JP2020055736A - 窓ガラス用断熱性三層複層ガラス - Google Patents
窓ガラス用断熱性三層複層ガラス Download PDFInfo
- Publication number
- JP2020055736A JP2020055736A JP2019124104A JP2019124104A JP2020055736A JP 2020055736 A JP2020055736 A JP 2020055736A JP 2019124104 A JP2019124104 A JP 2019124104A JP 2019124104 A JP2019124104 A JP 2019124104A JP 2020055736 A JP2020055736 A JP 2020055736A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- layer
- glass plate
- low
- hollow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Securing Of Glass Panes Or The Like (AREA)
- Joining Of Glass To Other Materials (AREA)
Abstract
【課題】低放射膜を用いた断熱性三層複層ガラスにおいて、屋内と屋外の温度差が大きい使用環境でもガラス板のたわみを抑制した断熱性三層複層ガラスを得ること。【解決手段】3枚のガラス板と、該ガラス板の4辺に沿わせて配置したスペーサーを用いて隔置し、該ガラス板の2枚の間に設けられた単一の密封空間である、気体によって充填された気体層からなる中空層を2つと、2つの低放射膜と、を有する窓ガラス用断熱性三層複層ガラスにおいて、該ガラス板は、厚みが2〜6.5mmであり、該2つの低放射膜は、最も屋外側に配置されるガラス板である第1ガラス板、及び最も屋内側に配置されるガラス板である第3ガラス板の、中空層側の面にそれぞれ配置されるものであり、該第1ガラス板の日射吸収率が20%以上、45%未満であり、該第3ガラス板の日射吸収率が8%未満であり、熱貫流率が2.0W/m2K以下である、窓ガラス用断熱性三層複層ガラス。【選択図】図1
Description
本発明は、窓ガラス用の断熱性複層ガラスに関し、特にガラス板を3枚用いた窓ガラス用の断熱性三層複層ガラスに関する。
複層ガラスは、一般に、複数枚のガラス板を、ガラス板の4辺に沿わせて配置したスペーサーを用いて隔置し、2枚のガラス板同士とスペーサーとで密封空間である中空層を形成した構成である。該複層ガラスは中空層があることで断熱性能が高まり、結露防止や、屋内側冷暖房の負荷軽減などの利点があるため、建物の窓用部材に組み込まれ広く利用されている。上記のような複層ガラスは、中空層に空気以外の気体を充填することにより、断熱性能の向上や遮音性能の向上等、様々な効果を付与することが可能である。
上記のような複層ガラスは、現在、ガラス板を2枚用いたものが広く普及しており、中空層に空気を充填した一般的な複層ガラスの場合、熱貫流率(U値)は約2.8〜3.6W/m2Kであることが知られている。複層ガラスの断熱性能を向上させる、すなわち上記の熱貫流率を小さくする手法としては、中空層に充填するガスの種類を断熱性能の高いガスにしたり、中空層の厚みを厚くしたり、中空層の数を増やしたりする方法が挙げられ、例えばガラス板を3枚以上用いた三層複層ガラス(例えば、特許文献1、特許文献2参照)が提案されている。近年、窓用部材に高い断熱性能が要求されており、上記のようなガラス板を3枚以上用いた三層複層ガラスの実用化が検討されつつある(例えば、特許文献3参照)。
また、断熱性能を向上させる手法として、低放射性の積層膜(以下、低放射膜と記載することもある)をガラス板上に設けた低放射ガラスも広く利用されている。該低放射膜は、近赤外域から赤外域の光を反射するため、太陽光による屋内の温度上昇を抑制できる。また、屋内から屋外への熱の伝達を遮断するため、屋内を保温、断熱する能力も高い。上記のような低放射膜としては、通常、Ag膜と透明誘電体層を複数層積層した積層膜が広く知られている。
前述したように、近年はより高い断熱性能を示す窓用部材への要求が高まっており、前述した三層複層ガラスに上記の低放射膜を設けることが検討されている。例えば、特許文献4には、ガラス板を3枚用いた三層複層ガラスが提案されている。当該文献では、屋内側のガラス板の両表面に低放射膜を形成した三層複層ガラスが開示されている。また、当該文献の比較例には、屋外側から、ガラス板/低放射膜/中空層/ガラス板/中空層/低放射膜/ガラス板、という順に積層された複層ガラスが開示されており、熱貫流率が0.955W/m2Kである旨が記載されている。
また、特許文献5には、ガラス板を3枚用いた複層ガラスの内部において、反射防止膜と低放射膜とが対向するように配置した多重窓ガラスユニットが提案されている。当該文献では、ガラス板に低放射膜が形成されると可視光透過率が低下するため、対向する位置に反射防止膜を設けることによって、可視光透過率の低下を抑えることが可能であると開示されている。また、当該文献の例2には、屋外側から、ガラス板/低放射膜/中空層/ガラス板/中空層/低放射膜/ガラス板、という順に積層された複層ガラスが、例3には、屋外側から、ガラス板/低放射膜/中空層/反射防止膜/ガラス板/反射防止膜/中空層/低放射膜/ガラス板、という順に積層された複層ガラスが、それぞれ開示されており、熱貫流率(U値)が0.7W/m2Kである旨が記載されている。
また、特許文献6には、ガラス板を3枚用いた複層ガラスにおいて、ガラス板の少なくとも1枚は表面に低放射膜を有し、中空層に不活性ガスが充填され、かつ板ガラスの各々の厚みがそれぞれ異なる複層ガラスが提案されている。当該文献の実施例には、屋外側のガラス板の中空層側の面に低放射膜、屋内側のガラスとして合わせガラスを用い、ガラス板を計4枚使用する三層複層ガラスを開示しており、熱貫流率が0.97〜1.11W/m2Kを示すことが記載されている。
また、特許文献7には、最も屋内側のガラス面に低放射膜を形成した複層ガラスが提案されている。当該文献では、室内からの輻射伝達を抑制することを目的として、屋内側のガラス面に低放射膜を形成して断熱性能を向上させている。また、当該文献には、上記の複層ガラスにさらにガラス板を追加し、三層複層ガラスとして用いる旨が開示されている。
複層ガラスとして代表的なのは、2枚のガラス板を、ガラス板の4辺に沿わせて配置したスペーサーと接着剤で接着してシールして密封構造体とし、2枚のガラス板の間に密封空間である中空層を1つ有する二層複層ガラスであるが、中空層に用いられる空気やAr等の気体は温度変化に伴う体積変化が非常に大きく、温度が高くなると膨張、低くなると収縮し、ガラス板にたわみを生じる。このため、二層複層ガラスの製造時より使用環境の温度が高くなると中空層の気体が膨張して、該中空層に対してガラス板が外側にたわみ、製造時より使用環境の温度が低くなると気体が収縮し、該中空層に対してガラス板が内側にたわむことが知られている。なお、通常中空層の温度は、使用環境における屋内の温度と屋外の温度との間の値となる。
近年、断熱性能を向上させる為に、前述したようにガラス板を3枚用いた三層複層ガラスを用いる事が提案され、さらなる断熱性能の向上を目的として、低放射膜を用いた断熱性三層複層ガラスの実用化が検討されている。三層複層ガラスは、一般に、3枚のガラス板を、該ガラス板の4辺に沿わせて配置したスペーサーと接着剤で接着してシールして密封構造体とし、該ガラス板の2枚の間に設けられた単一の密封空間である中空層をそれぞれ1つ有する。中空層は、通常、乾燥空気、アルゴン、クリプトン、ネオン等の気体によって充填された気体層からなる。
上記の三層複層ガラスについて本発明者らが検討を行ったところ、二つの中空層と三枚のガラス板を用いた断熱性三層複層ガラスは、上記の二層複層ガラスの一つの中空層の単純な膨張、収縮によるたわみとは異なって、断熱性三層複層ガラスを屋内と屋外の温度差が数十度になるような、実際に使用する使用環境で窓ガラスとして用いると、3枚あるガラス板のうちいずれかのガラス板が大きくたわんでしまうという、複雑な挙動を生じるようになることが予想された。このような挙動は、三層複層ガラスのそれぞれ密封された中空層が2つになり、屋外側中空層の温度と屋内側中空層の温度との双方が、互いの温度に影響を与え合うようになる為であると考えられる。窓ガラス板がたわむと透過像が歪んで見えてしまい、視認性の低下や違和感を生じさせる原因になる。
また、断熱性能の向上を目的として当該三層複層ガラスに低放射膜を設けると、透過像やガラス板に反射された反射像がより歪んで見えてしまう場合があることがわかった。これは、低放射膜は通常のガラス板の面よりも可視光反射率を上げる傾向があるためと考えられる。例えば、複数の窓ガラスが並んで配置されるようなビルディング等の場合、屋外から窓ガラスを見た時の反射像を歪める等、外観品質を損なわせることが懸念される。
そこで本発明は、窓ガラスとして用いられる低放射膜を用いた上記のような断熱性三層複層ガラスにおいて、屋内と屋外の温度差が大きい使用環境でもガラス板のたわみを抑制した断熱性三層複層ガラスを得ることを目的とした。
通常、複層ガラスの中空層を密閉する際の製造環境は室温(約15〜25℃)程度であり、中空層の圧力は、窓ガラスとして使用する使用地の大気圧と同程度になるように製造される。そのため、一般的な複層ガラスの中空層の室温における圧力は、使用地の室温における大気圧と同程度の圧力を有する。従って、中空層の温度が室温から離れて温度差が大きくなるほど中空層内に密封された気体が膨張又は収縮し、当該中空層と接するガラス板にたわみを生じさせて、該複層ガラスの透過像や反射像を歪める原因になると予想される。特に三層複層ガラスの屋外側の中空層は屋内環境と隣接せず、かつ屋外環境と隣接する層である為、屋外の温度に近付いてしまい、室温から離れた温度をとりやすいので気体の膨張又は収縮が大きくなる。
そこで上記の課題に対して本発明者らが検討を行ったところ、図1に示したように、三層複層ガラス1の、最も屋外側の第1ガラス板G1の中空層S1側の面に低放射膜LE1を設けると、三層複層ガラス1のガラス板に生じるたわみを抑制する傾向が見られることがわかった。そこで、より高い断熱性能を得るために、低放射膜をさらに別の面にもう1つ設けたところ、今度はたわみを抑制出来なくなることがわかった。そこで、得られた知見からさらなる検討を行ったところ、使用する3枚のガラス板の厚みを2〜6.5mmとし、図1に示したように低放射膜を第1ガラス板G1及び第3ガラス板G3の中空層側の面に設け、さらに第1ガラス板G1の日射吸収率、及び第3ガラス板の日射吸収率を特定の範囲内とすることにより、最もガラス板のたわみが生じ易いと考えられる寒冷地の冬期を想定した使用環境において、ガラス板の中央部のたわみの量を0.5mm未満とすることが可能になることがわかった。具体的には、屋内と屋外の温度差が約30℃である使用環境において、たわみ量を0.5mm未満とすることが可能であることがわかった。
すなわち本発明は、3枚のガラス板と、該ガラス板の4辺に沿わせて配置したスペーサーを用いて隔置し、該ガラス板の2枚の間に設けられた単一の密封空間である、気体によって充填された気体層からなる中空層を2つと、2つの低放射膜と、を有する窓ガラス用断熱性三層複層ガラスにおいて、該ガラス板は、厚みが2〜6.5mmであり、該2つの低放射膜は、最も屋外側に配置されるガラス板である第1ガラス板、及び最も屋内側に配置されるガラス板である第3ガラス板の、中空層側の面にそれぞれ配置されるものであり、該第1ガラス板の日射吸収率が20%以上、45%未満であり、該第3ガラス板の日射吸収率が8%未満であり、熱貫流率が2.0W/m2K以下である、窓ガラス用断熱性三層複層ガラスである。
本発明により、中空層に気体を充填して密封構造とした窓ガラスとして用いられる低放射膜を用いた断熱性三層複層ガラスにおいて、室内外温度差によるガラス板のたわみを抑制した構造の断熱性三層複層ガラスを得ることが可能となる。さらに、本発明の断熱性三層複層ガラスは、ガラス板のたわみが生じ易いと考えられる冬期の、特に寒冷地の使用環境においても、窓ガラスとして実用に足るものである。
1:用語の説明
本明細書に用いる用語を以下に説明する。
本明細書に用いる用語を以下に説明する。
(各部名称)
本明細書では、最も屋外側に配置されるガラス板を「第1ガラス板」、最も屋内側に配置されるガラス板を「第3ガラス板」、及び2つの中空層に挟まれ、窓ガラス用断熱性三層複層ガラス(以下、単に「三層複層ガラス」と記載することもある)の内部に配置されるガラス板を「第2ガラス板」と記載する。また、2つの中空層のうち、屋外側の中空層を「第1中空層」、屋内側の中空層を「第2中空層」と記載する。また、単に「ガラス板」や「中空層」と記載する場合は、三層複層ガラスに用いられているいずれか又は全てのガラス板や中空層を指すものとする。
本明細書では、最も屋外側に配置されるガラス板を「第1ガラス板」、最も屋内側に配置されるガラス板を「第3ガラス板」、及び2つの中空層に挟まれ、窓ガラス用断熱性三層複層ガラス(以下、単に「三層複層ガラス」と記載することもある)の内部に配置されるガラス板を「第2ガラス板」と記載する。また、2つの中空層のうち、屋外側の中空層を「第1中空層」、屋内側の中空層を「第2中空層」と記載する。また、単に「ガラス板」や「中空層」と記載する場合は、三層複層ガラスに用いられているいずれか又は全てのガラス板や中空層を指すものとする。
(ガラス面)
本明細書では、屋外、屋内、及び中空層と面するガラス板の面を「ガラス面」と記載する。また、「ガラス面上」とは、ガラス面の上を指すものであり、ガラス面と接触するものでも、任意の第3の層を介してガラス面に固定されているものでもよい。また、本明細書では、説明を簡略にする為に、第1ガラス板の屋外側のガラス面を「1面」とし、該1面から屋内側へ向かって、「2面」、「3面」、「4面」、「5面」、及び「6面」と記載することもある。
本明細書では、屋外、屋内、及び中空層と面するガラス板の面を「ガラス面」と記載する。また、「ガラス面上」とは、ガラス面の上を指すものであり、ガラス面と接触するものでも、任意の第3の層を介してガラス面に固定されているものでもよい。また、本明細書では、説明を簡略にする為に、第1ガラス板の屋外側のガラス面を「1面」とし、該1面から屋内側へ向かって、「2面」、「3面」、「4面」、「5面」、及び「6面」と記載することもある。
(たわみ量、日射吸収率)
本明細書の「たわみ量」とは、製造時の中空層の室温での圧力と、使用地の室温での大気圧とが同様である場合に生じる、ガラス板中央部のたわみの量を指すものとする。前述したように、複層ガラスは通常、使用地の大気圧によってたわみが生じないように、製造時の中空層の圧力を調整する。例えば標高の高い高地等で使用する際、製造時の中空層の圧力を通常よりも減圧させ、高地で使用する際にたわまないようにする。また、一般的な複層ガラスの使用地は、大気圧が約1013.3×102Paである低地が多く、その場合は室温で中空層の圧力が約1013.3×102Paになるように製造を行う。
本明細書の「たわみ量」とは、製造時の中空層の室温での圧力と、使用地の室温での大気圧とが同様である場合に生じる、ガラス板中央部のたわみの量を指すものとする。前述したように、複層ガラスは通常、使用地の大気圧によってたわみが生じないように、製造時の中空層の圧力を調整する。例えば標高の高い高地等で使用する際、製造時の中空層の圧力を通常よりも減圧させ、高地で使用する際にたわまないようにする。また、一般的な複層ガラスの使用地は、大気圧が約1013.3×102Paである低地が多く、その場合は室温で中空層の圧力が約1013.3×102Paになるように製造を行う。
本明細書における具体的なたわみ量、及び日射吸収率は、以下の(1)〜(3)方法で算出することが可能である。
(1)まず、三層複層ガラスにおける各ガラス板の日射吸収率をJIS R3106(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)に準拠して計算する。
(2)次に、セントラル硝子株式会社が公開する「板ガラス総合カタログ 技術資料編」の第51−57ページ(https://www.catalabo.org/iportal/CatalogViewInterfaceStartUpAction.do?method=startUp&mode=PAGE&catalogCategoryId=&catalogId=34980910000&pageGroupId=1&volumeID=CATALABO&keyword=&categoryID=351150000&sortKey=CatalogMain610000&sortOrder=DESC&designID=&designConfirmFlg=を参照)の記載に従い、使用環境下における各ガラス板及び各中空層の温度を算出する。また、この時の使用環境を「冬期」とし、屋外の温度を−10℃、屋内の温度を20℃とし、屋外と屋内の温度差を30℃とする。
(3)次に、汎用FEM解析ソフトウェア(Abaqus)を用いて、2つの中空層の内部圧力差、及び、それに伴う各ガラス板の変形形状をシミュレーションし、各ガラス板のたわみ量を算出する。尚、中空層の内部圧力差は、生産時の中空層の温度と使用環境下の中空層の温度の差から生じる、中空層の膨張又は収縮から求めることが可能である。当該の「生産時の中空層の温度」は、生産時の室温と同等とみなし20℃とする。
2:三層複層ガラス
本発明は、3枚のガラス板と、該ガラス板の4辺に沿わせて配置したスペーサーを用いて隔置し、該ガラス板の2枚の間に設けられた単一の密封空間である、気体によって充填された気体層からなる中空層を2つと、2つの低放射膜と、を有する窓ガラス用断熱性三層複層ガラスにおいて、該ガラス板は、厚みが2〜6.5mmであり、該2つの低放射膜は、最も屋外側に配置されるガラス板である第1ガラス板、及び最も屋内側に配置されるガラス板である第3ガラス板の、中空層側の面にそれぞれ配置されるものであり、該第1ガラス板の日射吸収率が20%以上、45%未満であり、該第3ガラス板の日射吸収率が8%未満であり、熱貫流率が2.0W/m2K以下である、窓ガラス用断熱性三層複層ガラスである。
本発明は、3枚のガラス板と、該ガラス板の4辺に沿わせて配置したスペーサーを用いて隔置し、該ガラス板の2枚の間に設けられた単一の密封空間である、気体によって充填された気体層からなる中空層を2つと、2つの低放射膜と、を有する窓ガラス用断熱性三層複層ガラスにおいて、該ガラス板は、厚みが2〜6.5mmであり、該2つの低放射膜は、最も屋外側に配置されるガラス板である第1ガラス板、及び最も屋内側に配置されるガラス板である第3ガラス板の、中空層側の面にそれぞれ配置されるものであり、該第1ガラス板の日射吸収率が20%以上、45%未満であり、該第3ガラス板の日射吸収率が8%未満であり、熱貫流率が2.0W/m2K以下である、窓ガラス用断熱性三層複層ガラスである。
以下に、本発明の三層複層ガラス及び該三層複層ガラスを構成する各部材について、図1を参照しながら説明する。なお、図1は本発明の三層複層ガラス1の実施形態の一例であり、本発明を限定するものではない。
(ガラス板)
本発明に用いるガラス板としては、例えば通常使用されているソーダ石灰ガラス、無アルカリガラス、高透過ガラス、風冷強化ガラス、化学強化ガラス、ホウケイ酸塩ガラス、低膨張ガラス、ゼロ膨張ガラス、低膨張結晶化ガラス、ゼロ膨張結晶化ガラス等を用いることが可能であり、窓ガラス用として通常用いられているソーダ石灰ガラスを用いるのが好ましい。また、3枚のガラス板は同じ種類のガラス板を用いるものでも、異なる種類のガラス板を用いるものでもよい。
本発明に用いるガラス板としては、例えば通常使用されているソーダ石灰ガラス、無アルカリガラス、高透過ガラス、風冷強化ガラス、化学強化ガラス、ホウケイ酸塩ガラス、低膨張ガラス、ゼロ膨張ガラス、低膨張結晶化ガラス、ゼロ膨張結晶化ガラス等を用いることが可能であり、窓ガラス用として通常用いられているソーダ石灰ガラスを用いるのが好ましい。また、3枚のガラス板は同じ種類のガラス板を用いるものでも、異なる種類のガラス板を用いるものでもよい。
また、上記のガラス板のうち、化学強化ガラスや風冷強化ガラスは、ガラス板に強化処理を施したガラス板だが、該強化処理は加熱工程や冷却工程を経ることから、強化処理後にガラス板に反り等が生じる場合がある。そのため、本発明に用いるガラス板は、加熱工程及び冷却工程を経る強化処理を施していないものを用いるのが好ましい。より好ましくは、強化処理を施していない非強化ガラス板を用いるとしてもよい。
本発明では、使用するガラス板の厚みを2〜6.5mmとする。2mm未満だとたわみの抑制が困難になることがある。また、一般的なガラス板は組成内に着色成分や吸収成分を少なからず含有する為、ガラス板が厚くなるほど日射吸収率が高くなる傾向がある。従って、本発明ではガラス板の厚みを6.5mm以下とした。また、ガラス板の厚みの下限値を好ましくは3mm以上としてもよく、上限値を好ましくは5mm以下としてもよい。また、ガラス板の厚みは3枚が同じでも、異なっていてもよい。
(第1ガラス板G1、第3ガラス板G3)
三層複層ガラス1を構成するガラス板のうち、どのガラス板がたわみ易いかは構成によって異なるが、本発明では、第1ガラス板G1の第1中空層S1側の面(2面)、及び第3ガラス板G3の第2中空層S2側の面(5面)にのみ、それぞれ低放射膜LE1、LE2を設け、さらに第1ガラス板G1の日射吸収率を20%以上、45%未満とし、第3ガラス板G3の日射吸収率を8%未満とすることにより、たわみを抑制している。前述したように、低放射膜を2つ用いると低放射膜を1つだけ用いた場合よりもたわみを生じ易くなるが、断熱性能は向上する。従って、本発明は、上記の第1ガラス板G1及び第3ガラス板G3を用いる事によって、良好な断熱性能とたわみの抑制を両立した。
三層複層ガラス1を構成するガラス板のうち、どのガラス板がたわみ易いかは構成によって異なるが、本発明では、第1ガラス板G1の第1中空層S1側の面(2面)、及び第3ガラス板G3の第2中空層S2側の面(5面)にのみ、それぞれ低放射膜LE1、LE2を設け、さらに第1ガラス板G1の日射吸収率を20%以上、45%未満とし、第3ガラス板G3の日射吸収率を8%未満とすることにより、たわみを抑制している。前述したように、低放射膜を2つ用いると低放射膜を1つだけ用いた場合よりもたわみを生じ易くなるが、断熱性能は向上する。従って、本発明は、上記の第1ガラス板G1及び第3ガラス板G3を用いる事によって、良好な断熱性能とたわみの抑制を両立した。
また、第1ガラス板G1の日射吸収率の下限値を好ましくは28%以上、より好ましくは30%以上、上限値を好ましくは44%未満、より好ましくは42%以下としてもよい。また、第3ガラス板G1の日射吸収率の下限値は小さい程好ましく、特に限定するものではない。例えば2%以上、より好ましくは3%以上としてもよい。上限値を好ましくは7%未満、より好ましくは5%以下としてもよい。上記の日射吸収率を所定の範囲内とする為の手法としては、低放射膜の成分や膜厚を調整したり、ガラス板の成分や厚みを調整したりすることが挙げられる。また、たわみが大きくならない範囲であれば、1面、6面に防眩膜や防汚膜、視野選択膜や反射防止膜等の任意の膜や層を設けたり、フィルムを添付したりしてもよい。
(第2ガラス板G2)
本発明では、第2ガラス板G2に低放射膜を設けないものとする。当該ガラス板G2の3面、4面に低放射膜を設けると、低放射膜を1つ用いた場合よりも三層複層ガラス1の断熱性能を向上させる事が出来るが、一方で場合によってはたわみの抑制が不十分になることがある。また、たわみが大きくならない範囲であれば、当該3面、4面に防眩膜や防汚膜、視野選択膜や反射防止膜等の任意の膜や層を設けたり、フィルムを添付したりしてもよい。
本発明では、第2ガラス板G2に低放射膜を設けないものとする。当該ガラス板G2の3面、4面に低放射膜を設けると、低放射膜を1つ用いた場合よりも三層複層ガラス1の断熱性能を向上させる事が出来るが、一方で場合によってはたわみの抑制が不十分になることがある。また、たわみが大きくならない範囲であれば、当該3面、4面に防眩膜や防汚膜、視野選択膜や反射防止膜等の任意の膜や層を設けたり、フィルムを添付したりしてもよい。
また、第2ガラス板G2の日射吸収率は、低放射膜LE1を有する第1ガラス板G1程度にならないのであればよく、特に限定するものではない。例えば、第2ガラス板G2の日射吸収率を0.5%以上、12%未満としてもよい。
(低放射膜LE1、LE2)
低放射膜LE1、LE2はガラス板のガラス面上に設けられるものであり、透明で、赤外線を反射する膜である。本発明は、該低放射膜(LE1、LE2)を2面、5面にそれぞれ設けることでガラス板のたわみを抑制するものである。
低放射膜LE1、LE2はガラス板のガラス面上に設けられるものであり、透明で、赤外線を反射する膜である。本発明は、該低放射膜(LE1、LE2)を2面、5面にそれぞれ設けることでガラス板のたわみを抑制するものである。
また、2面に設けられた低放射膜LE1と、5面に設けられた低放射膜LE2とは、同じでも、異なっていてもよい。ここで、低放射膜が形成されたガラス板は、反射色や透過色に色味を呈することがあり、所望の色調に調整するために該低放射膜の各層の厚みや成分を適した範囲とするのが一般的である。2つの該低放射膜が同じ膜である場合、色調の調整が難しくなり易いため、異なる膜とするのが好適である。すなわち、前記2つの低放射膜は、該低放射膜を構成する成分が異なる膜であることが好ましい。上記の「成分が異なる」とは、低放射膜を構成する各層の成分うち少なくとも1層の成分が、当該2つの低放射膜の間で異なることを指すものとする。なお、製造過程や製造設備によって生じる誤差や、意図しない任意成分の混入等による成分の違い等は、光学特性を著しく変化させるものではない限り含まないものとする。
また、前記2つの低放射膜は、該低放射膜に含まれる層の厚みが、少なくとも1つ異なる膜であることが好ましい。前述したように、通常低放射膜は複数の層が積層された積層膜を用いる。低放射膜の反射色や透過色を所望な色調とするために、2つの低放射膜の間で、誘電体層等の厚みを変えることが可能である。また、「厚みが異なる」とは、製造過程や製造設備によって生じる誤差等は、光学特性を著しく変化させるものではない限り含まないものとする。
該低放射膜は、スパッタリング装置を用いて透明な誘電体層や金属層等を積層して得る事が可能であり、公知の低放射膜を用いればよい。例えば、Agを主成分とする金属層と、誘電体層とを積層した積層膜が広く知られている。上記の金属層は、Agを90〜100wt%有する膜としてもよく、任意成分として膜中にPd、Au、Pt、Ti、Al、Cu、Cr、Mo、Nb、Nd、Bi及びNi等を含んでもよい。また、誘電体層としては、例えばZn、Sn、Ti、Al、Cr、Zn合金、及びSn合金の、酸化物、窒化物、酸窒化物等を用いる事ができる。
第1ガラス板G1の日射吸収率を20%以上、45%未満とする為には、日射光(可視光〜近赤外光にかけての波長光)の吸収率を適宜調整すればよい。例えば、該低放射膜LE1内のAgを主成分とする金属層の厚みの合計値を、15nm以上、30nm以下としてもよい。また、第3ガラス板G3の日射吸収率は、第1ガラス板G1や第2ガラス板の日射吸収率等の光学特性の影響を受けやすいため、低放射膜LE2の性能のみで決定されるものではない。例えば第1ガラス板G1に形成された低放射膜LE1と、該第3ガラス板に形成される低放射膜LE2とが異なる場合は、該低放射膜LE2内のAgを主成分とする金属層の厚みの合計値を、7nm以上、15nm未満としてもよい。当該範囲内であれば、第1ガラス板G1や第2ガラス板G2の光学特性から影響を受けても、第3ガラス板G3の日射吸収率を8%未満とすることが可能である。また、使用する誘電体層としてTiN等の着色を有する膜を用いたり、Agの他に任意の金属層を積層して可視光吸収膜を有する積層体としてもよい。
また、低放射膜の金属層としてAgを主成分とする層を用いる場合、通常、金属層中のAgが、他の誘電体層を成膜する際の酸素ガス等の反応性ガスによって劣化する事を抑制する目的で、該金属層の上に薄い金属層や合金膜等のバリア層を積層することが知られている。金属層や合金膜は可視光を吸収するものが多いが、該バリア層を積層した後でさらにその上に誘電体層を成膜すると、成膜時に使用する酸素等の反応性ガスから生じるプラズマに起因して、該バリア層が酸化や酸窒化されて可視光の吸収率を小さくすることが可能となる。
上記より、本明細書の低放射膜においても上記バリア層を用いてもよく、例えばZnAl(ZnとAlの合金)、Ti、NiCr(NiとCrの合金)、Nb及びステンレス鋼等を用いるのが好ましい。また、使用する膜の種類や成膜条件によって好適な膜厚が異なるが、例えばZnAlは1〜3.5nm、Tiは1〜3nm、NiCrは1〜2nm、Nbは1〜2nm、及びステンレス鋼は1.5〜2.5nmとしてもよい。また、前述したように、日射吸収率を上昇させることを目的として、当該バリア層の厚みを上記の範囲よりも厚くし、可視光の吸収率を大きくしてもよい。
(中空層S1、S2)
中空層は、ガラス板G1〜G3の4辺に沿わせて配置したスペーサー10、20と、ガラス板G1〜G3と、に囲まれた単一の密封空間が、気体によって充填された気体層である。第1中空層S1は第1ガラス板G1と第2ガラス板G2との間に形成される層であり、第2中空層S2は第2ガラス板G2と第3ガラス板G3との間に形成される層である。中空層に充填させる気体としては、乾燥空気、アルゴン、クリプトン、ネオンからなる群から選ばれる少なくとも1つを用いるのが好ましい。
中空層は、ガラス板G1〜G3の4辺に沿わせて配置したスペーサー10、20と、ガラス板G1〜G3と、に囲まれた単一の密封空間が、気体によって充填された気体層である。第1中空層S1は第1ガラス板G1と第2ガラス板G2との間に形成される層であり、第2中空層S2は第2ガラス板G2と第3ガラス板G3との間に形成される層である。中空層に充填させる気体としては、乾燥空気、アルゴン、クリプトン、ネオンからなる群から選ばれる少なくとも1つを用いるのが好ましい。
上記の「単一の密封空間」とは、ガラス板とスペーサーとに囲まれた密封空間の気体層が、スペーサーや樹脂板、フィルム等の他の任意の部材によって分割されないことを指すものとする。なお、例えば特許文献8に開示されたような、吸音性能を付与するための、中空層と連通する連通孔を有する長尺部材を、スペーサーに沿って、該中空層を囲むように、該スペーサーから5〜20mm程度中空層側に離した位置に設けるような場合は、上記「分割」に含まないものとする。また、中空層は1層あたり1気室であるとしてもよい。
中空層の1層あたりの厚みは、充填させるガスの種類や断熱性能、及び、三層複層ガラス1を組み付けるサッシの溝の寸法に合わせて決定されればよい。通常、中空層が厚いほど断熱性能が向上するため、例えば1層あたり4mm以上、2層の合計で8mm以上としてもよい。また、ある特定の厚みより厚くなると充填されたガスが中空層内で対流してしまい、断熱性能を損なってしまう。この特定の厚みを「対流限界」と言い、通常、乾燥空気は16mm、アルゴンは15mm、クリプトンは10mm、ネオンは24mm程度とされている。従って、中空層の厚みは、乾燥空気は4〜16mm、アルゴンは4〜15mm、クリプトンは4〜10mm、ネオンは4〜24mmとするのが好ましい。また、第1中空層S1と第2中空層S2は異なる気体を充填してもよく、第1中空層S1の厚みと第2中空層S2の厚みは異なっていても同じでもよい。
また、本発明の中空層の圧力は、前述したように窓ガラスとして使用する際の使用地の、室温における大気圧と同じとする。具体的には、本発明の中空層の20℃における圧力は、使用地の20℃における大気圧と同じであるとしてもよい。例えば、室温における大気圧が約1013×102Paの低地で使用する場合は、中空層の室温における圧力は約1013×102Paであり、標高が高い高地等で使用する場合は、低地での圧力よりも小さくするものとする。上記のように使用地での大気圧と中空層の圧力とを同程度にすることによって、室温での大気圧と中空層との圧力差に起因するたわみを抑制することが可能である。また、本発明は使用地の大気圧(=製造時の中空層の圧力)の大小によらず使用することが可能であるため、中空層の圧力は特に限定するものではないが、例えば、20℃における圧力が788×102〜1030×102Paとしてもよい。
(スペーサー10、20)
スペーサー10、20は、ガラス板とガラス板との間に設置される長尺の部材であり、該スペーサー10、20をガラス板の4辺に沿わせて配置し、後述のシール材でガラス板と接着する。また、通常、該スペーサー10、20の端部をコーナー部材(図示しない)を用いて連結し、スペーサー同士を固定する。また、スペーサー10、20は、内部に乾燥材11、21を有していてもよい。なお、図1では、第1ガラス板G1と第2ガラス板G2との間にあるスペーサーを10、第2ガラス板G2と第3ガラス板G3との間にあるスペーサーを20と記載する。
スペーサー10、20は、ガラス板とガラス板との間に設置される長尺の部材であり、該スペーサー10、20をガラス板の4辺に沿わせて配置し、後述のシール材でガラス板と接着する。また、通常、該スペーサー10、20の端部をコーナー部材(図示しない)を用いて連結し、スペーサー同士を固定する。また、スペーサー10、20は、内部に乾燥材11、21を有していてもよい。なお、図1では、第1ガラス板G1と第2ガラス板G2との間にあるスペーサーを10、第2ガラス板G2と第3ガラス板G3との間にあるスペーサーを20と記載する。
スペーサー10、20は、アルミ製が広く普及しているが、断熱性を高めるために熱伝導率の低い樹脂や樹脂複合材、アルミと樹脂の複合材等を用いてもよい。用いられる樹脂としては、可塑剤としてフタル酸化合物やリン酸化合物、安定剤として金属有機酸化合物等が添加された、塩化ビニルを主成分とする樹脂が挙げられる。
(シール材12、13、22、23)
1次シール材12、22は、少なくともガラス板G1、G2、G3とスペーサー10、20とを接着する接着材であり、中空層S1、S2を密封し密封構造体とする。また、スペーサー10、20の外周と、各ガラス板間の隙間を封着するように設ける接着剤を2次シール材13、23とする。上記1次シール材12、22としてはポリイソブチレン系樹脂等、2次シール材13、23としてはポリサルファイド系樹脂やシリコーン系樹脂等を用いるのが一般的である。
1次シール材12、22は、少なくともガラス板G1、G2、G3とスペーサー10、20とを接着する接着材であり、中空層S1、S2を密封し密封構造体とする。また、スペーサー10、20の外周と、各ガラス板間の隙間を封着するように設ける接着剤を2次シール材13、23とする。上記1次シール材12、22としてはポリイソブチレン系樹脂等、2次シール材13、23としてはポリサルファイド系樹脂やシリコーン系樹脂等を用いるのが一般的である。
(三層複層ガラス1)
三層複層ガラス1は、3枚のガラス板G1、G2、G3を、スペーサー10、20を介して所定間隔を隔てて互いに対向させたものであり、前記ガラス板G1、G2、G3の周縁部をシール材12、13、22、23によって密封することによって、スペーサーとガラス板に囲まれた中空層S1、S2を密封する密封構造体である。また、第1ガラス板G1の第1中空層S1側の面(2面)に低放射膜LE1、第3ガラス板G3の第2中空層S2側の面(5面)に低放射膜LE2を、それぞれ有するものである。
三層複層ガラス1は、3枚のガラス板G1、G2、G3を、スペーサー10、20を介して所定間隔を隔てて互いに対向させたものであり、前記ガラス板G1、G2、G3の周縁部をシール材12、13、22、23によって密封することによって、スペーサーとガラス板に囲まれた中空層S1、S2を密封する密封構造体である。また、第1ガラス板G1の第1中空層S1側の面(2面)に低放射膜LE1、第3ガラス板G3の第2中空層S2側の面(5面)に低放射膜LE2を、それぞれ有するものである。
本発明の三層複層ガラス1は、熱貫流率が2.0W/m2K以下となるものである。下限値は特に限定するものではないが、例えば0.5W/m2K以上、より好ましくは0.6W/m2K以上としてもよい。また、本発明の三層複層ガラス1は、中空層に充填するガスを断熱性能の高いガスとすることにより、さらに熱貫流率の値を小さくすることが可能である。すなわち、本発明は、前記2つの中空層S1、S2が、乾燥空気、アルゴン、及びクリプトンからなる群から選ばれる少なくとも1つが充填された気体層であり、熱貫流率が1.3W/m2K未満であるのが好ましい。さらに好ましくは1.2W/m2K以下としてもよい。
また、本発明の三層複層ガラス1の中空層S1、S2に充填するガスとして、ネオンを用いてもよい。ネオンガスは優れた遮音性能を持つガスであり、一般的には複層ガラスの遮音性能を向上させるガスとして用いられている。本発明の三層複層ガラス1に用いることによって、熱貫流率を2.0W/m2K以下とすることが可能となる。すなわち、前記中空層S1、S2のうち少なくとも1つが、ネオンを有する気体層であり、熱貫流率が1.0W/m2K以上、2.0W/m2K以下であるのが好ましい。また、前記中空層S1、S2のうち屋外側の中空層S1をネオン、屋内側の中空層S2を乾燥空気、アルゴン、又はクリプトンとすると、たわみを抑制し、さらに良好な断熱性能と遮音性能とを実現できるためさらに好ましい。
また、本発明の三層複層ガラス1は、建築物の窓ガラス部材としてサッシ等に組み込まれるものであり、三層複層ガラス1の片面(1面)は屋外、反対側の面(6面)は屋内に面しているものとする。ただし、加熱源や強いエネルギーを発する光源に近接しないのであれば、屋内の仕切り板等といったガラスパネルとして使用しても差し支えない。
本発明の三層複層ガラス1は、窓ガラス用のサッシ等に設置することが可能であれば、総厚み(ガラス板と中空層との厚みの合計値)は特に限定されるものではない。また、広く用いられている複層ガラス用のサッシに設置可能とする為に、前記ガラス板と前記中空層との厚みの合計を、47mm以下、該中空層の厚みの合計を8mm以上、とするのが好ましい。また、該ガラス板と該中空層との厚みの合計を、より好ましくは42mm以下としてもよい。下限値は特に限定するものではないが、例えば17mm以上としてもよい。
また、本発明の三層複層ガラス1は、ガラス板の面積が異なってもたわみ量に大きな差が見られないため、ガラス板の面積は特に限定されるものではない。また、ガラス板の面積が小さくなるに伴って、たわみが生じた際のガラス面の曲率半径が小さくなると予想され、反射像や透過像の歪みを感じやすくなることが懸念される。その為、例えば該三層複層ガラス1のガラス板の短辺を600mm以上とするのが好ましいとしてもよい。また、上限値は短辺が3000mm以下としてもよい。また、該ガラス板の面の形状は、建物の開口部に合わせて選択されればよく、長方形でも正方形でもよい。
3:三層複層ガラスの実施形態
以下に本発明の実施形態を記載する。本発明は、以下実施形態に限定されるものではない。
以下に本発明の実施形態を記載する。本発明は、以下実施形態に限定されるものではない。
本実施形態では、使用する3枚のガラス板をフロート法で製造したソーダ石灰ガラス板(幅1200mm×高さ2000mm)とする(以下、「フロート板ガラス」又は「FL」と記載することもある)。また、表1にはA〜Fの低放射膜を有するガラス板について、それぞれの日射透過率及び日射吸収率を示す。尚、表中の「ガラス面」とは低放射膜が形成されていない側の面を、「膜面」とは低放射膜が形成された側の面を、それぞれ指すものとする。また、低放射膜を持たない厚み3mmのフロート板ガラスは、日射透過率を85.2%、日射反射率を7.9%(膜面、ガラス面の区別なし)、中空層は20℃における圧力が1013.3×102Paであるものとする。
表1の低放射膜の膜構成は、ガラス板と接触する側から、膜AはTiO2/ZnSnO/AZO/Ag/バリア層1/AZO/ZnSnO/TiO2、膜B、膜CはAZO/Ag/バリア層1/ZnSnO/TiO2、膜D、膜EはAZO/Ag/バリア層1/AZO/Ag/バリア層1/ZnSnO/TiO2、膜FはAZO/Ag/バリア層1/AZO/Ag/バリア層2/ZnSnO/TiO2と、この順で積層された積層体とし、各膜厚を調整することで、表1に記載した光学特性を示すことが可能である。
なお、上記の「ZnSnO」とはZnに対してSnを50wt%含有する酸化物膜であり、「AZO」とはZnに対してAlを2wt%含有する酸化物膜である。また、「バリア層1」とは、Znに対してAlを4wt%含有する膜を前述したバリア層として用いるものであり、「バリア層2」とはTi膜を前述したバリア層として用いるものである。
(たわみ量、日射吸収率)
本実施形態のたわみ量及び日射吸収率を、以下の(1)〜(3)方法で算出することが可能である。
本実施形態のたわみ量及び日射吸収率を、以下の(1)〜(3)方法で算出することが可能である。
(1)まず、三層複層ガラスにおける各ガラス板の日射吸収率をJIS R3106(板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法)に準拠して計算する。
(2)次に、セントラル硝子株式会社が公開する「板ガラス総合カタログ 技術資料編」の第51−57ページ(https://www.catalabo.org/iportal/CatalogViewInterfaceStartUpAction.do?method=startUp&mode=PAGE&catalogCategoryId=&catalogId=34980910000&pageGroupId=1&volumeID=CATALABO&keyword=&categoryID=351150000&sortKey=CatalogMain610000&sortOrder=DESC&designID=&designConfirmFlg=を参照)の記載に従い、使用環境下における各ガラス板及び各中空層の温度を算出する。また、この時の使用環境を「冬期」とし、屋外の温度を−10℃、屋内の温度を20℃とする。
(3)次に、汎用FEM解析ソフトウェア(Abaqus)を用いて、2つの中空層の内部圧力差、及び、それに伴う各ガラス板の変形形状をシミュレーションし、各ガラス板のたわみ量を算出する。尚、中空層の内部圧力差は、生産時の中空層の温度と使用環境下の中空層の温度の差から生じる、中空層の膨張又は収縮から求めることが可能である。当該の「生産時の中空層の温度」は、生産時の室温と同等とみなし20℃とする。
本発明の実施形態と、各実施形態における第1ガラス板の日射吸収率(表中では「A1」と記載)、第3ガラス板の日射吸収率(表中では「A3」と記載)、及び各ガラス板のたわみ量について、以下の表2、3に記載した。表2、3中の「G1」、「G2」、「G3」はそれぞれ第1ガラス板、第2ガラス板、第3ガラス板を、「S1」、「S2」はそれぞれ第1中空層、第2中空層を、「LE1」は最も屋外側の面の低放射膜を、「LE2」はLE1よりも屋内側に配置される低放射膜を、それぞれ示すものとする。また、ガラス板表面に低放射膜が形成されている場合は、例えば「FL(3)/LE1」等のように記載する。また、各中空層の「Ar」「Kr」「空気」「Ne」は、中空層に密閉されたガスの種類を示すものであり、「空気」とは「乾燥空気」を示すものとする。
また、表の「たわみ量」は、屋外側へ向かって凸形状にたわむ場合を「+」、屋外側に対して凹形状にたわむ場合を「−」と記載する。
表2より、本発明の請求項1の範囲内に入る実施形態No.1〜15は、いずれもたわみ量を0.5mm未満に抑えることが可能であることがわかる。また、中空層が乾燥空気、Ar、又はKrであるNo.1〜9、12〜15は、熱貫流率が0.65〜0.94W/m2Kであり、高い断熱性を有することがわかる。また、屋外側の中空層S1がNeであるNo.10、11は、熱貫流率が1.04〜1.13W/m2Kであり、良好な断熱性を有することがわかる。また、No.6、7はガラス板の厚みが3mmと5mmで異なる他は同様の構成を有するものだが、ガラス板の厚いNo.7の方が第1ガラス板及び第3ガラス板の日射吸収率が高くなることがわかる。
また、表3より、請求項1の範囲外である実施形態No.16〜24は、いずれもたわみ量が0.5mmを超えるものである。また、請求項1の範囲外ながらも、2面に低放射膜を形成したNo.16〜19、22、24は、前述したNo.1〜15程ではないがNo.20、21、23よりもたわみを抑制する効果が高いことから、2面に低放射膜を形成するだけでもガラス板のたわみを抑制する傾向が見られることがわかる。
G1:第1ガラス板、G2:第2ガラス板、G3:第3ガラス板、S1:第1中空層、S2:第2中空層、LE1:最も屋外側の低放射膜、LE2:最も屋内側の低放射膜、1:三層複層ガラス、10、20:スペーサー、11、21:乾燥材、12、22:1次シール材、13、23:2次シール材
Claims (7)
- 3枚のガラス板と、該ガラス板の4辺に沿わせて配置したスペーサーを用いて隔置し、該ガラス板の2枚の間に設けられた単一の密封空間である、気体によって充填された気体層からなる中空層を2つと、2つの低放射膜と、を有する窓ガラス用断熱性三層複層ガラスにおいて、
該ガラス板は、厚みが2〜6.5mmであり、
該2つの低放射膜は、最も屋外側に配置されるガラス板である第1ガラス板、及び最も屋内側に配置されるガラス板である第3ガラス板の、中空層側の面にそれぞれ配置されるものであり、
該第1ガラス板の日射吸収率が20%以上、45%未満であり、
該第3ガラス板の日射吸収率が8%未満であり、
熱貫流率が2.0W/m2K以下である、窓ガラス用断熱性三層複層ガラス。 - 前記ガラス板と前記中空層の厚みの合計が、47mm以下であり、
該中空層の厚みの合計が8mm以上であることを特徴とする請求項1記載の窓ガラス用断熱性三層複層ガラス。 - 前記2つの低放射膜は、該低放射膜を構成する成分が異なる膜であることを特徴とする請求項1又は請求項2に記載の窓ガラス用断熱性三層複層ガラス。
- 前記2つの低放射膜は、該低放射膜に含まれる層の厚みが、少なくとも1つ異なる膜であることを特徴とする請求項1乃至請求項3のいずれかに記載の窓ガラス用断熱性三層複層ガラス。
- 前記中空層は、乾燥空気、アルゴン、クリプトン、及びネオンからなる群から選ばれる少なくとも1つが充填された気体層であることを特徴とする請求項1乃至請求項4のいずれかに記載の窓ガラス用断熱性三層複層ガラス。
- 前記2つの中空層は、乾燥空気、アルゴン、及びクリプトンからなる群から選ばれる少なくとも1つが充填された気体層であり、
熱貫流率が1.3W/m2K未満である、請求項1乃至請求項5のいずれかに記載の窓ガラス用断熱性三層複層ガラス。 - 前記中空層のうち少なくとも1つは、ネオンを有する気体層であり、
熱貫流率が1.0W/m2K以上、2.0W/m2K以下である、請求項1乃至請求項5のいずれかに記載の窓ガラス用断熱性三層複層ガラス。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018188010 | 2018-10-03 | ||
JP2018188010 | 2018-10-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2020055736A true JP2020055736A (ja) | 2020-04-09 |
Family
ID=70106440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019124104A Pending JP2020055736A (ja) | 2018-10-03 | 2019-07-03 | 窓ガラス用断熱性三層複層ガラス |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2020055736A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021024773A (ja) * | 2019-07-31 | 2021-02-22 | 日本電気硝子株式会社 | 複層ガラス及びサッシ窓 |
KR20220065108A (ko) * | 2020-11-12 | 2022-05-20 | 주식회사 이음기술 | 반사 방지 및 단열 공기층을 구비한 복층 유리의 제조방법 |
-
2019
- 2019-07-03 JP JP2019124104A patent/JP2020055736A/ja active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021024773A (ja) * | 2019-07-31 | 2021-02-22 | 日本電気硝子株式会社 | 複層ガラス及びサッシ窓 |
KR20220065108A (ko) * | 2020-11-12 | 2022-05-20 | 주식회사 이음기술 | 반사 방지 및 단열 공기층을 구비한 복층 유리의 제조방법 |
KR102532523B1 (ko) * | 2020-11-12 | 2023-05-15 | 주식회사 이음기술 | 반사 방지 및 단열 공기층을 구비한 복층 유리의 제조방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5989802B2 (ja) | 減圧複層ガラスパネル | |
JP3916009B2 (ja) | 断熱複層ガラス | |
US10526244B2 (en) | Insulated glazing unit | |
EA017986B1 (ru) | Составной стеклопакет с улучшенной селективностью | |
JP6049629B2 (ja) | 防火戸用単板ガラス及び防火戸用複層ガラス | |
US9903152B2 (en) | Super-insulating multi-layer glass | |
WO2014109368A1 (ja) | 光学多層膜、積層体、および複層ガラス | |
JPH07315889A (ja) | 熱線遮蔽ガラスおよび熱線遮蔽ガラス複合体 | |
JP2020055736A (ja) | 窓ガラス用断熱性三層複層ガラス | |
JP6601156B2 (ja) | 複層ガラス | |
US20220010610A1 (en) | Insulated glass units with low cte center panes | |
WO2002092529A1 (fr) | Panneau de verre de protection et d'isolation thermique | |
RU2526439C2 (ru) | Изолирующее многослойное остекление | |
JP7266020B2 (ja) | 複層ガラスパネル | |
JP7071639B2 (ja) | 窓ガラス用断熱性三層複層ガラス | |
JP2020083685A (ja) | 窓ガラス用断熱性三層複層ガラス | |
WO2020112754A1 (en) | Insulated glass units with low cte center panes | |
JP7550163B2 (ja) | 非対称真空断熱グレージングユニット | |
US11125007B2 (en) | Asymmetrical vacuum-insulated glazing unit | |
JP2018123540A (ja) | 複層ガラス | |
JP2001303860A (ja) | 窓構造 | |
EA041667B1 (ru) | Асимметричный вакуумный изоляционный блок остекления | |
JP2022524268A (ja) | 非対称真空断熱ガラス嵌め込みユニット | |
EA041330B1 (ru) | Асимметричный вакуумный изоляционный блок остекления | |
CN110886569A (zh) | 隔热屏蔽玻璃面板 |