JP2020061239A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2020061239A
JP2020061239A JP2018190784A JP2018190784A JP2020061239A JP 2020061239 A JP2020061239 A JP 2020061239A JP 2018190784 A JP2018190784 A JP 2018190784A JP 2018190784 A JP2018190784 A JP 2018190784A JP 2020061239 A JP2020061239 A JP 2020061239A
Authority
JP
Japan
Prior art keywords
fuel cell
gas
ecu
fuel
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018190784A
Other languages
English (en)
Other versions
JP7059884B2 (ja
Inventor
森田 亮
Akira Morita
亮 森田
雅之 伊藤
Masayuki Ito
雅之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018190784A priority Critical patent/JP7059884B2/ja
Publication of JP2020061239A publication Critical patent/JP2020061239A/ja
Application granted granted Critical
Publication of JP7059884B2 publication Critical patent/JP7059884B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】 燃料電池のアノード流路内の水滴の詰まりを検出することができる燃料電池システムを提供する。【解決手段】 燃料電池システムは、燃料ガスにより発電する燃料電池と、前記燃料電池内の前記燃料ガスの流路の圧力損失を検出する検出部と、前記燃料ガスのガス拡散係数に応じた周波数の交流電流を前記燃料電池の出力電流に重畳することにより前記燃料電池のインピーダンスを測定する測定部と、前記インピーダンス及び前記圧力損失がそれぞれ増加中であるか否かを判定する判定部とを有する。【選択図】図4

Description

本発明は、燃料電池システムに関する。
燃料電池のフラッディングを判定する手法として、例えば、交流インピーダンス法が用いられる(例えば特許文献1参照)。
特開2017−168299号公報
燃料電池には、水素ガスが流れるアノード流路と、空気が流れるカソード流路とが設けられている。フラッディングによってアノード流路に局所的に水滴が詰まった場合、カソード流路に水滴が詰まった場合とは異なり、水素ガスがアノード電極の一部に到達できず、その部分とアノード電極の他部分との間に漏れ電流が流れる。その結果、カソード電極のカーボン触媒層では、カーボンが水分により酸化して燃料電池の性能が影響を受けるおそれがある。
このため、アノード流路内の水滴の詰まりは、カソード流路内の水滴の詰まりとは区別して検出されることが望ましい。しかし、特許文献1の技術によるとアノード及びカソードのフラッディングが区別なく検出されるため、アノード流路内の水滴の詰まりを検出して適切な対処を行うことが難しい。
そこで本発明は上記の課題に鑑みてなされたものであり、燃料電池のアノード流路内の水滴の詰まりを検出することができる燃料電池システムを提供することを目的とする。
本明細書に記載の燃料電池システムは、燃料ガスにより発電する燃料電池と、前記燃料電池内の前記燃料ガスの流路の圧力損失を検出する検出部と、前記燃料ガスのガス拡散係数に応じた周波数の交流電流を前記燃料電池の出力電流に重畳することにより前記燃料電池のインピーダンスを測定する測定部と、前記インピーダンス及び前記圧力損失がそれぞれ増加中であるか否かを判定する判定部とを有する。
本発明によれば、燃料電池のアノード流路内の水滴の詰まりを検出することができる。
燃料電池システムの一例である。 燃料電池の一例を示す断面図である。 ECU(Electric Control Unit)の動作の一例を示すフローチャートである。 セル抵抗、燃料ガスの流量、カソード流路の二酸化炭素の濃度、及びアノード流路の圧力損失の時間変化の一例を示す図である。
(燃料電池システムの構成)
図1は、燃料電池システムの一例である。燃料電池システムは、ECU1、燃料電池スタック2、エアコンプレッサ30、インタークーラ31、加湿装置32、インピーダンス測定装置33、冷却装置34、及びポンプ35を有する。また、燃料電池システムは、流量センサ50,56、圧力センサ51,54,57,59、露点センサ52,55、電流センサ53、温度センサ58、酸化剤ガス供給路90、酸化剤ガス排出路92、燃料ガス供給路93、及び燃料ガス排出路94を有する。
酸化剤ガス供給路90には、燃料電池スタック2に供給される酸化剤ガスが流れ、酸化剤ガス排出路92には、燃料電池スタック2から排出された酸化剤オフガスが流れる。また、燃料ガス供給路93には、燃料電池スタック2に供給される燃料ガスが流れ、燃料ガス排出路94には、燃料電池スタック2から排出された燃料オフガスが流れる。燃料ガスは一例として水素ガスであり、酸化剤ガスは一例として空気である。
燃料電池スタック2は、固体高分子形の複数の燃料電池(単セル)が積層された積層体である。燃料ガス及び酸化剤ガスはマニホルドを介して各燃料電池に供給される。各燃料電池には膜電極接合体(MEA: Membrane Electrode Assembly)が設けられており、膜電極接合体において酸化剤ガス中の酸素と燃料ガス中の水素とが電気化学反応することにより発電する。燃料電池は、発電とともに水分を生成する。
燃料ガス供給路93には、燃料ガスを蓄圧するタンク37、及び燃料ガスを噴射するインジェクタ36などが接続されている。燃料ガスは、燃料ガス供給路93から燃料電池スタック2に供給されて発電に用いられ、燃料電池スタック2から燃料オフガスとして燃料ガス排出路94に排出される。
また、酸化剤ガスは、酸化剤ガス供給路90から燃料電池スタック2に供給されて発電に用いられ、燃料電池スタック2から酸化剤オフガスとして酸化剤ガス排出路92に排出される。
酸化剤ガス供給路90には、エアコンプレッサ30、インタークーラ31、及び加湿装置32が接続されている。エアコンプレッサ30は、外部から酸化剤ガスを取り込んで圧縮する。圧縮された空気はインタークーラ31に送られる。インタークーラ31は、圧縮により昇温した酸化剤ガスを冷却する。冷却された酸化剤ガスは加湿装置32に送られる。
加湿装置32は、酸化剤ガス供給路90及び酸化剤ガス排出路92に接続され、酸化剤ガスに水蒸気を加えることにより燃料電池スタック2を加湿する。加湿装置32には、インタークーラ31から低湿度の酸化剤ガスが導入され、燃料電池スタック2から高湿度の酸化剤オフガスが導入される。加湿装置32は、例えば中空糸式または膜式の湿度交換器であり、燃料電池スタック2に供給される酸化剤ガスを、酸化剤オフガスに含まれる水分により加湿する。
ECU1は燃料電池システムの動作を制御する。ECU1は、CPU10と、CPU10を駆動するプログラム及び各種のデータなどが格納されたメモリ11を有する。
ECU1は、判定部の一例であり、燃料電池スタック2のインピーダンスZ及びアノード流路の圧力損失からアノード流路内の水滴の詰まりを判定する。ECU1は、水滴が詰まっていると判定した場合、燃料ガスの噴射量、つまり流量が増加するようにインジェクタ36を制御する。これにより、アノード流路の入口側の圧力が増加するため、水滴がアノード流路から排出される。
冷却装置34は、例えばラジエータであり、冷却水を燃料電池スタック2に供給する。冷却装置34と燃料電池スタック2の間は、冷却水供給路95と冷却水排出路96により接続されている。
冷却水は、燃料電池スタック2を冷却する冷却媒体の一例である。冷却水は、冷却装置34から冷却水供給路95を流れて燃料電池スタック2に供給される。また、冷却に用いられた冷却水は、燃料電池スタック2から冷却水排出路96を流れて冷却装置34に戻る。
冷却水供給路95にはポンプ35が設けられている。ポンプ35は、冷却水を燃料電池スタック2に圧送する。これにより、冷却水は冷却装置34と燃料電池スタック2の間を循環する。
冷却水排出路96の上流側には温度センサ58が設けられている。温度センサ58は燃料電池スタック2の冷却水の出口の温度Tfを計測する。温度Tfは、燃料電池スタック2の冷却水の排出用マニホルドの出口近傍の冷却水の温度である。ECU1は温度センサ58の温度Tfを取得して各種の制御に用いる。
また、インピーダンス測定装置33は、測定部の一例であり、燃料ガスのガス拡散係数に応じた周波数の交流電流Sを燃料電池スタック2の出力電流に重畳することにより燃料電池スタック2のインピーダンスZを測定する。燃料ガス中の水素のガス拡散係数は酸化剤ガス中の酸素のガス拡散係数より高いため、水素は、酸素より高い周波数の交流電流Sに対して応答性を有する。
このため、インピーダンス測定装置33は、燃料ガスのガス拡散係数に応じた高い周波数(例えば1(kHz)など)の交流電流Sを測定に用いることにより、カソード流路内の酸素の抵抗成分よりアノード流路内の燃料ガスの抵抗成分が大きく反映されたインピーダンスZを測定することができる。したがって、ECU1は、インピーダンスZからカソード流路内の水滴の詰まりを判定することができる。
また、燃料電池スタック2には電流センサ53が電気的に接続されている。電流センサ53は、燃料電池スタック2から出力される電流値Iを測定する。ECU1は電流センサ53の電流値Iを取得して各種の制御に用いる。
また、酸化剤ガス供給路90において、エアコンプレッサ30及びインタークーラ31の間には流量センサ50が設けられている。流量センサ50は、エアコンプレッサ30により外部から燃料電池スタック2に導入される酸化剤ガスの流量Finを測定する。ECU1は流量センサ50の流量Finを取得して各種の制御に用いる。
また、酸化剤ガス排出路92において、加湿装置32の上流側には流量センサ56が設けられている。流量センサ56は、燃料電池スタック2から排出される酸化剤オフガスの流量Foutを測定する。ECU1は流量センサ56の流量Foutを取得して各種の制御に用いる。
また、酸化剤ガス供給路90において、加湿装置32の下流側には圧力センサ51が設けられている。圧力センサ51は、燃料電池スタック2に導入される酸化剤ガスの圧力Pc_inを測定する。ECU1は圧力センサ51の圧力Pc_inを取得して各種の制御に用いる。
また、酸化剤ガス排出路92において、加湿装置32の上流側には圧力センサ57が設けられている。圧力センサ57は、燃料電池スタック2から排出される酸化剤オフガスの圧力Pc_outを測定する。ECU1は圧力センサ57の圧力Pc_outを取得して各種の制御に用いる。
また、露点センサ52は、燃料電池スタック2の酸化剤ガスの入口の露点温度Tcを検出し、露点センサ55は、燃料電池スタック2の燃料ガスの入口の露点温度Taを検出する。ECU1は露点センサ52,55の露点温度Tc,Taをそれぞれ取得して各種の制御に用いる。
また、燃料ガス供給路93において、インジェクタ36の下流側には圧力センサ54が設けられている。圧力センサ54は、燃料電池スタック2に導入される燃料ガスの圧力Pa_inを測定する。一方、燃料ガス排出路94には圧力センサ59が設けられている。圧力センサ59は、燃料電池スタック2から排出される燃料ガスの圧力Pa_outを測定する。
ECU1は、圧力センサ54の圧力Pa_in及び圧力センサ59の圧力Pa_outを取得し、圧力Pa_in,Pa_outの差圧としてアノード流路の圧力損失Ploss(=Pa_out−Pa_in)を算出する。アノード流路に水滴が詰まると圧力損失Plossが増加するため、ECU1は、圧力損失Plossからアノード流路内の水滴の詰まりを判定することができる。なお、圧力センサ54,59は、アノード流路の圧力損失Plossを検出する検出部の一例である。
(燃料電池の構成)
図2は、燃料電池の一例を示す断面図である。符号Gaは燃料電池スタック2の積層方向に沿った断面の一部を示す。
燃料電池は、カソードセパレータ20、アノードセパレータ22、及びMEGA23を有する。カソードセパレータ20は燃料電池のカソード側に配置され、アノードセパレータ22は燃料電池のアノード側に配置されている。カソードセパレータ20及びアノードセパレータ22はMEGA23を挟んで対向する。
MEGA23は、MEA232と、MEA232を挟む一対のガス拡散層230,231とを有する。MEA232は、カソード電極触媒層232a、電解質膜232b、及びアノード電極触媒層232cを含み、酸化剤ガス及び燃料ガスの電気化学反応により発電する。
電解質膜232bは、例えば、湿潤状態で良好なプロトン電導性を示すイオン交換樹脂膜を含む。このようなイオン交換樹脂膜としては、例えば、ナフィオン(登録商標)などの、イオン交換基としてスルホン酸基を有するフッ素樹脂系のものが挙げられる。
アノード電極触媒層232c及びカソード電極触媒層232aは、それぞれ、触媒担持導電性粒子とプロトン伝導性電解質を含む、ガス拡散性を有する多孔質層として形成されている。例えば、アノード電極触媒層232c及びカソード電極触媒層232aは、白金担持カーボンとプロトン伝導性電解質を含む分散溶液である触媒インクの乾燥塗膜として形成される。
アノード電極触媒層232cには一方のガス拡散層231を介し燃料ガスが供給され、カソード電極触媒層232aには他方のガス拡散層230を介し酸化剤ガスが供給される。ガス拡散層230,231は、例えば、カーボンペーパーなどの基材に撥水性のマイクロポーラス層を積層することにより形成される。なお、マイクロポーラス層としては、例えばPTFE(polytetrafluoroethylene)などの撥水性樹脂とカーボンブラックなどの導電性材料などを含んで形成される。
カソードセパレータ20及びアノードセパレータ22は、例えば金属板などにより構成され、矩形状の外形を有する。なお、カソードセパレータ20及びアノードセパレータ22は、金属に限定されず、例えばカーボン成型により形成されてもよい。カソードセパレータ20及びアノードセパレータ22は接着剤また溶接により互いに接合されている。
カソードセパレータ20の一方の面には、酸化剤ガスが流れる溝状のカソード流路200〜203が設けられている。また、アノードセパレータ22の一方の面には、燃料ガスが流れる溝状のアノード流路220〜223が設けられている。カソード流路200〜203の面とアノード流路220〜223の面はMEGA23を挟んで対向する。なお、アノード流路220〜223は燃料電池内の燃料ガスの流路の一例である。
(水滴の詰まりの影響)
符号Gbは、燃料電池スタック2の積層方向から見たアノード流路220〜223の一部を示す。アノード流路220〜223には、例えば、発電により生成された水分である生成水の一部がカソード流路200〜203から移動する。
本例では、一部のアノード流路222,223には水滴81が詰まり、燃料ガスが塞き止められていると仮定する。また、他のアノード流路220,221の壁面には液膜80が形成されているが、燃料ガスはアノード流路220,221を流れることができると仮定する。なお、カソード流路200〜203には水滴が詰まっていないと仮定する。
水滴81は、アノード流路220〜223の圧力損失Plossが液滴要求差圧Poより大きい場合、燃料ガスの圧力によりアノード流路220〜223から排出される。なお、この水滴81の排出を以下の説明では「プラグ排水」と表記する。また、圧力損失Plossが液滴要求差圧Po以下である場合、プラグ排水が行われないため、アノード流路220〜223内に水滴81が詰まる。
Po=1.04×10−2×Dh−1.42 ・・・(1)
液滴要求差圧Poは上記の式(1)から算出される。式(1)において、変数Dhはアノード流路220〜223の水力直径であり、アノード流路220〜223の断面積及び長さに基づき決定される。
ECU1は、例えばメモリ11に予め記憶された液滴要求差圧Poを圧力損失Plossと比較し、Ploss>Poが満たされる場合、水滴81が形成されてもプラグ排水により排出されるため、燃料ガスの流量を増加する必要がないことから、アノード流路220〜223の水滴81の詰まりを判定しない。
アノード流路220,221を流れる燃料ガス中の水素とカソード流路200,201を流れる空気中の酸素は、MEA232において電気化学反応する。これにより、MEA232は発電するとともに水分を生成する。水分の一部はカソード流路200,201に流出する。一方、アノード流路222,223には水滴81が詰まっているため、燃料ガスが流れず、上記の電気化学反応は起きない。
このため、アノード流路220,221及びカソード流路200,201の領域は発電領域21aとして機能するが、アノード流路222,223及びカソード流路202,203の領域は非発電領域21bとして機能する。このため、非発電領域21bは抵抗成分Rとなり、発電領域21aから非発電領域21bには漏れ電流が流れる。
したがって、交流インピーダンス法または電流遮断法によりインピーダンスZの測定が行われるとき、発電領域21a及び非発電領域21bのうち、発電領域21aのみが交流電流Sに応答する。このため、インピーダンスZは、アノード流路222,223に水滴81が詰まっていない場合のインピーダンスZより増加する。
C+2HO→CO+4H+4e ・・・(2)
また、非発電領域21bでは漏れ電流が流れることにより上記の式(2)に示される電気化学反応が起こる。つまり、カソード電極触媒層232aのカーボンは、カソード流路202,203内の水分により酸化されて二酸化炭素及び水素イオンを生成する。二酸化炭素はカソード流路202,203に流れ、水素イオンはアノード流路222,223側に流れる。このため、燃料電池の性能が影響を受けるおそれがある。
(水滴の詰まりの検出と水滴の排出)
そこで、ECU1は、アノード流路222,223内の水滴81の詰まりを、アノード流路220〜223の圧力損失Plossの増加とインピーダンスZの増加を判定することにより検出する。
図3は、ECU1の動作の一例を示すフローチャートである。ECU1は、例えば周期的に本動作を行う。
ECU1は、燃料電池スタック2の水収支Wを算出する(ステップSt1)。
W=Win+Wp−Wout ・・・(3)
Win=Fin×Pv/(Pc_in−Pv) ・・・(4)
Wout=Fout×Psat/(Pc_out−Psat) ・・・(5)
ECU1は、例えば上記の式(3)から水収支Wを算出する。式(3)において、Winは、燃料電池スタック2に流入する水蒸気量(以下、「水蒸気流入量」と表記)を表し、Wpは、燃料電池スタック2の発電により生成された水分量を表し、Woutは、燃料電池スタック2から流出する水蒸気量(以下、「水蒸気流出量」と表記)を表す。
ECU1は、例えば上記の式(4)から水蒸気流入量Winを算出する。式(4)において、燃料電池スタック2の酸化剤ガスの入口の流量Finは流量センサ50から取得され、燃料電池スタック2の酸化剤ガスの入口の圧力Pc_inは圧力センサ51から取得される。また、Pvは燃料電池スタック2の酸化剤ガスの入口の蒸気圧を表す。ECU1は、露点センサ52の露点温度Tcから蒸気圧Pvを算出する。
また、ECU1は、例えば上記の式(5)から水蒸気流出量Woutを算出する。式(5)において、燃料電池スタック2の酸化剤ガスの出口の流量Foutは流量センサ56から取得され、燃料電池スタック2の酸化剤ガスの出口の圧力Pc_outは圧力センサ57から取得される。Psatは燃料電池スタック2のカソード流路200〜203の飽和蒸気圧を表す。ECU1は、温度センサ58の温度Tfから飽和蒸気圧Psatを算出する。
また、ECU1は、電流センサ53の電流値Iから水分量Wpを算出する。なお、蒸気圧Pv、飽和蒸気圧Psat、及び飽和蒸気圧Psatの算出には、例えばメモリ11に記憶されたマップデータなどが用いられる。マップデータには複数のパラメータの相関関係が登録されている。
ECU1は、水収支Wが正の値であるか否かを判定する(ステップSt2)。ECU1は、水収支Wが0以下である場合(ステップSt2のNo)、燃料電池スタック2内の水分が減少傾向にあるため、水滴の排出が不要であると判断して、動作を終了する。
また、ECU1は、水収支Wが0より大きい場合(ステップSt2のYes)、アノード流路220〜223の圧力損失Plossを、圧力センサ54,59の圧力Pa_in,Pa_outの差圧から算出する(ステップSt3)。次にECU1は、圧力損失Plossを液滴要求差圧Poと比較する(ステップSt4)。ECU1は、圧力損失Plossが液滴要求差圧Poより大きい場合(ステップSt4のNo)、水滴がプラグ排水されるため、水滴の排出が不要であると判断して、動作を終了する。
ECU1は、圧力損失Plossが液滴要求差圧Po以下である場合(ステップSt4のYes)、インピーダンスZの時間変化率ΔZを算出する(ステップSt5)。このとき、ECU1は、インピーダンス測定装置33にインピーダンスZの測定を指示する。インピーダンス測定装置33は、指示を受けると、燃料ガスのガス拡散係数に応じた周波数の交流電流Sを燃料電池スタック2の出力電流に重畳することによりインピーダンスZを測定する。
例えばインピーダンス測定装置33は、一定の時間間隔でインピーダンスZを繰り返し測定し、ECU1は、複数回分のインピーダンスZと測定の時間間隔から時間変化率ΔZを算出する。例えば時間変化率ΔZは、測定ごとのインピーダンスZの変化量の時間平均である。
次にECU1は、インピーダンスZが増加中であるか否かを判断するため、インピーダンスZの時間変化率ΔZを閾値Zrと比較する(ステップSt6)。閾値Zrは、インピーダンスZが増加中であることを判断するために適切な値に設定されている。ECU1は、インピーダンスZの時間変化率ΔZが閾値Zr以下である場合(ステップSt6のNo)、インピーダンスZが増加中ではないため、アノード流路220〜223に水滴は詰まっていないと判断して動作を終了する。
また、ECU1は、インピーダンスZの時間変化率ΔZが閾値Zrより大きい場合(ステップSt6のYes)、インピーダンスZが増加中であるため、アノード流路220〜223に水滴が詰まっている可能性があると判断して、ステップSt8以降の動作を行う。インピーダンスZは、アノード流路220〜223に水滴が詰まっている場合だけでなく、MEA232の電解質膜232aが乾燥している場合も増加する。
このため、ECU1は、以下のように圧力損失Plossが増加中であるか否かを判定する。
ECU1は、圧力損失Plossの時間変化率ΔPを算出する(ステップSt7)。例えばECU1は、一定の時間間隔で圧力センサ54,59の圧力Pa_in,Pa_outを繰り返し取得して圧力損失Plossを複数回算出する。ECU1は、複数回分の圧力損失Plossと取得の時間間隔から時間変化率ΔPを算出する。例えば時間変化率ΔPは、取得ごとの圧力損失Plossの変化量の時間平均である。
次にECU1は、圧力損失Plossが増加中であるか否かを判断するため、圧力損失Plossの時間変化率ΔPを閾値Prと比較する(ステップSt8)。閾値Prは、圧力損失Plossが増加中であることを判断するために適切な値に設定されている。ECU1は、圧力損失Plossの時間変化率ΔPが閾値Prより小さい場合(ステップSt8のNo)、圧力損失Plossが増加中ではないため、アノード流路220〜223に水滴は詰まっていないと判断して動作を終了する。
また、ECU1は、圧力損失Plossの時間変化率ΔPが閾値Prより大きい場合(ステップSt8のYes)、圧力損失Plossが増加中であるため、アノード流路220〜223に水滴は詰まっていると判断して、インジェクタ36に対し燃料ガスの流量を増加させる制御を開始する(ステップSt9)。次にECU1は、圧力センサ54,59の圧力Pa_in,Pa_outから圧力損失Plossの所定時間内の変化量を算出する(ステップSt10)。
次にECU1は、水滴の詰まりがないことを確認するため、インジェクタ36の制御による燃料ガスの流量の所定時間内の増加量と圧力損失Plossの所定時間内の変化量の間に比例関係が成立するか否かを判定する(ステップSt11)。アノード流路220〜223に水滴が詰まっていない場合、燃料ガスの流量が増えるほど、圧力損失Plossは増加する。
ECU1は、比例関係が成立する場合(ステップSt11のYes)、燃料ガスの流量を増加させる制御を停止する(ステップSt12)。また、ECU1は、比例関係が成立しない場合(ステップSt11のNo)、再び圧力損失Plossの増加量を算出し(ステップSt10)、比例関係の成否を判定する(ステップSt11)。
このようにして、ECU1は動作する。なお、本動作において、ECU1は、圧力損失Plossの増加の判定(ステップSt8)をインピーダンスZの増加の判定(ステップSt6)より先に実行してもよい。
上記のように、ECU1は、インピーダンスZ及び圧力損失Plossがそれぞれ増加中であるか否かを判定する。インピーダンスZは、アノード流路220〜223に水滴が詰まっている場合だけでなく、MEA232の電解質膜232aが乾燥している場合も増加する。また、圧力損失Plossは、アノード流路220〜223に水滴以外の不純物が詰まった場合も増加する。
このため、ECU1は、インピーダンスZ及び圧力損失Plossの両方の増加を判定することによりアノード流路220〜223内の水滴の詰まりを検出することができる。
次に、ECU1の動作の具体例を述べる。
図4は、セル抵抗、燃料ガスの流量、カソード流路200〜203の二酸化炭素の濃度、及びアノード流路220〜223の圧力損失Plossの時間変化の一例を示す図である。なお、二酸化炭素の濃度は燃料電池スタック2のカソード側出口で計測した値である。
時刻T0において、セル抵抗、つまりインピーダンスZは増加中であり(符号Q1参照)、圧力損失Plossも増加中である(符号Q3参照)。このため、ECU1は、上記のステップSt6,St8の判定の結果、アノード流路220〜223に水滴が詰まっていることを検出する。水滴が詰まると、上記の式(2)で表される化学反応により二酸化炭素の濃度が上昇する(符号Q2参照)。
時刻T1において、圧力損失Plossが増加して液滴要求差圧Poを超えると(符号Q6参照)、プラグ排水が行われる。このため、アノード流路220〜223内の水滴の減少によりセル抵抗は減少し(符号Q4参照)、二酸化炭素の濃度も減少する(符号Q5参照)。その後、セル抵抗は増加し、二酸化炭素の濃度は上昇する。
時刻T2において、ECU1は、インジェクタ36の噴射量の制御による燃料ガスの流量の増加制御を開始する。このため、時刻T2〜T5の期間において燃料ガスの流量は段階的に増加する。圧力損失Plossは、時刻T3においてプラグ排水により液滴要求差圧Poを下回るが、燃料ガスの流量の増加に従って増加し始める。
時刻T4〜T5の期間において、圧力損失Plossは、燃料ガスの流量の増加とともに増加する。これにより、燃料ガスの圧力によりアノード流路220〜223から水滴が排出されるため、セル抵抗及び二酸化炭素の濃度は減少する。ECU1は、燃料ガスの流量の増加量と圧力損失Plossの増加量の間に比例関係が成立すると判定し、時刻T5において燃料ガスの流量の増加制御を停止する。
このように、ECU1は、アノード流路220〜223の水滴の詰まりを検出すると、燃料ガスの流量を増加させることにより水滴を排出する。このため、カソード電極触媒層232aの劣化により燃料電池スタック2の性能が影響を受けることが抑制される。
上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。
1 ECU(判定部)
2 燃料電池スタック
33 インピーダンス測定装置(測定部)
54,59 圧力センサ(検出部)

Claims (1)

  1. 燃料ガスにより発電する燃料電池と、
    前記燃料電池内の前記燃料ガスの流路の圧力損失を検出する検出部と、
    前記燃料ガスのガス拡散係数に応じた周波数の交流電流を前記燃料電池の出力電流に重畳することにより前記燃料電池のインピーダンスを測定する測定部と、
    前記インピーダンス及び前記圧力損失がそれぞれ増加中であるか否かを判定する判定部とを有することを特徴とする燃料電池システム。
JP2018190784A 2018-10-09 2018-10-09 燃料電池システム Active JP7059884B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018190784A JP7059884B2 (ja) 2018-10-09 2018-10-09 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190784A JP7059884B2 (ja) 2018-10-09 2018-10-09 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2020061239A true JP2020061239A (ja) 2020-04-16
JP7059884B2 JP7059884B2 (ja) 2022-04-26

Family

ID=70220298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190784A Active JP7059884B2 (ja) 2018-10-09 2018-10-09 燃料電池システム

Country Status (1)

Country Link
JP (1) JP7059884B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088753A (ja) * 2003-09-17 2005-04-07 Advics:Kk 液圧制御装置の一体化構造
JP2012178286A (ja) * 2011-02-28 2012-09-13 Toyota Motor Corp 燃料電池システム、燃料電池の運転方法及び電解質の乾燥度合い推定方法
JP2014120387A (ja) * 2012-12-18 2014-06-30 Honda Motor Co Ltd 燃料電池の運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005088753A (ja) * 2003-09-17 2005-04-07 Advics:Kk 液圧制御装置の一体化構造
JP2012178286A (ja) * 2011-02-28 2012-09-13 Toyota Motor Corp 燃料電池システム、燃料電池の運転方法及び電解質の乾燥度合い推定方法
JP2014120387A (ja) * 2012-12-18 2014-06-30 Honda Motor Co Ltd 燃料電池の運転方法

Also Published As

Publication number Publication date
JP7059884B2 (ja) 2022-04-26

Similar Documents

Publication Publication Date Title
JP4399801B2 (ja) 液体燃料直接供給形燃料電池システムと、その運転制御方法及び運転制御装置
EP2269257B1 (en) Fuel cell system and operating method of a fuel cell
CA2339508C (en) Fuel cell system
JP4273781B2 (ja) 燃料電池の運転状態判定装置及びその方法
US9306230B2 (en) Online estimation of cathode inlet and outlet RH from stack average HFR
JP4868094B1 (ja) 燃料電池システム
JP2008041625A (ja) 燃料電池システム
US20170149077A1 (en) Fuel cell system and control method for fuel cell system
US20130095402A1 (en) Fuel cell and method of operating the fuel cell
US10333161B2 (en) Low-temperature startup method for fuel cell system
JP2006351506A (ja) 燃料電池システム
WO2008142564A1 (en) Control device and control method for fuel cell system
JP5459223B2 (ja) 燃料電池システム
JP2007242449A (ja) 燃料電池システム
JP4868095B1 (ja) 燃料電池システム
JP7052303B2 (ja) 湿度検出装置、燃料電池システム
JP2001148253A (ja) 高分子電解質型燃料電池およびその運転方法
US20110143233A1 (en) Fuel cell system and control method therefor
JP7059884B2 (ja) 燃料電池システム
JP5773084B2 (ja) 燃料電池システム
JP5806862B2 (ja) 直接アルコール型燃料電池システム
JP7076418B2 (ja) 燃料電池システム及びその制御方法
JP2004349067A (ja) 燃料電池システム
JP5352944B2 (ja) 燃料電池の温度制御方法および温度制御装置
JP2010015933A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220328

R151 Written notification of patent or utility model registration

Ref document number: 7059884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151