JP2020063461A - Aluminum alloy - Google Patents

Aluminum alloy Download PDF

Info

Publication number
JP2020063461A
JP2020063461A JP2018193950A JP2018193950A JP2020063461A JP 2020063461 A JP2020063461 A JP 2020063461A JP 2018193950 A JP2018193950 A JP 2018193950A JP 2018193950 A JP2018193950 A JP 2018193950A JP 2020063461 A JP2020063461 A JP 2020063461A
Authority
JP
Japan
Prior art keywords
alloy
hardness
sample
present
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018193950A
Other languages
Japanese (ja)
Inventor
貴士 前嶋
Takashi Maejima
貴士 前嶋
原 昌司
Masashi Hara
昌司 原
貴康 上田
Takayasu Ueda
貴康 上田
浩 牧野
Hiroshi Makino
浩 牧野
毛利 敏洋
Toshihiro Mori
敏洋 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018193950A priority Critical patent/JP2020063461A/en
Publication of JP2020063461A publication Critical patent/JP2020063461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

To provide a high-performance Al alloy having excellent thermal stability.SOLUTION: An Al alloy of the invention has a chemical composition shown below, when the total mass of it is 100 mass% (hereinafter referred to as %): Mg: 6-9%, Fe: 1.5-3.5%, Zr: 0.8-1.5%, Ti: 0.05-0.5%, Mo+Cu: 0.6-2%, at least one of Cr, V and Ni: 2% or more, and Cr+V+Ni: 10% or less, with the balance being Al and impurities. The Al alloy has, for example, a normal temperature hardness of 150 HV or more and, even after heated to 400°C, can keep 80% or more of the hardness. Preferably, the Al alloy is used, for example, in a base powder for additive manufacturing such as 3D printing (including thermal spraying).SELECTED DRAWING: Figure 1

Description

本発明は、熱的安定性に優れるアルミニウム合金等に関する。   The present invention relates to an aluminum alloy or the like having excellent thermal stability.

環境意識の高揚や機器の高性能化に伴い、従来の鉄鋼や鋳鉄等の鉄系材料に替わって、軽量で実用的な機械的特性(強度等)に優れるアルミニウム合金が多くの部材に使用されている。   With the increasing awareness of the environment and the higher performance of equipment, aluminum alloys, which are lightweight and have excellent practical mechanical properties (strength, etc.), have been used for many members in place of conventional iron-based materials such as steel and cast iron. ing.

もっとも、アルミニウム合金は、鉄系材料と比較すると、融点が低く、耐熱性等が必ずしも十分ではない。このため、アルミニウム合金部材の用途拡大を図るには、アルミニウム合金の耐熱性等の向上が必要となる。そこで、高耐熱性のアルミニウム合金に関する提案がなされており、下記の特許文献に関連する記載がある。   However, the aluminum alloy has a lower melting point than the iron-based material and does not necessarily have sufficient heat resistance. Therefore, in order to expand the applications of the aluminum alloy member, it is necessary to improve the heat resistance of the aluminum alloy. Therefore, a proposal has been made on an aluminum alloy having high heat resistance, and there is a description relating to the following patent documents.

特許第4923498号公報Japanese Patent No. 4923498

特許文献1では、急冷凝固(冷却速度:10℃/sec以上)させた鋳塊等に熱間加工により熱と歪みを導入して、低比重(密度:2.7g/cm以下)なアルミニウム合金の高強度化を図っている。 In Patent Document 1, heat and strain are introduced by hot working into an ingot or the like that has been rapidly solidified (cooling rate: 10 2 ° C / sec or more) to have a low specific gravity (density: 2.7 g / cm 3 or less). We are working to increase the strength of aluminum alloys.

しかし、本発明者の研究により、そのようなアルミニウム合金でも、さらなる入熱により、析出物(金属間化合物)の粗大化が逐次的に生じ得ることがわかった。また、アルミニウム合金の用途によっては、強度に影響するほどの歪みを導入することができない場合もある。   However, studies by the present inventors have revealed that even with such an aluminum alloy, coarsening of precipitates (intermetallic compounds) can occur successively due to further heat input. In addition, depending on the use of the aluminum alloy, it may not be possible to introduce strain enough to affect the strength.

本発明は、このような事情に鑑みて為されたものであり、従来とは異なる成分組成からなり、入熱後でも特性が安定しているアルミニウム合金等を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide an aluminum alloy or the like which has a composition different from the conventional one and has stable properties even after heat input.

本発明者はこの課題を解決すべく鋭意研究した結果、Cr、VまたはNiの一種以上を含む特定の成分組成(合金組成)からなるアルミニウム合金は、高温環境に暴露した後でも、硬さの変化が僅かであり、優れた熱的安定性を発揮することを新たに見出した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。   As a result of diligent research to solve this problem, the present inventor has found that an aluminum alloy having a specific component composition (alloy composition) containing one or more of Cr, V, or Ni has a high hardness even after being exposed to a high temperature environment. It has been newly found that the change is slight and excellent thermal stability is exhibited. By developing this result, the present invention described below has been completed.

《アルミニウム合金》
(1)本発明のアルミニウム合金(単に「Al合金」ともいう。)は、全体を100質量%(以下単に「%」という)としたときに、以下に示す成分組成を有する。
Mg:6〜9%、Fe:1.5〜3.5%、Zr:0.8〜1.5%、
Ti:0.05〜0.5%、Mo+Cu:0.6〜2%、
Cr、VまたはNiの一種以上:2%以上、Cr+V+Ni:10%以下、
残部:Alと不純物
《Aluminum alloy》
(1) The aluminum alloy of the present invention (also simply referred to as “Al alloy”) has the following component composition when the whole is 100 mass% (hereinafter simply referred to as “%”).
Mg: 6-9%, Fe: 1.5-3.5%, Zr: 0.8-1.5%,
Ti: 0.05 to 0.5%, Mo + Cu: 0.6 to 2%,
One or more of Cr, V or Ni: 2% or more, Cr + V + Ni: 10% or less,
Remainder: Al and impurities

(2)本発明のAl合金は、少なくとも常温域で優れた特性(例えば硬さ)を発揮し、高温環境下に暴露等されて入熱を受けた後でも、特性の劣化が少なく、熱的安定性に優れる。本発明のAl合金が優れた特性を発揮する理由は、現状、次のように推察される。 (2) The Al alloy of the present invention exhibits excellent characteristics (hardness, for example) at least in the room temperature range, and even after being exposed to a high temperature environment and receiving heat input, the characteristics are not deteriorated and the Al alloy is thermally Excellent stability. At present, the reason why the Al alloy of the present invention exhibits excellent properties is presumed as follows.

本発明のAl合金は、各合金元素により固溶強化される。特に、比較的多く含まれるMgにより固溶強化される。但し、Mg以外の合金元素は、当初、Alマトリクス中に(過飽和)固溶状態にあっても、加熱により、Alと金属間化合物を形成して析出し得る。つまり、Mg以外の合金元素はAl合金の析出強化にも寄与し得る。   The Al alloy of the present invention is solid solution strengthened by each alloy element. In particular, it is solid solution strengthened by a relatively large amount of Mg. However, alloy elements other than Mg may form an intermetallic compound with Al by heating and precipitate even if they are initially in a (supersaturated) solid solution state in the Al matrix. That is, the alloying elements other than Mg can also contribute to the precipitation strengthening of the Al alloy.

ここでCr、VまたはNiは、Alと化合物を形成して析出しつつ、AlとFe等の化合物の急激な析出や、それら化合物の粗大化を抑止していると考えられる。こうして本発明のAl合金は、加熱後でも特性の劣化が少なく、優れた熱的安定性(硬さや強度等)を発揮するようになったと推察される。   Here, it is considered that Cr, V or Ni forms a compound with Al and precipitates, while suppressing rapid precipitation of Al and compounds such as Fe and coarsening of these compounds. In this way, it is assumed that the Al alloy of the present invention is less deteriorated in properties even after heating and exhibits excellent thermal stability (hardness, strength, etc.).

《Al合金の製造方法》
(1)本発明はAl合金の製造方法としても把握できる。例えば、本発明は、上述した合金組成からなる合金原料の溶解後に、30℃/秒以上さらには50℃/秒以上の冷却速度で急冷して凝固させる急冷凝固工程を備えるアルミニウム合金の製造方法でもよい。
<< Manufacturing method of Al alloy >>
(1) The present invention can be understood as a method for producing an Al alloy. For example, the present invention is also a method for producing an aluminum alloy, which includes a rapid solidification step of rapidly cooling and solidifying at a cooling rate of 30 ° C./sec or more, further 50 ° C./sec or more after melting an alloy raw material having the above-described alloy composition. Good.

(2)この製造方法により、Al基地(マトリクス)中に上述した各合金元素が(過飽和)固溶したAl合金が得られる。このAl合金は、その固溶状態でも、優れた特性を発揮する。このAl合金に入熱があると、上述したように、Mg以外の合金元素による析出強化が緩やかに生じて、高特性をほぼ維持する。こうして、本発明の製造方法で得られたAl合金も、やはり、優れた熱的安定性を発揮し得る。 (2) By this manufacturing method, an Al alloy in which the above-mentioned alloy elements are (supersaturated) solid-solved in an Al matrix (matrix) is obtained. This Al alloy exhibits excellent characteristics even in its solid solution state. When heat is applied to this Al alloy, as described above, the precipitation strengthening by the alloying elements other than Mg gradually occurs, and the high characteristics are almost maintained. Thus, the Al alloy obtained by the manufacturing method of the present invention can also exhibit excellent thermal stability.

《その他》
(1)本明細書でいう成分組成(合金組成、化学成分)は、特に断らない限り、分析対象であるAl合金全体を100質量%としたときの質量割合であり、「%」は「質量%」を意味する。成分組成を示すときに用いる「+」は合計を意味する。例えば、「X+Y:a〜b%」は、合金元素であるXとYの合計量がa質量%〜b質量%であることを意味する。
《Others》
(1) Unless otherwise specified, the component composition (alloy composition, chemical component) in this specification is a mass ratio when the entire Al alloy to be analyzed is 100 mass%, and “%” means “mass”. Means "%". "+" Used when showing a component composition means the total. For example, "X + Y: a-b%" means that the total amount of alloy elements X and Y is a mass% -b mass%.

Al合金は、不純物や改質元素を僅かに含んでもよい。「不純物」は、通常、コスト的または技術的に除去困難な不可避元素である。改質元素は、室温域または高温域におけるAl合金の強度、硬さ、靱性、延性、寸法安定性等に寄与し元素であり、例えば、Mn、Co、Sc、Y、La、Hf、Nb等である。このような元素は、単体で0.5%以下さらには0.3%以下、合計でも2%以下さらには1%以下であるとよい。   The Al alloy may slightly contain impurities and modifying elements. An "impurity" is an unavoidable element that is usually difficult to remove in terms of cost or technology. The modifying element is an element that contributes to the strength, hardness, toughness, ductility, dimensional stability, etc. of the Al alloy at room temperature or high temperature, and is, for example, Mn, Co, Sc, Y, La, Hf, Nb, etc. Is. It is preferable that such elements are 0.5% or less, further 0.3% or less, and 2% or less, further 1% or less in total.

(2)本発明のAl合金は、上述した成分組成を有する限り、形態、金属組織、熱処理等を問わない。例えば、急冷凝固させた鋳塊や粉末のままでもよいし、それを塑性加工、切削加工等した加工品でもよいし、加熱(高温暴露、熱処理等)されたものでもよい。そして本発明のAl合金は、素材でも、中間製品でも、最終製品でもよい。 (2) The Al alloy of the present invention may be in any form, metallographic structure, heat treatment, etc., as long as it has the above-described component composition. For example, it may be a rapidly solidified ingot or powder as it is, a processed product obtained by subjecting it to plastic working, cutting, etc., or it may be heated (high temperature exposure, heat treatment, etc.). The Al alloy of the present invention may be a raw material, an intermediate product, or a final product.

(3)本明細書でいう「熱的安定性」は、例えば、入熱前後(熱履歴前後)の常温硬さにより評価される。この点で、熱的安定性は、高温時の特性(強度、硬さ等)である耐熱性とは異なる。本発明のAl合金は、必ずしも、高耐熱性である必要はないが、通常、優れた耐熱性を発揮し得る。また、本明細書でいう「常温硬さ」は、常温(20±10℃)で測定されるビッカース硬さである。 (3) "Thermal stability" referred to in the present specification is evaluated, for example, by room temperature hardness before and after heat input (before and after heat history). In this respect, thermal stability is different from heat resistance, which is a characteristic (strength, hardness, etc.) at high temperature. The Al alloy of the present invention does not necessarily have high heat resistance, but can usually exhibit excellent heat resistance. The "normal temperature hardness" as used herein is Vickers hardness measured at normal temperature (20 ± 10 ° C).

(4)本明細書でいう「x〜y」は、特に断らない限り、下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を、新たな下限値または上限値として「a〜b」のような範囲が新設され得る。 (4) Unless otherwise specified, “x to y” in the present specification includes a lower limit value x and an upper limit value y. A range such as "ab" may be newly set as a new lower limit value or an upper limit value for any numerical value included in various numerical values or numerical value ranges described in the present specification.

各試料に係るAl合金の加熱前後の常温硬さを示すグラフである。It is a graph which shows the normal temperature hardness before and behind heating of the Al alloy which concerns on each sample. 試料31に係るAl合金について、室温時の金属組織と高温時の金属組織(その場観察組織)とを示すTEM像である。6 is a TEM image showing the metal structure at room temperature and the metal structure at high temperature (in-situ observation structure) of the Al alloy of Sample 31.

上述した本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、本発明のAl合金のみならず、その製造方法にも適宜該当し得る。方法的な構成要素であっても物に関する構成要素ともなり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。   One or more constituent elements arbitrarily selected from the specification may be added to the constituent elements of the present invention described above. The contents described in the present specification can be appropriately applied not only to the Al alloy of the present invention but also to the manufacturing method thereof. Even a method component can be a component related to an object. Which of the embodiments is the best depends on the target, the required performance and the like.

《Al合金の成分組成》
(1)Mg
Mgは、主に、Al基地(マトリクス)中に固溶して、Al合金を固溶強化する。Mgによる固溶強化は、高温暴露後もほぼ継続される。このようなMgは6〜9%さらには7〜8%含まれるとよい。
<< Ingredient composition of Al alloy >>
(1) Mg
Mg mainly forms a solid solution in the Al matrix (matrix) and solid-solution strengthens the Al alloy. The solid solution strengthening by Mg is almost continued even after the high temperature exposure. Such Mg is preferably contained in an amount of 6 to 9%, more preferably 7 to 8%.

(2)Fe、Zr、Ti、Mo、Cu
これら合金元素は、Al基地中に固溶(例えば過飽和固溶)しているときは、Al合金を固溶強化する。高温暴露等の入熱を受けると、それら合金元素の少なくとも一部は、Alと化学的に結合した化合物(通常は金属間化合物)を形成してAl基地に析出し、Al合金を析出強化し得る。具体的にいうと、FeはAl−Fe系化合物を形成し得る。ZrとTiは協働してAl−(Zr、Ti)系化合物を形成し得る。MoとCuも協働して、Al−(Mo、Cu)系化合物を形成し得る。
(2) Fe, Zr, Ti, Mo, Cu
When these alloy elements are in solid solution in the Al base (for example, supersaturated solid solution), they solid-solution strengthen the Al alloy. Upon heat input such as high temperature exposure, at least a part of these alloy elements form a compound chemically bound to Al (usually an intermetallic compound) and precipitate in the Al base to strengthen the precipitation of the Al alloy. obtain. Specifically, Fe can form an Al-Fe based compound. Zr and Ti may cooperate to form an Al- (Zr, Ti) -based compound. Mo and Cu can also cooperate to form an Al- (Mo, Cu) -based compound.

このような観点から、Feは1.5〜3.5%さらには2〜3%含まれるとよい。Zrは0.8〜1.5%さらには1〜1.3%、Tiは0.05〜0.5%さらには0.1〜0.3%含まれるとよい。なお、Zr/Ti(質量比)は6〜10さらには7〜9であるとよい。   From this point of view, Fe is preferably contained in an amount of 1.5 to 3.5%, and further 2 to 3%. Zr is preferably 0.8 to 1.5%, further 1 to 1.3%, and Ti is preferably 0.05 to 0.5%, further preferably 0.1 to 0.3%. The Zr / Ti (mass ratio) is preferably 6-10, more preferably 7-9.

MoとCuは、合計(Mo+Cu)で0.6〜2%さらには1〜1.6%含まれるとよい。Moだけで観ると、0.4〜1.2%さらには0.6〜1%含まれてもよい。Cuだけで観ると、0.2〜0.8%さらには0.3〜0.7%含まれてもよい。   Mo and Cu are preferably contained in a total amount (Mo + Cu) of 0.6 to 2% and further 1 to 1.6%. When viewed only with Mo, 0.4 to 1.2%, or even 0.6 to 1% may be contained. When viewed only with Cu, 0.2 to 0.8%, and further 0.3 to 0.7% may be contained.

(3)Cr、V、Ni
これらの合金元素も、既述した他の合金元素と同様に、Al合金の固溶強化や析出強化に寄与し得る。これら元素は、さらに、次のような理由により、Al合金の熱的安定性の向上に寄与すると考えられる。
(3) Cr, V, Ni
These alloy elements can also contribute to solid solution strengthening and precipitation strengthening of the Al alloy, like the other alloying elements described above. It is considered that these elements further contribute to the improvement of the thermal stability of the Al alloy for the following reason.

Cr、V、Niは、それぞれ、Al−Cr系化合物、Al−V系化合物、Al−Ni系化合物を形成する。これらの化合物は、Al合金の熱履歴に応じて析出し、既述したAl−Fe系化合物やAl−(Zr、Ti)系化合物の粒成長(粗大化)を抑制する。つまり、Cr、V、Niは、入熱後でも、Al合金の微細な金属組織の維持に寄与すると考えられる。   Cr, V, and Ni form an Al-Cr compound, an Al-V compound, and an Al-Ni compound, respectively. These compounds precipitate according to the thermal history of the Al alloy, and suppress the grain growth (coarsening) of the Al-Fe-based compounds and Al- (Zr, Ti) -based compounds described above. That is, it is considered that Cr, V, and Ni contribute to maintaining the fine metal structure of the Al alloy even after heat input.

なお、Al−Fe系化合物は粗大化し易い傾向にあり、Al−(Zr、Ti)系化合物の粗大化はそれよりも緩やかである。このためCr、VまたはNiの析出物は、特に、Al−Fe系化合物の粗大化抑制に効果的と考えられる。   The Al-Fe compound tends to be coarsened, and the Al- (Zr, Ti) compound is coarsened more slowly. Therefore, it is considered that the precipitates of Cr, V or Ni are particularly effective in suppressing the coarsening of the Al-Fe compound.

なお、同様な粗大化抑制効果は、Al−(Mo、Cu)系化合物も発揮し得る。従って、Cr、V、Niは、相加的または相乗的にMo、Cuと協働して、Al合金の熱的安定性に寄与しているといえる。但し、Moの含有量が過多になると、Moは融点が高いため溶解が困難になる。Cuの含有量が過多になると、Cuは比重が大きいため合金全体の比重が大きくなる。これに対して、Cr、V、Niは、MoやCuよりもAl合金中に比較的多く含有させることができ、Al合金の熱的安定性の向上に大きく寄与していると推察される。   It should be noted that Al- (Mo, Cu) -based compounds can also exhibit the same effect of suppressing coarsening. Therefore, it can be said that Cr, V, and Ni cooperate additively or synergistically with Mo and Cu to contribute to the thermal stability of the Al alloy. However, if the Mo content is too high, the melting point of Mo becomes high and it becomes difficult to dissolve it. If the Cu content is too large, the specific gravity of Cu is large and the specific gravity of the entire alloy is large. On the other hand, Cr, V, and Ni can be contained in the Al alloy in a relatively large amount as compared with Mo and Cu, and it is presumed that Cr, V, and Ni contribute greatly to the improvement of the thermal stability of the Al alloy.

このような観点から、Cr、V、Niはそれらの一種以上を2%以上さらには2.5%以上含まれるとよい。個別に観ると、CrとVはそれぞれ、2〜4%さらには2.5〜3.5%含まれてもよい。Niは1.5〜3.5%さらには1.7〜2.7%含まれてもよい。   From such a viewpoint, it is preferable that Cr, V, and Ni contain one or more of them in an amount of 2% or more, and further 2.5% or more. When viewed individually, each of Cr and V may be contained in an amount of 2 to 4%, or even 2.5 to 3.5%. Ni may be contained in an amount of 1.5 to 3.5%, or even 1.7 to 2.7%.

なお、それらの含有量が過多になると溶解が困難になったり、純アルミニウムに対する比重が大きくなる。そこで、合計量(Cr+V+Ni)は10%以下(さらには未満)、7%以下(未満)、さらには5%以下(未満)とするとよい。   If the content of these elements is too large, it becomes difficult to dissolve them, or the specific gravity of pure aluminum increases. Therefore, the total amount (Cr + V + Ni) is preferably 10% or less (further less), 7% or less (less than), and more preferably 5% or less (less than).

《Al合金の特性》
本発明のAl合金は、製造(例えば急冷凝固)された初期のみならず、入熱後でも特性の劣化が少ない。そのような特性の指標として硬さがある。本発明のAl合金は、熱的安定性に優れるため、入熱後でも、その常温硬さは、例えば、150HV以上、160HV以上さらには170HV以上となり得る。
<< Characteristics of Al alloy >>
The Al alloy of the present invention has little deterioration in properties not only at the initial stage of production (for example, rapid solidification) but also after heat input. Hardness is an index of such characteristics. Since the Al alloy of the present invention is excellent in thermal stability, the room temperature hardness thereof can be, for example, 150 HV or more, 160 HV or more, and even 170 HV or more even after heat input.

Al合金の熱的安定性は、加熱前後の硬さの変化度合で評価してもよい。例えば、加熱前の硬さ(H0)に対する加熱後の硬さ(H1)の比率である保持率(H1/H0)を求める。熱的安定性に優れる本発明のAl合金は、例えば、その保持率が80%以上(超)、90%以上(超)さらには95%以下(超)となり得る。   The thermal stability of the Al alloy may be evaluated by the degree of change in hardness before and after heating. For example, the retention rate (H1 / H0), which is the ratio of the hardness (H1) after heating to the hardness (H0) before heating, is obtained. The retention rate of the Al alloy of the present invention having excellent thermal stability can be, for example, 80% or more (super), 90% or more (super), and even 95% or less (super).

また、熱的安定性は、硬さの変化率((H0−H1)/H0)を指標としてもよい。本発明のAl合金は、例えば、その変化率が20%以下(未満)、10%以下(未満)さらには5%以下(未満)となり得る。   Further, the thermal stability may use the rate of change in hardness ((H0-H1) / H0) as an index. The Al alloy of the present invention may have a rate of change of 20% or less (less than), 10% or less (less than), or even 5% or less (less than).

このような保持率または変化率は、次のように求めるとよい。先ず、加熱前の試料(Al合金)の常温硬さ(H0)を測定する。次に、その試料を大気雰囲気中で、常温から400℃まで加熱後、水冷(80℃)する。この試料の常温硬さ(H1)を測定する。なお、加熱時間が異なる複数の試料について加熱後の常温硬さを測定しているときは、その内の最小値を常温硬さ(H1)として採用する。なお、その加熱時間は10〜90分間の範囲内とする。なお、本明細書でいう硬さは、特に断らない限り、ビッカース硬さを意味する。   Such a retention rate or a change rate may be obtained as follows. First, the room temperature hardness (H0) of the sample (Al alloy) before heating is measured. Next, the sample is heated from room temperature to 400 ° C. in the air atmosphere and then cooled with water (80 ° C.). The room temperature hardness (H1) of this sample is measured. When the room temperature hardness after heating is measured for a plurality of samples having different heating times, the minimum value among them is adopted as the room temperature hardness (H1). The heating time is within the range of 10 to 90 minutes. The hardness referred to in this specification means Vickers hardness unless otherwise specified.

《製造方法》
本発明のAl合金は、例えば、溶解後に急冷凝固されたものであるとよい。こうして得られた初期のAl合金は、上述した各合金元素が(過飽和)固溶した状態となっており、その金属組織は微細である。その金属組織は、熱履歴により変化し得るが、本発明のAl合金は、高温加熱後でも、その微細な状態はほぼ維持し得る。
"Production method"
The Al alloy of the present invention may be, for example, one that is rapidly solidified after melting. The initial Al alloy thus obtained is in a state where the above-mentioned alloy elements are (supersaturated) in solid solution, and the metal structure thereof is fine. Although the metal structure may change depending on the heat history, the Al alloy of the present invention can substantially maintain its fine state even after heating at high temperature.

急冷凝固は、溶湯を凝固させてもよいし、Al合金(固相)の全部または一部を融点以上に加熱した後に凝固させてもよい。なお、凝固物は、鋳物に限らず、焼結体、成形体、粉末等でもよい。   In the rapid solidification, the molten metal may be solidified, or all or part of the Al alloy (solid phase) may be heated to the melting point or higher and then solidified. The solidified product is not limited to a cast product, but may be a sintered body, a molded body, a powder, or the like.

急冷凝固させるときの冷却速度は、例えば、30℃/秒以上、50℃/秒以上、100℃/秒以上さらには300℃/秒以上であるとよい。このような急冷凝固は、例えば、アトマイズ、スプレーフォーミング、連続鋳造(ストリップキャスト、ロール鋳造等)、金型鋳造(ダイキャスト等)、レーザーによる局部加熱等により実現され得る。   The cooling rate at the time of rapid solidification is, for example, 30 ° C./sec or more, 50 ° C./sec or more, 100 ° C./sec or more, and further 300 ° C./sec or more. Such rapid solidification can be realized by, for example, atomizing, spray forming, continuous casting (strip casting, roll casting, etc.), mold casting (die casting, etc.), local heating with a laser, and the like.

なお、本明細書でいう冷却速度は、十分に大きな冷却速度がある前提で、冷却曲線が液相線温度の直前に差し掛かる領域の温度と時間の傾きとして定義される。   The cooling rate in this specification is defined as the slope of the temperature and time in the region where the cooling curve approaches immediately before the liquidus temperature, assuming that the cooling rate is sufficiently high.

なお、本発明のAl合金は、歪みを導入しなくても優れた熱的安定性を発揮する。但し、急冷凝固させた原材に各種の(熱間)塑性加工(鍛造、押出等)を施して、歪みを導入してもよい。   The Al alloy of the present invention exhibits excellent thermal stability without introducing strain. However, strain may be introduced by performing various (hot) plastic working (forging, extrusion, etc.) on the rapidly solidified raw material.

《用途》
本発明のAl合金は、その用途や使用環境を問わない。本発明のAl合金は、熱的安定性に優れるため、例えば、付加製造(溶射を含む。)に用いられる原料(金属粉末)に適している。
<< Use >>
The Al alloy of the present invention may be used in any application or environment. Since the Al alloy of the present invention has excellent thermal stability, it is suitable, for example, as a raw material (metal powder) used in additive manufacturing (including thermal spraying).

粉末を用いた付加製造(AM:Additive Manufacturing)には、例えば、粉末床溶融結合法(PBF:powder bed fusion)、指向性エネルギー堆積法(DED:directed energy deposition)がある。PBFには、選択的レーザ溶融(SLM:Selective laser melting)や電子ビーム積層造形(EBM:Electron Beam Melting)がある。DEDには、コールドスプレー(Cold Spray)、レーザ肉盛り(Laser Cladding)等がある。本発明のAl合金は、いずれのAMに用いられてもよい。   Examples of additive manufacturing (AM) using powder include powder bed fusion (PBF) and directed energy deposition (DED). PBF includes selective laser melting (SLM) and electron beam additive manufacturing (EBM). DED includes cold spray, laser cladding, and the like. The Al alloy of the present invention may be used for any AM.

AMの中でも、金属粉末を用いて積層造形を行うPBFは、形状付与性に優れ、代表的な3Dプリンティング法である。PBFの場合、走査される高エネルギービーム(レーザ、電子ビーム等)から逐次入熱があるため、ある積層過程で急冷凝固した部分は、後続の積層過程から伝熱による入熱を受け得る。本発明のAl合金からなる粉末を用いると、AM中の熱履歴に拘わらず、硬さの変化や金属組織(析出物、化合物等)の粗大化が少ない造形物を得ることができる。また、そのAl合金粉末を用いると、熱間塑性加工等により大きな歪みを導入するまでもなく、初期段階から十分な硬さを有する造形物が得られる。このように本発明のAl合金は、用途の一例として、AM用粉末に好適である。   Among AMs, PBF, which is used for additive manufacturing using metal powder, is a typical 3D printing method because of its excellent shape-imparting property. In the case of PBF, since heat is sequentially input from a high-energy beam (laser, electron beam, etc.) to be scanned, a portion rapidly cooled and solidified in a certain stacking process may receive heat input by heat transfer from a subsequent stacking process. When the powder made of the Al alloy of the present invention is used, it is possible to obtain a shaped article with little change in hardness and coarsening of the metal structure (precipitate, compound, etc.) regardless of the thermal history in AM. Further, by using the Al alloy powder, it is possible to obtain a modeled article having sufficient hardness from the initial stage without introducing a large strain due to hot plastic working or the like. As described above, the Al alloy of the present invention is suitable for powder for AM as an example of application.

成分組成の異なる種々のAl合金(試料)を製作した。各試料について、加熱前後の硬さを測定して熱的安定性を評価した。このような具体例を挙げつつ、以下に本発明をさらに詳しく説明する。   Various Al alloys (samples) having different composition were manufactured. For each sample, the hardness before and after heating was measured to evaluate the thermal stability. The present invention will be described in more detail below with reference to such specific examples.

《試料の製作》
(1)素材
高純度(純度99.95質量%以上)な各種の市販原料(純金属等)を用意した。各原料を、表1Aおよび表1B(両者を併せて単に「表1」という。)に示す成分組成となるように秤量して配合した。配合後の原料を、アーク溶解炉(大亜真空社製ACM-SO11)で溶解して、ボタンインゴット(φ45mm×t15mm)を製作した。ボタンインゴットの外周囲をフライス加工して、素材(φ42mm×t8mm)を得た。
<< Production of sample >>
(1) Materials Various commercially available raw materials (pure metal, etc.) of high purity (purity 99.95% by mass or more) were prepared. Each raw material was weighed and blended so as to have the component composition shown in Table 1A and Table 1B (both are simply referred to as "Table 1"). The blended raw materials were melted in an arc melting furnace (ACM-SO11 manufactured by Daia Vacuum Co., Ltd.) to manufacture a button ingot (φ45 mm × t15 mm). The outer periphery of the button ingot was milled to obtain a material (φ42 mm × t8 mm).

なお、表1に示す試料CA1、CA2には、ボタンインゴットに替えて、市販のAl合金(JIS A2618/T6処理)を用いた。   For the samples CA1 and CA2 shown in Table 1, a commercially available Al alloy (JIS A2618 / T6 treatment) was used instead of the button ingot.

(2)レーザー照射(溶融凝固)
各素材(一部の試料を除く。)の表面へレーザー照射を行った。レーザー照射には3D積層造形装置(SLM Solutions社製 SLM280HL)を用いた。この際、ベースプレートの予熱温度:150℃、レーザー出力:350W、走査速度:1150mm/秒、ピッチ:0.17mmとした。
(2) Laser irradiation (melting and solidification)
Laser irradiation was performed on the surface of each material (excluding some samples). For laser irradiation, a 3D additive manufacturing apparatus (SLM280HL manufactured by SLM Solutions) was used. At this time, the preheating temperature of the base plate was 150 ° C., the laser output was 350 W, the scanning speed was 1150 mm / sec, and the pitch was 0.17 mm.

レーザー照射による素材への入熱量は、0.30J/mm(1.79J/mm)であった。レーザー照射された部位は、溶融後に凝固した溶融凝固部となった。凝固時の冷却速度は、直接的な測定が困難であるが、熱伝達シミュレーションおよび得られた金属組織の結晶粒径から、1×10〜1×10℃/秒程度と推定される。 The amount of heat input to the material by laser irradiation was 0.30 J / mm (1.79 J / mm 2 ). The laser-irradiated portion became a melt-solidified portion that was solidified after melting. Although it is difficult to directly measure the cooling rate during solidification, it is estimated from the heat transfer simulation and the obtained crystal grain size of the metal structure to be about 1 × 10 5 to 1 × 10 8 ° C./sec.

レーザー照射後の素材から切り出した溶融凝固部(5mm×9.5mm×8mm)を供試材とした。素材の切り出しは、切断時の熱影響を抑制するため、ウォータージェット加工により行った。   A melt-solidified portion (5 mm × 9.5 mm × 8 mm) cut out from the material after laser irradiation was used as a test material. The material was cut out by water jet processing in order to suppress the thermal effect at the time of cutting.

なお、一部の比較試料については、上述したレーザー照射を行わない素材から供試材を切り出した。各試料に関するレーザー照射の有無は表1に併せて示した。   In addition, about some comparison samples, the test material was cut out from the material which does not perform the laser irradiation mentioned above. The presence or absence of laser irradiation for each sample is also shown in Table 1.

(3)熱処理(高温暴露)
各供試材を大気炉中で400℃に加熱した。各試料の加熱時間は表1に併せて示した。加熱時間は、予め400℃に保持した大気炉へ各供試材を投入後、各供試材の温度が400℃(±2℃)に昇温した時から測定した。供試材の温度は、その大気炉内へ同時投入したダミーサンプルを測温して判断した。加熱時間は、10分間、30分間、45分間、60分間または90分間のいずれかとした。
(3) Heat treatment (high temperature exposure)
Each test material was heated to 400 ° C. in an atmospheric furnace. The heating time of each sample is also shown in Table 1. The heating time was measured after the temperature of each test material was raised to 400 ° C. (± 2 ° C.) after the test materials were put into an atmospheric furnace previously held at 400 ° C. The temperature of the test material was determined by measuring the temperature of dummy samples that were simultaneously charged into the atmospheric furnace. The heating time was 10 minutes, 30 minutes, 45 minutes, 60 minutes or 90 minutes.

所定の加熱時間経過後に取り出した供試材は、恒温槽で80℃に保持した水に浸漬して冷却した。この冷却後の供試材について、以下に示す常温域の硬さを測定した。なお、表中の「―」は、供試材に熱処理を施さなかったことを示す。   The test material taken out after the elapse of a predetermined heating time was immersed in water kept at 80 ° C. in a thermostat and cooled. The hardness of the sample material after cooling was measured in the normal temperature range shown below. In addition, "-" in the table indicates that the test material was not heat-treated.

《測定・観察》
(1)常温硬さ
各供試材の溶融凝固部(レーザー照射部)を鏡面研磨し、その研磨面を硬さの測定面とした。硬さ測定は、ビッカース硬度計を用いて、測定荷重:25gとして常温域(20℃)で行った。なお、レーザー照射した溶融凝固部の中心近傍を狙って硬さを測定した。このような硬さ測定を各供試材毎に3回(N=3)行い、それらの算術平均値を表1に併せて示した。
<< Measurement and observation >>
(1) Room Temperature Hardness The melted and solidified portion (laser irradiation portion) of each test material was mirror-polished, and the polished surface was used as the hardness measurement surface. The hardness was measured by using a Vickers hardness meter in a normal temperature range (20 ° C.) with a measurement load of 25 g. The hardness was measured aiming near the center of the laser-irradiated melted and solidified portion. Such hardness measurement was performed 3 times (N = 3) for each test material, and the arithmetic mean values thereof are also shown in Table 1.

(2)金属組織(ミクロ組織)
試料31の供試材を用いて、溶融凝固部の金属組織を透過型電子顕微鏡(TEM)で観察した。この際、供試材を室温状態または加熱状態(400℃)として、α−Al中の微細な析出粒子を観察した。それらのTEM像を図2に示した。なお、400℃のTEM像は、その場観察したものである。また、観察は、JEOL製EDX JED-2300、Thermofisher Scientific製アナライザーNSSを付属したJEOL製TEM Grand-ARMを用いて、加速電圧:300kVで行った。
(2) Metal structure (micro structure)
Using the test material of Sample 31, the metal structure of the melt-solidified portion was observed with a transmission electron microscope (TEM). At this time, the test material was placed in a room temperature state or a heated state (400 ° C.), and fine precipitation particles in α-Al were observed. The TEM images of them are shown in FIG. The TEM image at 400 ° C. was observed in-situ. The observation was carried out at an acceleration voltage of 300 kV using a JEOL TEM Grand-ARM equipped with a JEOL EDX JED-2300 and a Thermofisher Scientific analyzer NSS.

《評価》
(1)特性(熱的安定性)
表1に示した結果に基づいて、各試料の常温硬さと加熱時間(熱履歴)の関係を図1に示した。図1中、試料1:試料11〜16、試料2:試料21〜26、試料3:試料31〜35、試料C1:試料C11・C12、試料C2:試料C21・C22、試料C3:試料C31〜C36、試料C4:試料C41・42、試料CA:試料CA1・CA2を意味する。
<< Evaluation >>
(1) Characteristics (thermal stability)
Based on the results shown in Table 1, the relationship between the room temperature hardness of each sample and the heating time (heat history) is shown in FIG. In FIG. 1, sample 1: sample 11-16, sample 2: sample 21-26, sample 3: sample 31-35, sample C1: sample C11 / C12, sample C2: sample C21 / C22, sample C3: sample C31-. C36, sample C4: samples C41 and 42, sample CA: samples CA1 and CA2.

また成分組成が同じ各試料について、加熱前後における硬さの保持率(100×H1/H0)と変化率(100×(H0−H1)/H0)を表1に併せて示した。これらは、加熱していない試料の常温硬さ(H0)と、加熱した試料で最低の常温硬さ(H1)とに基づいて算出した。   Table 1 also shows the hardness retention rate (100 × H1 / H0) and the change rate (100 × (H0−H1) / H0) before and after heating for each sample having the same composition. These were calculated based on the room temperature hardness (H0) of the unheated sample and the lowest room temperature hardness (H1) of the heated sample.

図1および表1から明らかなように、試料1〜3(試料1:11〜16、試料2:21〜26、試料3:31〜35)は、熱履歴の有無に拘わらず、十分な硬さを有していた。また、これら試料は、加熱前後で硬さが殆ど変化せず、熱的安定性にも優れることがわかった。   As is clear from FIG. 1 and Table 1, Samples 1 to 3 (Samples 1 to 11 to 16, Samples 2:21 to 26, and Samples 3:31 to 35) had sufficient hardness regardless of the presence or absence of thermal history. Had It was also found that these samples had almost no change in hardness before and after heating and were excellent in thermal stability.

一方、試料C10〜C22およびC41〜CA2は、硬さの保持率が小さく(変化率が大きく)、加熱前後で硬さが大幅に低下することがわかった。また試料C31〜C36は、試料11〜35と同様な成分組成系であるが、Ni量が少なく、硬さが150HV未満であった。   On the other hand, it was found that the samples C10 to C22 and C41 to CA2 had a small hardness retention rate (a large rate of change), and the hardness significantly decreased before and after heating. Samples C31 to C36 were similar in composition to samples 11 to 35, but had a small amount of Ni and a hardness of less than 150 HV.

(2)組織
図2に示した各TEM像を比較するとわかるように、400℃に保持してその場観察すると、α−Al結晶粒内に、ナノスケールのコントラスト変化が現れた。これは、高温下で、α−Al結晶粒内にナノレベルの析出が生じていることを示している。このような微細な析出がα−Al結晶粒内で生じることにより、α−Al結晶粒の成長・粗大化が阻止され、入熱を受けても、Al合金全体の金属組織は微細な状態が維持される。つまり、熱履歴を受けても特性変化が少なく、優れた熱的安定性を発現するAl合金が得られたと考えられる。
(2) Structure As can be seen by comparing the TEM images shown in FIG. 2, when observed at in-situ while kept at 400 ° C., nanoscale contrast change appeared in α-Al crystal grains. This indicates that nano-level precipitation occurs in the α-Al crystal grains at high temperature. Since such fine precipitation occurs in the α-Al crystal grains, the growth and coarsening of the α-Al crystal grains is prevented, and even if heat is applied, the metal structure of the entire Al alloy is in a fine state. Maintained. In other words, it is considered that an Al alloy was obtained in which there was little change in characteristics even when subjected to a thermal history and which exhibited excellent thermal stability.

こうして本発明によれば、入熱後も高特性(硬さ等)を維持し、優れた熱的安定性を発現するAl合金が提供されることが確認された。   Thus, it was confirmed that the present invention provides an Al alloy that maintains high characteristics (hardness and the like) even after heat input and exhibits excellent thermal stability.

Claims (5)

全体を100質量%(以下単に「%」という)としたときに、以下に示す成分組成を有するアルミニウム合金。
Mg:6〜9%、
Fe:1.5〜3.5%、
Zr:0.8〜1.5%、
Ti:0.05〜0.5%、
Mo+Cu:0.6〜2%、
Cr、VまたはNiの一種以上:2%以上、
Cr+V+Ni:10%以下、
残部:Alと不純物
An aluminum alloy having the following component composition when the whole is 100 mass% (hereinafter simply referred to as "%").
Mg: 6-9%,
Fe: 1.5 to 3.5%,
Zr: 0.8-1.5%,
Ti: 0.05 to 0.5%,
Mo + Cu: 0.6-2%,
One or more of Cr, V or Ni: 2% or more,
Cr + V + Ni: 10% or less,
Remainder: Al and impurities
常温硬さが150HV以上である請求項1に記載のアルミニウム合金。   The aluminum alloy according to claim 1, which has a room temperature hardness of 150 HV or more. 大気雰囲気中で常温から400℃まで加熱した後の常温硬さは、加熱前の常温硬さの80%以上ある請求項1または2に記載のアルミニウム合金。   The aluminum alloy according to claim 1, wherein the room temperature hardness after heating from room temperature to 400 ° C. in the air atmosphere is 80% or more of the room temperature hardness before heating. 付加製造または溶射に用いられる請求項1〜3のいずれかに記載のアルミニウム合金。   The aluminum alloy according to claim 1, which is used for additive production or thermal spraying. 溶融後に、冷却速度30℃/秒以上で凝固してなる請求項1〜4のいずれかに記載のアルミニウム合金。   The aluminum alloy according to any one of claims 1 to 4, which is solidified at a cooling rate of 30 ° C / sec or more after melting.
JP2018193950A 2018-10-15 2018-10-15 Aluminum alloy Pending JP2020063461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018193950A JP2020063461A (en) 2018-10-15 2018-10-15 Aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193950A JP2020063461A (en) 2018-10-15 2018-10-15 Aluminum alloy

Publications (1)

Publication Number Publication Date
JP2020063461A true JP2020063461A (en) 2020-04-23

Family

ID=70386859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193950A Pending JP2020063461A (en) 2018-10-15 2018-10-15 Aluminum alloy

Country Status (1)

Country Link
JP (1) JP2020063461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111778433A (en) * 2020-07-31 2020-10-16 中车工业研究院有限公司 Aluminum alloy powder material for 3D printing and preparation method and application thereof
JP2021188103A (en) * 2020-06-02 2021-12-13 株式会社コイワイ High-strength aluminum alloy quenched coagulate and manufacturing method thereof
CN114411023A (en) * 2022-01-12 2022-04-29 江西宝航新材料有限公司 High-toughness aluminum alloy powder material for laser additive, preparation method and application

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021188103A (en) * 2020-06-02 2021-12-13 株式会社コイワイ High-strength aluminum alloy quenched coagulate and manufacturing method thereof
CN111778433A (en) * 2020-07-31 2020-10-16 中车工业研究院有限公司 Aluminum alloy powder material for 3D printing and preparation method and application thereof
CN111778433B (en) * 2020-07-31 2022-02-22 中车工业研究院有限公司 Aluminum alloy powder material for 3D printing and preparation method and application thereof
CN114411023A (en) * 2022-01-12 2022-04-29 江西宝航新材料有限公司 High-toughness aluminum alloy powder material for laser additive, preparation method and application
CN114411023B (en) * 2022-01-12 2023-01-17 江西宝航新材料有限公司 High-toughness aluminum alloy powder material for laser additive, preparation method and application

Similar Documents

Publication Publication Date Title
US11555229B2 (en) High-strength aluminum alloy laminated molding and production method therefor
US10030293B2 (en) Aluminum material having improved precipitation hardening
JP4467637B2 (en) Alloy based on titanium aluminum
RU2729569C2 (en) Materials with a body-centered cubic arrangement based on titanium, aluminum, vanadium and iron and articles made therefrom
US20210032727A1 (en) Process for manufacturing an aluminum-chromium alloy part
JP4189687B2 (en) Magnesium alloy material
KR20180040513A (en) Ni-based superalloy powder for lamination molding
US20180258512A1 (en) Titanium-tantalum alloy and method of forming thereof
JP2016053198A (en) Metal molded product and metal powder for metal molded product
JP2008200752A (en) Aluminum alloy casting material, method for production of the aluminum alloy casting material, aluminum alloy material, and method for production of aluminum alloy material
JP2020063461A (en) Aluminum alloy
EP0587186B1 (en) Aluminum-based alloy with high strength and heat resistance
US20190017150A1 (en) Cr Filament-Reinforced CrMnFeNiCu(Ag)-Based High-Entropy Alloy and Method for Manufacturing the Same
JPH0641701A (en) High strength amorphous magnesium alloy and its manufacture
JP2019504207A (en) Magnesium alloy sheet and method for producing the same
JP2008127639A (en) Magnesium alloy material, and method for producing the same
US20220275484A1 (en) Aluminum alloy for 3d printing or additive manufacturing, 3d printing or additive manufacturing method using same, and aluminum alloy product or component manufactured by 3d printing or additive manufacturing
JP6385683B2 (en) Al alloy casting and manufacturing method thereof
US20160312340A1 (en) Copper alloy
JP7387139B2 (en) Titanium alloy, its manufacturing method, and engine parts using it
CN110785506A (en) Magnesium alloy sheet material and method for producing same
JPS62185857A (en) Heat resistant and high strength aluminum alloy
JP3744713B2 (en) High strength solidified aluminum alloy
JP3744729B2 (en) High strength solidified aluminum alloy
JP2004211117A (en) High strength and high heat resistant aluminum alloy hardened material, and its producing method