JP3996878B2 - Method for evaluating digestion resistance of amorphous refractories containing magnesia - Google Patents
Method for evaluating digestion resistance of amorphous refractories containing magnesia Download PDFInfo
- Publication number
- JP3996878B2 JP3996878B2 JP2003200336A JP2003200336A JP3996878B2 JP 3996878 B2 JP3996878 B2 JP 3996878B2 JP 2003200336 A JP2003200336 A JP 2003200336A JP 2003200336 A JP2003200336 A JP 2003200336A JP 3996878 B2 JP3996878 B2 JP 3996878B2
- Authority
- JP
- Japan
- Prior art keywords
- magnesia
- digestion
- test
- sample
- magnesium hydroxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Ceramic Products (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、RH、DH等の二次精錬炉、溶鋼鍋,転炉、溶銑予備処理ランス等に使用されるマグネシア含有不定形耐火物を使用する技術において、水酸化マグネシウムの生成量を事前に予測し、マグネシアの水和による乾燥中の亀裂発生を抑制するための評価方法に関するものである。
【0002】
【従来の技術】
マグネシアは、高耐火性、高塩基度スラグに対する高耐食性などの優れた性質を有するため、不定形耐火物を構成する原料にも広く用いられている。しかしながら、マグネシアを不定形耐火物に使用した場合、その施工体の乾燥時には高温・高圧下の水蒸気にさらされ、マグネシアは水と容易に反応(MgO+H2O→Mg(OH)2)して体積膨張し亀裂発生や劣化を招くことがあるため、その水和特性は不定形耐火物の性能に大きな影響を与えやすい。実際、マグネシアを含む不定形耐火物は、養生や乾燥過程においてマグネシアの水和反応に伴う体積膨張が起因で物性の低下や亀裂の発生が起き、窯炉の寿命の低下を招くことがある。
【0003】
一般にマグネシア含有不定形耐火物の消化試験は、非特許文献1に準じて、耐消化性、水和の評価を行ってきた。この方法は、オートクレーブ(高温・高圧容器)で消化試験を行ったあとの圧縮強度を測定して、それらの値から消化に伴う圧縮強度の低下率を算出して評価する方法である。さらに、水熱処理試験後の亀裂や崩壊状態の観察、オートクレーブ試験前後の線変化率の測定等で行ってきた。
【0004】
しかしながら、これらの評価方法で顕著な差異が認められるような場合、実際にはかなり大きな亀裂発生を招くケースが多く、実際には、これらの評価方法では差異が認められないような場合でも、亀裂発生の有無や亀裂の程度に差が見られることが多かった。また、生成する量的な問題から、マグネシアの水和物をX線回折では検出することが極めて困難であり、亀裂の発生とマグネシアの水和の定量的な関係を把握することは困難であった。さらに、不定形耐火物中のマグネシウムの分析方法としては、化学分析による方法のほか、蛍光X線分析法、電子線マイクロアナライザーによる方法などが知られているが、これらの方法ではマグネシウムの形態(酸化物、水酸化物、炭酸塩等)を調べることはできなかった。
【0005】
またマグネシウムの形態を調べる方法としては、X線回折による方法が知られているが、X線回折では結晶性が低いと検出できないという問題があった。一方、方向性電磁鋼板用焼鈍分離剤のようにMgOを主成分とする材料の水和度の評価方法については特許文献1に示されるような評価方法があるが、このような方法はMgO含有量が少なく、またMg以外に水和物が混在する材料には適用できないという問題があった。
【0006】
このように、実機の不定形耐火物をライニングした大型窯炉の状況を十分に反映したものではなかった。そのため、実機での亀裂を予測できるような評価方法の確立が求められてきた。
【0007】
【非特許文献1】
JIS−R2211 「塩基性耐火れんがの消化性の試験方法」
【特許文献1】
特開2002−90300号公報
【0008】
【発明が解決しようとする課題】
従来の不定形耐火物の耐消化性の評価方法では、実機での亀裂発生を予測することが極めて困難であることが明らかになった。
【0009】
本発明は、上記のような点を鑑みて、マグネシアの水和反応を適切に抑制し、実機における不定形耐火物の消化による劣化を抑制することを可能にする評価方法を提供するものである。
【0010】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討した結果、水熱処理による消化試験後のマグネシア含有不定形耐火物の熱重量測定を行った際に、約300℃から約360℃の重量減少が水酸化マグネシウムの脱水に伴う重量減少であることを突き止め、この知見をもとに本発明を完成したものである。
【0011】
本発明の要旨とするところは、以下の通りである。
【0012】
(1) マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の熱重量測定を行って約300℃から約360℃への重量減少率に基づいて、試料中の水酸化マグネシウム量を推定し、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とするマグネシア含有不定形耐火物の耐消化性評価方法。
【0013】
(2) マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の熱重量測定を行って、重量減少率の微分曲線から約300℃から約360℃への重量減少量を求め、重量減少量から試料中の水酸化マグネシウム量を推定し、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とするマグネシア含有不定形耐火物の耐消化性評価方法。
【0014】
(3) 消化試験を110℃以上170℃以下、飽和水蒸気圧0.14MPa以上0.8MPa以下、3時間以上60時間以下で行うことを特徴とする(1)または(2)記載のマグネシア含有不定形耐火物の耐消化性評価方法。
【0015】
(4) 消化試験後の試料中の水酸化マグネシウム量が0.5mass%以下の時に劣化・亀裂発生なしと予測することを特徴とする(1)から(3)のいずれか1項に記載のマグネシア含有不定形耐火物の耐消化性評価方法。
【0016】
尚、本発明において、約300(360)℃というのは、加熱速度、雰囲気温度等の測定条件によるばらつきによるものであり、300(360)±5℃の範囲を含むものとする。
【0017】
【発明の実施の形態】
以下に本発明の詳細を説明する。
【0018】
熱重量測定(Thermogravimetry;TG)は、試料の温度を一定のプログラムに従って変化させながら、その試料の質量を温度、または時間の関数として測定する方法であり、試料の熱分解や脱水、脱炭酸等の現象を簡便に、かつ定量的に測定できる方法である。一般には無機、有機、高分子等様々な材料の耐熱性評価に用いられ、具体的には物質の熱分解温度・分解量の定量、付着水や結晶水の定量、脱水温度等を測定するものである。
【0019】
熱重量測定装置には持ち上げ型、水平型、吊り下げ型があるが、どれを用いても良い。加熱雰囲気は乾燥空気、乾燥窒素、アルゴン、ヘリウム、あるいは真空中でも良いが、乾燥窒素、またはアルゴンが使いやすい。試料は容器に入れて測定するが、容器の材質は測定温度が600℃以下ならばアルミニウム、600℃以上であれば白金、酸化アルミニウム、銅、ステンレス製のものが望ましい。水酸化マグネシウムのみを測定するのであれば、測定温度は600℃以下で十分であるが、炭酸塩等の脱炭酸は600℃付近から始まるので、炭酸塩も含めて評価するには白金製の容器を用いて、1000℃程度まで加熱することが好ましい。加熱パターンは、付着水が蒸散する110℃程度に昇温して保持し、その後さらに加熱して水酸化マグネシウムなどの脱水、炭酸塩の分解などを測定することが好ましいが、室温から一定の加熱速度で直線的に加熱しても良い。また、保持する温度をさらに細かく分け、ステップ昇温を行っても良い。加熱速度は、1℃/分から100℃/分の間に設定するのが好ましい。1℃/分以下では測定に時間がかかり、100℃/分以上では、重量減少がどの成分のどの反応によるものか、区別できなくなる。
【0020】
図1にオートクレーブによる消化試験を行ったマグネシア含有不定形耐火物(化学組成:Al2O3=90mass%,MgO=5mass%)の熱重量減少量、及び熱重量減少速度を示す。加熱条件は、50℃(5分保持)→50℃/分→110℃(10分保持)→10℃/分→1000℃(15分保持)、雰囲気はアルゴン200ml/分である。試料は約10mgを精秤し、熱重量減少量は試料質量を基準とした減少率(質量%)、熱重量減少速度は、単位時間あたりの重量減少率(質量%/分)で表した。なお、熱重量減少速度は一定の加熱速度で直線的に加熱する場合には、1℃あたりの重量減少率(質量%/℃)で表しても良い。
【0021】
マグネシア含有不定形耐火物は非常に複雑な組成であり、消化試験を行った耐火物の熱重量減少曲線、及び熱重量減少速度曲線は、非常に複雑である。そこで、同じ試料を、「鉄と鋼」,第88巻(2002),第9号,p.507−512に記載の方法で測定した結果、水酸化マグネシウムの水酸基に基づく吸収帯が約3698cm−1に観測され、この吸収帯が約300℃より減少し、消失することがわかった。すなわち、水酸化マグネシウムの脱水温度は約330℃で、図1の熱重量減少曲線、及び熱重量減少速度曲線で極わずかに検出されている約300℃から約360℃の重量減少が相当する。
【0022】
前記(1)記載の方法に準じて、具体的に水酸化マグネシウム量を推定するには、図1の熱重量減少曲線において、約300℃の変曲点と約360℃の変曲点の重量減少率との差から水酸化マグネシウムの脱水に伴う重量減少率を求める。変曲点は、変曲点近傍の接線の交差部から読み取る。
【0023】
前記(2)記載の方法に準じて、具体的に水酸化マグネシウム量を推定するには、図2の熱重量減少速度曲線(微分曲線)で、熱重量減少率の時間変化の谷に相当する間の積分値から水酸化マグネシウムの脱水に伴う重量減少率を求める。水酸化マグネシウムの脱水に伴う減少率から水酸化マグネシウム量を算出するには、次式(1)を用いる。
【0024】
【化1】
【0025】
ここで0.309は、次式(2)で求められる水酸化マグネシウム(100mass%)の脱水率である。
【0026】
【化2】
【0027】
図3に消化試験を行った耐火物の高温赤外吸収スペクトルを示す。図中の矢印で示した約3698cm−1に相当する部分が水酸化マグネシウム基因の吸収であり、約360℃で消失することが確認された。
【0028】
消化とは、原材料が水や水蒸気と反応して水酸化物を生成する現象すなわち水和現象であり、酸化物から水酸化物変化する際の体積膨張から亀裂や欠陥の発生、崩壊を招くことがある。例えば、酸化マグネシウムの水和反応で水酸化マグネシウムができるときには、約2.2倍の体積膨張をおこす。不定形耐火物では、施工後の体積増加率が0.2%を越えると亀裂や欠陥が発生する。水酸化マグネシウムの密度は3.58g/cm3であり、0.5mass%は0.14vol%に相当する。これが2.2倍の体積膨張すると、0.31vol%ととなり、施工後の体積増加率は0.17vol%となる。
【0029】
水熱処理の代表的な方法であるオートクレーブによる消化試験は、基本的にはJIS−R2211に準ずる。消化試験の温度や時間は、材料の種類、窯炉のライニング厚みや乾燥設備に応じて、実機を反映する最適な条件を探索して決定すべきであり、特に限定するものではない。一般的には、温度110〜170℃程度、圧力0.14〜0.8MPa、3〜60時間程度の保持を行うことが多い。これよりも、温度が高い場合あるいは長時間の試験を行う場合、Mg(OH)2の生成量が多くなり、試料の崩壊が激しく、相互比較が困難な場合がある。また、温度が低すぎる場合あるいは短時間の試験では、ほとんど水和反応が進まないため、やはり相互の比較が困難になる。
【0030】
水熱処理試験の方法として、この他にも、鋳込み成形したブロックを乾燥機や恒温槽中に保持して、現れる亀裂の程度や線変化率で耐消化性の判定基準とする方法もある(例えば、耐火物,41,690,(1980)に記載の方法等参照のこと。)。さらに、耐火物42,9,488−493(1990)記載の方法等のように、一度に多くのサンプルを同時におさめて能率よくかつ精度面でも優れた消化試験方法が提案されており、いずれの水熱処理試験を用いても構わない。
【0031】
本発明の対象とする不定形耐火物は、マグネシア−ライム質、アルミナ−マグネシア質、粘土質、ろう石質、マグネシア質、マグネシア・クロム質、ドロマイト質、マグネシア・カーボン質、アルミナ・カーボン質、アルミナ・炭化珪素・カーボン質、アルミナ・マグネシア・カーボン質など、微量でもマグネシアを含有するものであれば、限定するものではない。また、硬化法も、アルミナセメントのように水和反応を用いる水硬性に限らず、化学硬化性、熱硬性、気硬性のいずれでもよく特に限定するものではない。施工法も流し込み、こて塗り、吹き付け、振動施工、打ち込み、圧入等のいずれでも構わない。化学組成や形状も特に規定しない。
【0032】
不定形耐火物又はプレキャストブロックの施工水分量は、特に限定するものではないが、3質量%未満では流動性が不足し施工が困難である。8質量%を超えると、乾燥後の気孔率が高く、実炉における耐用性が不十分になる。したがって、水分量を3〜8質量%とすることが好ましい。
【0033】
図1より、この重量減少量を読み取ると、約0.41質量%であり、これを水酸化マグネシウムに換算すると、約1.3質量%となる。
【0034】
【実施例】
以下に本発明を実施例によって説明する。ただし、本発明はこれらの実施例に限定されるものではない。
【0035】
溶鋼鍋の側壁を対象として評価を行った。溶鋼鍋用のアルミナ−マグネシア質キャスタブルを使用した。耐消化対策として、シリカ0.02〜0.15mass%をマグネシアにコーティングし、亀裂発生への影響を比較した。これらの材料の主要な組成を表1に示す。シリカのコーティング方法は、耐火物47,599−600〔12〕(1995)記載の方法に従い、マグネシアクリンカーを回転式混合装置に装入し、有機溶媒で希釈した有機シリカ化合物の溶液を添加、混合装置内で均質に表面に付着させた後、150℃に設定した恒温槽で加熱処理を行い、コーティング層を安定化させた。施工水分量は6%である。試験用の試料のサイズは40×40×160mm、養生は20℃で24時間、混練時の温度及び水温は15℃である。オートクレーブによる消化試験は125℃で15時間行った。
【0036】
本発明であるオートクレーブ試験後試料の熱重量測定のほかに、比較例として、オートクレーブ試験前後での線変化率の測定を併せて実施した。熱重量測定は、アルゴンガス雰囲気中、20℃/min.で昇温し、常温から600℃までの測定を実施した。試験前後の線変化率の測定は、JIS−R2208に準じて行った。
【0037】
これらの材料を実機の溶鋼鍋に適用し、乾燥を行った後の亀裂状況を調査した結果も表1に併せて示す。
【0038】
【表1】
【0039】
従来まで行ってきた比較例の線変化率の評価では、マグネシアの水和抑制剤の量が異なる試料A〜Dの間でほとんど差は認められなかった。しかしながら、実機で溶鋼鍋壁の乾燥後の状況を見ると、試料A及びBをライニングした場合には幅5mm程度の亀裂が全周にわたって認められ、溶鋼やスラグが浸透する可能性が高く、使用上好ましくなかった。これに対して、試料A及びBよりもマグネシアの水和抑制剤の量が多く添加された場合を見ると、試料Cでは幅1mm以下程度の微亀裂、試料Dではほとんど亀裂は認められず良好であった。このように、ラボのオートクレーブ試験前後の線変化率を用いた亀裂発生予測方法では、実機での亀裂発生を予測することができなかった。
【0040】
次に、本発明の熱重量測定(Thermogravimetry:TG)を用いた評価法の適用を試みた。オートクレーブ試験後試料に対して熱重量測定を行った。熱重量測定の重量減少曲線を見ると、試料A及びBでは、約300℃から約360℃の間に顕著な重量減少が認められる。水酸化マグネシウム→マグネシアへの脱水反応が生じていることが予測される。したがって、オートクレーブ試験で水酸化マグネシウムの生成が進行していたと考えられる。
【0041】
一方、試料A及びBよりもマグネシアの水和抑制剤の量が多く添加された試料C及びDの熱重量測定の重量減少曲線を見ると、約300℃から約360℃の間でほとんど重量減少は認められなかった。したがって、試料A及びBと比べると、オートクレーブ試験でマグネシア→水酸化マグネシウムの水和反応が進んでいなかったことが推察される。実際に、実機で溶鋼鍋壁の乾燥後の状況を見ると、熱重量測定で水酸化マグネシウムの脱水に相当する約300℃から約360℃の間に顕著な重量減少が認められた試料A及びBでは顕著な亀裂が認められたのに対し、約300℃から約360℃の間に顕著な重量減少が認められなかった試料C及びDではほとんど亀裂は認められなかった。
【0042】
本発明の熱重量測定の約300℃から約360℃の重量減少に基づいた亀裂発生予測方法が従来法に比べて有効であることが明らかになった。
【0043】
【発明の効果】
本発明により、マグネシアを含む不定形耐火物の耐消化性を高精度に評価することが可能になった。
【図面の簡単な説明】
【図1】 消化試験後のマグネシア含有不定形耐火物の熱重量減少曲線である。
【図2】 消化試験後のマグネシア含有不定形耐火物の熱重量減少速度曲線である。
【図3】 消化試験後のマグネシア含有不定形耐火物の高温赤外吸収スペクトルである。[0001]
BACKGROUND OF THE INVENTION
The present invention uses a magnesia-containing amorphous refractory used in secondary refining furnaces such as RH and DH, molten steel pans, converters, hot metal pretreatment lances, etc. The present invention relates to an evaluation method for predicting and suppressing crack generation during drying due to hydration of magnesia.
[0002]
[Prior art]
Since magnesia has excellent properties such as high fire resistance and high corrosion resistance against high basicity slag, it is widely used as a raw material for forming amorphous refractories. However, when magnesia is used as an irregular refractory material, when the construction body is dried, it is exposed to water vapor at high temperature and high pressure, and magnesia easily reacts with water (MgO + H 2 O → Mg (OH) 2 ). Since it may expand and cause cracking or deterioration, its hydration characteristics tend to have a large impact on the performance of the amorphous refractory. In fact, an amorphous refractory containing magnesia may deteriorate in physical properties and cracks due to volume expansion accompanying the hydration reaction of magnesia during curing and drying processes, leading to a decrease in the life of the kiln.
[0003]
In general, in digestion tests of magnesia-containing amorphous refractories, digestion resistance and hydration have been evaluated according to Non-Patent Document 1. This method is a method of measuring the compressive strength after performing a digestion test in an autoclave (high temperature / high pressure vessel), and calculating and evaluating the reduction rate of the compressive strength accompanying digestion from those values. Furthermore, it has been carried out by observing cracks and collapsed states after the hydrothermal treatment test and measuring the linear change rate before and after the autoclave test.
[0004]
However, when there are significant differences between these evaluation methods, there are many cases that actually cause quite large cracks. In fact, even when these evaluation methods show no difference, There were often differences in the presence or absence of cracks and the degree of cracking. In addition, because of the quantitative problem that occurs, it is very difficult to detect magnesia hydrate by X-ray diffraction, and it is difficult to grasp the quantitative relationship between cracking and magnesia hydration. It was. Furthermore, as a method for analyzing magnesium in an amorphous refractory, in addition to a method using chemical analysis, a fluorescent X-ray analysis method, a method using an electron beam microanalyzer, etc. are known. In these methods, the form of magnesium ( Oxides, hydroxides, carbonates, etc.) could not be examined.
[0005]
As a method for examining the form of magnesium, a method by X-ray diffraction is known, but there is a problem that X-ray diffraction cannot be detected if the crystallinity is low. On the other hand, there is an evaluation method as shown in Patent Document 1 for evaluating the hydration degree of a material mainly composed of MgO, such as an annealing separator for grain-oriented electrical steel sheets. There was a problem that it was not applicable to a material having a small amount and containing a hydrate other than Mg.
[0006]
Thus, it did not fully reflect the situation of large kilns lined with actual refractories. Therefore, it has been required to establish an evaluation method that can predict cracks in actual machines.
[0007]
[Non-Patent Document 1]
JIS-R2211 “Test method for digestibility of basic refractory bricks”
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-90300
[Problems to be solved by the invention]
It has become clear that it is extremely difficult to predict the occurrence of cracks in an actual machine by the conventional method for evaluating the digestion resistance of an irregular refractory.
[0009]
In view of the above points, the present invention provides an evaluation method that appropriately suppresses the hydration reaction of magnesia and suppresses deterioration due to digestion of an amorphous refractory in an actual machine. .
[0010]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have reduced the weight from about 300 ° C. to about 360 ° C. when thermogravimetric measurement of the magnesia-containing amorphous refractory after the digestion test by hydrothermal treatment is performed. The present invention has been completed based on this finding.
[0011]
The gist of the present invention is as follows.
[0012]
(1) Digestion test of hydrous heat treatment of amorphous refractory containing magnesia, and thermogravimetric measurement of the sample after the test, and based on the weight loss rate from about 300 ° C to about 360 ° C, hydroxylation in the sample A method for evaluating the digestion resistance of a magnesia-containing amorphous refractory, characterized by estimating the amount of magnesium and predicting deterioration and cracking of the amorphous refractory.
[0013]
(2) Conduct a digestion test of the magnesia-containing amorphous refractory by hydrothermal treatment, measure the thermogravimetry of the sample after the test, and calculate the weight loss from about 300 ° C to about 360 ° C from the differential curve of weight loss rate. A method for evaluating the digestion resistance of a magnesia-containing amorphous refractory, characterized in that the amount of magnesium hydroxide in a sample is estimated from the amount of weight loss, and deterioration and cracking of the amorphous refractory are predicted.
[0014]
(3) The digestion test is carried out at 110 ° C. or higher and 170 ° C. or lower, saturated water vapor pressure 0.14 MPa or higher and 0.8 MPa or lower, 3 hours or longer and 60 hours or shorter. Digestion resistance evaluation method for regular refractories.
[0015]
(4) According to any one of (1) to (3), it is predicted that no deterioration or cracking occurs when the amount of magnesium hydroxide in the sample after the digestion test is 0.5 mass% or less. Digestion resistance evaluation method for magnesia-containing amorphous refractories.
[0016]
In the present invention, about 300 (360) ° C. is due to variations due to measurement conditions such as heating rate and ambient temperature, and includes a range of 300 (360) ± 5 ° C.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0018]
Thermogravimetry (TG) is a method of measuring the mass of a sample as a function of temperature or time while changing the temperature of the sample according to a fixed program. Sample thermal decomposition, dehydration, decarboxylation, etc. This is a method that can easily and quantitatively measure this phenomenon. Generally used to evaluate the heat resistance of various materials such as inorganic, organic, and polymer materials. Specifically, it measures the thermal decomposition temperature / decomposition amount of substances, the determination of adhering water and crystal water, dehydration temperature, etc. It is.
[0019]
The thermogravimetric measuring device includes a lifting type, a horizontal type, and a hanging type, any of which may be used. The heating atmosphere may be dry air, dry nitrogen, argon, helium, or vacuum, but dry nitrogen or argon is easy to use. The sample is placed in a container for measurement. The container is preferably made of aluminum if the measurement temperature is 600 ° C. or lower, and platinum, aluminum oxide, copper, or stainless steel if the measurement temperature is 600 ° C. or higher. If only magnesium hydroxide is to be measured, a measurement temperature of 600 ° C. or lower is sufficient, but since decarboxylation of carbonates and the like starts from around 600 ° C., a platinum container is required for evaluation including carbonates. It is preferable to heat to about 1000 ° C. using The heating pattern is preferably maintained by raising the temperature to about 110 ° C. at which the adhering water evaporates and then further heating to measure dehydration of magnesium hydroxide, decomposition of carbonate, etc. Heating may be performed linearly at a speed. Moreover, the temperature to hold | maintain may be divided further finely and step temperature rising may be performed. The heating rate is preferably set between 1 ° C./min and 100 ° C./min. It takes time to measure at 1 ° C./min or less, and at 100 ° C./min or more, it becomes impossible to distinguish which component causes which weight loss is caused by which reaction.
[0020]
FIG. 1 shows the thermogravimetric decrease amount and thermogravimetric decrease rate of magnesia-containing amorphous refractory (chemical composition: Al 2 O 3 = 90 mass%, MgO = 5 mass%) subjected to an autoclave digestion test. The heating condition is 50 ° C. (5 minutes hold) → 50 ° C./min→110° C. (10 minutes hold) → 10 ° C./min→1000° C. (15 minutes hold), and the atmosphere is
[0021]
The magnesia-containing amorphous refractory has a very complicated composition, and the thermogravimetric decrease curve and the thermogravimetric decrease rate curve of the refractory subjected to the digestion test are very complicated. Therefore, the same sample is referred to as “Iron and Steel”, Vol. 88 (2002), No. 9, p. As a result of measuring by the method described in 507-512, an absorption band based on the hydroxyl group of magnesium hydroxide was observed at about 3698 cm −1, and it was found that this absorption band decreased from about 300 ° C. and disappeared. That is, the dehydration temperature of magnesium hydroxide is about 330 ° C., which corresponds to a weight loss of about 300 ° C. to about 360 ° C. detected slightly in the thermogravimetric decrease curve and the thermogravimetric decrease rate curve of FIG.
[0022]
To specifically estimate the amount of magnesium hydroxide according to the method described in (1) above, the weight of the inflection point of about 300 ° C. and the inflection point of about 360 ° C. in the thermogravimetric decrease curve of FIG. From the difference from the reduction rate, the weight reduction rate accompanying dehydration of magnesium hydroxide is determined. The inflection point is read from the intersection of tangents near the inflection point.
[0023]
In order to estimate the amount of magnesium hydroxide specifically according to the method described in (2) above, it corresponds to the trough of the thermogravimetric decrease rate with time in the thermogravimetric decrease rate curve (differential curve) in FIG. The weight reduction rate accompanying dehydration of magnesium hydroxide is obtained from the integrated value between the two. The following formula (1) is used to calculate the amount of magnesium hydroxide from the rate of decrease accompanying dehydration of magnesium hydroxide.
[0024]
[Chemical 1]
[0025]
Here, 0.309 is the dehydration rate of magnesium hydroxide (100 mass%) obtained by the following formula (2).
[0026]
[Chemical 2]
[0027]
FIG. 3 shows a high-temperature infrared absorption spectrum of the refractory subjected to the digestion test. It was confirmed that the portion corresponding to about 3698 cm −1 indicated by the arrow in the figure was absorption due to magnesium hydroxide and disappeared at about 360 ° C.
[0028]
Digestion is a phenomenon in which a raw material reacts with water or water vapor to form a hydroxide, that is, a hydration phenomenon, which leads to the occurrence of cracks and defects and collapse due to volume expansion when the oxide changes to hydroxide. There is. For example, when magnesium hydroxide is produced by the hydration reaction of magnesium oxide, the volume expansion is about 2.2 times. In the irregular refractory, cracks and defects occur when the volume increase rate after construction exceeds 0.2%. The density of magnesium hydroxide is 3.58 g / cm 3 , and 0.5 mass% corresponds to 0.14 vol%. When this volume expands 2.2 times, it becomes 0.31 vol%, and the volume increase rate after construction becomes 0.17 vol%.
[0029]
The digestion test using an autoclave, which is a representative method of hydrothermal treatment, basically conforms to JIS-R2211. The temperature and time of the digestion test should be determined by searching for the optimum conditions reflecting the actual machine according to the type of material, kiln lining thickness and drying equipment, and are not particularly limited. In general, it is often held at a temperature of about 110 to 170 ° C., a pressure of 0.14 to 0.8 MPa, and about 3 to 60 hours. When the temperature is higher than this, or when a test is performed for a long time, the amount of Mg (OH) 2 generated is increased, the sample is severely collapsed, and mutual comparison may be difficult. In addition, when the temperature is too low or when the test is performed for a short time, the hydration reaction hardly proceeds, so that it is difficult to compare each other.
[0030]
As another hydrothermal test method, there is also a method in which a cast block is held in a dryer or a thermostatic bath and used as a criterion for digestion resistance based on the degree of cracking and the linear change rate (for example, Refractory, 41, 690, see the method described in (1980). Furthermore, as in the method described in the refractory 42, 9, 488-493 (1990), etc., a digestion test method has been proposed in which a large number of samples are simultaneously contained and efficient and accurate. A hydrothermal test may be used.
[0031]
The amorphous refractories targeted by the present invention are magnesia-lime, alumina-magnesia, clay, waxy, magnesia, magnesia-chromy, dolomite, magnesia-carbon, alumina-carbon, The material is not limited as long as it contains magnesia even in a small amount, such as alumina, silicon carbide, carbon, alumina, magnesia, and carbon. Further, the curing method is not limited to hydraulic property using a hydration reaction like alumina cement, and may be any of chemical curing property, thermosetting property, and air-hardening property, and is not particularly limited. The construction method may be pouring, troweling, spraying, vibration construction, driving in, press fitting, or the like. The chemical composition and shape are not particularly specified.
[0032]
The amount of construction moisture of the amorphous refractory or the precast block is not particularly limited, but if it is less than 3% by mass, the fluidity is insufficient and construction is difficult. When it exceeds 8 mass%, the porosity after drying is high and the durability in an actual furnace becomes insufficient. Therefore, the water content is preferably 3 to 8% by mass.
[0033]
From FIG. 1, this weight reduction amount is read as about 0.41% by mass, and when converted to magnesium hydroxide, it becomes about 1.3% by mass.
[0034]
【Example】
Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to these examples.
[0035]
Evaluation was performed on the side wall of the molten steel pan. An alumina-magnesia castable for a molten steel pan was used. As a digestion resistance measure, 0.02 to 0.15 mass% of silica was coated on magnesia, and the influence on crack generation was compared. The main compositions of these materials are shown in Table 1. The silica coating method is performed in accordance with the method described in Refractory 47, 599-600 [12] (1995), in which a magnesia clinker is charged into a rotary mixer, and an organic silica compound solution diluted with an organic solvent is added and mixed. After uniformly adhering to the surface in the apparatus, heat treatment was performed in a thermostatic bath set at 150 ° C. to stabilize the coating layer. The amount of construction water is 6%. The size of the test sample is 40 × 40 × 160 mm, the curing is 20 ° C. for 24 hours, the kneading temperature and the water temperature are 15 ° C. The digestion test using an autoclave was performed at 125 ° C. for 15 hours.
[0036]
In addition to the thermogravimetric measurement of the sample after the autoclave test according to the present invention, a linear change rate before and after the autoclave test was also measured as a comparative example. Thermogravimetry was performed in an argon gas atmosphere at 20 ° C./min. The temperature was raised at room temperature, and measurements from room temperature to 600 ° C. were performed. The linear change rate before and after the test was measured according to JIS-R2208.
[0037]
Table 1 also shows the results of investigating the crack condition after applying these materials to the actual ladle and drying.
[0038]
[Table 1]
[0039]
In the evaluation of the linear change rate of the comparative example performed so far, almost no difference was observed between the samples A to D having different amounts of the magnesia hydration inhibitor. However, looking at the situation after the drying of the molten steel pan wall with the actual machine, when the samples A and B are lined, cracks with a width of about 5 mm are recognized over the entire circumference, and there is a high possibility that the molten steel and slag will penetrate. It was not preferable. On the other hand, when the amount of the magnesia hydration inhibitor added is larger than that of Samples A and B, Sample C has a microcrack having a width of about 1 mm or less, and Sample D has almost no cracks. Met. As described above, the crack generation prediction method using the line change rate before and after the autoclave test in the laboratory could not predict crack generation in the actual machine.
[0040]
Next, application of an evaluation method using thermogravimetry (TG) of the present invention was attempted. Thermogravimetry was performed on the sample after the autoclave test. Looking at the thermogravimetric weight loss curves, Samples A and B show a significant weight loss between about 300 ° C. and about 360 ° C. It is predicted that a dehydration reaction from magnesium hydroxide to magnesia has occurred. Therefore, it is considered that the production of magnesium hydroxide has progressed in the autoclave test.
[0041]
On the other hand, when the weight loss curves of thermogravimetry of samples C and D to which a higher amount of magnesia hydration inhibitor was added than samples A and B were observed, the weight loss was almost between 300 ° C. and 360 ° C. Was not recognized. Therefore, it is inferred that the hydration reaction of magnesia → magnesium hydroxide did not proceed in the autoclave test as compared with samples A and B. Actually, when the situation after drying of the molten steel pan wall was observed with an actual machine, Sample A, in which a significant weight reduction was observed between about 300 ° C. and about 360 ° C. corresponding to dehydration of magnesium hydroxide by thermogravimetry. In B, remarkable cracks were observed, whereas in Samples C and D in which no significant weight loss was observed between about 300 ° C. and about 360 ° C., almost no cracks were observed.
[0042]
It became clear that the crack generation prediction method based on the weight loss of about 300 ° C. to about 360 ° C. of the thermogravimetry of the present invention is more effective than the conventional method.
[0043]
【The invention's effect】
By this invention, it became possible to evaluate the digestion resistance of the amorphous refractory containing magnesia with high precision.
[Brief description of the drawings]
FIG. 1 is a thermogravimetric decrease curve of a magnesia-containing amorphous refractory after a digestion test.
FIG. 2 is a thermogravimetric decrease rate curve of an magnesia-containing amorphous refractory after a digestion test.
FIG. 3 is a high-temperature infrared absorption spectrum of a magnesia-containing amorphous refractory after a digestion test.
Claims (4)
試験後の試料の熱重量測定を行って約300℃から約360℃への重量減少率に基づいて、試料中の水酸化マグネシウム量を推定し、
前記不定形耐火物の劣化・亀裂発生を予測することを特徴とするマグネシア含有不定形耐火物の耐消化性評価方法。We conducted a digestion test by hydrothermal treatment of amorphous refractories containing magnesia,
Thermogravimetric measurement of the sample after the test was performed, and the amount of magnesium hydroxide in the sample was estimated based on the weight loss rate from about 300 ° C. to about 360 ° C.,
A method for evaluating the digestion resistance of a magnesia-containing amorphous refractory, characterized by predicting deterioration and cracking of the amorphous refractory.
試験後の試料の熱重量測定を行って、重量減少率の微分曲線から約300℃から約360℃への重量減少量を求め、
重量減少量から試料中の水酸化マグネシウム量を推定し、
前記不定形耐火物の劣化・亀裂発生を予測することを特徴とするマグネシア含有不定形耐火物の耐消化性評価方法。We conducted a digestion test by hydrothermal treatment of amorphous refractories containing magnesia,
The thermogravimetric measurement of the sample after the test is performed, and the weight loss amount from about 300 ° C. to about 360 ° C. is obtained from the differential curve of the weight loss rate,
Estimate the amount of magnesium hydroxide in the sample from the weight loss,
A method for evaluating the digestion resistance of a magnesia-containing amorphous refractory, characterized by predicting deterioration and cracking of the amorphous refractory.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003200336A JP3996878B2 (en) | 2003-07-23 | 2003-07-23 | Method for evaluating digestion resistance of amorphous refractories containing magnesia |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003200336A JP3996878B2 (en) | 2003-07-23 | 2003-07-23 | Method for evaluating digestion resistance of amorphous refractories containing magnesia |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005043086A JP2005043086A (en) | 2005-02-17 |
JP3996878B2 true JP3996878B2 (en) | 2007-10-24 |
Family
ID=34260773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003200336A Expired - Fee Related JP3996878B2 (en) | 2003-07-23 | 2003-07-23 | Method for evaluating digestion resistance of amorphous refractories containing magnesia |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3996878B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101614686B (en) * | 2008-06-27 | 2011-05-25 | 中华大学 | Method for analyzing and detecting fire-resistant coating product |
TWI391654B (en) * | 2008-06-30 | 2013-04-01 | Univ Chung Hua | Method for analyzing and detecting fire-resistant coating material product |
JP6347511B2 (en) * | 2014-04-12 | 2018-06-27 | Jfeスチール株式会社 | Method for separating and recovering carbon components from refractories containing carbon |
CN106885753B (en) * | 2017-03-24 | 2019-04-02 | 中国建筑材料科学研究总院 | The method that minusing measures periclase degree of hydration in cement |
CN110057823B (en) * | 2019-05-23 | 2021-10-22 | 南京大学(苏州)高新技术研究院 | Rock-soil mass disintegration testing device and analysis method |
CN110530753A (en) * | 2019-08-13 | 2019-12-03 | 上海市建筑科学研究院 | The test method of existing building outer heat preservation system anticracking grout polymer content |
CN111781086A (en) * | 2020-08-11 | 2020-10-16 | 中钢集团洛阳耐火材料研究院有限公司 | Method for rapidly detecting high-temperature oxidation resistance of silicon carbide refractory material |
CN114486614A (en) * | 2022-01-19 | 2022-05-13 | 江西广源化工有限责任公司 | Method for detecting content of magnesium hydroxide in brucite |
-
2003
- 2003-07-23 JP JP2003200336A patent/JP3996878B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005043086A (en) | 2005-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3996878B2 (en) | Method for evaluating digestion resistance of amorphous refractories containing magnesia | |
BRPI0908599B1 (en) | PLATE BRICK AND METHOD FOR PRODUCING A PLATE BRICK | |
Calvo et al. | Post-mortem analysis of alumina-magnesia-carbon refractory bricks used in steelmaking ladles | |
Luz et al. | MgO fumes as a potential binder for in situ spinel containing refractory castables | |
Fini et al. | Aluminum lactate role in improving hydration and drying behavior of MgO-bonded refractory castables | |
BRPI0922166B1 (en) | PLATE BRICK AND METHOD TO PRODUCE A PLATE BRICK | |
Zhang et al. | M-SH formation in MgO-SiO2slurries via wet milling for magnesia based castables | |
Parr et al. | Recent advances in refractories-aluminate binders and calcium aluminate bonded high-performance monolithic castables | |
Chen et al. | Microstructural evolution and thermal shock resistance mechanism of calcium magnesium aluminate (CMA) aggregate in alumina castables | |
WO2016198917A1 (en) | Refractories for applications in combustion chambers intended for producing energy and/or waste disposal | |
JP7135691B2 (en) | Evaluation Method of Delamination Resistance of Alumina-Magnesia Castable Refractories | |
Labadie et al. | Interaction between calcium and Al2O3-ZrO2-C slide gate plates | |
JP7187954B2 (en) | Evaluating Method of Delamination Resistance of Alumina-Magnesia Castable Refractories | |
JPH0687667A (en) | Zirconia-mullite containing castable refractory | |
JP2021155801A (en) | Spinel-magnesia-carbon brick for vacuum degassing device, and vacuum degassing device | |
Kipsanai | A Study of the Refractory Properties of Selected clay deposit in Chavakali, Kenya | |
JP2005030820A (en) | Method for evaluating digestion resistance of magnesia-containing amorphous refractory | |
Zhao et al. | Thermodynamic simulation of the effect of slag chemistry on the corrosion behavior of alumina–chromia refractory | |
JP4269148B2 (en) | Basic refractory | |
JP2020059612A (en) | Method for evaluating peeling resistance of alumina-magnesia quality castable refractory | |
JPH07291748A (en) | Executing method of monolithic refractory | |
Yaotsung et al. | Analysis of Corrosion Mechanisms of Low-cement or No-cement Al2O3-MgO Gunning Mix with Special Calcined Alumina in Rotary Slag Test | |
Vlasov et al. | Obtaining heat-resistant materials with the use of silica nanoparticles | |
Suvorov et al. | Suppression of Decarbonization and Resource Characteristics of Carbonized Spinel-Corundum Refractories in Steel-Pouring Ladle Lining | |
Faghihi-Sani et al. | Effect of Al and alumina additions on oxidation rate of mgO-C refractory |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050915 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070731 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070803 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3996878 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100810 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110810 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120810 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130810 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |