JP2020054143A - モータ制御回路及びモータ制御装置 - Google Patents

モータ制御回路及びモータ制御装置 Download PDF

Info

Publication number
JP2020054143A
JP2020054143A JP2018182505A JP2018182505A JP2020054143A JP 2020054143 A JP2020054143 A JP 2020054143A JP 2018182505 A JP2018182505 A JP 2018182505A JP 2018182505 A JP2018182505 A JP 2018182505A JP 2020054143 A JP2020054143 A JP 2020054143A
Authority
JP
Japan
Prior art keywords
control circuit
motor control
signal
motor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018182505A
Other languages
English (en)
Other versions
JP7244737B2 (ja
Inventor
真喜男 阿部
Makio Abe
真喜男 阿部
秀 林
Shu Hayashi
秀 林
政人 青木
Masato Aoki
政人 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2018182505A priority Critical patent/JP7244737B2/ja
Priority to TW108134014A priority patent/TWI833809B/zh
Priority to US16/576,979 priority patent/US10924050B2/en
Priority to CN201910934159.3A priority patent/CN110957945B/zh
Publication of JP2020054143A publication Critical patent/JP2020054143A/ja
Application granted granted Critical
Publication of JP7244737B2 publication Critical patent/JP7244737B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/045Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

【課題】モータ制御の精度を向上できるモータ制御回路を得ること。【解決手段】モータ制御回路3−2は、モータへ交流電力を供給するインバータ回路のスイッチング動作を制御するパルス幅変調信号を出力する制御回路31を備える。モータ制御回路3−2は、モータの回転速度の目標値を指定する速度指令信号の変化を検出し、速度指令信号が変化したことを示す信号を、割り込み信号として制御回路31へ出力することにより、パルス幅変調信号の通電率を変更させる速度変化検出回路20を備える。【選択図】図12

Description

本発明は、モータへ交流電力を供給するインバータ回路のスイッチング動作を制御するモータ制御回路及びモータ制御装置に関する。
特許文献1には、インバータ回路のスイッチング動作を制御する技術が開示される。モータ制御は、モータの回転速度が速度指令信号の値に追従するように、インバータ回路のスイッチング素子の動作を制御するためのパルス幅変調(Pulse Width Modulation:PWM)信号の通電率を変更する動作である。
特開2018−107914号公報
しかしながら、特許文献1に代表される従来技術では、モータ制御を行う演算処理機能を含む制御部において、モータが故障又は劣化しているか否かを判定する異常判定、速度指令信号が変化したか否かを判定する速度変化判定なども行われる。そのため、制御部がモータ制御のみ行う場合に比べて、制御部の処理負担が大きくなり、速度指令信号の変化に対してモータ制御の応答性が低下して、モータ制御を精度良く行うことができないという課題があった。
本発明は、上記に鑑みてなされたものであって、モータ制御を行う演算処理機能を含む制御部の処理負担を軽減し、かつ、モータ制御の精度を向上できるモータ制御回路を得ることを目的とする。
本発明の実施の形態のモータ制御回路は、モータへ交流電力を供給するインバータ回路のスイッチング動作を制御する制御回路と、モータの故障又は劣化を判定するための判定情報を生成する判定情報生成回路とを備える。モータ制御回路は、判定情報に基づきモータが故障又は劣化しているか否かを判定し、モータが故障又は劣化していることを示す信号を、割り込み信号として制御回路11へ出力する判定回路を備える。
本発明に係るモータ制御回路は、モータ制御の精度を向上できる、という効果を奏する。
実施の形態1に係るモータ制御装置の構成を示す図 実施の形態1に係るモータ制御回路の構成を示す図 実施の形態1に係るモータ制御回路の動作を説明するためのシーケンスチャート 実施の形態1に係るモータ制御回路の動作を説明するためのフローチャート 実施の形態1に係るモータ制御回路の動作を説明するためのタイムチャート 実施の形態1の比較例に係るモータ制御回路の構成を示す図 実施の形態1の比較例に係るモータ制御回路の動作を説明するためのシーケンスチャート 実施の形態1の比較例に係るモータ制御回路の動作を説明するためのフローチャート 実施の形態1の比較例に係るモータ制御回路の動作を説明するためのタイムチャート 実施の形態1に係るモータ制御回路の変形例を示す図 実施の形態2に係るモータ制御装置の構成を示す図 実施の形態2に係るモータ制御回路の構成を示す図 従来のモータ制御回路の構成を示す図 実施の形態2に係るモータ制御回路の動作を説明するためのシーケンスチャート 実施の形態2に係るモータ制御回路の動作を説明するためのフローチャート 実施の形態2に係るモータ制御回路の動作を説明するためのタイムチャート 実施の形態2の比較例に係るモータ制御回路の構成を示す図 実施の形態2の比較例に係るモータ制御回路の動作を説明するためのシーケンスチャート 実施の形態2の比較例に係るモータ制御回路の動作を説明するためのフローチャート 実施の形態2の比較例に係るモータ制御回路の動作を説明するためのタイムチャート 実施の形態2に係るモータ制御回路の変形例を示す図 図21に示すモータ制御回路の動作を説明するためのフローチャート
以下に、本発明の実施の形態に係るモータ制御回路及びモータ制御装置の構成を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
図1は実施の形態1に係るモータ制御装置の構成を示す図である。モータ制御装置100−1は、モータ4に交流電力を供給するインバータ回路1と、インバータ回路1に設けられるスイッチング素子を動作させる駆動信号を生成する駆動信号生成回路2とを備える。またモータ制御装置100−1は、インバータ回路1のスイッチング素子の動作を制御するためのPWM信号を生成するモータ制御回路3−1を備える。図1では、インバータ回路1に直流電力を供給するための整流回路、コンバータ回路、交流電源などの図示が省略されている。モータ4は交流電力によって回転する回転電機である。駆動信号は、駆動信号生成回路2に入力されるPWM信号が、スイッチング素子を駆動可能な電圧に変換されたものである。PWM信号は、スイッチング動作を制御するためのハイレベル又はローレベルの2値をとる矩形波信号である。
次にモータ制御回路3−1の構成を説明する。図2は実施の形態1に係るモータ制御回路の構成を示す図である。モータ制御回路3−1は、PWM信号を生成する制御回路11と、モータ4の故障又は劣化を判定するための判定情報を生成する判定情報生成回路12とを備える。またモータ制御回路3−1は、判定情報生成回路12で生成される判定情報に基づき、モータ4が故障又は劣化しているか否かを判定し、モータ4が故障又は劣化していることを示す信号を、割り込み信号として演算処理機能を含む制御回路11へ出力する判定回路10を備える。判定回路10は、従来では制御回路11で実施されていた演算処理を代替することによって、制御回路11の処理負担を軽減するための回路である。なおモータ4の劣化は、判定情報を長期間計測した際、判定情報の微小変化を検出することによって判定される。
判定情報生成回路12で生成される判定情報は、電流検出部5で検出された電流の値を示す電流検出情報と、温度検出部6で検出された温度の値を示す温度検出情報と、電源電圧検出部7で検出された電源電圧の値を示す電圧検出情報との少なくとも一つを、AD変換器8によってディジタル値に変換された情報である。なお、判定情報生成回路12に入力される検出情報は、モータ4が故障又は劣化しているか否かを判定するために必要な情報であればよく、電流検出情報、温度検出情報及び電圧検出情報に限定されるものではない。このように判定情報生成回路12で生成される判定情報は、電流検出部5などで検出された検出情報がAD変換器8でディジタル値に変換された結果の情報であるため、以下では「変換結果」と称する場合がある。
判定情報生成回路12は、AD変換器8及びADシーケンサ9を備える。AD変換器8は、電流検出情報と温度検出情報と電圧検出情報との少なくとも一つを、ディジタル値に変換して、変換結果をADシーケンサ9に出力する。ADシーケンサ9には、変換結果が保持され、ADシーケンサ9に保持された変換結果は、判定回路10に読み出される。
判定回路10には、電流検出情報、温度検出情報及び電圧検出情報のそれぞれに対して比較される判定値40が設定されている。判定値40は、例えばモータ4が故障又は劣化しているときに検出される電流、温度、電源電圧を基準に設定される。
次にモータ制御回路3−1の動作を説明する。図3は実施の形態1に係るモータ制御回路の動作を説明するためのシーケンスチャートである。図4は実施の形態1に係るモータ制御回路の動作を説明するためのフローチャートである。制御回路11では速度指令信号に基づきモータ制御が行われている(ステップS1)。速度指令信号は、モータ4の回転速度の目標値を指定する信号である。
電流検出情報と温度検出情報と電圧検出情報との少なくとも一つを受信したAD変換器8では、これらの検出情報の値が、ADシーケンサ9の取り扱い可能なディジタル値に変換される。ADシーケンサ9では、一定周期毎にAD変換器8の変換結果が保持され、ADシーケンサ9は、当該周期が経過する度に変換終了信号を出力する。変換終了信号は、当該周期における変換結果の保持が終了したことを示す信号である。
判定回路10は、変換終了信号を受信したか否かを判定する(ステップS2)。変換終了信号を受信していない場合(ステップS2,No)、ステップS1及びステップS2の処理が繰り返される。変換終了信号を受信した場合(ステップS2,Yes)、判定回路10は、ADシーケンサ9に保持された変換結果を読み込む(ステップS3)。
判定回路10は、読み込んだ変換結果の値と予め設定された判定値40とを比較し、変換結果の値が判定値40以上であるか否かを判定する(ステップS4)。変換結果の値が判定値40未満である場合(ステップS4,No)、ステップS1からステップS4までの処理が繰り返される。変換結果の値が判定値40以上である場合(ステップS4,Yes)、判定回路10は、変換結果の値が判定値40以上となったことを通知する信号である割り込み信号を出力する(ステップS5)。割り込み信号を受信した制御回路11は、例えばモータ4が故障又は劣化したことを外部機器に通知する信号を出力する動作である外部通知を行う(ステップS6)。
図5は実施の形態1に係るモータ制御回路の動作を説明するためのタイムチャートである。図5には、制御回路11の動作状態と、変換終了信号が変化するタイミングと、変換結果と、判定回路10の判定処理が行われるタイミングと、割り込み信号が変化するタイミングとが示される。制御回路11でモータ制御が行われているときに、1つ目の変換終了信号がLowからHighに変化した場合、当該変換終了信号がLowからHighに変化した時点から一定期間T1が経過するまで、判定回路10では判定処理が行われる。判定処理は、変換結果の値が判定値40以上であるか否かを判定するステップS4の処理に相当する。判定処理は、判定回路10で行われるため、制御回路11のモータ制御が中断することはない。この判定処理では、例えば電流検出情報の値が判定値40未満のため、割り込み信号はLowである。なお、変換終了信号は、LowからHighに変化した直後に再びLowに変化する。
モータ制御が行われているときに、2つ目の変換終了信号がLowからHighした場合、当該変換終了信号がLowからHighに変化した時点から一定期間T2が経過するまで、判定回路10では、モータ4が故障又は劣化しているか否かを判定する判定処理が行われる。この判定処理では、例えば電流検出情報の値が判定値40以上のため、割り込み信号がLowからHighに変化する。これにより、制御回路11のモータ制御が中断され、外部通知が行われる。
図6は実施の形態1の比較例に係るモータ制御回路の構成を示す図である。図6に示されるモータ制御回路300は、図2に示す判定回路10及び制御回路11の代わりに、制御回路11Aを備える。制御回路11Aでは、前述したモータ制御及び判定処理が行われる。
次にモータ制御回路300の動作を説明する。図7は実施の形態1の比較例に係るモータ制御回路の動作を説明するためのシーケンスチャートである。図8は実施の形態1の比較例に係るモータ制御回路の動作を説明するためのフローチャートである。制御回路11Aでは、速度指令信号に基づきモータ制御が行われている(ステップS11)。電流検出情報と温度検出情報と電圧検出情報との少なくとも一つを受信したAD変換器8では、これらの検出情報の値が、ADシーケンサ9の取り扱い可能なディジタル値に変換される。ADシーケンサ9では、一定周期毎にAD変換器8の変換結果が保持され、ADシーケンサ9は、当該周期が経過したときに、変換終了信号を出力する。
制御回路11Aは、変換終了信号を受信したか否かを判定する(ステップS12)。変換終了信号を受信していない場合(ステップS12,No)、ステップS11及びステップS12の処理が繰り返される。変換終了信号を受信した場合(ステップS12,Yes)、制御回路11Aは、ADシーケンサ9に保持された変換結果を読み込む(ステップS13)。
制御回路11Aは、読み込んだ変換結果の値と予め設定された判定値40とを比較し、変換結果の値が判定値40以上であるか否かを判定する(ステップS14)。変換結果の値が判定値40未満である場合(ステップS14,No)、ステップS11からステップS14までの処理が繰り返される。変換結果の値が判定値40以上である場合(ステップS14,Yes)、制御回路11Aは、外部通知を行う(ステップS15)。
図9は実施の形態1の比較例に係るモータ制御回路の動作を説明するためのタイムチャートである。図9には、制御回路11Aの動作状態と、変換終了信号が変化するタイミングと、変換結果とが示される。制御回路11Aでモータ制御が行われているときに、1つ目の変換終了信号がLowからHighに変化した場合、当該変換終了信号がLowからHighに変化した時点から一定期間T1が経過するまで、制御回路11Aでは、モータ制御に代えて判定処理が行われる。判定処理は、変換結果の値が判定値40以上であるか否かを判定するステップS14の処理に相当する。判定処理は、制御回路11Aで行われるため、一定期間T1が経過するまでモータ制御は中断される。この判定処理では、例えば電流検出情報の値が判定値40未満のため、外部通知は行われない。なお、変換終了信号は、LowからHighに変化した直後に再びLowに変化する。
制御回路11Aでは、一定期間T1が経過した後、モータ制御が再開される。このモータ制御が行われているときに、2つ目の変換終了信号がLowからHighした場合、当該変換終了信号がLowからHighに変化した時点から一定期間T2が経過するまで、制御回路11Aでは判定処理が行われる。この判定処理では、例えば電流検出情報の値が判定値40以上のため、一定期間T2が経過したときに外部通知が行われる。
このように、比較例に係るモータ制御回路300では、変換終了信号がLowからHighに変化した時点から一定期間T1,T2が経過するまで、制御回路11Aによる判定処理、すなわちモータ4が故障又は劣化しているか否かの判定が行われる。そのため、この判定処理中にモータ制御が中断される。
これに対して、実施の形態1に係るモータ制御回路3−1では、図5に示すように、変換終了信号がLowからHighに変化した時点から一定期間T1,T2が経過するまで、判定回路10による判定処理が行われる。すなわち、従来では制御回路11で実施されていた演算処理(異常判定処理)が判定回路10に代替される。従ってモータ制御回路3−1では、モータ4が故障又は劣化しているか否かの判定処理と並行して、モータ制御が継続される。そのため、当該判定処理によってモータ制御が中断されることがない。このように、モータ制御が中断されないため、例えば図5に示される一定期間T1,T2の間に速度指令信号の値が変化した場合でも、速度指令信号の変化に対してモータ制御を即座に変更できる。具体的には、例えば、速度指令信号のオンデューティが長くなった場合にはPWM信号の通電率が大きくなり、速度指令信号のオンデューティが短くなった場合にはPWM信号の通電率が小さくなる。その結果、速度指令信号の変化に伴うモータ制御の応答性が向上する。また、制御回路11で実施されていた演算処理(異常判定処理)が判定回路10に代替されることによって、制御回路11の処理負担が軽減される。
また、速度指令信号の値が短期間に頻繁に変化する場合でも、PWM信号の通電率を遅延なく変更することができるため、モータ制御回路3−1を利用することにより、モータ故障判定、モータ劣化判定などを行いながら、複雑なモータ制御にも対応可能なモータ制御装置100−1を得ることができる。また制御回路11の演算負荷が軽減される分、より一層複雑なモータ制御が可能になる。また、モータ故障判定、モータ劣化判定などの結果、故障又は劣化が発生していると判断された場合には即座に外部通知を行うことも可能である。
図10は実施の形態1に係るモータ制御回路の変形例を示す図である。図10に示されるモータ制御回路3−1Aは、通知端子13を備える。通知端子13は例えば判定回路10と電気的に接続される。通知端子13は、モータ4が故障していること、及びモータ4が劣化していることの少なくとも一つを、モータ制御回路3−1Aの外部に設けられる回路へ通知するための端子である。なお、通知端子13には、例えば判定情報生成回路12と判定回路10と制御回路11とが設けられるプリント基板上に設置される金属端子、判定回路10を構成するプロセッサの端子などを利用できる。
判定回路10は、変換結果の値が判定値40以上のときには、通知端子13に印加される電圧の値を、変換結果の値が判定値40未満のときに通知端子13に印加される電圧の値よりも高くし、又は低くする。すなわち、通知端子13に印加される電圧が異なる値に変更される。モータ制御回路3−1Aの外部に設けられる回路は、通知端子13に印加される電圧の変化量が、例えばモータ4が故障又は劣化したことなどを検出するための規定値よりも増加したことを検出することによって、モータ4が故障又は劣化したことを検出できる。
このように通知端子13を設けることによって、制御回路11による外部通知動作が行われなくとも、通知端子13に印加される電圧が変化するだけで、モータ4の故障、劣化などが外部回路に伝達される。従って、制御回路11の外部通知動作が不要になり、制御回路11の演算負荷がより一層軽減される。
実施の形態2.
図11は実施の形態2に係るモータ制御装置の構成を示す図である。以下では、実施の形態1と同一部分には同一符号を付してその説明を省略し、異なる部分について述べる。実施の形態2に係るモータ制御装置100−2は、実施の形態1のモータ制御回路3−1の代わりにモータ制御回路3−2を備える。
図12は実施の形態2に係るモータ制御回路の構成を示す図である。実施の形態2に係るモータ制御回路3−2は、PWM信号を生成する制御回路31と速度変化検出回路20とを備える。速度変化検出回路20は、第1キャプチャ21、第2キャプチャ22、カウンタクロック23及び比較回路24を備える。図13は従来のモータ制御回路の構成を示す図である。従来のモータ制御回路3−2'は、PWM信号を生成する制御回路31'と速度変化検出回路20'とを備える。速度変化検出回路20'は、第1キャプチャ21、第2キャプチャ22及びカウンタクロック23を備える。カウンタクロック23は、一定周期のクロック信号を発生する。第1キャプチャ21は、速度指令信号がHighの時間を計測するために、例えば速度指令信号がLowからHighに変化した時点から、速度指令信号がHighからLowに変化するまでの期間に発生するクロック信号を計数し、計数結果を第1カウンタ値として保持する。第1キャプチャ21は第1カウンタ値を保持するレジスタである。第1キャプチャ21の第1カウンタ値は、例えば、速度指令信号がHighからLowに変化したときに更新される。第2キャプチャ22は、例えば、更新される前に第1キャプチャ21で保持されていた第1カウンタ値をコピーして、第2カウンタ値として保持する。第2カウンタ値が保持されるタイミングは、例えば速度指令信号がHighからLowに変化したときである。第2キャプチャ22は第2カウンタ値を保持するレジスタである。従来の制御回路31'には、第1キャプチャ21に保持される最新の第1カウンタ値と、第2キャプチャ22に保持される最新の第2カウンタ値とが入力される。制御回路31'は、第1カウンタ値と第2カウンタ値との差分、すなわち速度指令信号の速度差を検出し、速度差がある閾値以上であるか否かを判定する演算を実施する。このように従来のモータ制御回路3−2'では、速度指令信号の変化判定処理が制御回路31'で実施され、制御回路31'では、速度指令信号の速度差が殆ど無い場合でも、一定周期で速度差が閾値以上であるか否かを判定する演算が行われる。これに対して実施の形態2に係るモータ制御回路3−2は、速度変化検出回路20が備える比較回路24によって速度差が閾値以上であるか否かの判定が行われ、速度差が閾値を超えた場合にのみ、速度変化検出回路20からの信号により、制御回路31がモータ制御を変更するように構成されているため、制御回路31の処理負担が軽減される。
速度変化検出回路20には、速度指令信号を入力するための入力端子50が接続される。速度変化検出回路20は、入力端子50を介して入力される速度指令信号の変化を検出し、速度指令信号が変化したことを示す信号を、割り込み信号として制御回路31へ出力することにより、PWM信号の通電率を変更させる。
比較回路24は、第1キャプチャ21に保持される最新の第1カウンタ値と、第2キャプチャ22に保持される最新の第2カウンタ値とを比較することによって、速度指令信号の変化を検出して、速度指令信号が変化したことを示す信号を出力する。
次にモータ制御回路3−2の動作を説明する。図14は実施の形態2に係るモータ制御回路の動作を説明するためのシーケンスチャートである。図15は実施の形態2に係るモータ制御回路の動作を説明するためのフローチャートである。制御回路31では、速度指令信号に基づきモータ制御が行われている(ステップS21)。速度指令信号がLowからHighに変化していないとき(ステップS22,No)、ステップS21及びステップS22の処理が繰り返される。速度指令信号がLowからHighに変化したとき(ステップS22,Yes)、第1キャプチャ21は、クロック信号を計数して第1カウンタ値を求める(ステップS23)。
その後、速度指令信号がHighからLowに変化するまでステップS23及びステップS24の処理が繰り返され(ステップS24,No)、速度指令信号がHighからLowに変化したとき(ステップS24,Yes)、第1キャプチャ21の第1カウンタ値が更新される。このとき第2キャプチャ22は、更新される直前の第1カウンタ値を第2カウンタ値として保持する(ステップS25)。
その後、速度指令信号がLowからHighに変化するまでステップS25及びステップS26の処理が繰り返され(ステップS26,No)、速度指令信号がLowからHighに変化したとき(ステップS26,Yes)、比較回路24は、第1カウンタ値と第2カウンタ値とを比較し、第2カウンタ値が第1カウンタ値と異なるか否かを判定する(ステップS27)。第2カウンタ値が第1カウンタ値と同じである場合(ステップS27,No)、ステップS21からステップS27までの処理が繰り返される。第2カウンタ値が第1カウンタ値と異なる場合(ステップS27,Yes)、比較回路24は割り込み信号を出力する(ステップS28)。割り込み信号を受信した制御回路31は、モータ制御を変更する(ステップS29)。
図16は実施の形態2に係るモータ制御回路の動作を説明するためのタイムチャートである。図16には、速度指令信号と、第1カウンタ値と、第2カウンタ値と、割り込み信号と、制御回路31の動作状態とが示される。Tで示される期間は、速度指令信号の変化周期である。Ton1、Ton2、Ton3で示される期間は、速度指令信号がHighの時間、すなわち速度指令信号がオンとなっている時間である。Ton1及びTon2は、互いに等しく、Ton3は、Ton1及びTon2のそれぞれよりも短い。第1キャプチャ21に保持される第1カウンタ値71は、Ton1に対応しており、例えば「10」である。第1カウンタ値72は、Ton2に対応しており、例えば「10」である。第1カウンタ値73は、Ton3に対応しており、例えば「3」である。第2キャプチャ22に保持される第2カウンタ値81は、第1カウンタ値71に対応しており、例えば「10」である。同様に、第2カウンタ値82は、第1カウンタ値72に対応しており、「10」であり、第2カウンタ値83は、第1カウンタ値73に対応しており、「3」である。
第1カウンタ値72と第2カウンタ値81とが比較された場合、第1カウンタ値72と第2カウンタ値81は互いに同じ値のため、割り込み信号はLowのままである。すなわち、割り込み信号は出力されない。第1カウンタ値73と第2カウンタ値82とが比較された場合、第1カウンタ値73と第2カウンタ値82は互いに異なる値のため、割り込み信号がLowからHighに変化する。すなわち、割り込み信号が出力される。割り込み信号が出力されたとき、制御回路31は、速度指令信号が変化したと判断して、モータ4の回転速度が、変化後の速度指令信号の値に追従するようにPWM信号を生成、すなわちモータ制御を変更する。図16の例では、第2カウンタ値82が第1カウンタ値73よりも大きいため、PWM信号の通電率が増加するようにモータ制御が行われる。
実施の形態2に係るモータ制御回路3−2では、速度変化判定が速度変化検出回路20で行われるため、制御回路31のモータ制御に係る演算負荷は、速度変化判定によって増加することがない。
図17は実施の形態2の比較例に係るモータ制御回路の構成を示す図である。図17に示されるモータ制御回路400は、図12に示す速度変化検出回路20及び制御回路31の代わりに、キャプチャタイマ20A及び制御回路31Aを備える。制御回路31Aではモータ制御及び速度変化判定が行われる。キャプチャタイマ20Aは、カウンタクロック23及びキャプチャ25を備える。キャプチャ25は、速度指令信号がHighの時間を計測するために、例えば速度指令信号がLowからHighに変化した時点から、速度指令信号がHighからLowに変化するまでの期間に発生するクロック信号を計数し、計数結果をカウンタ値として保持する。クロック信号はカウンタクロック23から出力される信号である。
次にモータ制御回路400の動作を説明する。図18は実施の形態2の比較例に係るモータ制御回路の動作を説明するためのシーケンスチャートである。図19は実施の形態2の比較例に係るモータ制御回路の動作を説明するためのフローチャートである。制御回路31Aでは速度指令信号に基づきモータ制御が行われている(ステップS31)。速度指令信号がLowからHighに変化していないとき(ステップS32,No)、ステップS31及びステップS32の処理が繰り返される。速度指令信号がLowからHighに変化したとき(ステップS32,Yes)、キャプチャ25はクロック信号を計数してカウンタ値を求める(ステップS33)。
その後、速度指令信号がHighからLowに変化するまでステップS33及びステップS34の処理が繰り返され(ステップS34,No)、速度指令信号がHighからLowに変化したとき(ステップS34,Yes)、カウンタ値が更新され、キャプチャ25は、カウンタ値が更新されたことを示すカウンタ更新信号を出力する(ステップS35)。
カウンタ更新信号を受信した制御回路31Aは、キャプチャ25に保持されるカウンタ値を読み込み(ステップS36)、更新前のカウンタ値と更新後のカウンタ値とを比較する(ステップS37)。比較の結果、カウンタ値が同じである場合(ステップS37,Yes)、ステップS36及びステップS37の処理が繰り返される。カウンタ値が異なる場合(ステップS37,Yes)、制御回路31Aは、モータ制御を変更する(ステップS38)。このように、制御回路31Aは、モータ制御を行いながら、更新前のカウンタ値を保持すると共に、更新前のカウンタ値と更新後のカウンタ値とを比較する。
図20は実施の形態2の比較例に係るモータ制御回路の動作を説明するためのタイムチャートである。図20には、速度指令信号と、カウンタ値と、カウンタ更新信号と、速度変化が検出されるタイミングと、制御回路の動作状態とが示される。Ton1、Ton2、Ton3で示される期間は、速度指令信号がHighの時間、すなわち速度指令信号がオンとなっている時間である。Ton1及びTon2は、互いに等しく、Ton3は、Ton1及びTon2のそれぞれよりも短い。カウンタ値91は、Ton1に対応しており、例えば「10」である。カウンタ値92は、Ton2に対応しており、例えば「10」である。カウンタ値93は、Ton3に対応しており、例えば「3」である。
カウンタ値91とカウンタ値92とが比較された場合、カウンタ値91とカウンタ値92は互いに同じ値のため、速度変化は検出されない。カウンタ値92とカウンタ値93とが比較された場合、カウンタ値92とカウンタ値93は互いに異なる値のため、速度変化が検出される。速度変化が検出されたとき、制御回路31Aは、速度指令信号が変化したと判断して、モータ4の回転速度が、変化後の速度指令信号の値に追従するように、PWM信号の通電率を変更する。比較例に係るモータ制御回路400では、速度変化判定が制御回路31Aで行われるため、制御回路31Aの演算負荷は、モータ制御に係る演算のみが行われる場合に比べて増加する。
これに対して、実施の形態2に係るモータ制御回路3−2では、速度変化判定が速度変化検出回路20で行われる。そのため、制御回路31はモータ制御のみを行うことができる。従って、制御回路31の演算負荷が軽減され、速度指令信号が変化した場合でも、速度指令信号の変化に対してモータ制御を即座に変更できる。その結果、速度指令信号の変化に伴うモータ制御の応答性が向上する。また、速度指令信号の値が短期間に頻繁に変化する場合でも、PWM信号の通電率を遅延なく変更することができるため、複雑なモータ制御にも対応可能なモータ制御装置100−2を得ることができる。また制御回路31の演算負荷が軽減される分、より一層複雑なモータ制御が可能になる。
図21は実施の形態2に係るモータ制御回路の変形例を示す図である。図21に示されるモータ制御回路3−2Aの速度変化検出回路20は、比較回路24の代わりに比較回路24Aを備える。比較回路24Aでは、変化前の速度指令信号と変化後の速度指令信号との差分が演算され、この差分が、比較回路24Aに設定される判定値60に対して比較される。また比較回路24Aは、差分と判定値60とを比較した結果、差分が判定値60未満のときには割り込み信号を出力せず、差分が判定値60以上のときには割り込み信号を出力する。なお、比較回路24Aの判定処理は、これに限定されず、比較回路24Aは、差分が判定値60以下のときには割り込み信号を出力せず、差分が判定値60を超えるときには割り込み信号を出力するように構成してもよい。
次にモータ制御回路3−2Aの動作を説明する。図22は図21に示すモータ制御回路の動作を説明するためのフローチャートである。図22に示されるステップS21からステップ27までの処理は、図15に示されるステップS21からステップ27までの処理と同様のため、説明を割愛する。
ステップS27の処理の後、比較回路24Aは、変化前の速度指令信号と変化後の速度指令信号との差分を演算する。すなわち、第1キャプチャ21に保持される第1カウンタ値と、第2キャプチャ22に保持される第2カウンタ値との差分を演算する。比較回路24Aは、演算された差分が判定値60以上か否かを判断する(ステップS30,Yes)。差分が判定値60未満の場合(ステップS30,No)、ステップS21からステップS30までの処理が繰り返される。演算された差分が判定値60以上の場合(ステップS30,Yes)、ステップS28及びステップS29の処理が行われる。ステップS28及びステップS29の処理は、図15に示されるステップS28及びステップS29の処理と同様のため、説明を割愛する。
例えば第1カウンタ値が「3」であり、第2カウンタ値が「10」である場合、差分は「7」となる。そして判定値60の値が例えば「2」の場合には、差分「7」は判定値60以上のため、モータ制御が変更される。一方、第1カウンタ値が「9」であり、第2カウンタ値が「10」である場合、差分は「1」となるため、判定値60の値が例えば「2」の場合には、差分「1」は判定値60未満となり、モータ制御は変更されない。
モータ制御回路3−2Aでは、例えばモータ制御回路3−2Aの周囲に設けられるプロセッサなどから発生するノイズによって、速度指令信号の波形が歪んだ場合でも、速度指令信号の小さな変化に対してはモータ制御を変化させずに済むため、ロバスト性の高いモータ制御装置100−2を得ることができる。また、モータ制御回路3−2Aでは、速度指令信号が特定の値だけ変化したときのみ、モータ制御を変化させることができるため、制御回路31における演算動作に伴う処理負担が軽減される共に電力消費量を軽減できる。
なお、本発明の実施の形態2に係るモータ制御回路3−2,3−2Aは、モータの回転速度を判別するモータ回転速度判別回路(制御回路31)を備え、モータの回転速度に応じてモータ駆動波形生成処理の切り替えを行うように構成されている。また本発明の実施の形態2に係るモータ制御回路3−2,3−2Aは、速度変化検出回路20を備え、速度指令信号の変化を検出するように構成されている。また本発明の実施の形態2に係るモータ制御回路3−2,3−2Aは、ハードウェアのみで速度指令信号の変化を検出してモータ制御に反映させるものである。
なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 インバータ回路、2 駆動信号生成回路、3−1,3−1A,3−2,3−2',3−2A モータ制御回路、4 モータ、5 電流検出部、6 温度検出部、7 電源電圧検出部、8 AD変換器、9 ADシーケンサ、10 判定回路、11,11A 制御回路、12 判定情報生成回路、13 通知端子、20,20' 速度変化検出回路、20A キャプチャタイマ、21 第1キャプチャ、22 第2キャプチャ、23 カウンタクロック、24,24A 比較回路、25 キャプチャ、31,31' 制御回路、31A 制御回路、40 判定値、50 入力端子、60 判定値、71,72,73 第1カウンタ値、81,82,83 第2カウンタ値、91,92,93 カウンタ値、100−1,100−2 モータ制御装置、300,400 モータ制御回路。

Claims (4)

  1. モータへ交流電力を供給するインバータ回路のスイッチング動作を制御するパルス幅変調信号を出力する制御回路と、
    前記モータの回転速度の目標値を指定する速度指令信号の変化を検出し、前記速度指令信号が変化したことを示す信号を、割り込み信号として前記制御回路へ出力することにより、前記パルス幅変調信号の通電率を変更させる速度変化検出回路と、
    を備えるモータ制御回路。
  2. 前記速度変化検出回路には、変化前の前記速度指令信号と変化後の前記速度指令信号との差分と比較される判定値が設定され、
    前記速度変化検出回路は、前記差分と前記判定値とを比較した結果、前記差分が前記判定値未満のとき又は前記判定値以下のときには前記割り込み信号を出力せず、
    前記制御回路は、前記割り込み信号が出力されないときには前記パルス幅変調信号の通電率を変更しない請求項1に記載のモータ制御回路。
  3. 前記速度変化検出回路には、変化前の前記速度指令信号と変化後の前記速度指令信号との差分と比較される判定値が設定され、
    前記速度変化検出回路は、前記差分と前記判定値とを比較した結果、前記差分が前記判定値を超えるとき又は前記判定値以上のときには前記割り込み信号を出力し、
    前記制御回路は、前記割り込み信号が出力されたときには前記パルス幅変調信号の通電率を変更する請求項2に記載のモータ制御回路。
  4. 請求項1から3の何れか一項に記載のモータ制御回路と、
    前記インバータ回路と、
    前記パルス幅変調信号に基づき、前記インバータ回路に設けられるスイッチング素子を動作させる駆動信号を生成する駆動信号生成回路と
    を備えるモータ制御装置。
JP2018182505A 2018-09-27 2018-09-27 モータ制御回路及びモータ制御装置 Active JP7244737B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018182505A JP7244737B2 (ja) 2018-09-27 2018-09-27 モータ制御回路及びモータ制御装置
TW108134014A TWI833809B (zh) 2018-09-27 2019-09-20 馬達控制電路以及馬達控制裝置
US16/576,979 US10924050B2 (en) 2018-09-27 2019-09-20 Motor control circuit and motor controller
CN201910934159.3A CN110957945B (zh) 2018-09-27 2019-09-27 电动机控制电路以及电动机控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018182505A JP7244737B2 (ja) 2018-09-27 2018-09-27 モータ制御回路及びモータ制御装置

Publications (2)

Publication Number Publication Date
JP2020054143A true JP2020054143A (ja) 2020-04-02
JP7244737B2 JP7244737B2 (ja) 2023-03-23

Family

ID=69946642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018182505A Active JP7244737B2 (ja) 2018-09-27 2018-09-27 モータ制御回路及びモータ制御装置

Country Status (3)

Country Link
US (1) US10924050B2 (ja)
JP (1) JP7244737B2 (ja)
CN (1) CN110957945B (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295688A (ja) * 2006-04-24 2007-11-08 Nissan Motor Co Ltd インバータ制御装置及びインバータ制御方法
JP2010193541A (ja) * 2009-02-16 2010-09-02 Meidensha Corp 建設機械のアーム駆動用電動機の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6034494A (en) * 1998-01-20 2000-03-07 Denso Corporation Control device for brushless DC motor
US6958586B2 (en) * 2002-07-12 2005-10-25 Mitsubishi Denki Kabushiki Kaisha Vector control invertor
JP2004152441A (ja) 2002-10-31 2004-05-27 Toshiba Corp ディスク記憶装置及び同装置におけるスピンドルモータの駆動電圧制御方法
JP4935470B2 (ja) * 2007-04-05 2012-05-23 パナソニック株式会社 モータ制御回路
US8405337B2 (en) * 2008-11-12 2013-03-26 Globe Motors, Inc. Method of controlling an automatic door system
JP5387805B1 (ja) * 2012-03-12 2014-01-15 パナソニック株式会社 モータ制御システム、モータ制御装置、ブラシレスモータおよびモータ制御方法
US9698722B2 (en) * 2015-06-19 2017-07-04 Deere & Company Method and inverter with thermal management for controlling an electric machine
JP6535318B2 (ja) 2016-12-27 2019-06-26 ミネベアミツミ株式会社 モータ駆動制御装置及びモータ駆動制御装置の制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007295688A (ja) * 2006-04-24 2007-11-08 Nissan Motor Co Ltd インバータ制御装置及びインバータ制御方法
JP2010193541A (ja) * 2009-02-16 2010-09-02 Meidensha Corp 建設機械のアーム駆動用電動機の制御装置

Also Published As

Publication number Publication date
US10924050B2 (en) 2021-02-16
CN110957945A (zh) 2020-04-03
US20200106379A1 (en) 2020-04-02
JP7244737B2 (ja) 2023-03-23
TW202015313A (zh) 2020-04-16
CN110957945B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
EP2546989B1 (en) Control device of electromagnetic inductive load
US20130320892A1 (en) Motor drive circuit
JP5904964B2 (ja) 電源回路
JP2014042440A (ja) モータ駆動装置及びモータ制御方法
JP2020054143A (ja) モータ制御回路及びモータ制御装置
JP4915982B2 (ja) 電源制御方法及びヒータ制御装置
TWI833809B (zh) 馬達控制電路以及馬達控制裝置
JP6484954B2 (ja) モータ制御装置、モータ制御システム、モータ制御方法及びモータ制御プログラム
CN110957959B (zh) 电动机控制电路以及电动机控制装置
JPH11187687A (ja) 電流リプル検出によるサーボ制御装置
JP7364871B2 (ja) モータ制御回路及びモータ制御装置
US10897221B2 (en) Motor control circuit and motor controller
TWI833808B (zh) 馬達控制電路以及馬達控制裝置
KR20160028232A (ko) 화상형성장치 및 위상 제어 방법
JP2010273470A (ja) 多重チョッパ回路の制御回路
JP2018046680A (ja) 負荷駆動装置
JP5070855B2 (ja) 電源装置および通信機器
JP2009027900A (ja) インバータの出力電圧検出誤差補正方法および誤差補正回路
JP2004120844A (ja) 昇圧コンバータ制御装置
JP2008187773A (ja) 電源装置および通信機器
JP2008187771A (ja) 電源装置および通信機器
JP5509132B2 (ja) 電磁流量計
JP2005039930A (ja) インバータ装置の制御装置
JP2008096079A (ja) ヒートポンプ制御装置
CN110663168A (zh) 旋转角度检测装置及交流旋转电机控制装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181001

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7244737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150