JP2005030820A - Method for evaluating digestion resistance of magnesia-containing amorphous refractory - Google Patents

Method for evaluating digestion resistance of magnesia-containing amorphous refractory Download PDF

Info

Publication number
JP2005030820A
JP2005030820A JP2003194225A JP2003194225A JP2005030820A JP 2005030820 A JP2005030820 A JP 2005030820A JP 2003194225 A JP2003194225 A JP 2003194225A JP 2003194225 A JP2003194225 A JP 2003194225A JP 2005030820 A JP2005030820 A JP 2005030820A
Authority
JP
Japan
Prior art keywords
magnesia
magnesium hydroxide
sample
amorphous refractory
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003194225A
Other languages
Japanese (ja)
Inventor
Yoshitoshi Saito
吉俊 齋藤
Kiyoshi Goto
潔 後藤
Yuji Fujioka
裕二 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003194225A priority Critical patent/JP2005030820A/en
Publication of JP2005030820A publication Critical patent/JP2005030820A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the deterioration caused by the digestion of amorphous refractory in an actual machine by properly suppressing the hydration reaction of magnesia. <P>SOLUTION: The digestion test of hydraulic magnesia-containing amorphous refractory due to hydrothermal treatment is performed and the infrared absorption spectrum of the sample after the test is measured. The amount of magnesium hydroxide in the sample is estimated on the basis of the peak height or peak area of an absorption band of a wave number of about 3,698 cm<SP>-1</SP>caused by the O-H expansion and contraction vibration of magnesium hydroxide to estimate the occurrence of the deterioration or crack of the amorphous refractory. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【産業上の利用分野】
本発明は、RH,DH等の二次精錬炉、溶鋼鍋,転炉、溶銑予備処理ランス等に使用されるマグネシア含有不定形耐火物を使用する技術において、水酸化マグネシウムの生成量を事前に予測し、マグネシアの水和による乾燥中の亀裂発生を抑制するための評価方法に関するものである。
【0002】
【従来の技術】
マグネシアは高耐火性、高塩基度スラグに対する高耐食性などの優れた性質を有するため、不定形耐火物を構成する原料にも広く用いられている。しかしながら、マグネシアを不定形耐火物に使用した場合、その施工体の乾燥時には高温・高圧下の水蒸気にさらされ、マグネシアは水と容易に反応(MgO+HO→Mg(OH))して体積膨張し亀裂発生や劣化を招くことがあるため、その水和特性は不定形耐火物の性能に大きな影響を与えやすい。実際、マグネシアを含む不定形耐火物は、養生や乾燥過程においてマグネシアの水和反応に伴う体積膨張が起因で物性の低下や亀裂の発生が起き、窯炉の寿命の低下を招くことがある。
【0003】
一般にマグネシア含有不定形耐火物の消化試験は非特許文献1に準じて、耐消化性、水和の評価を行ってきた。この方法は、オートクレーブ(高温・高圧容器)で消化試験を行ったあとの圧縮強度を測定して、それらの値から消化に伴う圧縮強度の低下率を算出して評価する方法である。さらに、オートクレーブ試験後の亀裂や崩壊状態の観察、オートクレーブ試験前後の線変化率の測定等で行ってきた。
【0004】
しかしながら、これらの評価方法で顕著な差異が認められるような場合、実際にはかなり大きな亀裂発生を招くケースが多く、実際には、これらの評価方法では差異が認められないような場合でも、亀裂発生の有無や亀裂の程度に差が見られることが多かった。また、生成する量的な問題から、マグネシアの水和物をX線回折で検出することが極めて困難であり、亀裂の発生とマグネシアの水和の定量的な関係を把握することは困難であった。
【0005】
さらに、不定形耐火物中のマグネシウムの分析方法としては、化学分析による方法のほか、蛍光X線分析法、電子線マイクロアナライザーによる方法などが知られているが、これらの方法ではマグネシウムの形態(酸化物、水酸化物、炭酸塩等)を調べることはできなかった。またマグネシウムの形態を調べる方法としては、X線回折による方法が知られているが、X線回折では結晶性が低いと検出できないという問題があった。
【0006】
このように、実機の不定形耐火物をライニングした大型窯炉の状況を十分に反映したものではなかった。そのため、実機での亀裂を予測できるような評価方法の確立が求められてきた。
【0007】
【非特許文献1】
JIS−R2211の「塩基性耐火れんがの消化性の試験方法」
【0008】
【発明が解決しようとする課題】
従来の不定形耐火物の耐消化性の評価方法では、実機での亀裂発生を予測することが極めて困難であることが明らかになった。
本発明は、上記のような点を鑑みて、マグネシアの水和反応を適切に抑制し、実機における不定形耐火物の消化による劣化を抑制することを可能にする評価方法を提供するものである。
【0009】
【課題を解決するための手段】
本発明者らは上記課題を解決するために鋭意検討した結果、水熱処理による消化試験後の試料の赤外線吸収スペクトルより、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積から、試料中の水酸化マグネシウム量を推定することができ、この水酸化マグネシウム量からマグネシア含有不定形耐火物の劣化・亀裂発生を予測できることを突き止め、この知見をもとに本発明を完成したものである。
【0010】
本発明の要旨とするところは、以下の通りである。
【0011】
(1)水硬性のマグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の赤外線吸収スペクトルを測定し、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積に基づいて、試料中の水酸化マグネシウム量を推定し、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とするマグネシア含有不定形耐火物の耐消化性評価方法。
【0012】
(2)マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の赤外線吸収スペクトルを測定し、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積に基づいて、予め測定した水酸化マグネシウムの検量線から、概試料中の水酸化マグネシウム量を求め、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とする前記(1)記載のマグネシア含有不定形耐火物の耐消化性評価方法。
【0013】
(3)マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料に既知物質を内部標準試料として添加して、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積と内部標準試料の特性吸収帯のピーク高さ又はピーク面積との比較から水酸化マグネシウム量を推定し、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とする前記(1)記載のマグネシア含有不定形耐火物の耐消化性評価方法。
【0014】
(4)マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の赤外線吸収スペクトルを測定し、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積に基づいて、他の波数領域に観測される不定形耐火物成分の吸収帯のピーク高さ又はピーク面積との比較から水酸化マグネシウム量を推定し、劣化・亀裂発生を予測することを特徴とする前記(1)記載のマグネシア含有不定形耐火物の耐消化性評価方法。
【0015】
(5)消化試験を110℃以上170℃以下、飽和水蒸気圧0.14MPa以上0.8MPa以下、3時間以上60時間以下で行うことを特徴とする前記(1)から(4)のいずれか1項に記載のマグネシア含有不定形耐火物の耐消化性評価方法。
【0016】
(6)消化試験後の試料中の水酸化マグネシウム量が0.5質量%以下の時に劣化・亀裂発生なしと予測することを特徴とする前記(1)から(5)のいずれか1項に記載のマグネシア含有不定形耐火物の耐消化性評価方法。
【0017】
なお、耐火物中に水酸化マグネシウムが生成すると、水酸化マグネシウムのO−H伸縮振動に起因する吸収帯が波数約3698cm−1に観測される。吸収帯の波数は、測定装置の分解能条件、共存する成分などによって変動するが、変動範囲は一般的な測定条件である分解能4cm−1では±2cm−1程度である。
【0018】
【発明の実施の形態】
以下に本発明の詳細を説明する。
【0019】
赤外分光分析法は、試料に赤外線を照射し、分子振動のうち、双極子能率の変化を起こす振動に起因する吸収スペクトルを測定する方法で、有機化合物に対する官能基の定性及び定量分析、芳香族置換体の分析、高分子化合物の分析、一部無機化合物の分析に広く用いられている。水酸化マグネシウムの赤外線吸収スペクトルには、3698cm−1付近に水酸化マグネシウムのO−H伸縮振動に基因する、鋭い吸収帯が観測される。約3698cm−1の吸収帯は水酸化マグネシウム固有のもので、例えば水酸化カルシウムのO−H伸縮振動は約3643cm−1に観測され、水酸化アルミニウムはスペクトルパターンが全く異なる。このように、最大吸収波数、吸収帯の数や強度比、吸収帯の半値幅などのスペクトルパターンから化合物の定性分析が行われる。一方、定量分析は吸収帯の強度がLambert−Beerの法則に従うことを利用する。
【0020】
log(I/I) =act (1)
ここでIは照射(基準)光量、Iは透過(試料透過)光量、log(I/I)は吸光度(常用対数)、aはモル吸光係数、cは濃度[質量%]、tは光路長[cm]を示す。
【0021】
モル吸光係数aは各吸収帯固有の係数で、一定である。光路長tは、固体試料測定の場合、試料量を意味するため、あらかじめ試料量を測定しておけば、既知となる。すなわち、吸収帯の強度を吸光度で測定すれば、その強度と濃度は比例関係となる。吸収帯の強度はピーク高さ、またはピーク面積の何れを用いても良い(前記(1)に係る本発明)。
【0022】
不定形耐火物のような固体試料の赤外線吸収スペクトル測定法としては、試料を粉末とし、その粉末試料の一定量を赤外線に透明な臭化カリウムや塩化ナトリウム、塩化カリウムなどと混合して加圧・成型する錠剤法、試料粉末と上記赤外線透明材料を混合して赤外線を照射し、拡散反射される赤外線を分光する拡散反射法、測定する吸収帯に影響を与えない吸収スペクトルを持つ液体(例えば流動パラフィンなどの炭化水素)と試料を混合してペーストを作り、ペーストを赤外線透過窓材に塗付、あるいは2枚の赤外線透過窓材で挟んで測定する液膜法があるが、錠剤法が最も簡便で、定量性も良い。一般的な錠剤法は、試料と臭化カリウムを粉砕・混合して加圧・成型する。試料と臭化カリウムの量は、13mmφ程度の大きさの錠剤を成型する場合、臭化カリウム約300mgに対し、試料量0.1から10mg程度が良いが、錠剤の大きさ、試料中の測定する成分量、吸収帯のモル吸光係数などによって比率を変えても良い。
【0023】
吸収帯の強度から水酸化マグネシウム量を求めるには、上記のほかに、▲1▼あらかじめ試薬の水酸化マグネシウムを用いて、試薬量とO−Hに基因する吸収帯の強度から検量線を作成しておき、次に一定量の試料を秤量して、その赤外線吸収スペクトルを測定し、試料中の水酸化マグネシウムに基因するO−H吸収帯の強度を算出し、検量線からこの吸収帯強度に相当する水酸化マグネシウム量を求め、試料の不定形耐火物の重量に占める割合を算出する検量線法(前記(2)に係る本発明)、▲2▼既知の他物質を内部標準として一定量添加し、水酸化マグネシウムのO−H吸収帯の強度と内部標準との強度比から定量する内部標準法(前記(3)に係る本発明)、▲3▼不定形耐火物の構成成分で、水酸化マグネシウムのO−H吸収帯と波数位置の異なる吸収帯を利用し、その強度と水酸化マグネシウムのO−H吸収帯の強度比から求める方法(前記(4)に係る本発明)などがあるが、検量線法が最も精度が良い。
【0024】
次に水酸化マグネシウム量を求める方法を具体的に述べる。水熱処理による消化試験を行ったマグネシア含有不定形耐火物を粉砕し、その一定量を秤量して赤外線吸収スペクトルを測定する。赤外吸収スペクトルの測定法は、前記の赤外線に透明な臭化カリウムや塩化ナトリウム、塩化カリウムなどと混合して加圧・成型する錠剤法、試料粉末と上記赤外線透明材料を混合して赤外線を照射し、拡散反射される赤外線を分光する拡散反射法、測定する吸収帯に影響を与えない吸収スペクトルを持つ液体(例えば流動パラフィンなどの炭化水素)と試料を混合してペーストを作り、ペーストを赤外線透過窓材に塗付、あるいは2枚の赤外線透過窓材で挟んで測定する液膜法の何れでも良い。消化試験後のマグネシア含有不定形耐火物中に水酸化マグネシウムが生成すると、水酸化マグネシウムのO−H伸縮振動に基因する吸収帯が波数約3698cm−1に観測される。吸収帯の強度は、Lambert−Beerの法則に従うため、この吸収態の強度を測定すれば、一定試料量であれば試料間で水酸化マグネシウム量の比較ができ、試料中の水酸化マグネシウム量を推定することができる。あるいは、予め測定した水酸化マグネシウムの検量線から、概試料中の水酸化マグネシウム量を求めても良い。また、試料に既知物質を内部標準試料として添加して、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積と内部標準試料の特性吸収帯のピーク高さ又はピーク面積との比較から水酸化マグネシウム量を求めても良い。さらに、他の波数領域に観測される不定形耐火物成分の吸収帯のピーク高さ又はピーク面積との比較から水酸化マグネシウム量を推定しても良い。他の波数領域として、4000〜3800cm−1および3600cm−1〜590cm−1の何れかを使用することができる。
【0025】
以上のような方法により、水熱処理による消化試験を行ったマグネシア含有不定形耐火物中の水酸化マグネシウム量を測定することができ、劣化・亀裂発生を好適に予測することができる。
【0026】
図1に水熱処理による消化試験を行ったマグネシア含有不定形耐火物(化学組成:Al=90質量%,MgO=7質量%)と、試薬の水酸化マグネシウムの赤外吸収スペクトルを示す。マグネシア含有不定形耐火物の試料量は1.0mg、水酸化マグネシウムは0.5mgで測定し、スペクトルを0.01mg相当に換算した。消化試験を行ったマグネシア含有不定形耐火物中には、水酸化マグネシウムと一致する、約3698cm−1の吸収帯が観測される。この吸収帯の強度から消化試験後のマグネシア含有不定形耐火物中の水酸化マグネシウム量を算出すると、約1.3質量%と推定される。
【0027】
消化試験後のマグネシア含有不定形耐火物で観測される約3698cm−1の吸収帯が、水酸化マグネシウムのものかどうかを検証するために、「鉄と鋼」(第88巻(2002)、第9号、P507−512)に示される高温赤外分光法で吸収帯の温度変化を観測した。図2に消化試験後のマグネシア含有不定形耐火物、図3に水酸化マグネシウム(試薬)の高温赤外吸収スペクトルを示す。水酸化マグネシウムは、加熱すると脱水して酸化マグネシウムとなることから、約3698cm−1の吸収帯が水酸化マグネシウムのO−H吸収帯であるならば、脱水に伴って、約3698cm−1の吸収帯は消失するはずである。消化試験後のマグネシア含有不定形耐火物と試薬の水酸化マグネシウムの高温赤外吸収スペクトルを測定し、約3698cm−1の吸収帯強度の温度変化を検討した結果、耐火物、試薬とも約3698cm−1の吸収帯強度の温度変化は一致し、約300℃から強度が減少し始め、約400℃で消失した。
【0028】
消化とは、原材料が水や水蒸気と反応して水酸化物を生成する現象すなわち水和現象であり、酸化物から水酸化物変化する際の体積膨張から亀裂や欠陥の発生、崩壊を招くことがある。例えば、酸化マグネシウムの水和反応で水酸化マグネシウムができるときには、約2.2倍の体積膨張をおこす。
【0029】
オートクレーブによる消化試験の方法は、基本的にはJIS−R2211に準ずる。消化試験の温度や時間は、材料の種類、窯炉のライニング厚みや乾燥設備に応じて、実機を反映する最適な条件を探索して決定すべきであり、特に限定するものではない。一般的には、温度110〜170℃程度、圧力0.14〜0.8MPa、3〜60時間程度の保持を行うことが多い。これよりも、温度が高い場合あるいは長時間の試験を行う場合、Mg(OH)の生成量が多くなり、試料の崩壊が激しく、相互比較が困難な場合がある。また、温度が低すぎる場合あるいは短時間の試験では、ほとんど水和反応が進まないため、やはり相互の比較が困難になる。
【0030】
水熱処理試験の方法として、この他にも、鋳込み成形したブロックを乾燥機や恒温槽中に保持して、現れる亀裂の程度や線変化率で耐消化性の判定基準とする方法もある(「耐火物」,41,690,(1980))。さらに、「耐火物」(42,9,488〜493(1990))等のように、一度に多くのサンプルを同時におさめて能率よくかつ精度面でも優れた消化試験方法が提案されており、いずれの水熱処理試験を用いても構わない。
【0031】
本発明の対象とする不定形耐火物は、マグネシア−ライム質、アルミナ−マグネシア質、粘土質、ろう石質、マグネシア質、マグネシア・クロム質、ドロマイト質、マグネシア・カーボン質、アルミナ・カーボン質、アルミナ・炭化珪素・カーボン質、アルミナ・マグネシア・カーボン質など、微量でもマグネシアを含有するものであれば、限定するものではない。水硬性とは、主にアルミナセメントのような水和反応によって硬化する結合材を用いたもので、1質量%程度の少量でも水を添加することで硬化が促進されるものであれば、いずれでもよく特に限定するものではない。施工法も流し込み、こて塗り、吹き付け、振動施工、打ち込み、圧入等のいずれに用いられるものでも構わない。化学組成や形状も特に規定しない。
【0032】
不定形耐火物又はプレキャストブロックの施工水分量は、特に限定するものではないが、3質量%未満では流動性が不足し施工が困難である。8質量%を超えると、乾燥後の気孔率が高く、実炉における耐用性が不十分になる。したがって、水分量を3〜8質量%とすることが好ましい。
【0033】
【実施例】
以下に本発明を実施例によって説明する。ただし、本発明はこれらの実施例に限定されるものではない。溶鋼鍋の壁を対象として評価を行った。溶鋼鍋の一般壁用のアルミナ−マグネシア質キャスタブルを使用した。耐消化すなわちマグネシアの水和抑制対策として,シリカ0.02〜0.15質量%をマグネシアにコーティングし、亀裂発生への影響を比較した。これらの材料の主要な組成を表1に示す。シリカのコーティング方法は、「耐火物」(47,599−600〔12〕(1995))に記載の方法に従い、マグネシアクリンカーを回転式混合装置に装入し、有機溶媒で希釈した有機シリカ化合物の溶液を添加、混合装置内で均質に表面に付着させた後、150℃に設定した恒温槽で加熱処理を行い、コーティング層を安定化させた。施工水分量は6%である。試験用の試料のサイズは40×40×160mm、養生は20℃で24時間、混練時の温度及び水温は15℃である。オートクレーブによる消化試験は125℃で15時間行った。
【0034】
本発明であるオートクレーブ試験後試料の赤外分光分析のほかに、比較例として、オートクレーブ試験前後での線変化率の測定を併せて実施した。線変化率の測定は、JIS−R2208に準じて行った。
【0035】
これらの材料を実機の溶鋼鍋に適用し、ガスバーナーで乾燥を行った後の亀裂状況を調査した結果も表1に併せて示す。
【0036】
【表1】

Figure 2005030820
【0037】
従来まで行ってきた比較例の線変化率の評価では、マグネシアの水和抑制剤の量が異なる試料A〜Dの間でほとんど差は認められなかった。しかしながら、実機で溶鋼鍋壁の乾燥後の状況を見ると、試料A及びBをライニングした場合には幅5mm程度の亀裂が全周にわたって認められ、溶鋼やスラグが浸透する可能性が高く、使用上好ましくなかった。
【0038】
これに対して、試料A及びBよりもマグネシアの水和抑制剤の量が多く添加された場合を見ると、試料Cでは幅1mm以下程度の微亀裂、試料Dではほとんど亀裂は認められず良好であった。このように、ラボのオートクレーブ試験前後の線変化率を用いた亀裂発生予測方法では、実機での亀裂発生を予測することができなかった。
【0039】
次に、本発明の赤外分光分析を用いた評価法の適用を試みた。オートクレーブ試験後試料の赤外分光分析のスペクトルを見ると、試料A及びBでは、3698cm−1付近に鋭いピークが認められ、マグネシア→水酸化マグネシウムの水和が進んでいることが明らかになった。一方、試料A及びBよりもマグネシアの水和抑制剤の量が多く添加された試料C及びDの赤外分光分析のスペクトルを見ると、3698cm−1付近に明瞭なピークは認められなかった。したがって、試料A及びBと比べると、マグネシア→水酸化マグネシウムの水和反応が進んでいないことがわかった。実際に、実機で溶鋼鍋壁の乾燥後の状況を見ると、赤外分光分析で水酸化マグネシウムに相当する3698cm−1付近に鋭いピークが認められた試料A及びBでは顕著な亀裂が認められたのに対し、3698cm−1付近に顕著なピークが認められなかった試料C及びDではほとんど亀裂は認められず、本発明の赤外分光分析のピークに基づいた亀裂発生予測方法が従来法に比べて有効であることが明らかになった。
【0040】
【発明の効果】
本発明により、マグネシアを含む不定形耐火物の耐消化性を高精度に評価することが可能になった。
【図面の簡単な説明】
【図1】は、水熱処理による消化試験を行ったマグネシア含有不定形耐火物と、試薬の水酸化マグネシウムの赤外吸収スペクトルを示す図面である。
【図2】は、消化試験後のマグネシア含有不定形耐火物の高温赤外吸収スペクトルを示す図面である。
【図3】は、水酸化マグネシウム(試薬)の高温赤外吸収スペクトルを示す図面である。[0001]
[Industrial application fields]
The present invention uses a magnesia-containing amorphous refractory used in secondary refining furnaces such as RH and DH, molten steel pans, converters, hot metal pretreatment lances, etc. The present invention relates to an evaluation method for predicting and suppressing crack generation during drying due to hydration of magnesia.
[0002]
[Prior art]
Since magnesia has excellent properties such as high fire resistance and high corrosion resistance against high basicity slag, it is widely used as a raw material for forming amorphous refractories. However, when magnesia is used as an irregular refractory material, when the construction body is dried, it is exposed to water vapor at high temperature and high pressure, and magnesia easily reacts with water (MgO + H 2 O → Mg (OH) 2 ). Since it may expand and cause cracking or deterioration, its hydration characteristics tend to have a large impact on the performance of the amorphous refractory. In fact, an amorphous refractory containing magnesia may deteriorate in physical properties and cracks due to volume expansion accompanying the hydration reaction of magnesia during curing and drying processes, leading to a decrease in the life of the kiln.
[0003]
In general, in digestion tests of magnesia-containing amorphous refractories, digestion resistance and hydration have been evaluated according to Non-Patent Document 1. This method is a method of measuring the compressive strength after performing a digestion test in an autoclave (high temperature / high pressure vessel), and calculating and evaluating the reduction rate of the compressive strength accompanying digestion from those values. Furthermore, it has been carried out by observing cracks and collapsed states after the autoclave test and measuring the linear change rate before and after the autoclave test.
[0004]
However, when there are significant differences between these evaluation methods, there are many cases that actually cause quite large cracks. In fact, even when these evaluation methods show no difference, There were often differences in the presence or absence of cracks and the degree of cracking. In addition, because of the quantitative problems that occur, it is very difficult to detect magnesia hydrates by X-ray diffraction, and it is difficult to grasp the quantitative relationship between cracking and magnesia hydration. It was.
[0005]
Furthermore, as a method for analyzing magnesium in an amorphous refractory, in addition to a method using chemical analysis, a fluorescent X-ray analysis method, a method using an electron beam microanalyzer, etc. are known. In these methods, the form of magnesium ( Oxides, hydroxides, carbonates, etc.) could not be examined. As a method for examining the form of magnesium, a method by X-ray diffraction is known, but there is a problem that X-ray diffraction cannot be detected if the crystallinity is low.
[0006]
Thus, it did not fully reflect the situation of large kilns lined with actual refractories. Therefore, it has been required to establish an evaluation method that can predict cracks in actual machines.
[0007]
[Non-Patent Document 1]
JIS-R2211 “Test method for digestibility of basic refractory bricks”
[0008]
[Problems to be solved by the invention]
It has become clear that it is extremely difficult to predict the occurrence of cracks in an actual machine by the conventional method for evaluating the digestion resistance of an irregular refractory.
In view of the above points, the present invention provides an evaluation method that appropriately suppresses the hydration reaction of magnesia and suppresses deterioration due to digestion of an amorphous refractory in an actual machine. .
[0009]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that the absorption at a wave number of about 3698 cm −1 due to the O—H stretching vibration of magnesium hydroxide is found from the infrared absorption spectrum of the sample after the digestion test by hydrothermal treatment. The amount of magnesium hydroxide in the sample can be estimated from the peak height or peak area of the belt, and it has been determined that the magnesium hydroxide amount can predict deterioration and cracking of magnesia-containing amorphous refractories. The present invention was originally completed.
[0010]
The gist of the present invention is as follows.
[0011]
(1) A hydrothermal treatment of a hydraulic magnesia-containing amorphous refractory was conducted, the infrared absorption spectrum of the sample after the test was measured, and a wave number of about 3698 cm −1 due to OH stretching vibration of magnesium hydroxide Based on the peak height or peak area of the absorption band, the amount of magnesium hydroxide in the sample is estimated, and deterioration and crack generation of the amorphous refractory are predicted. Digestion resistance evaluation method.
[0012]
(2) Digestion test by hydrothermal treatment of magnesia-containing amorphous refractory, and measuring the infrared absorption spectrum of the sample after the test, absorption band having a wave number of about 3698 cm −1 due to OH stretching vibration of magnesium hydroxide The amount of magnesium hydroxide in the approximate sample is obtained from a pre-measured calibration curve of magnesium hydroxide based on the peak height or peak area, and the deterioration and crack generation of the amorphous refractory are predicted. The digestion resistance evaluation method for the magnesia-containing amorphous refractory according to (1).
[0013]
(3) Digestion test by hydrothermal treatment of magnesia-containing amorphous refractory, a known substance is added as an internal standard sample to the sample after the test, and a wave number of about 3698 cm caused by OH stretching vibration of magnesium hydroxide Estimate the amount of magnesium hydroxide from the comparison of the peak height or peak area of the absorption band of 1 and the peak height or peak area of the characteristic absorption band of the internal standard sample, and predict the deterioration and cracking of the amorphous refractory The digestion resistance evaluation method for a magnesia-containing amorphous refractory according to (1), characterized in that:
[0014]
(4) Digestion test by hydrothermal treatment of magnesia-containing amorphous refractory, and measuring the infrared absorption spectrum of the sample after the test, absorption band having a wave number of about 3698 cm −1 due to OH stretching vibration of magnesium hydroxide Based on the peak height or peak area of magnesium, the amount of magnesium hydroxide is estimated from the comparison with the peak height or peak area of the absorption band of amorphous refractory components observed in other wavenumber regions, and deterioration and cracking occur The digestion resistance evaluation method for a magnesia-containing amorphous refractory according to (1), wherein
[0015]
(5) The digestion test is performed at 110 ° C. or more and 170 ° C. or less and a saturated water vapor pressure of 0.14 MPa or more and 0.8 MPa or less and 3 hours or more and 60 hours or less, wherein any one of the above (1) to (4) The digestion resistance evaluation method of the magnesia-containing amorphous refractory according to Item.
[0016]
(6) In any one of the above (1) to (5), it is predicted that no deterioration / cracking occurs when the amount of magnesium hydroxide in the sample after the digestion test is 0.5% by mass or less. The digestion resistance evaluation method of the magnesia containing amorphous refractory of description.
[0017]
When magnesium hydroxide is generated in the refractory, an absorption band due to OH stretching vibration of magnesium hydroxide is observed at a wave number of about 3698 cm −1 . Wavenumber of the absorption band, the resolution conditions of the measuring device, will vary depending on the components coexist, the variation range is a common order of ± 2 cm -1 in resolution 4 cm -1 is measured conditions.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Details of the present invention will be described below.
[0019]
Infrared spectroscopy is a method of irradiating a sample with infrared rays and measuring an absorption spectrum caused by vibration that causes a change in dipole efficiency among molecular vibrations. Qualitative and quantitative analysis of functional groups for organic compounds, aromatic analysis It is widely used for analysis of group-substituted products, analysis of polymer compounds, and analysis of some inorganic compounds. In the infrared absorption spectrum of magnesium hydroxide, a sharp absorption band due to the O—H stretching vibration of magnesium hydroxide is observed in the vicinity of 3698 cm −1 . The absorption band of about 3698 cm −1 is unique to magnesium hydroxide. For example, the O—H stretching vibration of calcium hydroxide is observed at about 3643 cm −1, and aluminum hydroxide has a completely different spectral pattern. Thus, the qualitative analysis of the compound is performed from the spectrum pattern such as the maximum absorption wave number, the number and intensity ratio of the absorption bands, and the half width of the absorption bands. On the other hand, the quantitative analysis utilizes the fact that the intensity of the absorption band follows Lambert-Beer's law.
[0020]
log (I 0 / I) = act (1)
Here, I 0 is the irradiation (reference) light amount, I is the transmitted (sample transmitted) light amount, log (I 0 / I) is the absorbance (common logarithm), a is the molar extinction coefficient, c is the concentration [mass%], and t is The optical path length [cm] is shown.
[0021]
The molar extinction coefficient a is a coefficient specific to each absorption band and is constant. The optical path length t means a sample amount in the case of solid sample measurement, and is known if the sample amount is measured in advance. That is, if the intensity of the absorption band is measured by absorbance, the intensity and concentration are proportional. As the intensity of the absorption band, either peak height or peak area may be used (the present invention according to (1) above).
[0022]
Infrared absorption spectrum measurement method for solid samples such as amorphous refractory, the sample is powder, and a certain amount of the powder sample is mixed with potassium bromide, sodium chloride, potassium chloride, etc., transparent to infrared, and pressurized・ Molding tablet method, sample powder and the above infrared transparent material are mixed and irradiated with infrared rays, diffuse reflection method to scatter diffusely reflected infrared rays, liquid with absorption spectrum that does not affect the absorption band to be measured (for example, There is a liquid film method in which a paste is made by mixing a sample (hydrocarbon such as liquid paraffin) and a sample, and the paste is applied to an infrared transmission window material or sandwiched between two infrared transmission window materials. Most convenient and quantitative. In a general tablet method, a sample and potassium bromide are pulverized and mixed, and pressed and molded. The amount of the sample and potassium bromide is about 0.1 to 10 mg for a sample of about 300 mg of potassium bromide when a tablet having a size of about 13 mmφ is molded. The ratio may be changed depending on the amount of components to be used, the molar extinction coefficient of the absorption band, and the like.
[0023]
To obtain the amount of magnesium hydroxide from the intensity of the absorption band, in addition to the above, (1) Prepare a calibration curve from the reagent amount and the intensity of the absorption band due to O-H in advance using magnesium hydroxide as a reagent. Next, a certain amount of sample is weighed, its infrared absorption spectrum is measured, the intensity of the OH absorption band due to magnesium hydroxide in the sample is calculated, and this absorption band intensity is calculated from the calibration curve. A calibration curve method (the present invention according to the above (2)) for calculating the amount of magnesium hydroxide corresponding to 1 and calculating the ratio of the sample to the weight of the amorphous refractory, (2) constant with other known substances as internal standards The internal standard method (the present invention according to (3) above), which is quantified from the strength ratio between the strength of the O—H absorption band of magnesium hydroxide and the internal standard, and (3) the constituent components of the amorphous refractory OH absorption band of magnesium hydroxide There is a method (the present invention according to (4) above) that uses absorption bands at different wave positions and obtains the intensity from the intensity ratio of the OH absorption band of magnesium hydroxide, but the calibration curve method has the highest accuracy. good.
[0024]
Next, a method for obtaining the amount of magnesium hydroxide will be specifically described. A magnesia-containing amorphous refractory subjected to a digestion test by hydrothermal treatment is pulverized, and a certain amount thereof is weighed to measure an infrared absorption spectrum. The infrared absorption spectrum can be measured by mixing the above infrared transparent potassium bromide, sodium chloride, potassium chloride, etc. with the tablet method of pressing and molding, mixing the sample powder and the above infrared transparent material to produce infrared rays. Diffusion method that irradiates and diffuses and reflects diffused infrared rays, liquid (for example, hydrocarbons such as liquid paraffin) that has an absorption spectrum that does not affect the absorption band to be measured and a sample are mixed to make a paste. Any of the liquid film methods may be used, which are applied to the infrared transmitting window material or sandwiched between two infrared transmitting window materials. When magnesium hydroxide is produced in the magnesia-containing amorphous refractory after the digestion test, an absorption band due to OH stretching vibration of magnesium hydroxide is observed at a wave number of about 3698 cm −1 . Since the intensity of the absorption band follows Lambert-Beer's law, if the intensity of this absorption state is measured, the amount of magnesium hydroxide can be compared between samples if the amount is constant, and the amount of magnesium hydroxide in the sample Can be estimated. Alternatively, the amount of magnesium hydroxide in the approximate sample may be obtained from a magnesium hydroxide calibration curve measured in advance. Further, a known substance is added to the sample as an internal standard sample, and the peak height or peak area of the absorption band having a wave number of about 3698 cm −1 due to the OH stretching vibration of magnesium hydroxide and the characteristic absorption band of the internal standard sample The amount of magnesium hydroxide may be determined from comparison with the peak height or peak area. Furthermore, the amount of magnesium hydroxide may be estimated from a comparison with the peak height or peak area of the absorption band of the amorphous refractory component observed in other wavenumber regions. As other wave number regions, any of 4000 to 3800 cm −1 and 3600 cm −1 to 590 cm −1 can be used.
[0025]
By the method as described above, the amount of magnesium hydroxide in the magnesia-containing amorphous refractory subjected to the digestion test by hydrothermal treatment can be measured, and the occurrence of deterioration and cracks can be suitably predicted.
[0026]
FIG. 1 shows infrared absorption spectra of magnesia-containing amorphous refractories (chemical composition: Al 2 O 3 = 90% by mass, MgO = 7% by mass) subjected to a digestion test by hydrothermal treatment and magnesium hydroxide as a reagent. . The sample amount of the magnesia-containing amorphous refractory was measured at 1.0 mg, magnesium hydroxide was measured at 0.5 mg, and the spectrum was converted to 0.01 mg equivalent. In the magnesia-containing amorphous refractory subjected to the digestion test, an absorption band of about 3698 cm −1 , which is consistent with magnesium hydroxide, is observed. When the amount of magnesium hydroxide in the magnesia-containing amorphous refractory after the digestion test is calculated from the strength of this absorption band, it is estimated to be about 1.3% by mass.
[0027]
In order to verify whether the absorption band of about 3698 cm −1 observed in the magnesia-containing amorphous refractory after the digestion test is that of magnesium hydroxide, “iron and steel” (Vol. 88 (2002), No. 1) No. 9, P507-512), the temperature change of the absorption band was observed by high-temperature infrared spectroscopy. FIG. 2 shows a high-temperature infrared absorption spectrum of magnesia-containing amorphous refractory after the digestion test, and FIG. 3 shows magnesium hydroxide (reagent). When magnesium hydroxide is heated, it dehydrates to become magnesium oxide. Therefore, if the absorption band of about 3698 cm −1 is the O—H absorption band of magnesium hydroxide, absorption of about 3698 cm −1 accompanies dehydration. The band should disappear. As a result of measuring the high-temperature infrared absorption spectrum of the magnesium hydride containing amorphous refractory containing the magnesia and the reagent after the digestion test and examining the temperature change of the absorption band intensity of about 3698 cm −1 , both the refractory and the reagent were about 3698 cm The temperature change of the absorption band intensity of 1 coincided, and the intensity started to decrease from about 300 ° C. and disappeared at about 400 ° C.
[0028]
Digestion is a phenomenon in which a raw material reacts with water or water vapor to form a hydroxide, that is, a hydration phenomenon, which leads to the occurrence of cracks and defects and collapse due to volume expansion when the oxide changes to hydroxide. There is. For example, when magnesium hydroxide is produced by the hydration reaction of magnesium oxide, the volume expansion is about 2.2 times.
[0029]
The digestion test method using an autoclave basically conforms to JIS-R2211. The temperature and time of the digestion test should be determined by searching for the optimum conditions that reflect the actual machine according to the type of material, kiln lining thickness and drying equipment, and are not particularly limited. In general, it is often held at a temperature of about 110 to 170 ° C., a pressure of 0.14 to 0.8 MPa, and about 3 to 60 hours. When the temperature is higher than this, or when a test is performed for a long time, the amount of Mg (OH) 2 generated is increased, the sample is severely collapsed, and mutual comparison may be difficult. In addition, when the temperature is too low or when the test is performed for a short time, the hydration reaction hardly proceeds, so that it is difficult to compare each other.
[0030]
As another hydrothermal test method, there is also a method in which a cast block is held in a dryer or a thermostat and used as a criterion for digestion resistance based on the degree of cracking and the rate of linear change (" Refractory ", 41, 690, (1980)). Furthermore, a digestion test method has been proposed that is efficient and accurate in terms of efficiency, such as “refractory” (42, 9, 488 to 493 (1990)). The hydrothermal treatment test may be used.
[0031]
The amorphous refractories targeted by the present invention are magnesia-lime, alumina-magnesia, clay, waxy, magnesia, magnesia-chromy, dolomite, magnesia-carbon, alumina-carbon, The material is not limited as long as it contains magnesia even in a small amount, such as alumina, silicon carbide, carbon, alumina, magnesia, and carbon. Hydraulic is mainly a binder that is cured by a hydration reaction such as alumina cement, and can be used as long as curing is accelerated by adding water even in a small amount of about 1% by mass. However, it is not particularly limited. The construction method may be any of pouring, troweling, spraying, vibration construction, driving in, press fitting, and the like. The chemical composition and shape are not particularly specified.
[0032]
The amount of construction moisture of the amorphous refractory or the precast block is not particularly limited, but if it is less than 3% by mass, the fluidity is insufficient and construction is difficult. When it exceeds 8 mass%, the porosity after drying is high and the durability in an actual furnace becomes insufficient. Therefore, the water content is preferably 3 to 8% by mass.
[0033]
【Example】
Hereinafter, the present invention will be described by way of examples. However, the present invention is not limited to these examples. Evaluation was made on the wall of a molten steel pan. Alumina-magnesia castable for general wall of molten steel pan was used. As a countermeasure against digestion resistance, that is, magnesia hydration suppression, 0.02 to 0.15% by mass of silica was coated on magnesia, and the effect on crack initiation was compared. The main compositions of these materials are shown in Table 1. The silica coating method was carried out according to the method described in “Refractories” (47,599-600 [12] (1995)), in which a magnesia clinker was charged into a rotary mixer and diluted with an organic solvent. After the solution was added and uniformly adhered to the surface in the mixing apparatus, heat treatment was performed in a thermostatic bath set at 150 ° C. to stabilize the coating layer. The amount of construction water is 6%. The size of the test sample is 40 × 40 × 160 mm, the curing is 20 ° C. for 24 hours, the kneading temperature and the water temperature are 15 ° C. The digestion test using an autoclave was performed at 125 ° C. for 15 hours.
[0034]
In addition to the infrared spectroscopic analysis of the sample after the autoclave test according to the present invention, a linear change rate before and after the autoclave test was also measured as a comparative example. The linear change rate was measured according to JIS-R2208.
[0035]
Table 1 also shows the results of investigating the crack condition after applying these materials to the actual molten steel pan and drying with a gas burner.
[0036]
[Table 1]
Figure 2005030820
[0037]
In the evaluation of the linear change rate of the comparative example performed so far, almost no difference was observed between the samples A to D having different amounts of the magnesia hydration inhibitor. However, looking at the situation after the drying of the molten steel pan wall with the actual machine, when the samples A and B are lined, cracks with a width of about 5 mm are recognized over the entire circumference, and there is a high possibility that the molten steel and slag will penetrate. It was not preferable.
[0038]
On the other hand, when the amount of magnesia hydration inhibitor added is larger than that of Samples A and B, Sample C has a fine crack of about 1 mm or less in width, and Sample D has almost no cracks. Met. As described above, the crack generation prediction method using the line change rate before and after the autoclave test in the laboratory could not predict crack generation in the actual machine.
[0039]
Next, application of an evaluation method using infrared spectroscopy of the present invention was attempted. Looking at the spectrum of the infrared spectroscopic analysis of the sample after the autoclave test, in Samples A and B, a sharp peak was observed in the vicinity of 3698 cm −1 , and it became clear that hydration of magnesia → magnesium hydroxide was progressing. . On the other hand, when the spectrum of the infrared spectroscopic analysis of samples C and D to which a larger amount of the magnesia hydration inhibitor was added than samples A and B was observed, no clear peak was observed in the vicinity of 3698 cm −1 . Therefore, it was found that the hydration reaction of magnesia → magnesium hydroxide did not proceed as compared with samples A and B. Actually, when the situation after drying of the molten steel pan wall was observed with an actual machine, remarkable cracks were observed in samples A and B in which a sharp peak was observed in the vicinity of 3698 cm −1 corresponding to magnesium hydroxide by infrared spectroscopic analysis. On the other hand, almost no cracks were observed in samples C and D in which no remarkable peak was observed in the vicinity of 3698 cm −1 , and the crack generation prediction method based on the peak of the infrared spectroscopic analysis of the present invention is the conventional method. It became clear that it was more effective.
[0040]
【The invention's effect】
By this invention, it became possible to evaluate the digestion resistance of the amorphous refractory containing magnesia with high precision.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an infrared absorption spectrum of a magnesia-containing amorphous refractory subjected to a digestion test by hydrothermal treatment and magnesium hydroxide as a reagent.
FIG. 2 is a drawing showing a high-temperature infrared absorption spectrum of a magnesia-containing amorphous refractory after a digestion test.
FIG. 3 is a drawing showing a high-temperature infrared absorption spectrum of magnesium hydroxide (reagent).

Claims (6)

水硬性のマグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の赤外線吸収スペクトルを測定し、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積に基づいて、試料中の水酸化マグネシウム量を推定し、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とするマグネシア含有不定形耐火物の耐消化性評価方法。Digestion test of hydrous magnesia-containing amorphous refractory by hydrothermal treatment, infrared absorption spectrum of the sample after the test is measured, absorption band of wave number about 3698 cm −1 due to OH stretching vibration of magnesium hydroxide Digestion resistance of magnesia-containing amorphous refractories characterized by estimating the amount of magnesium hydroxide in the sample based on the peak height or peak area of the sample and predicting the deterioration and cracking of the amorphous refractory Evaluation methods. マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の赤外線吸収スペクトルを測定し、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積に基づいて、予め測定した水酸化マグネシウムの検量線から、概試料中の水酸化マグネシウム量を求め、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とする請求項1記載のマグネシア含有不定形耐火物の耐消化性評価方法。Digestion test of hydrous heat treatment of magnesia-containing amorphous refractory, the infrared absorption spectrum of the sample after the test was measured, and the peak height of the absorption band at a wave number of about 3698 cm −1 due to OH stretching vibration of magnesium hydroxide The amount of magnesium hydroxide in an approximate sample is determined from a magnesium hydroxide calibration curve measured in advance based on the length or peak area, and deterioration and crack generation of the amorphous refractory are predicted. The digestion resistance evaluation method of the magnesia-containing amorphous refractory according to 1. マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料に既知物質を内部標準試料として添加して、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積と内部標準試料の特性吸収帯のピーク高さ又はピーク面積との比較から水酸化マグネシウム量を推定し、前記不定形耐火物の劣化・亀裂発生を予測することを特徴とする請求項1記載のマグネシア含有不定形耐火物の耐消化性評価方法。Digestion test of magnesia-containing amorphous refractory by hydrothermal treatment, adding a known substance as an internal standard sample to the sample after the test, absorption of about 3698 cm −1 wave number caused by OH stretching vibration of magnesium hydroxide Estimate the amount of magnesium hydroxide from the comparison of the peak height or peak area of the belt with the peak height or peak area of the characteristic absorption band of the internal standard sample, and predict the deterioration and crack generation of the amorphous refractory The digestion resistance evaluation method of the magnesia-containing amorphous refractory according to claim 1, マグネシア含有不定形耐火物の水熱処理による消化試験を行い、試験後の試料の赤外線吸収スペクトルを測定し、水酸化マグネシウムのO−H伸縮振動に基因する波数約3698cm−1の吸収帯のピーク高さ又はピーク面積に基づいて、他の波数領域に観測される不定形耐火物成分の吸収帯のピーク高さ又はピーク面積との比較から水酸化マグネシウム量を推定し、劣化・亀裂発生を予測することを特徴とする請求項1記載のマグネシア含有不定形耐火物の耐消化性評価方法。Digestion test of hydrous heat treatment of magnesia-containing amorphous refractory, the infrared absorption spectrum of the sample after the test was measured, and the peak height of the absorption band at a wave number of about 3698 cm −1 due to OH stretching vibration of magnesium hydroxide Based on the height or peak area, the amount of magnesium hydroxide is estimated from the comparison with the peak height or peak area of the absorption band of the amorphous refractory component observed in other wave number regions, and the occurrence of degradation and cracks is predicted. The digestion resistance evaluation method for a magnesia-containing amorphous refractory according to claim 1. 消化試験を110℃以上170℃以下、飽和水蒸気圧0.14MPa以上0.8MPa以下、3時間以上60時間以下で行うことを特徴とする請求項1から4のいずれか1項に記載のマグネシア含有不定形耐火物の耐消化性評価方法。The magnesia-containing composition according to any one of claims 1 to 4, wherein the digestion test is performed at 110 ° C to 170 ° C and a saturated water vapor pressure of 0.14 MPa to 0.8 MPa for 3 hours to 60 hours. Digestion resistance evaluation method for amorphous refractories. 消化試験後の試料中の水酸化マグネシウム量が0.5質量%以下の時に劣化・亀裂発生なしと予測することを特徴とする請求項1から5のいずれか1項に記載のマグネシア含有不定形耐火物の耐消化性評価方法。The magnesia-containing amorphous material according to any one of claims 1 to 5, wherein it is predicted that no deterioration or cracking occurs when the amount of magnesium hydroxide in the sample after the digestion test is 0.5% by mass or less. Digestion resistance evaluation method for refractories.
JP2003194225A 2003-07-09 2003-07-09 Method for evaluating digestion resistance of magnesia-containing amorphous refractory Withdrawn JP2005030820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003194225A JP2005030820A (en) 2003-07-09 2003-07-09 Method for evaluating digestion resistance of magnesia-containing amorphous refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003194225A JP2005030820A (en) 2003-07-09 2003-07-09 Method for evaluating digestion resistance of magnesia-containing amorphous refractory

Publications (1)

Publication Number Publication Date
JP2005030820A true JP2005030820A (en) 2005-02-03

Family

ID=34205453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003194225A Withdrawn JP2005030820A (en) 2003-07-09 2003-07-09 Method for evaluating digestion resistance of magnesia-containing amorphous refractory

Country Status (1)

Country Link
JP (1) JP2005030820A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198950A (en) * 2006-01-27 2007-08-09 Nippon Steel Corp Method of measuring magnesium oxide content and calcium oxide content in oxide material, using infrared absorption spectrum measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198950A (en) * 2006-01-27 2007-08-09 Nippon Steel Corp Method of measuring magnesium oxide content and calcium oxide content in oxide material, using infrared absorption spectrum measuring method
JP4676891B2 (en) * 2006-01-27 2011-04-27 新日本製鐵株式会社 Method for measuring magnesium oxide content and calcium oxide content in oxide materials using infrared absorption spectroscopy

Similar Documents

Publication Publication Date Title
Cardoso et al. Drying behavior of hydratable alumina-bonded refractory castables
Hager Colour change in heated concrete
Villagrán-Zaccardi et al. Calibrated quantitative thermogravimetric analysis for the determination of portlandite and calcite content in hydrated cementitious systems
Khaliq et al. High temperature material properties of calcium aluminate cement concrete
KR101323708B1 (en) Method for evaluating semi-quantitatively of concrete carbonization and evaluating apparatus using the same
González et al. CO2 emissions derived from raw materials used in brick factories. Applications to Andalusia (Southern Spain)
Abolhasani et al. A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures
Vanoutrive et al. Carbonation of cement paste with GGBFS: Effect of curing duration, replacement level and CO2 concentration on the reaction products and CO2 buffer capacity
Jerônimo et al. Performance of self-compacting concretes with wastes from heavy ceramic industry against corrosion by chlorides
Zhang et al. Effect of carbonation curing on efflorescence formation in concrete paver blocks
JP4676891B2 (en) Method for measuring magnesium oxide content and calcium oxide content in oxide materials using infrared absorption spectroscopy
JP3996878B2 (en) Method for evaluating digestion resistance of amorphous refractories containing magnesia
JP2005030820A (en) Method for evaluating digestion resistance of magnesia-containing amorphous refractory
Marangon et al. Mortars produced with an environmentally sustainable rice HUSK silica: Rheological properties
Kugler et al. Microstructural and mechanical properties of geopolymers based on brick scrap and fly ash
Zhang et al. Optimising confocal Raman microscopy for spectral mapping of cement-based materials
Soriano The Influence of Citric Acid on Setting Time and Temperature Behavior of Calcium Sulfoaluminate-Belite Cement
Wang et al. Modelling of carbonation of hardened cement pastes with premixed Cl− and resulting Cl− redistribution
JP2005061863A (en) Method for evaluating hydration degree of steelmaking slag
Šál Testing of brick clay modifications as a raw material for building ceramic products
Hino et al. Fatigue failure behavior of Al2O3–SiO2 system bricks under compressive stress at room and high temperatures
Springfield Application of FTIR for Quantification of Alkali in Cement
Lee et al. The effect of high temperature on color and residual compressive strength of concrete
JP4833735B2 (en) Method for the determination of magnesium sulfate in steel slag
Yan et al. Difference between natural and accelerated carbonation of concrete at 2% CO2 and 20% CO2

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061003