JP2020059610A - Method for evaluating peeling resistance of alumina-magnesia quality castable refractory - Google Patents

Method for evaluating peeling resistance of alumina-magnesia quality castable refractory Download PDF

Info

Publication number
JP2020059610A
JP2020059610A JP2018189439A JP2018189439A JP2020059610A JP 2020059610 A JP2020059610 A JP 2020059610A JP 2018189439 A JP2018189439 A JP 2018189439A JP 2018189439 A JP2018189439 A JP 2018189439A JP 2020059610 A JP2020059610 A JP 2020059610A
Authority
JP
Japan
Prior art keywords
temperature
refractory
castable refractory
alumina
peeling resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018189439A
Other languages
Japanese (ja)
Other versions
JP7187954B2 (en
Inventor
松井 剛
Tsuyoshi Matsui
剛 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2018189439A priority Critical patent/JP7187954B2/en
Publication of JP2020059610A publication Critical patent/JP2020059610A/en
Application granted granted Critical
Publication of JP7187954B2 publication Critical patent/JP7187954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

To provide a method for evaluating peeling resistance whether or not an alumina-magnesia quality castable refractory is peeled and worn.SOLUTION: A method for evaluating peeling resistance of an alumina-magnesia quality castable refractory in which the refractory has a residual linear change ratio after having been fired at 1,400°C or higher and 1,600°C or lower for 3 or more hours of 0% or more, includes: a step of heat-treating the castable refractory at a temperature T1 equal to or higher than a temperature at which a liquid phase of the refractory is generated for 3 or more hours; a step of measuring a coefficient of linear thermal expansion of the refractory while raising the refractory after heat treatment to a temperature T2 higher than the temperature T1 from a room temperature; a step of measuring a coefficient of linear thermal expansion of the refractory while cooling the refractory to the room temperature from the temperature T2; a step of calculating a differential value between the coefficient of linear thermal expansion in the temperature-raising step and the coefficient of linear thermal expansion in the cooling step at a temperature T3 equal to or lower than the T1; and a step of determining peeling resistance from the differential value.SELECTED DRAWING: Figure 1

Description

本発明は、溶融金属処理容器の内張り炉材に用いられるアルミナ−マグネシア質キャスタブル耐火物の耐剥離性の評価方法に関する。   The present invention relates to an exfoliation resistance evaluation method for an alumina-magnesia castable refractory used as a lining furnace material for a molten metal processing container.

溶鋼取鍋等に用いられるアルミナ−マグネシア質キャスタブル耐火物は、使用中に発生する亀裂が原因で剥離損耗を生じる課題があった。使用中に発生するアルミナ−マグネシア質キャスタブル耐火物の亀裂の主な原因は、耐火物の構成原料であるアルミナとマグネシアとのスピネル生成反応に伴う体積膨張により引き起こされる座屈と考えられている。   Alumina-magnesia castable refractories used for molten steel ladle and the like have a problem that peeling wear occurs due to cracks generated during use. It is believed that the main cause of cracking of the alumina-magnesia castable refractory that occurs during use is the buckling caused by the volume expansion accompanying the spinel formation reaction between alumina and magnesia, which are the constituent materials of the refractory.

アルミナ−マグネシア質キャスタブル耐火物の使用中の座屈を防止するためには、次の2点の方法が検討されてきた。1点目は、座屈の原因となるアルミナとマグネシアとのスピネル生成反応に伴う体積膨張により発生する応力を緩和するために、アルミナ−マグネシア質キャスタブル耐火物に荷重軟化性を付与する方法である。2点目は、アルミナとマグネシアとのスピネル生成反応に伴う体積膨張を制御し、その体積膨張により発生する応力を低減する方法である。   In order to prevent buckling of the alumina-magnesia castable refractory during use, the following two methods have been studied. The first point is a method of imparting load softening property to the alumina-magnesia castable refractory in order to relax the stress generated by the volume expansion accompanying the spinel formation reaction between alumina and magnesia, which causes buckling. . The second point is a method of controlling the volume expansion accompanying the spinel formation reaction between alumina and magnesia and reducing the stress generated by the volume expansion.

特許文献1と特許文献2では、アルミナ−マグネシア質キャスタブル耐火物の構成原料であるアルミナとマグネシアとのスピネル生成反応に伴う体積膨張が大きくなる1400℃以上の高温下において適度な荷重軟化性を付与させたアルミナ−マグネシア質キャスタブル耐火物が開示されている。
特許文献3では、アルミナ−マグネシア質キャスタブル耐火物の使用中の体積膨張の試験方法として大気中1500℃で3時間焼成後のアルミナ−マグネシア質キャスタブル耐火物の残存線変化率を採用することにより、使用中のアルミナとマグネシアとのスピネル生成反応に伴う体積膨張を制御したアルミナ−マグネシア質キャスタブル耐火物が開示されている。
In Patent Document 1 and Patent Document 2, a suitable load softening property is imparted at a high temperature of 1400 ° C. or higher at which the volume expansion due to the spinel formation reaction between alumina and magnesia, which are constituent raw materials of the alumina-magnesia castable refractory, becomes large Disclosed are alumina-magnesia castable refractories.
In Patent Document 3, by adopting the residual line change rate of the alumina-magnesia castable refractory after firing at 1500 ° C. for 3 hours in the atmosphere as a test method of volume expansion during use of the alumina-magnesia castable refractory, Alumina-magnesia castable refractories having a controlled volume expansion associated with the spinel formation reaction between alumina and magnesia in use are disclosed.

特開平5−185202号公報JP-A-5-185202 特開2001−253781号公報JP 2001-253781 A 特開平9−30859号公報JP, 9-30859, A

しかし、特許文献1〜3に記載のアルミナ−マグネシア質キャスタブル耐火物を用いても使用中にキャスタブル耐火物に発生する亀裂を起点とした剥離損耗が解消しない問題が生じていた。   However, even if the alumina-magnesia castable refractories described in Patent Documents 1 to 3 are used, there has been a problem that peeling wear originating from a crack generated in the castable refractory during use is not resolved.

本発明者は、溶鋼取鍋に用いられるアルミナ−マグネシア質キャスタブル耐火物の損耗機構を調べた結果、剥離損耗の原因となる使用中に耐火物に生じる亀裂は、耐火物の構成原料であるアルミナとマグネシアとのスピネル生成反応に伴う体積膨張により引き起こされる座屈が原因で発生するものでは無く、使用中に耐火物の構成材料が溶融して生じる液相と、前記液相からの固体の生成(析出)が関与していることを見出した。しかしながら、従来技術ではアルミナ−マグネシア質キャスタブル耐火物において、使用中に生成する液相が原因で生じる亀裂により剥離損耗が生じるか否かの耐剥離性を評価する方法がなかった。   The present inventor has examined the wear mechanism of alumina-magnesia castable refractory used in a ladle ladle, and found that cracks that occur in the refractory during use, which causes peeling wear, are alumina that is a constituent material of the refractory. It does not occur due to the buckling caused by the volume expansion associated with the spinel formation reaction between strontium and magnesia, and the liquid phase generated by melting the constituent material of the refractory during use, and the formation of solid from the liquid phase. It was found that (precipitation) was involved. However, in the prior art, there has been no method for evaluating the peel resistance of alumina-magnesia castable refractories, whether or not peel wear occurs due to cracks caused by the liquid phase generated during use.

本発明は、アルミナ−マグネシア質キャスタブル耐火物が、使用中に生成した液相が原因で生じる亀裂により剥離損耗が生じるか否かの耐剥離性の評価方法を提供することを目的とする。   It is an object of the present invention to provide a method for evaluating the peel resistance of an alumina-magnesia castable refractory, whether or not peel wear occurs due to cracks caused by the liquid phase generated during use.

本発明者等が鋭意検討した結果、使用中のアルミナ−マグネシア質キャスタブル耐火物において、溶鋼と接したときの高温状態と、溶鋼を排出した後に相対的低温状態において耐火物組織に生成される液相/固相の量の変化が、耐剥離性と相関し、耐剥離性を線熱膨張率(「線膨張係数」とも呼ばれる。)の変化から把握できることを知見し、本発明を成すに至った。
即ち、本発明の要旨とするところは、以下の通りである。
(1)アルミナ−マグネシア質キャスタブル耐火物の耐剥離性の評価方法であって、前記キャスタブル耐火物は、1400℃以上1600℃以下で3時間以上焼成後の残存線変化率が0%以上であり、前記キャスタブル耐火物の液相が生成する温度以上の温度T1にて前記キャスタブル耐火物を3時間以上熱処理する工程と、前記熱処理後のキャスタブル耐火物を、室温から前記温度T1よりも高い温度T2まで昇温しつつ前記キャスタブル耐火物の線熱膨張率を測定する工程と、前記温度T2から室温まで冷却しつつ、前記キャスタブル耐火物の線熱膨張率を測定する工程と、前記T1以下の温度T3における前記昇温過程の線熱膨張率と前記冷却過程の線熱膨張率との差分値を算出する工程と、前記差分値から耐剥離性を判断する工程と、を備えることを特徴とするキャスタブル耐火物の耐剥離性の評価方法。
(2)前記所定温度T1が、1400〜1500℃から選ばれる一定温度であることを特徴とする(1)に記載のキャスタブル耐火物の耐剥離性の評価方法。
(3)前記所定温度T1が1400℃であることを特徴とする(1)に記載のキャスタブル耐火物の耐剥離性の評価方法。
(4)前記所定温度T2が1400℃超1600℃以下から選ばれる一定温度であることを特徴とする(1)〜(3)のいずれかに記載のキャスタブル耐火物の耐剥離性の評価方法。
(5)前記所定温度T2が1500℃であることを特徴とする(1)〜(3)のいずれかに記載のキャスタブル耐火物の耐剥離性の評価方法。
(6)前記耐剥離性を判断する工程は、前記熱処理後のキャスタブル耐火物の液相の固相への析出が完了する温度と前記温度T1との間において前記差分値の最大値を決定し、前記最大値と予め定めた目標値とを比較し、前記最大値が前記目標値以下であるか否かを判定することによって耐剥離性を判断することを特徴とする(1)〜(5)のいずれかに記載のキャスタブル耐火物の耐剥離性の評価方法。
(7)前記所定温度T3が1200〜1400℃から選ばれる一定温度であることを特徴とする(1)〜(5)の何れかに記載のキャスタブル耐火物の耐剥離性の評価方法。
(8)前記所定温度T3が1200℃であることを特徴とする(1)〜(5)の何れかに記載のキャスタブル耐火物の耐剥離性の評価方法。
(9)前記目標値を予め0.1%に定め、前記差分値が0.1%以下である前記キャスタブル耐火物を耐剥離性が高いと判断することを特徴とする(8)に記載のキャスタブル耐火物の耐剥離性の評価方法。
As a result of diligent studies by the present inventors, in the alumina-magnesia castable refractory in use, a liquid formed in the refractory structure in a high temperature state when in contact with molten steel and a relatively low temperature state after discharging the molten steel. It was found that the change in the amount of the phase / solid phase correlates with the peeling resistance, and the peeling resistance can be grasped from the change in the linear thermal expansion coefficient (also referred to as “linear expansion coefficient”), and the present invention has been completed. It was
That is, the gist of the present invention is as follows.
(1) A method for evaluating peeling resistance of an alumina-magnesia castable refractory, wherein the castable refractory has a residual line change rate of 0% or more after firing at 1400 ° C or more and 1600 ° C or less for 3 hours or more. A step of heat treating the castable refractory for 3 hours or more at a temperature T1 higher than a temperature at which the liquid phase of the castable refractory is generated, and a temperature T2 higher than the temperature T1 from room temperature to the castable refractory after the heat treatment. Measuring the coefficient of linear thermal expansion of the castable refractory while raising the temperature, measuring the coefficient of linear thermal expansion of the castable refractory while cooling from the temperature T2 to room temperature, and the temperature of T1 or lower. A step of calculating a difference value between the linear thermal expansion coefficient in the temperature raising process and a linear thermal expansion coefficient in the cooling process at T3; and a step of judging peeling resistance from the difference value. Evaluation method of peeling resistance of the castable refractory, characterized in that it comprises a.
(2) The method for evaluating the peeling resistance of castable refractories according to (1), wherein the predetermined temperature T1 is a constant temperature selected from 1400 to 1500 ° C.
(3) The predetermined temperature T1 is 1400 ° C., the method for evaluating the peeling resistance of castable refractories according to (1).
(4) The peeling resistance evaluation method of the castable refractory according to any one of (1) to (3), wherein the predetermined temperature T2 is a constant temperature selected from more than 1400 ° C and 1600 ° C or less.
(5) The method for evaluating the peeling resistance of castable refractories according to any one of (1) to (3), wherein the predetermined temperature T2 is 1500 ° C.
(6) In the step of judging the exfoliation resistance, the maximum value of the difference value is determined between the temperature T1 at which the deposition of the liquid phase of the castable refractory after the heat treatment is completed and the temperature T1. The peel resistance is determined by comparing the maximum value with a predetermined target value and determining whether the maximum value is less than or equal to the target value (1) to (5). The evaluation method of the peeling resistance of the castable refractory according to any one of (1) to (4).
(7) The method for evaluating the peeling resistance of castable refractories according to any one of (1) to (5), wherein the predetermined temperature T3 is a constant temperature selected from 1200 to 1400 ° C.
(8) The method for evaluating peeling resistance of castable refractories according to any one of (1) to (5), wherein the predetermined temperature T3 is 1200 ° C.
(9) The target value is set to 0.1% in advance, and it is determined that the castable refractory having the difference value of 0.1% or less has high peel resistance. Evaluation method for peeling resistance of castable refractories.

本発明によれば、アルミナ−マグネシア質キャスタブル耐火物が、使用中に生成した液相が原因で生じる亀裂により剥離損耗が生じるか否か、耐剥離性を正確に評価することができる。   According to the present invention, it is possible to accurately evaluate the peeling resistance of an alumina-magnesia castable refractory, whether or not peeling wear occurs due to cracks caused by a liquid phase generated during use.

1400℃で焼成した後のアルミナ−マグネシア質キャスタブル耐火物の、室温から1600℃までの昇温過程、及び1600℃から室温までの冷却過程の線熱膨張率曲線の概念図である。It is a conceptual diagram of a linear thermal expansion coefficient curve of the temperature rising process from room temperature to 1600 ° C and the cooling process from 1600 ° C to room temperature of the alumina-magnesia castable refractory after firing at 1400 ° C. 試験例1の、室温から1500℃までの昇温過程、及び1500℃から室温までの冷却過程の線熱膨張率を測定した結果を示す図である。It is a figure which shows the result of having measured the linear thermal expansion coefficient of the temperature rising process from room temperature to 1500 degreeC of test example 1, and the cooling process from 1500 degreeC to room temperature.

本発明に係る評価方法の適用の対象とするアルミナ−マグネシア質キャスタブル耐火物は、主に溶鋼取鍋に使用されることから、以下溶鋼取鍋に使用した場合を例として述べる。他の容器に用いた場合も同様に適用できる。   Since the alumina-magnesia castable refractory to which the evaluation method according to the present invention is applied is mainly used for the molten steel ladle, the case where it is used for the molten steel ladle will be described below as an example. The same applies when it is used for other containers.

溶鋼取鍋は、転炉から出鋼された溶鋼を連続鋳造機まで搬送する溶融金属処理容器である。そのため、溶鋼取鍋に用いられるアルミナ−マグネシア質キャスタブル耐火物は、溶鋼が滞留している期間は加熱され、鋳造完了後から転炉での受鋼開始直前までの溶鋼が取鍋内に存在しない期間は冷却されることになる。すなわち、アルミナ−マグネシア質キャスタブル耐火物は、加熱と冷却が繰り返される環境下で使用されている。   The molten steel ladle is a molten metal processing container that conveys the molten steel discharged from the converter to a continuous casting machine. Therefore, the alumina-magnesia castable refractory used in the ladle ladle is heated during the period during which the molten steel stays, and there is no molten steel in the ladle after the completion of casting until immediately before the start of receiving steel in the converter. The period will be cooled. That is, the alumina-magnesia castable refractory is used in an environment where heating and cooling are repeated.

そのような環境下で使用されているアルミナ−マグネシア質キャスタブル耐火物において、亀裂が原因となる剥離損傷は、耐火物内部の温度分布が定常状態となった後に発生している。その際の、亀裂が発生している位置は、使用中の耐火物内部の定常伝熱計算によれば、約1400℃に到達している位置であることが分かった。   In the alumina-magnesia castable refractory used under such an environment, peeling damage caused by cracks occurs after the temperature distribution inside the refractory reaches a steady state. According to the steady-state heat transfer calculation inside the refractory during use, it was found that the position where the crack had occurred was the position where it reached about 1400 ° C.

ところで、アルミナ−マグネシア質キャスタブル耐火物は、アルミナ、マグネシア、シリカ、及びCaO・Alを主結晶相とするアルミナセメント等の耐火物原料から構成されている。そして耐火物内部の温度が1400℃以上となる領域においては、これらの耐火物原料は、次の(1)式の反応を起こすと考えられる。

Figure 2020059610
By the way, the alumina-magnesia castable refractory is composed of a refractory raw material such as alumina, magnesia, silica, and alumina cement having CaO.Al 2 O 3 as a main crystal phase. Then, in the region where the temperature inside the refractory is 1400 ° C. or higher, it is considered that these refractory raw materials cause the reaction of the following formula (1).
Figure 2020059610

即ち、使用中に耐火物原料が反応し、1400℃以上においては、マグネシアとアルミナの一部との反応から生成するスピネル以外に、アルミナセメントとアルミナの一部との反応から生成するCaO・6Al、及びシリカと他の酸化物との反応から液相が生成する。(1)式の反応において生成するスピネル、CaO・6Al、及び液相の各々の量は、アルミナ−マグネシア質キャスタブル耐火物に含有される耐火物原料の含有量に依存する。そして、温度の上昇と共に、液相の生成量は増大する。 That is, the refractory raw material reacts during use, and at 1400 ° C. or higher, in addition to spinel produced from the reaction of magnesia and part of alumina, CaO · 6Al produced from the reaction of alumina cement and part of alumina. A liquid phase forms from 2 O 3 and the reaction of silica with other oxides. The amounts of spinel, CaO.6Al 2 O 3 , and liquid phase produced in the reaction of the formula (1) depend on the content of the refractory raw material contained in the alumina-magnesia castable refractory. Then, as the temperature rises, the amount of liquid phase produced increases.

次に、使用中の溶鋼取鍋のアルミナ−マグネシア質キャスタブル耐火物の組織の挙動を推察してみる。最初の受鋼後、溶鋼が滞留している期間では、耐火物内部の1400℃以上となる領域においては(1)式の反応に基づいて液相が生成し、約1600℃の溶鋼と接する耐火物稼働面で、液相の生成量が最大となる。液相が生成すると、液相の毛細管力により、耐火物は収縮することになる。すなわち、使用中には、耐火物内部の1400℃となる領域から、溶鋼と接する耐火物稼働面にかけて、生成する液相のために耐火物組織は収縮することになる。そして、使用中に耐火物内部で生成される液相の量が多いほど、耐火物組織の収縮量は大きくなる。   Next, the behavior of the structure of the alumina-magnesia castable refractory in the molten steel ladle in use will be inferred. During the period when the molten steel stays after the first steel is received, the liquid phase is generated based on the reaction of the equation (1) in the region of 1400 ° C or higher inside the refractory, and the refractory contacting with the molten steel at about 1600 ° C In terms of product operation, the amount of liquid phase produced is maximum. When the liquid phase is generated, the refractory material shrinks due to the capillary force of the liquid phase. That is, during use, the refractory structure shrinks from the region of 1400 ° C. inside the refractory to the refractory working surface in contact with the molten steel due to the liquid phase generated. Then, the greater the amount of liquid phase generated inside the refractory during use, the greater the amount of shrinkage of the refractory structure.

次いで、鋳造が完了した後の溶鋼が取鍋内に存在しない期間、つまり、前記耐火物が冷却されている期間では、次の(2)式の反応が進行する。

Figure 2020059610
Next, in the period in which molten steel is not present in the ladle after the casting is completed, that is, in the period in which the refractory is being cooled, the reaction of the following formula (2) proceeds.
Figure 2020059610

即ち、冷却される過程で、液相からCaO・6AlとCaO−MgO−SiO−Al系化合物等の固相が析出する。
(1)式の反応は1400℃以上に達したときに非可逆的に起こる。一方で(2)式の反応は、一旦1400℃以上の熱履歴を受けた組織において、温度変化に応じて可逆的に起こる。即ち溶鋼取鍋の使用中の剥離損耗が生じる領域では、(1)式の非可逆的な反応と(2)式の可逆的な反応が起こっている。
That is, in the process of cooling, solid phases such as CaO.6Al 2 O 3 and CaO-MgO-SiO 2 -Al 2 O 3 compounds are precipitated from the liquid phase.
The reaction of the formula (1) occurs irreversibly when the temperature reaches 1400 ° C or higher. On the other hand, the reaction of the formula (2) reversibly occurs in a tissue that has once been subjected to a heat history of 1400 ° C. or higher in response to a temperature change. That is, an irreversible reaction of the equation (1) and a reversible reaction of the equation (2) occur in a region where peeling wear occurs during use of the molten steel ladle.

本発明者は、状態図を用いて冷却過程中の液相からの固相の析出現象を詳細に調査した結果、異なる成分が以下のように段階的に析出していると推測した。   As a result of detailed investigation of the precipitation phenomenon of the solid phase from the liquid phase during the cooling process using the phase diagram, the present inventor estimated that different components are precipitated stepwise as follows.

まず、液相からCaO・6Al成分が、未溶融のまま存在しているCaO・6Al粒子の表面に析出して、CaO・6Al粒子の粒子径が大きくなり、体積膨張を引き起こす(第一の析出過程)。続いて、残存する液相からCaO−MgO−SiO−Al系化合物が、既に固相として存在する粒子間に析出することにより、液相からの固相の析出は完了する(第二の析出過程)。液相からのCaO−MgO−SiO−Al系化合物の析出時には、両者の密度差から体積の減少が生じる。第一の析出過程において耐火物は膨張し、CaO・6Al成分が全て析出する1200℃近辺で最も膨張率が大きい。 First, the CaO · 6Al 2 O 3 component from the liquid phase is deposited on the surface of the CaO · 6Al 2 O 3 particles that are still unmelted, and the particle size of the CaO · 6Al 2 O 3 particles increases, Causes volume expansion (first precipitation process). Subsequently, CaO-MgO-SiO 2 -Al 2 O 3 based compound from the liquid phase remaining, by precipitation between the particles present as already solid phase, the precipitation of the solid phase from the liquid phase is completed (the Second precipitation process). When CaO—MgO—SiO 2 —Al 2 O 3 based compound is precipitated from the liquid phase, the volume difference is reduced due to the difference in density between the two. In the first precipitation process, the refractory material expands, and the expansion coefficient is highest at around 1200 ° C. where all CaO · 6Al 2 O 3 components are precipitated.

次に、使用中に約1600℃までに昇温し、加熱と冷却を繰り返す耐火物の熱膨張収縮挙動を推定する。   Next, the thermal expansion and contraction behavior of the refractory which is heated up to about 1600 ° C. and repeatedly heated and cooled during use is estimated.

図1に、大気中1400℃で3時間の熱処理を施したアルミナ−マグネシア質キャスタブル耐火物の、室温から1600℃までの昇温過程、及び1600℃から室温までの冷却過程の連続的な線熱膨張率曲線の概念図を示す。   Fig. 1 shows a continuous line heat of the temperature rising process from room temperature to 1600 ° C and the cooling process from 1600 ° C to room temperature of the alumina-magnesia castable refractory which was heat-treated at 1400 ° C in the atmosphere for 3 hours. The conceptual diagram of an expansion coefficient curve is shown.

1400℃で3時間熱処理を施したアルミナ−マグネシア質キャスタブル耐火物には、前記(1)、(2)式の反応が起きているために、室温においては、アルミナ、スピネル、CaO・6Al、及びCaO−MgO−SiO−Al系化合物の固相が存在する。 The alumina-magnesia castable refractory that has been heat-treated at 1400 ° C. for 3 hours undergoes the reactions of the above formulas (1) and (2), so that at room temperature, alumina, spinel, CaO.6Al 2 O 3 and a solid phase of CaO—MgO—SiO 2 —Al 2 O 3 based compound exists.

室温から1600℃までの昇温過程において、1200℃程度まで(過程O→A)は、これら固体の膨張が起きるのみである。更に1200℃から1600℃まで昇温する過程では(過程A→B)、CaO・6AlとCaO−MgO−SiO−Al系化合物が溶融し、液相が生成し始める。そして、温度の上昇と共に、液相の生成量は増大し、前述のように液相の生成により耐火物は収縮する。溶鋼を受けた場合のように、その温度が1600℃となる耐火物稼働面は、固相の減少と液相の生成によって最も収縮する。 In the temperature rising process from room temperature to 1600 ° C., expansion of these solids occurs only up to about 1200 ° C. (process O → A). Further, in the process of raising the temperature from 1200 ° C. to 1600 ° C. (process A → B), CaO · 6Al 2 O 3 and CaO—MgO—SiO 2 —Al 2 O 3 based compound are melted and a liquid phase starts to be generated. Then, as the temperature rises, the production amount of the liquid phase increases, and the refractory material contracts due to the production of the liquid phase as described above. As in the case of receiving molten steel, the working surface of the refractory, which has a temperature of 1600 ° C., contracts most due to the decrease of the solid phase and the generation of the liquid phase.

引き続いて、溶鋼が取鍋から排出される場合のように、耐火物が1200℃程度まで冷却されると(過程B→C→D)、液相からCaO・6Alが析出する第一の析出過程と、CaO−MgO−SiO−Al系化合物が析出する第二の析出過程によって、稼働面近傍の耐火物組織は体積膨張する。前記過程B→C→Dの途中で前記取鍋が再度溶鋼を受ければ、析出した固相が液相に戻り収縮する(過程D→C→B)。 Subsequently, when the refractory is cooled to about 1200 ° C. (process B → C → D), as when molten steel is discharged from the ladle, CaO.6Al 2 O 3 is precipitated from the liquid phase. comprising the steps of precipitation, by a second deposition process to deposit the CaO-MgO-SiO 2 -Al 2 O 3 compound, refractory tissue operating near the surface to volume expansion. If the ladle receives molten steel again during the process B → C → D, the precipitated solid phase returns to the liquid phase and contracts (process D → C → B).

以上は、1400℃で3時間熱処理を施したアルミナ−マグネシア質キャスタブル耐火物の挙動であり、使用中に1400℃以上の熱履歴を受けた稼働面側の熱膨張収縮挙動である。   The above is the behavior of the alumina-magnesia castable refractory that has been heat-treated at 1400 ° C. for 3 hours, and the thermal expansion / shrinkage behavior of the working surface that has been subjected to a thermal history of 1400 ° C. or higher during use.

一方で、使用中に1400℃以上に達していない部位では、前記(1)式の反応は起こらず、図1において1200℃に達しても液相は生成しないため、収縮することなくそのまま耐火物原料の膨張が継続する(過程A→B’)。即ち1400℃以上に達していない部位では、過程A→B’における線熱膨張率を示すのに対し、1400℃以上に達した部位では、前記過程B→C→Dにおける線熱膨張率を示す。そして使用中1400℃以上となる部位は液相による少なからず応力緩和が有るため、剥離損耗の起こるのは、図1に示されるような1200℃〜1400℃になっている部位である。   On the other hand, at the site where the temperature does not reach 1400 ° C or higher during use, the reaction of the above formula (1) does not occur, and even when the temperature reaches 1200 ° C in FIG. The expansion of the raw material continues (process A → B ′). That is, the part where the temperature does not reach 1400 ° C. or higher shows the linear thermal expansion coefficient in the process A → B ′, whereas the part where the temperature reaches 1400 ° C. or higher shows the linear thermal expansion coefficient in the process B → C → D. . Further, since there is a considerable amount of stress relaxation due to the liquid phase at the site where the temperature is 1400 ° C. or higher during use, peeling wear occurs at the site at 1200 ° C. to 1400 ° C. as shown in FIG.

このように、アルミナ−マグネシア質キャスタブル耐火物は、使用中に稼働面近傍の耐火物が溶融による組成変化と体積減少、及び液相から固相へ析出による体積増加の過程を繰り返し、耐火物組織内部との熱膨張が不連続となって、その境界となる約1400℃に至った位置近傍に歪が蓄積されることになり、剥離損耗の原因となる亀裂が発生することになる。   In this way, the alumina-magnesia castable refractory has a refractory structure in which the refractory near the working surface undergoes a process of composition change and volume decrease due to melting during use, and a volume increase due to precipitation from the liquid phase to the solid phase. The thermal expansion with the inside becomes discontinuous, and strain is accumulated in the vicinity of the position where the temperature reaches about 1400 ° C., which is the boundary, and cracks that cause peeling wear occur.

(耐剥離性の評価対象)
本発明に係る評価方法の適用対象とするアルミナ−マグネシア質キャスタブル耐火物は、1400℃以上1600℃以下で3時間以上焼成後の残存線変化率が0%以上のものである。残存線変化率の試験方法としては、JIS−R2554「キャスタブル耐火物の線変化率試験方法」を用いるのが好ましい。当該方法では焼成温度や焼成時間を特定してはいないが、本発明では、1600℃で3時間以上を推奨する。
(Peeling resistance evaluation target)
The alumina-magnesia castable refractory to which the evaluation method according to the present invention is applied has a residual linear change rate of 0% or more after firing at 1400 ° C to 1600 ° C for 3 hours or more. As a test method for the residual line change rate, it is preferable to use JIS-R2554 "Castable refractory line change rate test method". Although the firing temperature and the firing time are not specified in the method, in the present invention, 1600 ° C. and 3 hours or more are recommended.

一般にアルミナ−マグネシア質キャスタブル耐火物は、熱履歴を受けた後に適度な残存膨張のあることが好ましい。残存収縮する耐火物、すなわち、残存線変化率が0%未満のものは、加熱され冷却された後の寸法が元の加熱前の寸法より小さくなる。1400℃近傍で残存線変化率が0%未満の耐火物は、使用中に亀裂が発生することが明白であり、そもそも耐剥離性に劣ることが多いので、実機の製造に利用することができない。そこで本発明は、残存膨張が正、換言すれば残存収縮しないアルミナ−マグネシア質キャスタブル耐火物に適用するものである。   Generally, it is preferred that the alumina-magnesia castable refractories have a suitable residual expansion after undergoing thermal history. A refractory that contracts residually, that is, a refractory having a residual linear change rate of less than 0% has a smaller dimension after being heated and cooled than the original dimension before heating. Refractories with a residual line change rate of less than 0% near 1400 ° C. are clearly cracked during use, and often have poor peel resistance in the first place, so they cannot be used in the production of actual machines. . Therefore, the present invention is applied to an alumina-magnesia castable refractory having a positive residual expansion, in other words, a residual contraction.

アルミナ−マグネシア質キャスタブル耐火物は、使用中に溶鋼と接することで稼働面において最高1600℃まで加熱されうることから、1600℃までの温度で焼成する。また約1600℃の溶鋼を受けている時間を考慮し、3時間以上焼成すれば、十分である。従って本発明は、1400℃以上1600℃以下の温度で3時間以上加熱したときの残存線変化率が0%以上、即ち残存収縮しないアルミナ−マグネシア質キャスタブル耐火物に適用する。   Since the alumina-magnesia castable refractory can be heated to a maximum of 1600 ° C on the operating surface by contacting with molten steel during use, it is fired at a temperature of up to 1600 ° C. Further, it is sufficient to calcine for 3 hours or more in consideration of the time of receiving molten steel at about 1600 ° C. Therefore, the present invention is applied to an alumina-magnesia castable refractory having a residual linear change rate of 0% or more when heated at a temperature of 1400 ° C. or more and 1600 ° C. or less for 3 hours or more, that is, no residual shrinkage.

(キャスタブル耐火物の熱処理工程)
本発明では、先ず、前記評価対象となるアルミナ−マグネシア質キャスタブル耐火物に対して、当該キャスタブル耐火物の液相が生成する温度以上の温度(この温度を「所定温度T1」と定義する)で3時間以上の熱処理をする。
(Castable refractory heat treatment process)
In the present invention, first, with respect to the alumina-magnesia castable refractory to be evaluated, at a temperature equal to or higher than a temperature at which a liquid phase of the castable refractory is generated (this temperature is defined as "predetermined temperature T1"). Heat treatment for 3 hours or more.

事前に所定温度T1で3時間以上の熱処理を行うのは、前記(1)式の反応を起こさせるためである。前記式(1)の反応は約1400℃以上で不可逆的に起こる。当該熱処理を行わない耐火物に対して、本発明に係る評価方法を行っても、適切な耐剥離性評価はできない。実際の使用環境において1400℃以上に加熱された耐火物の部位は、初期に式(1)の反応が起きて以降は、式(2)の反応による膨張収縮を繰り返すためである。式(1)の反応が完了した耐火物の熱膨張挙動が耐剥離性に影響するからである。   The heat treatment for 3 hours or more at the predetermined temperature T1 is performed in advance in order to cause the reaction of the formula (1). The reaction of formula (1) above occurs irreversibly above about 1400 ° C. Even if the evaluation method according to the present invention is applied to a refractory that is not subjected to the heat treatment, an appropriate evaluation of peel resistance cannot be performed. This is because the refractory part heated to 1400 ° C. or higher in the actual use environment repeats expansion and contraction due to the reaction of the formula (2) after the reaction of the formula (1) occurs initially. This is because the thermal expansion behavior of the refractory material in which the reaction of the formula (1) is completed affects the peel resistance.

所定温度T1は、式(1)反応が進行する温度であればよいが、1400〜1500℃から選ばれる一定温度が好ましい。より好ましくは1400℃にできる限り近い温度である。また熱処理時間を3時間以上とするのは、前記(1)式の反応を平衡にまで到達させるためである。1400℃で3時間以上熱処理を行った試験片を用いれば、使用中の耐火物の熱膨張挙動を再現することができる。   The predetermined temperature T1 may be a temperature at which the reaction of the formula (1) proceeds, but a constant temperature selected from 1400 to 1500 ° C. is preferable. More preferably, the temperature is as close as possible to 1400 ° C. Further, the heat treatment time is set to 3 hours or more in order to reach the equilibrium in the reaction of the formula (1). The thermal expansion behavior of the refractory in use can be reproduced by using a test piece that has been heat-treated at 1400 ° C. for 3 hours or more.

アルミナ−マグネシア質キャスタブル耐火物の材質によっては、熱処理温度が1400℃を超過する程、前記(1)式の反応において液相の生成量が過剰となって、液相焼結による原料粒子間の強固な結合の生成を伴った耐火物の組織の緻密化が生じる場合がある。このような、原料粒子間に強固な結合が生成してしまった耐火物では、線熱膨張率を測定する際、昇温過程で液相が生成したとしても、昇温の最高到達温度から室温までの冷却過程において液相からのCaO・6Alの析出時におこる体積膨張が抑制される。その結果、冷却過程において、前記所定温度T1以下の温度領域で測定される線熱膨張率の値には、実際の使用環境における耐火物組織の状態変化が適切に反映されない場合がある。従って、本発明では耐火物によって所定温度T1を選択できるものの、1400℃が最も好ましく、1400℃であれば十分適用可能である。 Depending on the material of the alumina-magnesia castable refractory material, as the heat treatment temperature exceeds 1400 ° C., the amount of liquid phase produced in the reaction of the above equation (1) becomes excessive, and the inter-material particles produced by liquid phase sintering are Refractory structure densification may occur with the formation of strong bonds. In such a refractory in which a strong bond has been generated between the raw material particles, when measuring the linear thermal expansion coefficient, even if the liquid phase is generated in the temperature rising process, the maximum temperature reached from the maximum temperature rise to room temperature The volume expansion that occurs during precipitation of CaO · 6Al 2 O 3 from the liquid phase in the cooling process up to is suppressed. As a result, in the cooling process, the value of the coefficient of linear thermal expansion measured in the temperature region equal to or lower than the predetermined temperature T1 may not properly reflect the state change of the refractory structure in the actual use environment. Therefore, in the present invention, although the predetermined temperature T1 can be selected depending on the refractory, 1400 ° C. is most preferable, and 1400 ° C. is sufficiently applicable.

(室温〜所定温度T2間の昇温過程及び冷却過程における線熱膨張率の測定工程)
前記熱処理工程を経たアルミナ−マグネシア質キャスタブル耐火物は、室温から所定温度T2(T2>T1)まで昇温しつつその線熱膨張率が測定される。尚、前記式(2)の逆反応を進行させるために、前記所定温度T2は前記温度T1よりも高く設定される。また、昇温後、前記所定温度T2から室温まで冷却しつつその線熱膨張率が測定される。
(Step of measuring linear thermal expansion coefficient in temperature rising process and cooling process between room temperature and predetermined temperature T2)
The linear thermal expansion coefficient of the alumina-magnesia castable refractory that has undergone the heat treatment step is measured while increasing the temperature from room temperature to a predetermined temperature T2 (T2> T1). The predetermined temperature T2 is set higher than the temperature T1 in order to allow the reverse reaction of the equation (2) to proceed. After the temperature is raised, the coefficient of linear thermal expansion is measured while cooling from the predetermined temperature T2 to room temperature.

前記所定温度T2は、線熱膨張率測定温度の最高到達温度であり、前記熱処理工程で到達した平衡状態が達成できる温度で、最大でも溶鋼温度の範囲内であれば良い。尚、前記所定温度T2は、1400℃超1600℃以下から選ばれる一定温度が好ましい。より好ましくは1500℃である。   The predetermined temperature T2 is the highest reaching temperature of the linear thermal expansion coefficient measurement temperature, is a temperature at which the equilibrium state reached in the heat treatment step can be achieved, and may be within the range of the molten steel temperature at the maximum. The predetermined temperature T2 is preferably a constant temperature selected from more than 1400 ° C and 1600 ° C or less. More preferably, it is 1500 ° C.

所定温度T2を1500℃とすると、一般に普及しているJIS−R2207−1に準拠した耐火物の熱膨張試験を実施できる試験装置を用いることができる。また1500℃まで昇温すれば、液相が生成して応力緩和が起こる領域でもあるため、溶鋼温度の約1600℃まで昇温しなくとも、耐剥離性を評価することは十分可能である。   When the predetermined temperature T2 is set to 1500 ° C., it is possible to use a test device that can perform a thermal expansion test of refractories according to JIS-R2207-1 that is generally popular. Further, when the temperature is raised to 1500 ° C., it is also a region where a liquid phase is generated and stress relaxation occurs. Therefore, the peeling resistance can be sufficiently evaluated without raising the temperature to the molten steel temperature of about 1600 ° C.

本発明に用いる線熱膨張率の試験方法は、室温から所定温度T2までの線熱膨張率を測定できれば、特に限定されない。尚、後述するように、昇温過程時の線熱膨張率と冷却過程時の線熱膨張率との差分値の最大値を求める場合、室温から前記所定温度T1までの線熱膨張率を経時的に測定できることが好ましい。従来の評価結果や物性値と比較し易いことから、JIS−R2207「耐火物の熱膨張の試験方法」に準拠した試験片と試験条件を用いのが好ましい。より好ましくは、液相の膨張収縮に影響の少ないJIS−R2207-1「非接触法」を用いる。   The test method of the linear thermal expansion coefficient used in the present invention is not particularly limited as long as the linear thermal expansion coefficient from room temperature to the predetermined temperature T2 can be measured. As will be described later, when obtaining the maximum value of the difference between the linear thermal expansion coefficient during the temperature rising process and the linear thermal expansion coefficient during the cooling process, the linear thermal expansion coefficient from room temperature to the predetermined temperature T1 It is preferable that the measurement be possible. It is preferable to use a test piece and test conditions based on JIS-R2207 "Test method for thermal expansion of refractory material" because it is easy to compare with conventional evaluation results and physical property values. More preferably, JIS-R2207-1 "non-contact method", which has little influence on the expansion and contraction of the liquid phase, is used.

(昇温過程時の線熱膨張率と冷却過程時の線熱膨張率との差分値の算出)
本発明は、前記所定温度T1以下の温度(この温度を、「所定温度T3」と定義する。)における前記昇温過程中の線熱膨張率と前記冷却過程中の線熱膨張率との差分値を算出する工程を含む。前述のように、剥離は耐火物稼働面側と内部の線熱膨張率の不連続によって生じる歪が原因であるから、昇温過程中と冷却過程中との線熱膨張率に差の生じる領域、前記第一の析出過程が完了する温度、例えば、1200℃以上で評価すればよい。
(Calculation of difference value between linear thermal expansion coefficient during heating process and linear thermal expansion coefficient during cooling process)
In the present invention, the difference between the linear thermal expansion coefficient during the temperature increasing process and the linear thermal expansion coefficient during the cooling process at a temperature equal to or lower than the predetermined temperature T1 (this temperature is defined as “predetermined temperature T3”). The step of calculating a value is included. As mentioned above, the peeling is caused by the strain caused by the discontinuity of the coefficient of linear thermal expansion between the refractory operating surface side and the inside, so that the region where the difference in the coefficient of linear thermal expansion between the heating process and the cooling process occurs. The temperature may be evaluated at a temperature at which the first precipitation process is completed, for example, 1200 ° C. or higher.

本発明に係る評価方法の評価対象の耐火物は、線熱膨張率測定工程の昇温過程中において1200℃以上になると、液相が生成し始めて、線熱膨張率は低下していき、所定温度T2で最小となるが、液相が生成している間の熱膨張差は、応力緩和のために、あまり歪を生じない。その後の冷却過程では結晶析出により膨張が起こって、1200℃で最大の線熱膨張率となる。   When the refractory to be evaluated by the evaluation method according to the present invention has a temperature of 1200 ° C. or higher during the temperature rising process of the linear thermal expansion coefficient measurement step, a liquid phase starts to be generated, and the linear thermal expansion coefficient decreases, Although it becomes the minimum at the temperature T2, the difference in thermal expansion during the formation of the liquid phase causes less strain due to stress relaxation. In the subsequent cooling process, expansion occurs due to crystal precipitation, and the maximum linear thermal expansion coefficient is reached at 1200 ° C.

一方で前述のように、(1)式の非可逆的な反応が生じる温度未満、例えば、実使用中の耐火物の1400℃未満の熱履歴しか受けていない領域では、1200℃以上になっても、1400℃以上に加熱されない間は液相が生成せず、その熱膨張挙動は、1400℃まで固相のままの膨張を示す。従って線熱膨張率の差によって歪が生じるのは、1400℃程度までである。そこで、前記所定温度T3は、前記第一の析出過程が完了する温度から前記(1)式の非可逆的な反応が生じる温度までを含む温度範囲とすれば良い。具体的には、前記所定温度T3は、前記所定温度T1にて前記熱処理した後のキャスタブル耐火物の液相の固相への析出が完了する温度から前記所定温度T1までの温度範囲、或いは、1200〜1400℃から選ばれる一定温度であるのが好ましい。   On the other hand, as described above, the temperature is lower than 1200 ° C in the temperature range below the temperature at which the irreversible reaction of the formula (1) occurs, for example, in the region where the refractory material in actual use receives a thermal history of less than 1400 ° C. Also, a liquid phase is not generated while it is not heated to 1400 ° C. or higher, and its thermal expansion behavior shows expansion as a solid phase up to 1400 ° C. Therefore, the strain occurs due to the difference in the coefficient of linear thermal expansion up to about 1400 ° C. Therefore, the predetermined temperature T3 may be set to a temperature range including a temperature at which the first precipitation process is completed to a temperature at which the irreversible reaction of the formula (1) occurs. Specifically, the predetermined temperature T3 is a temperature range from the temperature at which the deposition of the liquid phase of the castable refractory material after the heat treatment at the predetermined temperature T1 is completed to the predetermined temperature T1, or It is preferably a constant temperature selected from 1200 to 1400 ° C.

更に、稼働面近傍の1400℃以上の熱履歴を受けた部位と、耐火物内の1400℃以下の熱履歴しか受けていない部位との線熱膨張率の差分値が、1200〜1400℃の間で最大を示すのは、1200℃においてと考えられる。そして差分値が大きいほど歪が大きく剥離に影響すると考えられることから、本発明では、所定温度T3が1200℃における線熱膨張率の差分値によって耐剥離性を判断することを推奨する。差分値については、耐火物の材質や、事前の焼成温度、使用環境に依存し、最も剥離性と相関がある数値を用いればよい。   Furthermore, the difference in the coefficient of linear thermal expansion between the part that has received a thermal history of 1400 ° C or higher near the operating surface and the part that has received only a thermal history of 1400 ° C or lower in the refractory is between 1200 and 1400 ° C. It is considered that the maximum is at 1200 ° C. Since it is considered that the larger the difference value is, the larger the strain is and the influence on the peeling is. Therefore, in the present invention, it is recommended to judge the peeling resistance by the difference value of the linear thermal expansion coefficient at the predetermined temperature T3 of 1200 ° C. As the difference value, a value that depends on the material of the refractory material, the firing temperature in advance, and the use environment and has the highest correlation with the peelability may be used.

(耐剥離性の判断工程)
本発明は、前記差分値から耐剥離性を判断する工程を含む。この工程は、前記差分値の絶対値の最大値を決定し、前記最大値と目標値とを比較し、前記最大値が目標値以下であるか否かを判定することによって耐剥離性を判断することによって行われる。前記目標値は、予め適宜設定することができ、例えば、前記所定温度T3が1200℃のときに前記差分値が0.1%以下である場合に、耐剥離性が高いと判断しても良い。
(Peeling resistance judgment process)
The present invention includes a step of judging peel resistance from the difference value. This step determines the maximum absolute value of the difference value, compares the maximum value with a target value, and determines peel resistance by determining whether the maximum value is less than or equal to a target value. Is done by doing. The target value can be appropriately set in advance. For example, when the predetermined temperature T3 is 1200 ° C. and the difference value is 0.1% or less, it may be determined that the peeling resistance is high. .

発明者等は鋭意調査した結果、1200℃においては昇温過程中及冷却過程中とも殆ど液相の生成がなく、且つ使用温度範囲内(〜1600℃)において線熱膨張率の差が最大となることから、アルミナ−マグネシア質キャスタブル耐火物の剥離損耗の発生の有無と良い相関が得られ、特に取鍋に使用した時には差分値が0.1%以下である場合に、耐剥離性が顕著に高くなることを知見した。   As a result of intensive investigations by the inventors, at 1200 ° C., almost no liquid phase was formed during the temperature rising process and the cooling process, and the difference in the linear thermal expansion coefficient was the maximum within the operating temperature range (up to 1600 ° C.). Therefore, a good correlation is obtained with the presence or absence of peeling wear of the alumina-magnesia castable refractory, and especially when used in a ladle, the peeling resistance is remarkable when the difference value is 0.1% or less. It was found that it would be extremely high.

(アルミナ−マグネシア質キャスタブル耐火物原料の組成)
本発明に係る評価方法の評価対象は、例えば、以下の組成の材料を原料として用いることによって作製することができる。但し、本発明に係る評価方法の評価対象は、アルミナ−マグネシア質キャスタブル耐火物であって、1400℃以上1600℃以下の温度で3時間以上焼成後の残存線変化率が0%以上であれば、その組成は以下の例に限定されない。
(Composition of alumina-magnesia castable refractory raw material)
The evaluation target of the evaluation method according to the present invention can be produced, for example, by using a material having the following composition as a raw material. However, the evaluation object of the evaluation method according to the present invention is an alumina-magnesia castable refractory, and if the residual linear change rate after firing for 3 hours or more at a temperature of 1400 ° C. or more and 1600 ° C. or less is 0% or more. , Its composition is not limited to the following examples.

本発明に係る評価方法の評価対象とされるアルミナ−マグネシア質キャスタブル耐火物に用いられるアルミナとしては、焼結アルミナ、電融アルミナ、重焼アルミナ、仮焼アルミナ、ボーキサイト、電融ボーキサイト、ばん土頁岩などが使用できる。アルミナの粒度としては最大粒径が10mm未満の一般的なものを使用することができる。アルミナの配合割合は、アルミナ−マグネシア質キャスタブル耐火物全量中、質量%で78%〜93.5%の範囲が望ましい。   Alumina used in the evaluation target of the evaluation method according to the present invention-alumina used in the magnesia castable refractory, sintered alumina, fused alumina, heavy burned alumina, calcined alumina, bauxite, fused bauxite, clay Shale etc. can be used. As the particle size of alumina, a general particle having a maximum particle size of less than 10 mm can be used. The blending ratio of alumina is preferably in the range of 78% to 93.5% in mass% in the total amount of the alumina-magnesia castable refractory.

本発明に係る評価方法の評価対象とされるアルミナ−マグネシア質キャスタブル耐火物に用いられるマグネシアとしては、焼結マグネシアまたは電融マグネシアが使用できる。マグネシアの粒度としては最大粒径が1mm未満の一般的なものを使用することができる。マグネシアの配合割合は、アルミナ−マグネシア質キャスタブル耐火物全量中、質量%で3%〜10%の範囲が望ましい。   Sintered magnesia or electro-melting magnesia can be used as the magnesia used in the alumina-magnesia castable refractory to be evaluated by the evaluation method according to the present invention. As the particle size of magnesia, a general one having a maximum particle size of less than 1 mm can be used. The mixing ratio of magnesia is preferably in the range of 3% to 10% by mass in the total amount of alumina-magnesia castable refractories.

本発明に係る評価方法の評価対象とされるアルミナ−マグネシア質キャスタブル耐火物に用いられるシリカとしては、シリコンおよびシリコン合金の製造時に副生するシリカフラワーやシリカヒュームのようなシリカや、気相法で製造したエアロゾル状のシリカ、及び、湿式法で合成した非晶質含水シリカを乾燥させたものが使用できる。シリカの粒径は1μm以下のものが望ましい。シリカの配合割合は、アルミナ−マグネシア質キャスタブル耐火物全量中、質量%で0.5%〜2%の範囲が望ましい。   As the silica used in the alumina-magnesia castable refractory to be evaluated by the evaluation method according to the present invention, silica such as silica flour or silica fume produced as a by-product during the production of silicon and a silicon alloy, or a vapor phase method It is possible to use the aerosol-shaped silica produced in the above and the dried amorphous amorphous hydrous silica synthesized by the wet method. The particle size of silica is preferably 1 μm or less. The blending ratio of silica is preferably in the range of 0.5% to 2% in mass% in the total amount of alumina-magnesia castable refractory.

本発明に係る評価方法の評価対象とされるアルミナ−マグネシア質キャスタブル耐火物に用いられるアルミナセメントとしては、CaO・Alを含有するアルミナセメントが使用できる。CaO・Al以外にアルミナやスピネルを含むアルミナセメントを使用してもよい。アルミナセメントの配合割合は、アルミナ−マグネシア質キャスタブル耐火物全量中、質量%で3%〜10%の範囲が望ましい。 As the alumina cement used for the alumina-magnesia castable refractory targeted for evaluation by the evaluation method according to the present invention, an alumina cement containing CaO.Al 2 O 3 can be used. Alumina cement containing alumina or spinel may be used in addition to CaO.Al 2 O 3 . The mixing ratio of the alumina cement is preferably in the range of 3% to 10% by mass in the total amount of the alumina-magnesia castable refractory.

本発明に係る評価方法の評価対象とされるアルミナ−マグネシア質キャスタブル耐火物に用いられる分散剤としては、一般に使用されものでよい。例えばトリポリリン酸ソーダ、ヘキサメタリン酸ソーダ、酸性ヘキサメタリン酸ソーダ、ポリアクリル酸ソーダ、スルホン酸ソーダ、ナフタレンスルホン酸ソーダ、リグニンスルホン酸ソーダ、ウルトラポリリン酸ソーダ、炭酸ソーダ、ホウ酸ソーダ、クエン酸ソーダなどが使用できる。分散剤の配合割合も一般的な処方でよい。例えばアルミナ−マグネシア質キャスタブル耐火物100質量%に対して、外掛けで0.03%〜0.1%の範囲が望ましい。   As the dispersant used for the alumina-magnesia castable refractory, which is the object of evaluation by the evaluation method according to the present invention, those generally used may be used. For example, sodium tripolyphosphate, sodium hexametaphosphate, acidic sodium hexametaphosphate, sodium polyacrylate, sodium sulfonate, sodium naphthalenesulfonate, sodium lignin sulfonate, sodium ultrapolyphosphate, sodium carbonate, sodium borate, sodium citrate, etc. Can be used. The compounding ratio of the dispersant may be a general formulation. For example, the range of 0.03% to 0.1% is preferably applied to 100% by mass of the alumina-magnesia castable refractory.

本発明に係る評価方法の評価対象とされるアルミナ−マグネシア質キャスタブル耐火物に用いられる爆裂防止剤としては、一般に使用されものでよい。例えばビニロンファイバー、乳酸アルミニウム、発泡剤である金属アルミニウム、アゾジカルボンアミド等を挙げることができる。爆裂防止剤の配合割合も一般的な処方でよい。例えば、アルミナ−マグネシア質キャスタブル耐火物100質量%に対して、外掛けで0.01〜0.03%の範囲が望ましい。   The explosion-proof agent used in the alumina-magnesia castable refractory, which is the object of evaluation by the evaluation method according to the present invention, may be one generally used. Examples thereof include vinylon fiber, aluminum lactate, aluminum metal as a foaming agent, and azodicarbonamide. The compounding ratio of the explosion proof agent may be a general formulation. For example, the range of 0.01 to 0.03% by external coating is preferable with respect to 100% by mass of the alumina-magnesia castable refractory.

(評価対象の試験片の作製)
本発明に係る評価方法を実施するために供するアルミナ−マグネシア質キャスタブル耐火物の試験片の作製は、実機で施工する条件とできる限り同等とすることが好ましい。しかし、作製された試験片が1400℃以上1600℃以下で3時間以上焼成後の残存線変化率が0%以上であれば、試験片の作製方法は特に限定されない。
(Preparation of test pieces to be evaluated)
It is preferable that the test pieces of the alumina-magnesia castable refractory used for carrying out the evaluation method according to the present invention are manufactured under the same conditions as the actual conditions. However, if the produced test piece has a residual linear change rate of 0% or more after firing at 1400 ° C. or more and 1600 ° C. or less for 3 hours or more, the method for producing the test piece is not particularly limited.

例えば、前記組成を満たす耐火物原料100質量%に対し、外掛けで4〜8質量%の水を添加し、ミキサーで混練し型枠に流し込むことによって作製しても良い。作製の際には充填性を向上させるため、混練物を流し込んだ型枠に振動を付与しても良い。   For example, 4 to 8% by mass of water may be added to 100% by mass of a refractory raw material satisfying the above composition, and the mixture may be kneaded with a mixer and poured into a mold. At the time of production, in order to improve the filling property, vibration may be applied to the mold in which the kneaded product is poured.

以下に本発明の試験例とその参考例を示す。   The test examples of the present invention and their reference examples are shown below.

表1に、アルミナ−マグネシア質キャスタブル耐火物の原料配合と評価結果を示す。表1の配合で作製したキャスタブル耐火物に、分散剤としてポリアクリル酸ソーダを耐火物質量に対する外掛け0.06質量%〜0.1質量%の範囲で添加し、更に水を耐火物質量に対する外掛け5〜6.5質量%の範囲で添加して、二軸ミキサーを用いて3分間混練し、混練物を所定寸法の金枠に振動を付与させながら流し込んだ。そして、室温で24時間養生した後に、110℃で24時間乾燥させることにより評価試料を作製した。   Table 1 shows the raw material composition and evaluation results of the alumina-magnesia castable refractory material. To the castable refractory made with the composition of Table 1, sodium polyacrylate as a dispersant was added to the amount of the refractory substance in the range of 0.06% by mass to 0.1% by mass, and water was further added to the amount of the refractory substance. It was added in the range of 5 to 6.5% by mass on the outside and kneaded for 3 minutes using a biaxial mixer, and the kneaded product was poured into a metal frame having a predetermined size while vibrating. Then, after being cured at room temperature for 24 hours, it was dried at 110 ° C. for 24 hours to prepare an evaluation sample.

Figure 2020059610
Figure 2020059610

従来の耐剥離性評価の参考例として、1500℃×3時間(h)焼成後の残存線変化率を測定した。残存線変化率の測定はJIS−R2554のキャスタブル耐火物の線変化率試験方法を用いた。   As a reference example of conventional peeling resistance evaluation, the residual line change rate after firing at 1500 ° C. for 3 hours (h) was measured. The residual line change rate was measured by the JIS-R2554 castable refractory line change rate test method.

本発明における、アルミナ−マグネシア質キャスタブル耐火物の線熱膨張率曲線の測定はJIS−R2207−1の耐火物の熱膨張の試験方法に準拠して行った。試験片は、事前に所定温度T1が1400℃で3時間の熱処理を施した。前記試験片の室温から所定温度T2が1500℃までの昇温過程、及び、1500℃から室温までの冷却過程の線熱膨張率を連続的に測定し、冷却過程と昇温過程における所定温度T3が1200℃での線熱膨張率を読み取った。   The linear thermal expansion coefficient curve of the alumina-magnesia castable refractory in the present invention was measured according to the thermal expansion test method of the refractory of JIS-R2207-1. The test piece was previously heat-treated at a predetermined temperature T1 of 1400 ° C. for 3 hours. The linear thermal expansion coefficient of the test piece during the temperature rising process from room temperature to a predetermined temperature T2 up to 1500 ° C. and the cooling process from 1500 ° C. to room temperature is continuously measured to determine the predetermined temperature T3 during the cooling process and the temperature rising process. Read the coefficient of linear thermal expansion at 1200 ° C.

一方で実機使用時の損耗速度は、表1の各例の配合割合からなるアルミナ−マグネシア質キャスタブル耐火物に、分散剤としてポリアクリル酸ソーダを耐火物質量に対する外掛け0.06質量%〜0.1質量%の範囲で添加し、更に水を耐火物質量に対する外掛け5〜6.5質量%の範囲で添加して、二軸ミキサーを用いて3分間混練し、混練物を容量300tの溶鋼取鍋の側壁部に施工し、この溶鋼取鍋を70回(ch)使用した後に当該耐火物の厚みを測定し、元の厚みから差し引いた値を使用回数で除することにより平均損耗速度(mm/ch)として算出した。同時に使用中の亀裂による剥離損耗の状況を目視観察した。   On the other hand, the wear rate at the time of using the actual equipment is 0.06 mass% to 0% by weight of alumina-magnesia castable refractory having the compounding ratio of each example in Table 1 with sodium polyacrylate as a dispersant to the amount of refractory material. 0.1% by mass, water is added to the amount of the refractory substance in an amount of 5 to 6.5% by mass, and the mixture is kneaded for 3 minutes by using a biaxial mixer to prepare a kneaded product having a volume of 300 t. The average wear rate is calculated by dividing the value obtained by subtracting the original thickness from the thickness of the refractory after applying it to the side wall of the molten steel ladle and using the molten steel ladle 70 times (ch) It was calculated as (mm / ch). At the same time, the state of peeling wear due to cracks during use was visually observed.

試験例1につき、室温から所定温度T2が1500℃までの昇温過程、及び、1500℃から室温までの冷却過程の線熱膨張率を連続的に測定した結果を図2に示す。冷却過程と昇温過程における所定温度T3が1200℃での線熱膨張率の差分値は0.1%以下となっていることが分かる。   FIG. 2 shows the results obtained by continuously measuring the linear thermal expansion coefficient in the temperature rising process from room temperature to a predetermined temperature T1500 ° C. and the cooling process from 1500 ° C. to room temperature in Test Example 1. It can be seen that the difference in the coefficient of linear thermal expansion when the predetermined temperature T3 is 1200 ° C. in the cooling process and the temperature raising process is 0.1% or less.

試験例1〜3のキャスタブル耐火物は、1500℃×3h焼成後の残存線変化率の値が相対的に小さいことから、従来の経験からは剥離の懸念はあまりないと予想された。そして1600℃×3h焼成後の残存線変化率は正の値となったため、大気中1400℃で3時間熱処理を施した試験片において、1500℃から室温までの冷却過程と、室温から1500℃までの昇温過程における線熱膨張率を測定した。両過程の1200℃における線熱膨張率の差分値は0.1%以下であり、耐剥離性は高いと判断した。実機使用の結果、実機使用時に剥離損耗が発生しておらず、損耗速度も比較的小さかったことから、耐火物の耐剥離性を正確に評価することができている。   Since the castable refractories of Test Examples 1 to 3 have a relatively small rate of change in residual line after firing at 1500 ° C. for 3 hours, it was expected from conventional experience that there is not much concern about peeling. Since the residual linear change rate after firing at 1600 ° C for 3 hours became a positive value, the test piece that had been heat-treated at 1400 ° C in the atmosphere for 3 hours had a cooling process from 1500 ° C to room temperature, and from room temperature to 1500 ° C. The coefficient of linear thermal expansion in the temperature rising process was measured. The difference in linear thermal expansion coefficient at 1200 ° C. in both processes was 0.1% or less, and it was judged that the peeling resistance was high. As a result of using the actual machine, peeling wear did not occur when the actual machine was used, and the rate of wear was relatively small. Therefore, the peeling resistance of the refractory can be accurately evaluated.

試験例4は、1500℃×3h焼成後の残存線変化率が試験例1〜3に比べ相対的に大きく、従来の経験からは剥離損耗の懸念があった。しかしながら1600℃×3h焼成後の残存線変化率は正の値となった。引き続き本発明の線熱膨張率を測定したところ、1200℃での線熱膨張率の差分値が0.1%以下であり、耐剥離性は高いと判断された。実機使用したところ、剥離損耗は観察されず、損耗速度の試験例1〜3とほぼ同等であったことから、耐火物の耐剥離性を正確に評価することができた。   In Test Example 4, the residual line change rate after firing at 1500 ° C. for 3 hours was relatively larger than that in Test Examples 1 to 3, and there was a concern of peeling wear from conventional experience. However, the residual line change rate after firing at 1600 ° C. for 3 hours was a positive value. When the linear thermal expansion coefficient of the present invention was subsequently measured, the difference in linear thermal expansion coefficient at 1200 ° C. was 0.1% or less, and it was judged that the peel resistance was high. When used in an actual machine, peeling wear was not observed, and the wear rate was almost the same as in Test Examples 1 to 3, so the peeling resistance of the refractory could be accurately evaluated.

試験例5と6は、1500℃×3h焼成後の残存線変化率の値が比較的低いことから、従来の経験からは剥離の懸念はあまりないと予想された。そして、1600℃×3h焼成後の残存線変化率の値も、小さいながら正の値を示した。しかしながら、大気中1400℃で3時間熱処理を施した試験片の線熱膨張率曲線において、1500℃から室温までの冷却過程における1200℃での線熱膨張率と、室温から1500℃までの昇温過程における1200℃での線熱膨張率の差分値は0.1%超となり、耐剥離性に劣ると判断された。実機試験したところ、剥離損耗が発生し、損耗速度が大きくなった。従って、耐火物の耐剥離性を正確に評価することができた。   In Test Examples 5 and 6, since the value of the residual line change rate after firing at 1500 ° C. for 3 hours was relatively low, it was expected from conventional experience that there was not much concern about peeling. Then, the value of the residual line change rate after firing at 1600 ° C. for 3 hours also showed a positive value although it was small. However, in the linear thermal expansion coefficient curve of the test piece heat-treated at 1400 ° C. in the atmosphere for 3 hours, the linear thermal expansion coefficient at 1200 ° C. in the cooling process from 1500 ° C. to room temperature and the temperature increase from room temperature to 1500 ° C. The difference in the coefficient of linear thermal expansion at 1200 ° C in the process was more than 0.1%, and it was judged that the peel resistance was poor. In the actual machine test, peeling wear occurred and the wear rate increased. Therefore, it was possible to accurately evaluate the peeling resistance of the refractory material.

参考例1は、1500℃×3h焼成後の残存線変化率の値が低く、従来の経験からは剥離の懸念はあまりないと予想されるものの、残存膨張性がやや低い耐火物である。そこで、1600℃×3h焼成後の残存線変化率を測定したところ、負の値を取ったため、残存膨張性に劣ると予想された。一般にはこのような耐火物は実機に用いることはない。参考として、本発明に相当する、大気中1400℃で3時間熱処理を施した試験片において、1500℃から室温までの冷却過程における1200℃での線熱膨張率と、室温から1500℃までの昇温過程における1200℃での線熱膨張率を測定したところ、その差分値は0.1%以下であった。しかし実機試験を行ったところ、剥離損耗が観察され、損耗速度が大きかった。このように、1600℃×3h焼成後の残存線変化率が負の値を取るキャスタブル耐火物、すなわち残存収縮するキャスタブル耐火物は、線熱膨張率の差分値が小さい場合であっても、溶融金属処理容器の内張り炉材には好適に用いることができないおそれがある。   Reference Example 1 is a refractory material having a low residual expansion rate after firing at 1500 ° C. for 3 hours and a low rate of change in residual line, and although there is little fear of peeling from conventional experience. Therefore, when the residual linear change rate after firing at 1600 ° C. for 3 hours was measured, a negative value was obtained, and it was expected that the residual expandability was inferior. Generally, such refractories are not used in actual equipment. For reference, in a test piece corresponding to the present invention, which was heat-treated at 1400 ° C. in the atmosphere for 3 hours, the coefficient of linear thermal expansion at 1200 ° C. in the cooling process from 1500 ° C. to room temperature and the increase from room temperature to 1500 ° C. When the coefficient of linear thermal expansion at 1200 ° C. in the warming process was measured, the difference was 0.1% or less. However, when an actual machine test was performed, peeling wear was observed and the wear rate was high. As described above, the castable refractory having a negative linear change rate after firing at 1600 ° C. for 3 hours, that is, the castable refractory having residual shrinkage, melts even when the difference in linear thermal expansion coefficient is small. There is a possibility that it cannot be suitably used as a furnace material for a lining of a metal processing container.

本発明によれば、実機を施工する前に、使用する予定のアルミナ−マグネシア質キャスタブル耐火物の試験片を用いて、当該アルミナ−マグネシア質キャスタブル耐火物の耐剥離性を正確に評価することができる。そのため、本発明に係る評価方法を利用することによって、各種のキャスタブル耐火物の耐剥離性を比較検討することができ、耐用性に極めて優れたアルミナ−マグネシア質キャスタブル耐火物及び当該キャスタブル耐火物を用いた実機を製造することができる。   According to the present invention, it is possible to accurately evaluate the peeling resistance of the alumina-magnesia castable refractory using a test piece of the alumina-magnesia castable refractory to be used before constructing the actual machine. it can. Therefore, by using the evaluation method according to the present invention, it is possible to comparatively examine the peeling resistance of various castable refractories, and the alumina-magnesia castable refractory and the castable refractory having extremely excellent durability. The actual machine used can be manufactured.

Claims (9)

アルミナ−マグネシア質キャスタブル耐火物の耐剥離性の評価方法であって、
前記キャスタブル耐火物は、1400℃以上1600℃以下で3時間以上焼成後の残存線変化率が0%以上であり、
前記キャスタブル耐火物の液相が生成する温度以上の温度T1にて前記キャスタブル耐火物を3時間以上熱処理する工程と、
前記熱処理後のキャスタブル耐火物を、室温から前記温度T1よりも高い温度T2まで昇温しつつ前記キャスタブル耐火物の線熱膨張率を測定する工程と、前記温度T2から室温まで冷却しつつ、前記キャスタブル耐火物の線熱膨張率を測定する工程と、
前記T1以下の温度T3における前記昇温過程の線熱膨張率と前記冷却過程の線熱膨張率との差分値を算出する工程と、
前記差分値から耐剥離性を判断する工程と、
を備えることを特徴とするキャスタブル耐火物の耐剥離性の評価方法。
Alumina-A method of evaluating the flammability of magnesia castable refractory,
The castable refractory has a residual linear change rate of 0% or more after firing at 1400 ° C. or more and 1600 ° C. or less for 3 hours or more,
Heat treating the castable refractory for 3 hours or more at a temperature T1 which is equal to or higher than a temperature at which a liquid phase of the castable refractory is generated;
Measuring the linear thermal expansion coefficient of the castable refractory while increasing the temperature of the castable refractory after the heat treatment from room temperature to a temperature T2 higher than the temperature T1, and cooling the temperature from the temperature T2 to the room temperature. A step of measuring the linear thermal expansion coefficient of the castable refractory,
Calculating a difference value between the linear thermal expansion coefficient in the temperature increasing process and the linear thermal expansion coefficient in the cooling process at a temperature T3 equal to or lower than T1;
A step of judging peel resistance from the difference value,
A method for evaluating the peeling resistance of a castable refractory material, which comprises:
前記温度T1が、1400〜1500℃から選ばれる一定温度であることを特徴とする請求項1に記載のキャスタブル耐火物の耐剥離性の評価方法。
The peeling resistance evaluation method according to claim 1, wherein the temperature T1 is a constant temperature selected from 1400 to 1500 ° C.
前記温度T1が1400℃であることを特徴とする請求項1に記載のキャスタブル耐火物の耐剥離性の評価方法。
The method for evaluating peeling resistance of a castable refractory according to claim 1, wherein the temperature T1 is 1400 ° C.
前記温度T2が、1400℃超1600℃以下から選ばれる一定温度であることを特徴とする請求項1〜3のいずれか一項に記載のキャスタブル耐火物の耐剥離性の評価方法。
The method for evaluating the peeling resistance of castable refractories according to any one of claims 1 to 3, wherein the temperature T2 is a constant temperature selected from more than 1,400 ° C and 1,600 ° C or less.
前記温度T2が1500℃であることを特徴とする請求項1〜3のいずれか一項に記載のキャスタブル耐火物の耐剥離性の評価方法。
The method for evaluating the peeling resistance of castable refractories according to claim 1, wherein the temperature T2 is 1500 ° C.
前記耐剥離性を判断する工程は、前記熱処理後のキャスタブル耐火物の液相の固相への析出が完了する温度と前記温度T1との間において前記差分値の最大値を決定し、前記最大値と予め定めた目標値とを比較し、前記最大値が前記目標値以下であるか否かを判定することによって耐剥離性を判断することを特徴とする請求項1〜5のいずれか一項に記載のキャスタブル耐火物の耐剥離性の評価方法。
The step of determining the peeling resistance determines the maximum value of the difference value between the temperature T1 and the temperature at which the deposition of the liquid phase of the castable refractory after the heat treatment is completed, and determines the maximum value. The peeling resistance is determined by comparing a value with a predetermined target value and determining whether or not the maximum value is equal to or less than the target value. The method for evaluating the peeling resistance of castable refractories according to the item.
前記温度T3が、1200〜1400℃から選ばれる一定温度であることを特徴とする請求項1〜5のいずれか一項に記載のキャスタブル耐火物の耐剥離性の評価方法。
The peeling resistance evaluation method according to any one of claims 1 to 5, wherein the temperature T3 is a constant temperature selected from 1200 to 1400 ° C.
前記温度T3が1200℃であることを特徴とする請求項1〜5のいずれか一項に記載のキャスタブル耐火物の耐剥離性の評価方法。
The method for evaluating peeling resistance of castable refractories according to any one of claims 1 to 5, wherein the temperature T3 is 1200 ° C.
前記目標値を予め0.1%に定め、前記差分値が0.1%以下である前記キャスタブル耐火物を耐剥離性が高いと判断することを特徴とする請求項8に記載のキャスタブル耐火物の耐剥離性の評価方法。   The castable refractory according to claim 8, wherein the target value is set to 0.1% in advance, and the castable refractory having the difference value of 0.1% or less is determined to have high peeling resistance. Evaluation method of peel resistance.
JP2018189439A 2018-10-04 2018-10-04 Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories Active JP7187954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018189439A JP7187954B2 (en) 2018-10-04 2018-10-04 Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018189439A JP7187954B2 (en) 2018-10-04 2018-10-04 Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories

Publications (2)

Publication Number Publication Date
JP2020059610A true JP2020059610A (en) 2020-04-16
JP7187954B2 JP7187954B2 (en) 2022-12-13

Family

ID=70219334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018189439A Active JP7187954B2 (en) 2018-10-04 2018-10-04 Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories

Country Status (1)

Country Link
JP (1) JP7187954B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105653A (en) * 2020-08-25 2022-03-01 中国科学院理化技术研究所 Method for strengthening performance of magnesium refractory material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930859A (en) * 1995-07-20 1997-02-04 Kawasaki Refract Co Ltd Cast monolithic refractory
JPH11100280A (en) * 1997-09-29 1999-04-13 Harima Ceramic Co Ltd Monolitihic refractory for tundish lining
JP2012006053A (en) * 2010-06-25 2012-01-12 Kobe Steel Ltd Ladle for conveying molten steel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0930859A (en) * 1995-07-20 1997-02-04 Kawasaki Refract Co Ltd Cast monolithic refractory
JPH11100280A (en) * 1997-09-29 1999-04-13 Harima Ceramic Co Ltd Monolitihic refractory for tundish lining
JP2012006053A (en) * 2010-06-25 2012-01-12 Kobe Steel Ltd Ladle for conveying molten steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105653A (en) * 2020-08-25 2022-03-01 中国科学院理化技术研究所 Method for strengthening performance of magnesium refractory material
CN114105653B (en) * 2020-08-25 2022-10-28 中国科学院理化技术研究所 Method for strengthening performance of magnesium refractory material

Also Published As

Publication number Publication date
JP7187954B2 (en) 2022-12-13

Similar Documents

Publication Publication Date Title
Luz et al. Effect of Al4SiC4 on the Al2O3SiCSiO2C refractory castables performance
Martinović et al. Influence of sintering temperature on thermal shock behavior of low cement high alumina refractory concrete
JP5943032B2 (en) Manufacturing method of lightweight heat-insulating alumina / magnesia refractory
JP7341771B2 (en) castable refractories
JP5561999B2 (en) Refractory molded body for metal casting, method for producing refractory molded body for metal casting, amorphous refractory composition for metal casting, and molten metal holding member for metal casting
JP5110539B2 (en) FeO resistant coating material
JP2020059610A (en) Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
Chen et al. Effect of the calcium alumino-titanate particle size on the microstructure and properties of bauxite-SiC composite refractories
US9683782B2 (en) Methods for producing silicon carbide whisker-reinforced refractory composition
JP7135691B2 (en) Evaluation Method of Delamination Resistance of Alumina-Magnesia Castable Refractories
JP5769313B2 (en) Low thermal expansion insulation castable
KR101929640B1 (en) Process for producing lining structure of vessel for molten metal, and lining structure of vessel for molten metal
JP6172227B2 (en) Tundish for continuous casting
JP3996878B2 (en) Method for evaluating digestion resistance of amorphous refractories containing magnesia
Huger et al. Microstructural effects associated to CTE mismatch for enhancing the thermal shock resistance of refractories
Hino et al. Fatigue failure behavior of Al2O3–SiO2 system bricks under compressive stress at room and high temperatures
JP6959809B2 (en) Amorphous refractory for pouring work
JP7119870B2 (en) Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories
JP2020059612A (en) Method for evaluating peeling resistance of alumina-magnesia quality castable refractory
Guo et al. Effect of water‐soluble magnesium lactate on the volume stability of refractory castables containing calcium aluminate cement
EP3307695B1 (en) Refractories for applications in combustion chambers intended for producing energy and/or waste disposal
JP2019006630A (en) Alumina-magnesia based castable refractory
JP2007112670A (en) Firing vessel
Amin et al. The effect of nanosized carbon black on the physical and thermomechanical properties of Al2O3–SiC–SiO2–C composite
Gao et al. One step sintering of homogenized bauxite raw material and kinetic study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R151 Written notification of patent or utility model registration

Ref document number: 7187954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151