉可能な扉であっても良い。
又、発電接続盤筐体4’は、側面材の他に、天井面材(上面材)、床面材(下面材)などを有していても良い。
When the entire power generation connection board housing 4'has a substantially rectangular parallelepiped shape, the power generation connection board housing 4'is used as a side material (especially the front material among the front material, the rear surface material, the left surface material, the right surface material, etc.). Does not have to be provided with a door that can be opened and closed. In addition, a door that can be opened and closed (front door, etc.) is provided, and the front surface of the power generation connection panel housing 4'is a door that can be opened and closed. Is also good.
Further, the power generation connection board housing 4'may have a ceiling surface material (upper surface material), a floor surface material (lower surface material), and the like in addition to the side surface material.

尚、略直方体状の発電接続盤筐体4’における「前後」は、上述した受電力計パネル11aや発電力パネル12が露出する側(又は、扉がある側)を「前」とし、その反対の側を「後」とする。
更に、発電接続盤筐体4’における「左右」も、仮に発電接続盤筐体4’に入った使用者が、発電接続盤筐体4’における「後」から「前」へ向いた時の左手側を「左」とし、「後」から「前」へ向いた時の右手側を「右」とする。
The "front and back" of the substantially rectangular parallelepiped power generation connection panel housing 4'refers to the side where the power receiving meter panel 11a and the power generation panel 12 are exposed (or the side where the door is located) as the "front". The other side is "rear".
Further, the "left and right" in the power generation connection board housing 4'are also when the user who entered the power generation connection board housing 4'turns from "rear" to "front" in the power generation connection board housing 4'. The left hand side is "left", and the right hand side when facing from "rear" to "front" is "right".

発電接続盤筐体4’の後面材には、後面貫通孔4a’が設けられていても良い。
この後面貫通孔4a’は、上述した分岐電路20を挿通させたり、逆電力継電器10、受電力計11及び発電力計12等と計器用変成器S2の低圧側との間を接続するための電路(謂わば、通信ケーブル)や、逆電力継電器10、受電力計11及び発電力計12等と計器用変流器S6の出力側との間を接続するための電路(謂わば、通信ケーブル)などが挿通できれば、何れの構成であっても良く、後面貫通孔4a’の数や大きさ、形状は、特に問わない。
The rear surface material of the power generation connection board housing 4'may be provided with a rear surface through hole 4a'.
The rear through hole 4a'is used to insert the above-mentioned branch electric circuit 20 or to connect the reverse power relay 10, the power receiving meter 11, the power generating meter 12, etc. to the low pressure side of the instrument transformer S2. An electric circuit (so-called communication cable), a reverse power relay 10, a power receiving meter 11, a power generating meter 12, etc., and an electric circuit (so-called communication cable) for connecting between the output side of the instrument transformer S6. ) Etc. can be inserted, and any configuration may be used, and the number, size, and shape of the rear through holes 4a'are not particularly limited.

尚、発電接続盤筐体4’の後面そのものが開口し(後面の開口部を有し)、系統盤筐体U’の内部と連通していても良い。
発電接続盤筐体4’(特に、その後面側)は、上述した系統盤筐体U’の側面材(前面材、後面材、左面材、右面材等)や天井面材の少なくとも1つに取り付けられる。
The rear surface of the power generation connection panel housing 4'may be open (has an opening on the rear surface) and communicate with the inside of the system panel housing U'.
The power generation connection board housing 4'(particularly, the rear surface side) is used as at least one of the side materials (front material, rear face material, left face material, right face material, etc.) and ceiling face material of the system board housing U'described above. It is attached.

発電接続盤筐体4’の後面材は、上述した系統盤筐体U’の側面材(前面材、後面材、左面材、右面材等)の少なくとも1つより狭くとも良く、発電接続盤筐体4’の後面材は、系統盤筐体U’の天井面材と同じ広さ、又は、後面材より広くても構わない。
仮に、発電接続盤筐体4’の体積や容積が、上述した系統盤筐体U’の体積や容積より大きい場合であっても、発電接続盤筐体4’の後面材が、上述した系統盤筐体U’の側面材や天井面材の少なくとも1つより狭ければ良い。
The rear surface material of the power generation connection board housing 4'may be narrower than at least one of the side materials (front surface material, rear surface material, left face material, right face material, etc.) of the system board housing U'described above, and the power generation connection board housing The rear surface material of the body 4'may have the same size as the ceiling surface material of the system board housing U', or may be wider than the rear surface material.
Even if the volume or volume of the power generation connection board housing 4'is larger than the volume or volume of the system board housing U'described above, the rear surface material of the power generation connection board housing 4'is the system described above. It may be narrower than at least one of the side material and the ceiling surface material of the board housing U'.

発電接続盤筐体4’の系統盤筐体U’への取付は、取り付けられるのであれば、特に限定はなく、例えば、固定具(ボルトやナット等)による取付や、溶接、接着、嵌め込みなどによって、発電接続盤筐体4’を系統盤筐体U’に取り付けていても良い。
尚、発電接続盤筐体4’は、事前に施工した基礎等は有しておらず、発電接続盤筐体4’の下面材は、系統盤Uの設置面Pから浮いて(離れて)いても良い。
The attachment of the power generation connection panel housing 4'to the system panel housing U'is not particularly limited as long as it can be attached. For example, attachment by a fixture (bolt, nut, etc.), welding, adhesion, fitting, etc. The power generation connection board housing 4'may be attached to the system board housing U'.
The power generation connection board housing 4'does not have a foundation constructed in advance, and the lower surface material of the power generation connection board housing 4'floats (away from) the installation surface P of the system board U. You can stay.

発電接続盤筐体4’の下面材にも、下面貫通孔4b’が設けられていても良い。
この下面貫通孔4b’も、上述した分岐電路20や、各通信ケーブル25等を挿通できれば、何れの構成であっても良く、下面貫通孔4b’の数や大きさ、形状も、特に問わない。
尚、下面貫通孔4b’には、上述したケーブルブラケット24を設けていても良い。
The lower surface material of the power generation connection board housing 4'may also be provided with a lower surface through hole 4b'.
The bottom surface through hole 4b'may have any configuration as long as the above-mentioned branch electric line 20 and each communication cable 25 can be inserted, and the number, size, and shape of the bottom surface through hole 4b'are not particularly limited. ..
The cable bracket 24 described above may be provided in the lower surface through hole 4b'.

発電接続盤筐体4’の大きさも、特に限定はないが、発電接続盤筐体4’全体が略直方体状である場合、例えば、幅が500mm以上900mm以下、好ましくは550mm以上850mm以下、更に好ましくは600mm以上800mm以下(700mmなど)であっても良い。
その他、発電接続盤筐体4’全体が略直方体状である場合、例えば、高さが900mm以上1500mm以下、好ましくは1000mm以上1400mm以下、更に好ましくは1100mm以上1300mm以下(1200mmなど)であったり、奥行が200mm以上600mm以下、好ましくは250mm以上550mm以下、更に好ましくは300mm以上500mm以下(400mmなど)であっても良い。
The size of the power generation connection board housing 4'is also not particularly limited, but when the entire power generation connection board housing 4'is substantially rectangular parallelepiped, for example, the width is 500 mm or more and 900 mm or less, preferably 550 mm or more and 850 mm or less, and further. It may be preferably 600 mm or more and 800 mm or less (700 mm or the like).
In addition, when the entire power generation connection board housing 4'is substantially rectangular parallelepiped, for example, the height may be 900 mm or more and 1500 mm or less, preferably 1000 mm or more and 1400 mm or less, and more preferably 1100 mm or more and 1300 mm or less (1200 mm or the like). The depth may be 200 mm or more and 600 mm or less, preferably 250 mm or more and 550 mm or less, and more preferably 300 mm or more and 500 mm or less (400 mm or the like).

<発電装置2>
図1に示したように、本発明に係る発電装置2は、発電を行う装置であって、その出力側が、後述する発電接続機器3を介して、上述した系統接続機器S及び負荷Fに接続可能な装置である。
発電装置2は、発電を行うのであれば、その構成に特に限定はないが、例えば、後述する太陽電池6’にて発電する太陽光発電プラント(太陽光発電装置)2’であったり、風力、波力(潮力)、水力、火力、地熱等によって回転されるモータ(発電機)にて発電する装置(風力発電プラント等)、電力を発生し得る装置であれば、太陽電池6’だけを意味するなど何れであっても良い。
<Power generation device 2>
As shown in FIG. 1, the power generation device 2 according to the present invention is a device that generates power, and its output side is connected to the above-mentioned system connection device S and load F via a power generation connection device 3 described later. It is a possible device.
The configuration of the power generation device 2 is not particularly limited as long as it generates power, but for example, it may be a solar power generation plant (solar power generation device) 2'that generates power with a solar cell 6'described later, or wind power. , A device (wind power generation plant, etc.) that generates electricity with a motor (generator) that is rotated by wave power (tide power), hydraulic power, thermal power, geothermal power, etc., if it is a device that can generate power, only solar cell 6' It may mean any of them.

尚、風力発電プラント等におけるモータは、交流モータや直流モータの何れでも構わない。
発電装置2は、発電部6と、パワーコンディショナ7と、変圧器8と、制御部9を備えていても良い。
The motor in the wind power generation plant or the like may be either an AC motor or a DC motor.
The power generation device 2 may include a power generation unit 6, a power conditioner 7, a transformer 8, and a control unit 9.

このような発電装置2は、発電接続盤4に内蔵された発電接続機器3を介して、上述した系統接続機器S及び負荷Fに接続される。
以下、発電装置2は、主に太陽光発電装置(太陽光発電プラント)2’であるとして述べる。
Such a power generation device 2 is connected to the system connection device S and the load F described above via the power generation connection device 3 built in the power generation connection board 4.
Hereinafter, the power generation device 2 will be described as being mainly a photovoltaic power generation device (photovoltaic power generation plant) 2'.

<太陽光発電プラント2’など>
図1に示したように、太陽光発電プラント2’は、上述した電力システム1を有する他に、後述する変圧器8や配電盤筐体31、送電部32等を備えた配電盤30を有していても構わない。
太陽光発電プラント2’においては、上述した配電盤30が、上述した発電接続機器3や系統接続機器S、配電ケーブル等を介して、鉄塔や電柱等を末端とする系統Kに接続されている。
<Solar power plant 2'etc.>
As shown in FIG. 1, the photovoltaic power plant 2'has a power distribution board 30 including a transformer 8, a switchboard housing 31, a power transmission unit 32, etc., which will be described later, in addition to the power system 1 described above. It doesn't matter.
In the photovoltaic power generation plant 2', the above-mentioned switchboard 30 is connected to the system K having a steel tower, a utility pole, or the like as an end via the above-mentioned power generation connection device 3, the system connection device S, a distribution cable, or the like.

太陽光発電プラント2’は、太陽電池6’やパワーコンディショナ7、変圧器8、配電盤30などを、それぞれ複数有していても良い。
更に、太陽電池6’が複数の場合、太陽光発電プラント2’は、複数の太陽電池6’のうち所定数ごとと導通する複数の接続箱(遮断器等付き)Zを有していても構わず、各配電盤30は、これら複数の接続箱Zと導通することとなるが、この接続箱Zの機能が配電盤30に内蔵されていても良く、この場合、各配電盤30は、複数の太陽電池6’のうち所定数ごとと直接導通することとなる。
The photovoltaic power generation plant 2'may have a plurality of solar cells 6', a power conditioner 7, a transformer 8, a switchboard 30, and the like.
Further, when there are a plurality of solar cells 6', even if the photovoltaic power plant 2'has a plurality of junction boxes (with a breaker or the like) Z that conduct with each predetermined number of the plurality of solar cells 6'. Regardless, each switchboard 30 is electrically connected to these plurality of junction boxes Z, but the function of the junction box Z may be built in the switchboard 30, and in this case, each switchboard 30 is connected to a plurality of solar cells. It will be directly conductive with every predetermined number of the batteries 6'.

太陽電池6’、配電盤30等は、設置する土地の広さ・形状に応じて配列するが、例えば、1つの配電盤30の発電力を、例えば、1500kW(各パワーコンディショナ当たり250kW)とし、この配電盤30を複数台(例えば、30台以上で15000kW(15MW)以上、60台で30000kW(30MW))設けた太陽光発電プラント2’としても良い。
尚、配電盤30としての重量も、特に限定はないが、例えば、1トン以上10トン以下であっても良く、好ましくは1トン以上5トン以下、更に好ましくは1トン以上3トン以下であっても構わない。
以下、太陽光発電プラント2’をはじめとする発電装置2の発電部6は、主に太陽電池6’であるとして述べる。
The solar cells 6', the switchboard 30, and the like are arranged according to the size and shape of the land to be installed. For example, the power generation of one switchboard 30 is set to 1500 kW (250 kW per power conditioner). A photovoltaic power generation plant 2'provided with a plurality of switchboards 30 (for example, 30 or more units of 15,000 kW (15 MW) or more, 60 units of 30,000 kW (30 MW) or more) may be used.
The weight of the switchboard 30 is also not particularly limited, but may be, for example, 1 ton or more and 10 tons or less, preferably 1 ton or more and 5 tons or less, and more preferably 1 ton or more and 3 tons or less. It doesn't matter.
Hereinafter, the power generation unit 6 of the power generation device 2 including the photovoltaic power generation plant 2'will be described as being mainly a solar cell 6'.

<発電部6>
図1に示したように、発電部6は、実際に発電を行う部分であって、発電装置2が太陽光発電プラント2’であれば、太陽電池6’が発電部6であり、発電装置2が風力等によって回転されるモータにて発電する風力発電プラント等であれば、モータが発電部6である。
<Power generation unit 6>
As shown in FIG. 1, the power generation unit 6 is a part that actually generates power, and if the power generation device 2 is a photovoltaic power generation plant 2', the solar cell 6'is the power generation unit 6 and the power generation device. If 2 is a wind power generation plant or the like that generates electricity with a motor rotated by wind power or the like, the motor is the power generation unit 6.

<太陽電池6’>
図1に示したように、太陽電池6’は、パネル状(平板状)等であっても良く、光が照射されることによって、正極(+極)と負極(−極)の間に直流電力を発生し、発生する電力の平均は、100W以上400W以下(例えば、250W)である。
これらのうち、ある太陽電池6’の+極に別の太陽電池6’の−極を接続し、別の太陽電池6’の+極にまた別の太陽電池6’の−極を接続し、以下、これを繰り返して、複数枚(例えば、5〜20枚)の太陽電池6’を直列に接続して、1本の太陽電池ストリングとなる。
<Solar cell 6'>
As shown in FIG. 1, the solar cell 6'may have a panel shape (flat plate shape) or the like, and when irradiated with light, a direct current is applied between the positive electrode (+ electrode) and the negative electrode (-pole). Electric power is generated, and the average of the generated electric power is 100 W or more and 400 W or less (for example, 250 W).
Of these, the positive pole of one solar cell 6'is connected to the negative pole of another solar cell 6', and the positive pole of another solar cell 6'is connected to the negative pole of another solar cell 6'. Hereinafter, this is repeated, and a plurality of (for example, 5 to 20) solar cells 6'are connected in series to form one solar cell string.

このように、複数枚の太陽電池6’が直列に繋がった太陽電池ストリング全体としての+極(電力出力端)と、−極(グランド端)の間の電圧は、各太陽電池6’で発生された直流電圧の和であって、天候、時刻や、各太陽電池6’の劣化、故障、設置位置のズレなどで変動するが、200V以上1500V以下となる。
又、太陽電池ストリングの電力出力端から出力される電力は、各太陽電池6’の電力の和であって、500W以上6000W以下(例えば、出力電力が250Wの太陽電池6’を14枚接続した場合、3500W=3.5kW)となる。
In this way, the voltage between the positive pole (power output end) and the negative pole (ground end) of the entire solar cell string in which a plurality of solar cells 6'are connected in series is generated in each solar cell 6'. It is the sum of the DC voltages, and varies depending on the weather, time, deterioration and failure of each solar cell 6', deviation of the installation position, etc., but it is 200 V or more and 1500 V or less.
The power output from the power output end of the solar cell string is the sum of the powers of each solar cell 6', and 14 solar cells 6'with an output power of 250 W are connected. In the case, 3500W = 3.5kW).

ここで、太陽電池6’を直列に接続するということは、それらの太陽電池6’のうち1つでも不具合のある太陽電池6’が発生すると、その太陽電池6’において電流が遮断されてしまい、他の太陽電池6’により発電された電力を出力することが困難となる。
そのため、直列に接続された太陽電池6’ごとに、バイパスダイオード(図示省略)を設けることで、不具合の発生した太陽電池6’を、電流が、バイパス(迂回)するように構成される。
Here, connecting the solar cells 6'in series means that if any one of the solar cells 6'is defective, the current will be cut off in the solar cell 6'. , It becomes difficult to output the electric power generated by another solar cell 6'.
Therefore, by providing a bypass diode (not shown) for each solar cell 6'connected in series, the current is configured to bypass the defective solar cell 6'.

尚、このバイパスダイオードは、太陽電池6’に対して、その−極から+極へ電流が流れる向きに並列に接続され、詳しくは、バイパスダイオードのカソード(陰極)が、太陽電池6’の+極に接続され、バイパスダイオードのアノード(陽極)が、太陽電池6’の−極に接続される。
このような太陽電池6’は、架台を介して設置面に設置されていても良い。
This bypass diode is connected in parallel to the solar cell 6'in the direction in which the current flows from the negative pole to the positive pole. Specifically, the cathode of the bypass diode is the + of the solar cell 6'. Connected to the pole, the anode of the bypass diode is connected to the negative pole of the solar cell 6'.
Such a solar cell 6'may be installed on the installation surface via a gantry.

太陽電池6’(又は架台)の設置面は、上述した太陽光発電プラント2’自体を設置する設置面のことであって、太陽電池6’を設置できるのであれば、何れの面であっても良いが、例えば、ゴルフ場跡地や山間部の土地、空き地、休耕地、農地等、土のある地面、建物の屋根や屋上、壁等であっても良い。
尚、太陽電池6’の設置面は、上述した系統盤Uの設置面Pや、負荷Fと同じ設置面であったり、系統盤Uや負荷Fとは異なる設置面であっても良い。
又、架台は、太陽光発電プラント2’の発電量を上げるため、太陽電池6’を所定方向(例えば、南へ行くほど低くなるよう)に傾けて支持しても良く、その角度は、十分な発電量を得られるのであれば、何度でも良いが、例えば、10度や5度などである。
The installation surface of the solar cell 6'(or pedestal) is the installation surface on which the above-mentioned photovoltaic power generation plant 2'itself is installed, and any surface as long as the solar cell 6'can be installed. However, for example, it may be a golf course site, a mountainous land, a vacant lot, a fallow land, a farmland, etc., a ground with soil, a roof or roof of a building, a wall, or the like.
The installation surface of the solar cell 6'may be the same as the installation surface P or the load F of the system board U described above, or may be an installation surface different from the system board U or the load F.
Further, in order to increase the amount of power generated by the photovoltaic power generation plant 2', the gantry may support the solar cell 6'by tilting it in a predetermined direction (for example, it becomes lower toward the south), and the angle is sufficient. Any number of times can be obtained as long as a large amount of power generation can be obtained, but for example, 10 degrees or 5 degrees.

<パワーコンディショナ7>
図1に示したように、パワーコンディショナ7は、上述した太陽電池6’などの電力システム1外部からの直流電流や、風力発電装置の交流モータなどからの交流電流を、系統Kの電圧及び位相等に合わせた交流電力に変換して出力する機器である。
パワーコンディショナ7は、太陽電池6’等からの直流電流等を交流電流(例えば、100V以上440V以下等)に変換するインバータ装置と、このインバータ装置が変換する交流の電圧や周波数を制御する制御部と、気中遮断器(ACB)等を備えていても良い。
<Power conditioner 7>
As shown in FIG. 1, the power conditioner 7 uses the DC current from the outside of the power system 1 such as the above-mentioned solar cell 6'and the AC current from the AC motor of the wind power generator to the voltage of the system K and the AC current. It is a device that converts and outputs AC power that matches the phase.
The power conditioner 7 is an inverter device that converts a direct current or the like from a solar cell 6'or the like into an alternating current (for example, 100 V or more and 440 V or less) and a control that controls the voltage and frequency of the alternating current converted by the inverter device. A unit and an aerial circuit breaker (ACB) or the like may be provided.

パワーコンディショナ7は、これらのインバータ装置や制御部、遮断器等が内蔵された筐体には、その内部の空気を逃がす回転ファン状の送風手段が設けられていても良い。
尚、このようなパワーコンディショナ7は、略してパワコン7とも呼ばれる。
In the power conditioner 7, the housing in which the inverter device, the control unit, the circuit breaker, and the like are incorporated may be provided with a rotating fan-shaped air blowing means for releasing the air inside the power conditioner 7.
In addition, such a power conditioner 7 is also referred to as a power conditioner 7 for short.

パワーコンディショナ7は、後述する制御部9からの信号によって、当該パワーコンディショナ7から出力される発電力Hを、所定の値(目標上限値など)に制限(抑制)するように制御される(謂わば、「出力制限状態C2となる」)構成としても良い。
パワーコンディショナ7は、上述した逆電力継電器10等からの信号によって、当該パワーコンディショナ7における変換を停止する構成としても良い(このように変換を停止することで、パワーコンディショナ7から発電力Hが出力されなくなるとも言える)。
尚、パワーコンディショナ7の数は、上述したように、1又は複数であっても良い。
パワーコンディショナ7が複数である場合、上述した逆電力継電器10等からの信号によって、パワーコンディショナ7の変換を停止する際には、一度に全てのパワーコンディショナ7の変換を停止しても良いし、まずは少なくとも一部のパワーコンディショナ7の変換を停止しても良い。
The power conditioner 7 is controlled so as to limit (suppress) the power generation H output from the power conditioner 7 to a predetermined value (target upper limit value, etc.) by a signal from the control unit 9 described later. (So-called, "output limited state C2") may be configured.
The power conditioner 7 may be configured to stop the conversion in the power conditioner 7 by the signal from the reverse power relay 10 or the like described above (by stopping the conversion in this way, the power is generated from the power conditioner 7). It can be said that H is not output).
As described above, the number of the power conditioners 7 may be one or a plurality.
When there are a plurality of power conditioners 7, when the conversion of the power conditioner 7 is stopped by the signal from the reverse power relay 10 or the like described above, even if the conversion of all the power conditioners 7 is stopped at once. You may stop the conversion of at least some of the power conditioners 7 first.

パワーコンディショナ7は、後述する変圧器8や、後述する送電部32等を有した配電盤30の配電盤筐体31内に設けられていたり、配電盤30とは別の筐体(パワコン筐体)に内蔵されていても良い。
パワコン筐体に内蔵された場合には、1つの太陽光発電プラント2’(の太陽電池6’の下方等)に、複数のパワコン筐体(つまり、パワーコンディショナ7)が分散して設けられていても構わない。
The power conditioner 7 is provided in the switchboard housing 31 of the switchboard 30 having the transformer 8 described later, the power transmission unit 32 and the like described later, or in a housing (power conditioner housing) different from the switchboard 30. It may be built-in.
When built in the power conditioner housing, a plurality of power conditioner housings (that is, the power conditioner 7) are distributed and provided in one photovoltaic power generation plant 2'(below the solar cell 6', etc.). It doesn't matter if you do.

<変圧器8>
図1に示したように、本発明に係る変圧器8は、上述した1又は複数のパワーコンディショナ7からの交流電流を、より高圧な交流電流に変圧(昇圧)する変圧器(謂わば、昇圧変圧器)である。
この変圧器8は、後述する配電盤筐体31外等の交流電流をより高圧な交流電流に変圧するのであれば、何れの構成でも良いが、例えば、配電盤筐体31に外から取り付け(盤筐体31の側外面等に設けられ)ていても構わない。
<Transformer 8>
As shown in FIG. 1, the transformer 8 according to the present invention is a transformer (so-called, so-called) that transforms (boosts) the alternating current from one or more of the above-mentioned power conditioners 7 into a higher-voltage alternating current. Step-up transformer).
The transformer 8 may have any configuration as long as it transforms an alternating current outside the switchboard housing 31, which will be described later, into a higher-voltage alternating current. For example, the transformer 8 is attached to the switchboard housing 31 from the outside (board housing). It may be provided on the side outer surface of the body 31 or the like).

又、変圧器8は、電力システム1全体としては、上述した分岐電路20(母線電路Mとパワーコンディショナ7との間の電路)に設けられているとも言える。
変圧器8の上面には、配電盤筐体31外等からのケーブルや、後述する送電部32へのケーブルとの接続部分(接続端子)が設けられていても良く、変圧器8の側面等に、放熱フィンを有していても構わない。
変圧器8は、配電盤筐体31外等からの交流電流(例えば、100V以上440V以下等)を、送電に適したより高圧な交流電流(例えば、6600Vや22000V等)に変換しても良い。
Further, it can be said that the transformer 8 is provided in the above-mentioned branch electric circuit 20 (electric circuit between the bus electric circuit M and the power conditioner 7) as the entire electric power system 1.
A cable from outside the switchboard housing 31 or a connection portion (connection terminal) with a cable to the power transmission unit 32, which will be described later, may be provided on the upper surface of the transformer 8, and may be provided on the side surface of the transformer 8. , It may have a heat radiation fin.
The transformer 8 may convert an alternating current from outside the switchboard housing 31 (for example, 100 V or more and 440 V or less) into a higher voltage alternating current suitable for power transmission (for example, 6600 V, 22000 V, etc.).

変圧器8は、鉄心の組み方によって、より高さを低位としつつ十分な容量を持っていても良く、このような変圧器8の具体的な高さは、特に制限はないが、例えば、1500mm以下(900mm以上1500mm以下)であっても良く、好ましくは1400mm以下(900mm以上1400mm以下)、更に好ましくは1200mm以下(95mm以上1200mm以下)、より好ましくは1150mm以下(950mm以上1150mm以下、1100mmなど)であっても良い。
変圧器8の容量も、特に制限はないが、例えば、50kVA以上1000kVA以下、好ましくは100kVA以上800kVA以下、更に好ましくは200kVA以上700kVA以下(500kVAや330kVA等)であっても良い。
The transformer 8 may have a sufficient capacity while lowering the height depending on how the iron core is assembled. The specific height of such a transformer 8 is not particularly limited, but is, for example, 1500 mm. It may be less than or equal to (900 mm or more and 1500 mm or less), preferably 1400 mm or less (900 mm or more and 1400 mm or less), more preferably 1200 mm or less (95 mm or more and 1200 mm or less), and more preferably 1150 mm or less (950 mm or more and 1150 mm or less, 1100 mm or more). It may be.
The capacity of the transformer 8 is also not particularly limited, but may be, for example, 50 kVA or more and 1000 kVA or less, preferably 100 kVA or more and 800 kVA or less, and more preferably 200 kVA or more and 700 kVA or less (500 kVA, 330 kVA, etc.).

このような変圧器8は、例えば、連系用であるとも言え、三相3線(3φ3W)で、100V以上440V以下等を、6600Vや22000V等に昇圧する構成であっても良い。
ここで、変圧器8が三相3線である場合、その鉄心の組み方とは、縦(鉛直方向)に長い略ロ字型の鉄心4つを互いに接触した状態で横(水平方向)に並べ、隣接する2つの鉄心が互いに接触した部分3つそれぞれに導線(銅線等)を巻いてコイルを形成し、各コイルは、内側に低圧巻線、外側に高圧巻線を巻き(又は、内側に低圧巻線、外側に高圧巻線を巻き、更に、これら低圧巻線と高圧巻線との間に、中圧巻線を巻き)、各巻線の間に絶縁体を配置するものとなる。
Such a transformer 8 can be said to be for interconnection, for example, and may be configured to boost 100V or more and 440V or less to 6600V or 22000V with a three-phase three-wire system (3φ3W).
Here, when the transformer 8 is a three-phase three-wire system, the method of assembling the iron core is to arrange four substantially square-shaped iron cores long in the vertical direction (vertical direction) horizontally (horizontally) in contact with each other. , A coil is formed by winding a lead wire (copper wire, etc.) around each of the three parts where two adjacent iron cores are in contact with each other, and each coil has a low-pressure winding on the inside and a high-pressure winding on the outside (or inside). A low-pressure winding is wound on the outside, a high-pressure winding is wound on the outside, and a medium-pressure winding is wound between the low-pressure winding and the high-pressure winding), and an insulator is arranged between the windings.

尚、各鉄心は、薄い鉄板を積層した積層鉄心であっても良い。
又、このような変圧器8は、所謂、トランスであると言える。
更に、変圧器8の数も、上述したように、1又は複数であっても良い。
変圧器8は、1つの太陽光発電プラント2’(の太陽電池6’の下方等)に、複数の変圧器8が分散して設けられていても構わない。
ここまで述べた発電装置2におけるパワーコンディショナ7及び/又は系統接続機器Sを制御する制御部9を、以下に述べる。
In addition, each iron core may be a laminated iron core in which thin iron plates are laminated.
Further, such a transformer 8 can be said to be a so-called transformer.
Further, the number of transformers 8 may be one or more as described above.
The transformer 8 may be provided with a plurality of transformers 8 dispersed in one photovoltaic power generation plant 2'(below the solar cell 6', etc.).
The control unit 9 that controls the power conditioner 7 and / or the system connection device S in the power generation device 2 described so far will be described below.

<制御部9>
図1に示したように、制御部9は、上述したパワーコンディショナ7及び/又は系統接続機器Sを制御する部分である。
制御部9は、上述した系統Kから系統盤Uへ受電される受電力Jと、上述した発電装置2から出力される発電力Hとの和を、負荷Fの消費電力Dであるとして、発電装置2から出力される発電力H(パワーコンディショナ7の出力とも言える)を制御する。
尚、制御部9は、パワーコンディショナ7の出力を制御する(パワーコンディショナ7に出力目標値を与える)際には、上述した変圧器8における変圧ロス(昇圧ロスとも言える)等の電力ロス分を考慮して、実際の発電力H(発電力計12が設けられた変圧器8の高圧側(出力側)における電力)の目標値である発電目標値THより、少し高めの出力目標値をパワーコンディショナ7に与えても良い。
又、制御部9がパワーコンディショナ7に出力目標値を与える時間間隔(目標付与間隔)は、所定の時間毎に与えられていても(所定の目標付与間隔でも)良いが、例えば、1秒毎や1秒毎、5秒毎など、目標付与間隔が0.1秒以上10.0秒以下、好ましくは1秒以上10秒以下であっても構わない(ここで、目標付与間隔は、後述するサンプリングタイムより長い又は同じ長さであっても良い)。
<Control unit 9>
As shown in FIG. 1, the control unit 9 is a part that controls the above-mentioned power conditioner 7 and / or the system connection device S.
The control unit 9 generates power by assuming that the sum of the received power J received from the system K to the system board U and the generated power H output from the power generation device 2 described above is the power consumption D of the load F. It controls the power generation H (which can be said to be the output of the power conditioner 7) output from the device 2.
When the control unit 9 controls the output of the power conditioner 7 (gives the output target value to the power conditioner 7), the control unit 9 causes a power loss such as a transformer loss (also called a step-up loss) in the transformer 8 described above. The output target value is slightly higher than the power generation target value TH, which is the target value of the actual power generation H (power on the high-voltage side (output side) of the transformer 8 provided with the power generation meter 12) in consideration of the minute. May be given to the power conditioner 7.
Further, the time interval (target giving interval) in which the control unit 9 gives the output target value to the power conditioner 7 may be given at predetermined time intervals (even at a predetermined target giving interval), but for example, 1 second. The target assignment interval may be 0.1 seconds or more and 10.0 seconds or less, preferably 1 second or more and 10 seconds or less, such as every 1 second or 5 seconds (here, the target assignment interval will be described later). It may be longer or the same as the sampling time to be performed).

又、制御部9は、上述した逆電力継電器10で検知される逆電力Gが0より大きくなると(つまり、「逆電力発生状態C1」になると)、上述したパワーコンディショナ7の変換を停止したり、上述したパワーコンディショナ7から系統Kまでの電路における何れかの遮断器(発電遮断器21や系統遮断器S1等)を遮断しても良い。
この他、制御部9は、上述した不足電力継電器で検知される不足電力が0に近づくと(つまり、「不足電力略零状態になると」)、上述したパワーコンディショナ7の変換を停止したり、上述したパワーコンディショナ7から系統Kまでの電路における何れかの遮断器(発電遮断器21や系統遮断器S1等)を遮断しても良い。
Further, when the reverse power G detected by the reverse power relay 10 described above becomes larger than 0 (that is, when the “reverse power generation state C1” is reached), the control unit 9 stops the conversion of the power conditioner 7 described above. Alternatively, any circuit breaker (power generation circuit breaker 21, system circuit breaker S1, etc.) in the electric circuit from the power conditioner 7 to the system K described above may be interrupted.
In addition, when the shortage power detected by the shortage power relay described above approaches 0 (that is, "when the shortage power becomes almost zero"), the control unit 9 stops the conversion of the power conditioner 7 described above. , Any circuit breaker (power generation circuit breaker 21, system circuit breaker S1, etc.) in the electric circuit from the power conditioner 7 to the system K described above may be interrupted.

尚、パワーコンディショナ7の変換を停止した場合には、当該変換停止を再開する際に、パワーコンディショナ7からの出力を系統Kの電圧及び位相等に合わせる必要はないため、パワーコンディショナ7から系統Kまでの電路における何れかを遮断した場合と比べて、電力システム1の復帰がより短時間で・より手間なく行うことが可能となる(システム復帰の短時間化・容易化」)とも言える。
この他、制御部9は、逆電力発生状態C1になった際に発電遮断器21等の遮断器をハードウェア的に遮断する場合、当該逆電力継電器10が制御部9に含まれるとも言える。
これは、上述したように、不足電圧継電器で不足電圧が検知された際に遮断器をハードウェア的に遮断する場合や、過電圧継電器で過電圧が検知された際に遮断器をハードウェア的に遮断する場合、不足周波数継電器で不足周波数が検知された際に遮断器をハードウェア的に遮断する場合、過周波数継電器で過周波数が検知された際に遮断器をハードウェア的に遮断する場合も同様で、これら不足電圧継電器や、過電圧継電器、不足周波数継電器、過周波数継電器が、制御部9に含まれるとも言える。
When the conversion of the power conditioner 7 is stopped, it is not necessary to match the output from the power conditioner 7 with the voltage, phase, etc. of the system K when the conversion stop is restarted. Therefore, the power conditioner 7 Compared to the case where any of the electric circuits from to system K is cut off, the power system 1 can be restored in a shorter time and with less effort (shorter and easier system restoration). I can say.
In addition, when the control unit 9 cuts off a circuit breaker such as a power generation circuit breaker 21 in terms of hardware when the reverse power generation state C1 is reached, it can be said that the reverse power relay 10 is included in the control unit 9.
As described above, this is when the circuit breaker is cut off in hardware when the undervoltage relay detects an undervoltage, or when the overvoltage is detected in the overvoltage relay, the circuit breaker is cut off in hardware. The same applies when the circuit breaker is cut off by hardware when the undervoltage relay detects an undervoltage, or when the circuit breaker is cut off by hardware when an overvoltage is detected by the overvoltage relay. Therefore, it can be said that the control unit 9 includes these undervoltage relays, overvoltage relays, undervoltage relays, and overfrequency relays.

制御部9は、受電力Jと発電力Hとの和を消費電力Dとして、パワーコンディショナ7を制御するのであれば、何れの制御方法であっても良いが、例えば、以下に示す式(1)や式(2)に基づいて発電力Hの目標上限値(発電目標上限値)THmax を導出しても良い。
尚、式(1)や式(2)においては、受電力Jや発電力H、制限係数A(負荷電力Dに相当する受電力Jと発電力Hの和にかける制限係数A)、変動対応定数Bが、それぞれ時刻tによって変化するものとして、受電力をJ(t)、発電力をH(t)、制限係数A(t)、変動対応定数をB(t)としていて、これらのうち、受電力J(t)、発電力H(t)、変動対応定数B(t)それぞれの単位はkW等としている。
Any control method may be used as long as the control unit 9 controls the power conditioner 7 with the sum of the received power J and the generated power H as the power consumption D. For example, the following equation ( The target upper limit value (power generation target upper limit value) TH max of the power generation H may be derived based on 1) or the equation (2).
In the equations (1) and (2), the received power J and the generated power H, the limiting coefficient A (the limiting coefficient A applied to the sum of the received power J corresponding to the load power D and the generated power H), and the fluctuation correspondence Assuming that the constant B changes with time t, the received power is J (t), the generated power is H (t), the limiting coefficient A (t), and the fluctuation response constant is B (t). , The unit of each of the received power J (t), the generated power H (t), and the fluctuation coping constant B (t) is kW or the like.

ここで、受電力J(t)や発電力H(t)は、上述した受電力計11や発電力計12等によって、所定の時間毎に測定されていても(所定のサンプリングタイムでも)良いが、例えば、0.25秒毎や1秒毎、5秒毎など、サンプリングタイムが0.01秒以上10.00秒以下や、0.1秒以上10.0秒以下であっても構わない(図4は、受電力計11や発電力計12等のサンプリングタイムが0.25秒(0.25秒毎)で、制御部9の目標付与間隔は1秒(1秒毎)である)。
制限係数A(t)は、特に限定はないが、例えば、0以上1以下の値(つまり、0%以上100%以下、90%や95%、98%、99%、100%等)であっても良く、変動対応定数B(t)も、特に限定はないが、例えば、0kW以上20kW以下であっても構わない。
尚、制限係数A(t)を99〜100%(例えば、99.0%や99.5%、99.8%、99.9%など)としたり、制限係数A(t)を極力100%に近づけることが出来れば、受電力(買電する電力)Jが極力抑えられ(経費が低減でき)て望ましい。
Here, the received power J (t) and the generated power H (t) may be measured at predetermined time intervals (even at a predetermined sampling time) by the above-mentioned power receiving meter 11 or the power generating meter 12 or the like. However, the sampling time may be 0.01 seconds or more and 10.00 seconds or less, or 0.1 seconds or more and 10.0 seconds or less, for example, every 0.25 seconds, every 1 second, or every 5 seconds. (In FIG. 4, the sampling time of the power receiving meter 11 and the power generating meter 12 and the like is 0.25 seconds (every 0.25 seconds), and the target assignment interval of the control unit 9 is 1 second (every 1 second)). ..
The limiting coefficient A (t) is not particularly limited, but is, for example, a value of 0 or more and 1 or less (that is, 0% or more and 100% or less, 90% or 95%, 98%, 99%, 100%, etc.). The variation correspondence constant B (t) may not be particularly limited, but may be, for example, 0 kW or more and 20 kW or less.
The limiting coefficient A (t) is set to 99 to 100% (for example, 99.0%, 99.5%, 99.8%, 99.9%, etc.), and the limiting coefficient A (t) is set to 100% as much as possible. It is desirable that the received power (power to be purchased) J can be suppressed as much as possible (cost can be reduced) if it can be brought close to.

尚、制御係数A(t)や変動対応定数B(t)は、所定のサンプリングタイムごとに細かく変化させずとも良く、例えば、大まかな区間ごと(1時間ごとや30分ごと)に所定の値としても良く、より具体的には、一日のうち「午前0時から午前9時まで」と「午後5時から午後12時まで」は、A(t)=1.00(100%)、B(t)=0kW等とし、「午前9時から午後5時まで」はA(t)=0.90(90%)、B(t)=10kW等としても良い。
このような制御部9は、実際にパワーコンディショナ7から出力される発電力Hが、上述した式(1)や式(2)にて導出した発電目標上限値THmax となるように、最大電力点追従制御(MPPT(Maximum Power Point Tracking)Control )等を行っていても良い。
The control coefficient A (t) and the fluctuation correspondence constant B (t) do not have to be finely changed for each predetermined sampling time. For example, the control coefficient A (t) does not have to be finely changed for each predetermined sampling time. More specifically, "from midnight to 9 am" and "from 5 pm to 12 pm" in the day are A (t) = 1.00 (100%). B (t) = 0 kW or the like, and “from 9:00 am to 5:00 pm” may be A (t) = 0.90 (90%), B (t) = 10 kW or the like.
Such a control unit 9 maximizes the power generation H actually output from the power conditioner 7 so as to be the power generation target upper limit value TH max derived by the above equations (1) and (2). Power point tracking control (MPPT (Maximum Power Point Tracking) Control) or the like may be performed.

<発電力Hの目標値(発電目標値)TH>
一方、図4に示したように、制御部9にて、負荷電力Dに極力近い発電力Hや、負荷電力Dと同じ値の発電力Hを発電装置2で発電させて(制限係数A(t)を99〜100%としたり、制限係数A(t)を極力100%に近づけて)発電力Hの制御を行っている場合には、負荷電力Dが低下した際に、パワーコンディショナ7を制御して発電力Hを下げる発電目標値THを与えても、実際の発電力Hはすぐに下がらない(発電力Hの低下が遅れる)ため、遅れた分だけ、発電力Hが負荷電力Dより大きくなり、逆電力Gが発生する(負荷Fで消費できない電力が系統Kに流れる)ことを抑制する必要がある。
図4を詳解すれば、グラフの1秒目から5秒目までや、22秒目から31秒目までなどは、若干、負荷電力Dや発電目標値THより発電力Hの方が高く、受電力Jにマイナスの値が出ている(つまり、逆電力Gが発生している)が、この逆電力Gが、受電力Jの2〜10%以上(5%以上など)ではないため、直ちにパワーコンディショナ7の変換停止や、発電遮断器21等の遮断は不要であり、逆に、負荷電力Dをほぼ発電力Hだけで供給しており、受電力Jがほぼ発生していない(ほぼ買電していない)と言える。
<Target value of power generation H (target value of power generation) TH>
On the other hand, as shown in FIG. 4, the control unit 9 causes the power generation device 2 to generate a power generation H that is as close to the load power D as possible and a power generation H that has the same value as the load power D (limit coefficient A (limitation factor A (). When the power generation H is controlled by setting t) to 99 to 100% or setting the limiting coefficient A (t) as close to 100% as possible), the power conditioner 7 is used when the load power D decreases. Even if the power generation target value TH is given to reduce the power generation H, the actual power generation H does not decrease immediately (the decrease in the power generation H is delayed), so the power generation H becomes the load power by the delay. It is necessary to suppress the generation of reverse power G (power that cannot be consumed by the load F flows to the system K), which is larger than D.
If FIG. 4 is explained in detail, the power generation H is slightly higher than the load power D and the power generation target value TH from the 1st to the 5th seconds and from the 22nd to the 31st seconds of the graph. A negative value appears in the power J (that is, a reverse power G is generated), but since this reverse power G is not 2 to 10% or more (5% or more, etc.) of the received power J, immediately It is not necessary to stop the conversion of the power conditioner 7 or shut off the power generation breaker 21 or the like. On the contrary, the load power D is supplied almost exclusively by the generated power H, and the received power J is hardly generated (almost). I haven't bought electricity).

これに対して、図4のグラフの6秒目から21秒目までの間(約15秒間)は、明らかに負荷電力Dや発電目標値THより発電力Hの方が高く、受電力Jに大きなマイナスの値が出ており(つまり、大きな逆電力Gが発生しており)、元の状態(負荷電力Dに極力近い発電力Hを発電装置2で発電させる状態)に戻るまで、約15秒かかっている。
つまり、図4のグラフでは、発電力Hの低下が約15秒遅れていると言える。
尚、発電力H低下の遅れは、図4のグラフでは約15秒であったが、使用する発電装置2ごとに異なり、5秒以上30秒以下(10秒、20秒など)遅れるとしても良い。
On the other hand, during the period from the 6th second to the 21st second (about 15 seconds) in the graph of FIG. 4, the generated power H is clearly higher than the load power D and the power generation target value TH, and the received power J becomes A large negative value appears (that is, a large reverse power G is generated), and it is about 15 until it returns to the original state (a state in which the power generation device 2 generates the generated power H as close as possible to the load power D). It's taking seconds.
That is, in the graph of FIG. 4, it can be said that the decrease in the power generation H is delayed by about 15 seconds.
The delay in the decrease in power generation H was about 15 seconds in the graph of FIG. 4, but it may be delayed by 5 seconds or more and 30 seconds or less (10 seconds, 20 seconds, etc.) depending on the power generation device 2 used. ..

更に、図4のグラフの14秒目と15秒目には、受電力Jの2〜10%以上となる逆電力Gが発生している(逆電力発生状態C1となっている)と言え、この逆電力発生状態C1が1〜2秒以上続いているため、制御部9により、パワーコンディショナ7の変換停止や、発電遮断器21等による遮断が行われるとも言える。
特に、発電遮断器21等による遮断を行った後に、再び接続する際に、パワーコンディショナ7からの出力を系統Kの電圧及び位相等に合わせる必要が出てくる手間と時間がかかるため、結果的に、全体として発電力H(発電できる電力量)が減ることとなり、極力発電遮断器21等による遮断を行わずに済むように、制御部9で発電力H(パワーコンディショナ7)を制御することが望ましい。
Further, it can be said that the reverse power G, which is 2 to 10% or more of the received power J, is generated at the 14th and 15th seconds of the graph of FIG. 4 (reverse power generation state C1). Since this reverse power generation state C1 continues for 1 to 2 seconds or more, it can be said that the control unit 9 stops the conversion of the power conditioner 7 and shuts off the power generation circuit breaker 21 or the like.
In particular, it takes time and effort to match the output from the power conditioner 7 with the voltage, phase, etc. of the system K when reconnecting after shutting off with the power generation breaker 21 or the like. As a whole, the power generation H (the amount of power that can be generated) is reduced, and the power generation H (power conditioner 7) is controlled by the control unit 9 so that the power generation breaker 21 or the like does not cut off as much as possible. It is desirable to do.

そこで、制御部9は、発電力Hを下げる際には、当該発電力Hをゼロとする値、及び/又は、当該発電力Hを下げる際における負荷Fの消費電力(負荷電力)Dより低い値を、一旦は当該発電力Hの目標値(発電目標値)THとしても良い。
このように制御部9で制御することで、実際の発電力Hの低下が遅れず、発電力Hが負荷Fの消費電力Dより大きくなり難くなるため、逆電力Gの発生(負荷Fで消費できない電力が系統Kに流れること)を抑制できる。
Therefore, when the power generation H is lowered, the control unit 9 is lower than the value at which the power generation H is set to zero and / or the power consumption (load power) D of the load F when the power generation H is lowered. The value may be once set as the target value (power generation target value) TH of the power generation H.
By controlling by the control unit 9 in this way, the actual decrease in the generated power H is not delayed, and the generated power H is less likely to be larger than the power consumption D of the load F. Therefore, the reverse power G is generated (consumed by the load F). It is possible to suppress the flow of power that cannot be performed to the system K).

このような制御部9による制御を、より具体的に述べれば、例えば、制御部9は、約15秒遅れるうち、最初の数秒間(5秒間など)だけ、発電力Hをゼロとする値を、一旦は発電目標値THとして、パワーコンディショナ7等を制御(「ゼロ目標値制御」)して、その後(約10秒間など)は、1秒毎に測定される受電力Jと発電力Hの和から算出した負荷電力Dそのものを、発電目標値THとして、パワーコンディショナ7等を制御しても良い。
尚、ゼロ目標値制御をする時間は、当然、最初の5秒間だけに限定されず、最初の1秒間のみであったり、最初の3秒間や7秒間など、0.1秒間以上10.0秒間以下であっても良い。
More specifically, the control unit 9 sets a value that makes the power generation H zero only for the first few seconds (5 seconds, etc.) of the delay of about 15 seconds. , Once the power conditioner 7 etc. is controlled as the power generation target value TH (“zero target value control”), and then (about 10 seconds, etc.), the received power J and the generated power H measured every second. The power conditioner 7 or the like may be controlled by using the load power D itself calculated from the sum of the above as the power generation target value TH.
Naturally, the time for controlling the zero target value is not limited to the first 5 seconds, but is only the first 1 second, or 0.1 seconds or more and 10.0 seconds such as the first 3 seconds or 7 seconds. It may be as follows.

その他、例えば、制御部9は、約15秒遅れるうち、最初の数秒間(5秒間など)だけ、発電力Hを下げる際における負荷電力Dより低い値を、一旦は発電目標値THとして、パワーコンディショナ7等を制御(「低目標値制御」)して、その後(約10秒間など)は、1秒毎に測定される受電力Jと発電力Hの和から算出した負荷電力Dそのものを、発電目標値THとして、パワーコンディショナ7等を制御しても良い。
尚、低目標値制御をする時間は、当然、最初の5秒間だけに限定されず、最初の1秒間のみであったり、最初の3秒間や7秒間など、0.1秒間以上10.0秒間以下であっても良い。
又、発電目標値THとする「発電力Hを下げる際における負荷電力Dより低い値」は、負荷電力Dより低ければ、特に限定はないが、例えば、各サンプリングタイム毎に測定した負荷電力D(受電力Jと発電力Hの和)の1%以上99%以下、好ましくは5%以上95%以下、更に好ましくは10%以上90%以下(20%、50%、70%など)であっても良い。
In addition, for example, the control unit 9 sets a value lower than the load power D when lowering the power generation H for the first few seconds (5 seconds, etc.) of the delay of about 15 seconds as the power generation target value TH. After controlling the conditioner 7 etc. (“low target value control”) (for about 10 seconds, etc.), the load power D itself calculated from the sum of the received power J and the generated power H measured every second is used. , The power conditioner 7 or the like may be controlled as the power generation target value TH.
Of course, the time for controlling the low target value is not limited to the first 5 seconds, but is limited to the first 1 second, or 0.1 seconds or more and 10.0 seconds such as the first 3 seconds or 7 seconds. It may be as follows.
Further, the “value lower than the load power D when lowering the generated power H”, which is the power generation target value TH, is not particularly limited as long as it is lower than the load power D, but for example, the load power D measured for each sampling time. (Sum of received power J and generated power H) is 1% or more and 99% or less, preferably 5% or more and 95% or less, and more preferably 10% or more and 90% or less (20%, 50%, 70%, etc.). You may.

その他、上述したゼロ目標値制御と低目標値制御を組み合わせても良く、例えば、制御部9は、約15秒遅れるうち、最初の数秒間(5秒間など)だけ、ゼロ目標値制御をして、その後(約10秒間など)は、低目標値制御をしても構わない。
尚、ゼロ目標値制御をする時間は、当然、最初の5秒間だけに限定されず、最初の1秒間のみであったり、最初の3秒間や7秒間など、0.1秒間以上10.0秒間以下であっても良く、その後の低目標値制御をする時間は、当然、最後の約10秒間だけに限定されず、最後の約14秒間であったり、最後の約12秒間や約8秒間など、約5秒間以上約14秒間以下であっても構わない。
In addition, the above-mentioned zero target value control and low target value control may be combined. For example, the control unit 9 performs zero target value control only for the first few seconds (5 seconds, etc.) with a delay of about 15 seconds. After that (for about 10 seconds, etc.), low target value control may be performed.
Naturally, the time for controlling the zero target value is not limited to the first 5 seconds, but is only the first 1 second, or 0.1 seconds or more and 10.0 seconds such as the first 3 seconds or 7 seconds. Of course, the time for controlling the low target value after that may be not limited to the last about 10 seconds, but may be the last about 14 seconds, the last about 12 seconds, about 8 seconds, and the like. , It may be about 5 seconds or more and about 14 seconds or less.

ここで、ゼロ目標制御や低目標値制御を行うタイミング(きっかけ)は、負荷電力D(受電力Jと発電力Hの和)が、急に受電力Jの2〜10%以上(例えば、2%以上)変化(又は低下)した際に、ゼロ目標値制御や低目標値制御を始めることとしても良い。
制御部9は、電力システム1内であれば、何れに設けられていても良いが、例えば、後述する配電盤30(配電盤筐体31)内に設けられていても良い。
以下は、この制御部9や、ここまで述べた変圧器8や配電盤筐体31、送電部32等を備えた配電盤30について述べる。
Here, at the timing (trigger) of performing zero target control or low target value control, the load power D (sum of the received power J and the generated power H) suddenly becomes 2 to 10% or more of the received power J (for example, 2). When it changes (or decreases) (% or more), zero target value control or low target value control may be started.
The control unit 9 may be provided in any of the power systems 1 as long as it is in the power system 1. For example, the control unit 9 may be provided in the switchboard 30 (switchboard housing 31) described later.
The following describes the control board 9, the switchboard 30 including the transformer 8, the switchboard housing 31, the power transmission board 32, and the like described so far.

<配電盤30、配電盤筐体31>
図1に示したように、本発明に係る配電盤30は、配電盤筐体31と、上述した変圧器(昇圧変圧器)8と、上述した送電部32を有する盤であって、配電盤筐体31は、図1においては、略凹字状に示されているが、実際には略直方体状等に形成されていても良い。
配電盤30では、配電盤筐体31に外から変圧器8が取り付けられ、配電盤筐体31内に送電部32が設けられ、仮に、上述した発電接続盤4に発電力計12が内蔵されていな場合には、配電盤筐体31内には、発電力計12も設けられていても良い。
配電盤30(配電盤筐体31)は、高さを低位としても良く、このような配電盤筐体31の具体的な高さは、特に制限はないが、例えば、1500mm以下(900mm以上1500mm以下)であっても良く、好ましくは1400mm以下(900mm以上1400mm以下)、更に好ましくは1200mm以下(95mm以上1200mm以下)、より好ましくは1150mm以下(950mm以上1150mm以下、1100mmなど)であっても良い。
<Switchboard 30, switchboard housing 31>
As shown in FIG. 1, the switchboard 30 according to the present invention is a switchboard housing 31, a board having the above-mentioned transformer (step-up transformer) 8 and the above-mentioned power transmission unit 32, and is the switchboard housing 31. Is shown in a substantially concave shape in FIG. 1, but may actually be formed in a substantially rectangular parallelepiped shape or the like.
In the switchboard 30, when the transformer 8 is attached to the switchboard housing 31 from the outside, the power transmission unit 32 is provided in the switchboard housing 31, and the power generation meter 12 is not built in the power generation connection board 4 described above. A power generation meter 12 may also be provided in the switchboard housing 31.
The height of the switchboard 30 (switchboard housing 31) may be low, and the specific height of such a switchboard housing 31 is not particularly limited, but is, for example, 1500 mm or less (900 mm or more and 1500 mm or less). It may be 1400 mm or less (900 mm or more and 1400 mm or less), more preferably 1200 mm or less (95 mm or more and 1200 mm or less), and more preferably 1150 mm or less (950 mm or more and 1150 mm or less, 1100 mm or the like).

この他、配電盤30は、上述したパワーコンディショナ7や、後述する集電部33、逆流防止ダイオード、開閉器、エアコン、無停電電源装置(UPS)、補機、ヒューズ(上述した高圧限流ヒューズ以外のヒューズなど)、継電器(上述した不足電力継電器や不足電圧継電器や過電圧継電器、不足周波数継電器、過周波数継電器以外の継電器など)、ケーブル(配線コード)、端子、コネクタ、センサ、CPU、蓄電池、制御部9などを有していても(配電盤30に内蔵していても)良い。
又、配電盤30(つまり、配電盤筐体31)の数も、上述したように、1又は複数であっても良いが、上述した変圧器8や送電部32の数と同じ数であっても構わない。
配電盤30は、1つの太陽光発電プラント2’(の太陽電池6’の下方等)に、複数の配電盤30が分散して設けられていても構わない。
In addition, the power distribution board 30 includes the power conditioner 7 described above, a current collecting unit 33 described later, a backflow prevention diode, a switch, an air conditioner, a power failure-free power supply (UPS), an auxiliary machine, and a fuse (the high-voltage current limiting fuse described above). Other fuses, etc.), relays (such as the above-mentioned underpower relays, undervoltage relays, overvoltage relays, undervoltage relays, relays other than overvoltage relays, etc.), cables (wiring cords), terminals, connectors, sensors, CPUs, storage batteries, It may have a control unit 9 or the like (may be built in the switch board 30).
Further, the number of switchboards 30 (that is, the switchboard housing 31) may be one or more as described above, but may be the same as the number of transformers 8 and power transmission units 32 described above. Absent.
The switchboard 30 may be provided with a plurality of switchboards 30 dispersed in one photovoltaic power generation plant 2'(below the solar cell 6', etc.).

<送電部32など>
図1、2に示したように、送電部32は、上述した変圧器8からの交流電流を配電盤筐体31外へ送電する部分である。
送電部32は、変圧器8からの交流電流を配電盤筐体31外へ送電するのであれば、何れの構成でも良いが、例えば、配電盤筐体31内に設けられ、真空遮断器(VCB)等の遮断器(謂わば、発電遮断器21)や、避雷器(SAR)などを備えていても良い。
<Power transmission unit 32, etc.>
As shown in FIGS. 1 and 2, the power transmission unit 32 is a part that transmits the alternating current from the transformer 8 described above to the outside of the switchboard housing 31.
The power transmission unit 32 may have any configuration as long as it transmits the alternating current from the transformer 8 to the outside of the switchboard housing 31, but for example, the power transmission unit 32 is provided inside the switchboard housing 31 and has a vacuum circuit breaker (VCB) or the like. A circuit breaker (so-called power transmission circuit breaker 21), a lightning arrester (SAR), or the like may be provided.

送電部32内では、上述した変圧器8からの交流電流が、上述の発電遮断器21等を経た後、配電盤筐体31の外部として、配電ケーブルを介して系統Kに接続したり、他の複数の配電盤筐体31(つまり、配電盤30)からの電力を取り纏める系統盤Uを介して系統Kに接続するなど、送電部32は、最終的には系統Kに導通し送電可能な構成であれば良い。
尚、送電部32は、トランスミッターとも言え、特別高圧な電圧(例えば、22000V等)を送電する場合には、特高部とも言える。
又、送電部32の数も、上述したように、1又は複数であっても良いが、上述した変圧器8の数と同じ数であっても構わない。
In the power transmission unit 32, the AC current from the transformer 8 described above passes through the power generation circuit breaker 21 and the like described above, and then is connected to the system K via a distribution cable as the outside of the switchboard housing 31 or other. The power transmission unit 32 is finally connected to the system K via a system board U that collects power from the plurality of distribution board housings 31 (that is, the distribution board 30), and the power transmission unit 32 is configured to be electrically connected to the system K and to be able to transmit power. All you need is.
The power transmission unit 32 can be said to be a transmitter, and can also be said to be an extra high voltage unit when transmitting an extra high voltage (for example, 22000V or the like).
Further, the number of power transmission units 32 may be one or more as described above, but may be the same as the number of transformers 8 described above.

<集電部33など>
図1に示したように、集電部33は、配電盤筐体31外からの複数の交流ケーブル(交流電流を流すケーブル)又は直流ケーブル(直流電流を流すケーブル)を集電する部分である。
尚、集電部33は、複数の交流ケーブルを集電する場合は、交流集電部であると言え、複数の直流ケーブルを集電する場合は、直流集電部であると言える。
<Current collector 33, etc.>
As shown in FIG. 1, the current collecting unit 33 is a portion that collects a plurality of AC cables (cables through which AC current flows) or DC cables (cables through which DC current flows) from outside the switchboard housing 31.
The current collector 33 can be said to be an AC current collector when collecting a plurality of AC cables, and can be said to be a DC current collector when collecting a plurality of DC cables.

以下、集電部33は、配電盤筐体31外からの複数の交流ケーブルを集電する交流集電部33’であるとして、主に述べる。
交流集電部33’は、配電盤筐体31が有しているのであれば、当該配電盤筐体31の何れに設けられていても良いが、例えば、配電盤筐体31の内部に設けられて(内蔵されて)いても構わない。
Hereinafter, the current collecting unit 33 is mainly described as being an AC current collecting unit 33'that collects a plurality of AC cables from the outside of the switchboard housing 31.
The AC current collector 33'may be provided in any of the switchboard housings 31 as long as it is included in the switchboard housing 31, but is provided, for example, inside the switchboard housing 31 ( It doesn't matter if it is built-in).

又、交流集電部33’は、交流遮蔽器(交流ブレーカ)を複数有しており、この交流ブレーカは、配線用遮断器(MCCB、Molded Case Circuit Break )であっても良く、これら複数の交流集電部33’を介して、配電盤筐体31外にあるパワーコンディショナ7それぞれが、上述した昇圧変圧器8と接続されている。
このような交流ブレーカも、配電盤筐体31が備えるのであれば、当該配電盤筐体31(配電盤30自体)は、従来の交流集電箱の機能も内蔵することとなる。
Further, the AC current collecting unit 33'has a plurality of AC shields (AC breakers), and the AC breakers may be molded case circuit breaks (MCCB), and these plurality of AC breakers may be used. Each of the power conditioners 7 outside the switchboard housing 31 is connected to the step-up transformer 8 described above via the AC current collecting unit 33'.
If such an AC breaker is also provided in the switchboard housing 31, the switchboard housing 31 (switchboard 30 itself) also has a function of a conventional AC current collector box.

<蓄電部5>
図1に示したように、蓄電部5は、電力を蓄電する部分であり、系統接続機器Sと発電装置2の間の電路に接続されていても良い。
蓄電部5は、発電装置2から出力される発電力Hを充電したり、充電した電力を負荷F側に流して当該負荷Fで消費させたり、売電が可能であれば、充電した電力を系統接続機器Sを介して系統K側に流しても良い。
<Power storage unit 5>
As shown in FIG. 1, the power storage unit 5 is a part that stores electric power, and may be connected to an electric circuit between the system connection device S and the power generation device 2.
The power storage unit 5 charges the generated power H output from the power generation device 2, flows the charged power to the load F side and consumes the charged power, or if the power can be sold, the charged power is used. It may flow to the system K side via the system connection device S.

<蓄電部5による電力ロス低減>
図5に示したように、電力システム1における負荷Fが消費できる消費電力Dが一定(負荷Fが消費できる最大消費電力Dmax は340kW)で、且つ、発電装置2の発電力Hを増加させた(太陽光発電プラント2’であれば、太陽電池6’を増設した等)場合の、発電装置2による1年間の発電力量(発電力Hに1年間分の時間をかけた量)は、当然に発電力Hの増加量に比例して増加している。
一方、負荷Fが1年間で消費できる消費電力量(負荷電力Dに1年間分の時間をかけた量)は、いくら発電装置2の発電力Hを増加させても、当該負荷Fで消費できる能力には限界があるため、発電力H(設置する太陽電池6’)が300kWあたりから、徐々に傾きが緩やかになり(比例する発電装置2の発電力量の直線からは下に離れ始め)、発電力Hが700kWに近くなると、ほぼ横ばい(負荷Fで消費できる消費電力Dがほとんど増えなくなる)ため、発電装置2の発電力Hの増加(発電できる能力を高めたこと)が十分に生かせない。
そこで、蓄電部5を、系統接続機器Sと発電装置2の間の電路に接続することによって、負荷Fで消費できない電力量を蓄電し、太陽光発電プラント2’などの発電装置2に発電できない時間帯等があれば、その時間帯等は蓄電部5から放電した電力を使用したり、売電が可能であれば、充電した電力を系統接続機器Sを介して系統K側に流したりすることで、発電装置2の発電力Hの増加を十分に生かせる。尚、図5は、栃木県某所の折半屋根上太陽光発電プラント2’における結果である。
<Reduction of power loss by power storage unit 5>
As shown in FIG. 5, the power consumption D that can be consumed by the load F in the power system 1 is constant (the maximum power consumption D max that can be consumed by the load F is 340 kW), and the power generation H of the power generation device 2 is increased. In addition (in the case of a photovoltaic power generation plant 2', a solar cell 6'was added, etc.), the amount of power generated by the power generation device 2 for one year (the amount of power generated H multiplied by one year's time) is Naturally, it increases in proportion to the amount of increase in power generation H.
On the other hand, the amount of power consumed by the load F in one year (the amount obtained by multiplying the load power D by the time for one year) can be consumed by the load F no matter how much the power generation H of the power generation device 2 is increased. Since the capacity is limited, the power generation H (installed solar cell 6') gradually becomes gentler from around 300 kW (begins to move downward from the straight line of the power generation amount of the proportional power generation device 2). When the power generation H approaches 700 kW, it is almost flat (the power consumption D that can be consumed by the load F hardly increases), so that the increase in the power generation H of the power generation device 2 (increased capacity for power generation) cannot be fully utilized. ..
Therefore, by connecting the power storage unit 5 to the electric path between the grid connection device S and the power generation device 2, the amount of power that cannot be consumed by the load F can be stored, and power cannot be generated in the power generation device 2 such as the solar power generation plant 2'. If there is a time zone or the like, the power discharged from the power storage unit 5 is used during that time zone, or if the power can be sold, the charged power is sent to the system K side via the system connection device S. Therefore, the increase in the power generation H of the power generation device 2 can be fully utilized. It should be noted that FIG. 5 shows the results at a half-roofed photovoltaic power generation plant 2'at a certain place in Tochigi prefecture.

<その他>
本発明は、前述した実施形態に限定されるものではない。電力システム1や、発電装置2、発電接続盤4等の各構成又は全体の構造、形状、寸法などは、本発明の趣旨に沿って適宜変更することが出来る。
電力システム1は、母線電路Mに、発電接続機器3が接続されていなくとも良く、負荷Fが変圧器(降圧変圧器)F1を有している場合は、例えば、発電接続機器3は、変圧器F1の低圧側に系統接続機器Sが接続されても構わない。
電力システム1は、系統接続機器Sと発電装置2の間の電路に、蓄電部5が接続されていない、又は、そもそも蓄電部5自体を有していなくとも良い。
発電装置2は、パワーコンディショナ7や変圧器を有さず、燃料電池や、ガソリン等の燃料で動く発電機など(謂わば、発電部6のみ)であっても良い。
<Others>
The present invention is not limited to the above-described embodiments. The structure, shape, dimensions, and the like of each configuration or the whole of the power system 1, the power generation device 2, the power generation connection board 4, and the like can be appropriately changed according to the gist of the present invention.
In the power system 1, the power generation connection device 3 does not have to be connected to the bus line M, and when the load F has a transformer (step-down transformer) F1, for example, the power generation connection device 3 is transformed. The system connection device S may be connected to the low pressure side of the device F1.
The electric power system 1 may not have the power storage unit 5 connected to the electric circuit between the system connection device S and the power generation device 2, or may not have the power storage unit 5 itself in the first place.
The power generation device 2 may be a fuel cell, a generator powered by fuel such as gasoline, or the like (so to speak, only the power generation unit 6) without having a power conditioner 7 or a transformer.

電力システム1は、逆電力継電器10等を有しつつも、逆電力Gを測定する逆電力計を別途有していても良く、制御部9は、これら逆電力計によって、上述した逆電力発生状態C1になったかを判断して、逆電力Gに応じた遮断や、不足電力に応じた何れかの遮断器による遮断及び逆電力Gに応じた他の遮断器による遮断を行っても良い。
又、制御部9は、受電力計11で測定される受電力Jが0に近づくと、パワーコンディショナ7の変換を停止したり、パワーコンディショナ7から系統Kまでの何れかの遮断器(発電遮断器21等)を遮断する等をしても良い。
The power system 1 may have a reverse power relay 10 or the like, but may separately have a reverse power meter for measuring the reverse power G, and the control unit 9 generates the above-mentioned reverse power by these reverse power meters. After determining whether the state C1 has been reached, the circuit may be shut off according to the reverse power G, cut off by any of the circuit breakers according to the insufficient power, and cut off by another circuit breaker according to the reverse power G.
Further, when the received power J measured by the power receiving meter 11 approaches 0, the control unit 9 stops the conversion of the power conditioner 7 or any of the circuit breakers from the power conditioner 7 to the system K (the control unit 9). The power generation circuit breaker 21 etc.) may be shut off.

発電力計12は、パワーコンディショナ7と変圧器8の間の電路に設けられ、パワーコンディショナ7から直接出力される電力を、発電力Hとしても良い。
配電盤30は、配電盤筐体31内にパワーコンディショナ7が設けられていても良い。
The power generation meter 12 is provided in the electric circuit between the power conditioner 7 and the transformer 8, and the power directly output from the power conditioner 7 may be used as the power generation H.
The switchboard 30 may be provided with a power conditioner 7 in the switchboard housing 31.

電力システムや発電接続盤は、既存・新設を問わず、系統盤に対して利用できる。
発電装置は、その発電量や規模に関わらず、太陽光発電プラントなどとして利用でき、太陽光発電プラント以外に、風力、水力、波力、地熱等によって回転される発電機(交流モータ等)によって発電するプラントとして使用でき、屋外・屋内を問わず利用可能である。
The power system and power generation connection board can be used for the system board regardless of whether it is existing or new.
The power generation device can be used as a solar power plant, etc. regardless of the amount and scale of power generation, and in addition to the solar power plant, a generator (AC motor, etc.) rotated by wind power, hydraulic power, wave power, geothermal power, etc. It can be used as a power generation plant and can be used both outdoors and indoors.

1 電力システム
2 発電装置
3 発電接続機器
4 発電接続盤
4’ 発電接続盤の盤筐体
5 蓄電部
6 発電部
7 パワーコンディショナ
8 変圧器
9 制御部
10 逆電力継電器
11 受電力計
12 発電力計
K 系統
S 系統接続機器
U 系統盤
U’ 系統盤の盤筐体
F 負荷
D 負荷の消費電力
M 母線電路
H 発電力
TH 発電力の目標値(発電目標値)
G 逆電力
J 受電力
1 Power system 2 Power generation device 3 Power generation connection device 4 Power generation connection board 4'Power generation connection board panel housing 5 Power storage unit 6 Power generation unit 7 Power conditioner 8 Transformer 9 Control unit 10 Reverse power relay 11 Power receiver 11 Power generation total 12 Total K system S system connection device U system board U'system board panel housing F load D load power consumption M bus line electric line H power generation TH power generation target value (power generation target value)
G Reverse power J Received power

Claims (6)

系統(K)に接続する系統接続機器(S)が内蔵された系統盤(U)と、前記系統接続機器(S)に接続された負荷(F)とを有した電力システムであって、
前記系統接続機器(S)及び負荷(F)に発電装置(2)を接続させる発電接続機器(3)が内蔵された発電接続盤(4)を有し、
この発電接続盤(4)の盤筐体(4’)は、前記系統盤(U)の盤筐体(U’)に取り付けられていることを特徴とする電力システム。
A power system having a system board (U) having a system connection device (S) connected to the system (K) and a load (F) connected to the system connection device (S).
It has a power generation connection board (4) in which a power generation connection device (3) for connecting a power generation device (2) to the system connection device (S) and a load (F) is built.
The board housing (4') of the power generation connection board (4) is a power system characterized in that it is attached to the board housing (U') of the system board (U).
前記発電接続機器(3)は、前記系統接続機器(S)と負荷(F)の間を接続する母線電路(M)に接続されていることを特徴とする請求項1に記載の電力システム。 The power system according to claim 1, wherein the power generation connection device (3) is connected to a bus line (M) connecting between the system connection device (S) and the load (F). 前記系統接続機器(S)と発電装置(2)の間の電路に、電力を蓄電する蓄電部(5)が接続されていることを特徴とする請求項1又は2に記載の電力システム。 The power system according to claim 1 or 2, wherein a power storage unit (5) for storing electric power is connected to an electric circuit between the system connection device (S) and the power generation device (2). 前記発電装置(2)は、電力を発電する発電部(6)と、この発電部(6)からの直流電流又は交流電流を交流電流に変換するパワーコンディショナ(7)と、このパワーコンディショナ(7)から入力される交流電流をより高圧な交流電流に変圧する変圧器(8)と、この変圧器(8)からのより高圧な交流電流を前記発電装置(2)から出力される発電力(H)として制御する制御部(9)を備え、
この制御部(9)は、前記発電力(H)を下げる際には、当該発電力(H)をゼロとする値、及び/又は、当該発電力(H)を下げる際における負荷(F)の消費電力(D)より低い値を、一旦は当該発電力(H)の目標値(TH)とすることを特徴とする請求項1〜3の何れか1項に記載の電力システム。
The power generation device (2) includes a power generation unit (6) that generates electric power, a power conditioner (7) that converts a DC current or an alternating current from the power generation unit (6) into an alternating current, and the power conditioner. A transformer (8) that transforms the alternating current input from (7) into a higher-pressure alternating current, and a power generation device (2) that outputs a higher-pressure alternating current from the transformer (8). A control unit (9) that controls as a force (H) is provided.
The control unit (9) has a value that makes the power generation (H) zero when the power generation (H) is lowered, and / or a load (F) when the power generation (H) is lowered. The power system according to any one of claims 1 to 3, wherein a value lower than the power consumption (D) of the above is once set as a target value (TH) of the power generation (H).
電力を発電する発電部(6)と、この発電部(6)からの直流電流又は交流電流を交流電流に変換するパワーコンディショナ(7)と、このパワーコンディショナ(7)から入力される交流電流をより高圧な交流電流に変圧する変圧器(8)と、この変圧器(8)からのより高圧な交流電流を前記発電装置(2)から出力される発電力(H)として制御する制御部(9)を備えた発電装置であって、
前記制御部(9)は、前記発電力(H)を下げる際には、当該発電力(H)をゼロとする値、及び/又は、当該発電力(H)を下げる際における負荷(F)の消費電力(D)より低い値を、一旦は当該発電力(H)の目標値(TH)とすることを特徴とする発電装置。
A power generation unit (6) that generates electric power, a power conditioner (7) that converts a DC current or an alternating current from the power generation unit (6) into an alternating current, and an alternating current input from the power conditioner (7). A transformer (8) that transforms the current into a higher-pressure AC current, and a control that controls the higher-pressure AC current from the transformer (8) as the generated power (H) output from the power generation device (2). It is a power generation device equipped with a part (9).
The control unit (9) has a value that makes the power generation (H) zero when the power generation (H) is lowered, and / or a load (F) when the power generation (H) is lowered. A power generation device characterized in that a value lower than the power consumption (D) of is once set as a target value (TH) of the power generation (H).
系統(K)に接続する系統接続機器(S)及び負荷(F)に発電装置(2)を接続させる発電接続機器(3)が、盤筐体(4’)に内蔵された発電接続盤であって、
前記発電接続機器(3)として、前記系統接続機器(S)から系統(K)へ逆流する逆電力(G)を検知する逆電力継電器(10)と、前記系統(K)から系統接続機器(S)へ受電される受電力(J)を測定する受電力計(11)と、前記発電装置(2)から出力される発電力(H)を測定する発電力計(12)を備えていることを特徴とする発電接続盤。
The system connection device (S) connected to the system (K) and the power generation connection device (3) for connecting the power generation device (2) to the load (F) are the power generation connection board built in the panel housing (4'). There,
As the power generation connection device (3), a reverse power relay (10) for detecting the reverse power (G) flowing back from the system connection device (S) to the system (K), and a system connection device (K) from the system (K). It is provided with a power receiving meter (11) for measuring the received power (J) received by the S) and a power generating meter (12) for measuring the generated power (H) output from the power generation device (2). A power generation connection board that features that.
JP2019032378A 2019-02-26 2019-02-26 Extension type captive consumption system, power generation device, and extension type high voltage branch panel Pending JP2020137382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019032378A JP2020137382A (en) 2019-02-26 2019-02-26 Extension type captive consumption system, power generation device, and extension type high voltage branch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019032378A JP2020137382A (en) 2019-02-26 2019-02-26 Extension type captive consumption system, power generation device, and extension type high voltage branch panel

Publications (2)

Publication Number Publication Date
JP2020137382A true JP2020137382A (en) 2020-08-31
JP2020137382A5 JP2020137382A5 (en) 2021-06-17

Family

ID=72279336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019032378A Pending JP2020137382A (en) 2019-02-26 2019-02-26 Extension type captive consumption system, power generation device, and extension type high voltage branch panel

Country Status (1)

Country Link
JP (1) JP2020137382A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032946A (en) * 2002-06-27 2004-01-29 Sumitomo Wiring Syst Ltd Fixed structure of electric junction box
JP2006109694A (en) * 2004-10-05 2006-04-20 Phoenix Contact Gmbh & Co Kg Housing device equipped with connection box, and connection box for the housing device
JP2015053842A (en) * 2013-09-09 2015-03-19 パナソニック株式会社 Connecting device for dispersed power source
JP2015149862A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Control unit of cogeneration apparatus and control method of cogeneration apparatus
JP2016127632A (en) * 2014-12-26 2016-07-11 株式会社デンソー Electric power system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004032946A (en) * 2002-06-27 2004-01-29 Sumitomo Wiring Syst Ltd Fixed structure of electric junction box
JP2006109694A (en) * 2004-10-05 2006-04-20 Phoenix Contact Gmbh & Co Kg Housing device equipped with connection box, and connection box for the housing device
JP2015053842A (en) * 2013-09-09 2015-03-19 パナソニック株式会社 Connecting device for dispersed power source
JP2015149862A (en) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 Control unit of cogeneration apparatus and control method of cogeneration apparatus
JP2016127632A (en) * 2014-12-26 2016-07-11 株式会社デンソー Electric power system

Similar Documents

Publication Publication Date Title
US11539192B2 (en) Electrical service adapter for supply side interconnect
Eltawil et al. Grid-connected photovoltaic power systems: Technical and potential problems—A review
Hernández et al. Electrical protection for the grid-interconnection of photovoltaic-distributed generation
US11187734B2 (en) Systems for electrically connecting metering devices and distributed energy resource devices
EP4080225A1 (en) Method and system for connecting and metering distributed energy resource devices
Mak et al. Synchronizing SCADA and smart meters operation for advanced smart distribution grid applications
JP7001282B2 (en) Wattmeter relays, panels, and self-consumed power systems
JP6526305B1 (en) In-house power generation control system, switchboard
JP2020137382A (en) Extension type captive consumption system, power generation device, and extension type high voltage branch panel
Torquato et al. Review of international guides for the interconnection of distributed generation into low voltage distribution networks
Icaza et al. What is of interest that the buildings of the public electrical companies are also provided with solar energy? Case study" Empresa Eléctrica Centro Sur CA" in Cuenca-Ecuador
JP6081329B2 (en) Energy management system
JP7382106B1 (en) Power reception and distribution systems, power distribution boards, and transformers compatible with EV chargers, etc.
AU2012244333A1 (en) Improvements in smart distribution transformer systems
JP2021058077A (en) Power distribution system, self consumption type power generation plant, transformer, and control box
Ashok Kumar et al. Grid-Connected 5 kW Mono-crystalline Solar PV System
Chang et al. Development of standards for interconnecting distributed generators with electric power systems
JP7378946B2 (en) power supply equipment
JP6433040B1 (en) Solar power generation system distributed under the panel
JP7210358B2 (en) Power supply equipment
JP6936071B2 (en) Power generation equipment control method and power generation equipment control device
Breiteig et al. Off-grid Solar Power Systems in Rural Areas
Adesina et al. Design, implementation and performance analysis of an off-grid solar powered system for a Nigerian household
Gao et al. High-Penetration Photovoltaic Planning Methodologies
Arafat et al. On possibilities of using smart meters for emergency grid management—Analysing the effect on power quality

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210428

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220428