JP2020053514A - Inductor - Google Patents

Inductor Download PDF

Info

Publication number
JP2020053514A
JP2020053514A JP2018180229A JP2018180229A JP2020053514A JP 2020053514 A JP2020053514 A JP 2020053514A JP 2018180229 A JP2018180229 A JP 2018180229A JP 2018180229 A JP2018180229 A JP 2018180229A JP 2020053514 A JP2020053514 A JP 2020053514A
Authority
JP
Japan
Prior art keywords
core
inner core
magnetic flux
contact portion
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018180229A
Other languages
Japanese (ja)
Other versions
JP7253891B2 (en
Inventor
慎也 尼野
Shinya Amano
慎也 尼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2018180229A priority Critical patent/JP7253891B2/en
Publication of JP2020053514A publication Critical patent/JP2020053514A/en
Application granted granted Critical
Publication of JP7253891B2 publication Critical patent/JP7253891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To improve the DC superposition characteristics of an inductor by using a composite core.SOLUTION: A core 2 includes an inner core 21 having a winding 3 wound around the outer periphery, and an outer core 22 formed of a magnetic material having a lower magnetic permeability than the inner core 21 and joined to both ends of the inner core. The inner core 21 includes a contact portion 23 in contact with the outer core 22, and a non-contact portion 24 not in contact with the outer core 22, and the contact portion 23 includes a reduced portion 25 in which a cross-sectional area in a direction orthogonal to the winding axis direction is smaller than the cross-sectional area of the non-contact portion 24 in a direction orthogonal to the winding axis direction.SELECTED DRAWING: Figure 2

Description

本発明は、インダクタに関する。   The present invention relates to inductors.

インダクタは、電源回路、一般信号回路、高周波回路等の電気回路において、例えばトランス、アンテナ(バーアンテナ)、チョークコイル、フィルタ、あるいはセンサ等として使用される。近年の電気機器あるいは電子機器に対する小型化、高周波化、あるいは大電流化の要請に伴い、インダクタに対しても同様の対応が要求されている。   The inductor is used as a transformer, an antenna (bar antenna), a choke coil, a filter, a sensor, or the like in an electric circuit such as a power supply circuit, a general signal circuit, and a high-frequency circuit. With the recent demand for miniaturization, high frequency, or large current of electric or electronic devices, inductors are required to respond in a similar manner.

現状のインダクタのコアとしては、フェライトを使用したものが主流であるが、フェライトを使用したコアでは、材料特性そのものの限界から、上記の要請に応えることは難しくなっている。そのため、新たなコア材料の実用化が模索されている。候補の一つとして磁気特性に優れたアモルファス系材料が提案されているが、アモルフォス系材料は、成形性が従来のフェライト系材料に比べて悪い、という問題がある。   At present, inductors using ferrite are the mainstream cores, but it is difficult for cores using ferrite to meet the above requirements due to limitations in the material characteristics themselves. Therefore, practical use of a new core material is being sought. As one of the candidates, an amorphous material having excellent magnetic properties has been proposed. However, there is a problem that an amorphous material has poor formability as compared with a conventional ferrite material.

この成形性に配慮した既存技術として、内芯コアをアモルファス系磁性材料で形成すると共に、外殻コアをアモルファス系磁性材料と熱可塑性樹脂の混合物で形成した複合コアがある(特許文献1)。アモルファス系磁性粉末だけで磁性素子全体を形成する場合、全体を金型で圧縮成形する必要があるため、その形状はどうしても制約を受けることになるが、特許文献1の複合コアであれば、外殻コアが射出成形により成形可能となるため、形状自由度が高まる利点が得られる。   As an existing technology in consideration of the moldability, there is a composite core in which an inner core is formed of an amorphous magnetic material and an outer core is formed of a mixture of an amorphous magnetic material and a thermoplastic resin (Patent Document 1). When the entire magnetic element is formed only from the amorphous magnetic powder, the entire magnetic element must be compression-molded with a mold, so that its shape is necessarily restricted. Since the shell core can be formed by injection molding, there is an advantage that the degree of freedom in shape is increased.

特開2015−185673号公報JP-A-2005-185873

本発明者の検証により、特許文献1の複合コアでは、図5(b)に示すように、巻線で生じた磁束が最初に通過する内芯コア近傍の隅部(A)で、内芯コアから離れた隅部(B)に比べ、局所的に磁束密度が高まることが明らかになった。この場合、コア内に磁束密度の高い部分と低い部分ができ、しかも磁束密度の差が大きいため、直流重畳特性が低下する問題がある。   According to the verification of the present inventor, in the composite core of Patent Document 1, as shown in FIG. 5B, the core (A) near the inner core where the magnetic flux generated by the winding first passes passes through the inner core. It became clear that the magnetic flux density increased locally as compared with the corner (B) away from the core. In this case, there is a problem that a portion having a high magnetic flux density and a portion having a low magnetic flux density are formed in the core, and the difference in the magnetic flux density is large.

特許文献1のように、外殻コアに樹脂材料を配合した場合、そのような樹脂材料を含まない内芯コアに比べて、どうしても比透磁率が低下する。現状、上記のようにコアの隅部で局所的に磁束密度が高まる詳細なメカニズムは不明であるが、内芯コアに比べて外殻コアの比透磁率が低くなることで、内芯コアから外殻コアにスムーズに磁束が流れず、両者の境界部で磁束が停滞したような状態になることが要因の一つと推察される。   As described in Patent Document 1, when a resin material is blended into the outer core, the relative magnetic permeability is inevitably lower than that of the inner core that does not contain such a resin material. At present, the detailed mechanism of locally increasing the magnetic flux density at the corners of the core as described above is unknown, but the relative permeability of the outer core is lower than that of the inner core, It is presumed that one of the factors is that the magnetic flux does not flow smoothly through the outer core and the magnetic flux stagnates at the boundary between the two.

以上の検証に基づき、本発明は、複合コアを用いたインダクタの直流重畳特性を向上させることを目的とする。   Based on the above verification, an object of the present invention is to improve the DC superposition characteristics of an inductor using a composite core.

以上の課題を解決するため、本発明は、コアおよび巻線を備え、前記コアが、前記巻線を外周に巻回した内芯コアと、前記内芯コアよりも低透磁率の磁性材料で形成され、かつ前記内芯コアの両端部に接合された外殻コアとを有し、前記内芯コアが、前記外殻コアと接触した接触部と、前記外殻コアと接触しない非接触部とを備えるインダクタにおいて、前記接触部に、巻線軸方向と直交する方向の断面積が、前記非接触部の巻線軸方向と直交する方向の断面積よりも小さい縮小部を設けたことを特徴とする。   In order to solve the above problems, the present invention includes a core and a winding, wherein the core is an inner core wound around the winding, and a magnetic material having a lower magnetic permeability than the inner core. An outer shell core formed and joined to both ends of the inner core, wherein the inner core has a contact portion in contact with the outer core, and a non-contact portion not in contact with the outer core. In the inductor comprising: the contact portion is provided with a reduced portion in which a cross-sectional area in a direction perpendicular to the winding axis direction is smaller than a cross-sectional area of the non-contact portion in a direction perpendicular to the winding axis direction. I do.

このように内芯コアの両端部に縮小部を設けることにより、内芯コア近傍の隅部での局所的な磁束の集中を緩和し、磁束密度の高い部分と低い部分の差を小さくすることができる。これにより、コア内でバランス良く磁束を分布させることがき、直流重畳特性を向上させることが可能となる。   By providing reduced portions at both ends of the inner core in this manner, local concentration of magnetic flux at corners near the inner core is reduced, and the difference between high and low magnetic flux density portions is reduced. Can be. As a result, the magnetic flux can be distributed in the core in a well-balanced manner, and the DC bias characteristics can be improved.

前記縮小部は円筒面状に形成することができる。この場合、縮小部と非接触部の半径寸法の径差をXとし、縮小部の巻線軸方向の長さをYとして、X>Yにするのが好ましい。   The reduced portion may be formed in a cylindrical shape. In this case, it is preferable that X> Y, where X is the difference in radius between the reduced portion and the non-contact portion, and Y is the length of the reduced portion in the winding axis direction.

前記縮小部をテーパ面状に形成することもできる。   The reduced portion may be formed in a tapered shape.

本発明によれば、複合コアを用いたインダクタの直流重畳特性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the DC superposition characteristic of the inductor using a composite core can be improved.

本実施形態にかかるインダクタを示す斜視図である。It is a perspective view showing the inductor concerning this embodiment. (a)図は本実施形態にかかるインダクタの縦断面図であり(実施例1)、(b)図はその磁束密度を示すコンター図である。(A) is a longitudinal sectional view of the inductor according to the present embodiment (Example 1), and (b) is a contour diagram showing the magnetic flux density. (a)図は本実施形態にかかるインダクタの縦断面図であり(実施例2)、(b)図はその磁束密度を示すコンター図である。(A) is a vertical sectional view of the inductor according to the present embodiment (Example 2), and (b) is a contour diagram showing the magnetic flux density. (a)図は本実施形態にかかるインダクタの縦断面図であり(実施例3)、(b)図はその磁束密度を示すコンター図である。(A) is a longitudinal sectional view of the inductor according to the present embodiment (Example 3), and (b) is a contour diagram showing the magnetic flux density. (a)図は比較例1の縦断面図であり(実施例1)、(b)図はその磁束密度を示すコンター図である。(A) is a longitudinal sectional view of Comparative Example 1 (Example 1), and (b) is a contour diagram showing the magnetic flux density. (a)図は比較例2の縦断面図であり(実施例1)、(b)図はその磁束密度を示すコンター図である。(A) is a longitudinal sectional view of Comparative Example 2 (Example 1), and (b) is a contour diagram showing the magnetic flux density. 実施例および比較例の最大磁束密度、およびインダクタンス値を示す表である。It is a table | surface which shows the maximum magnetic flux density of an Example and a comparative example, and an inductance value. 本発明の他の実施形態を示す縦断面図である。It is a longitudinal section showing other embodiments of the present invention. 本発明の他の実施形態を示す縦断面図である。It is a longitudinal section showing other embodiments of the present invention. 本発明の他の実施形態を示す縦断面図である。It is a longitudinal section showing other embodiments of the present invention.

以下、本発明の実施形態を図1〜図10に基づいて説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS.

図1は本実施形態にかかるインダクタ1を示す斜視図であり、図2は、当該インダクタの縦断面図である。図1および図2に示すように、本実施形態にかかるインダクタ1は、コア2と巻線3とを有する。   FIG. 1 is a perspective view showing an inductor 1 according to the present embodiment, and FIG. 2 is a longitudinal sectional view of the inductor. As shown in FIGS. 1 and 2, an inductor 1 according to the present embodiment has a core 2 and a winding 3.

本実施形態のコア2は、JIS C2560-1に規定されたPQ型に相当するもので、軸状の内芯コア21と、内芯コア21の外径側に配置された外殻コア22とを有する。コア2にエアギャップは設けられていない。   The core 2 of the present embodiment is equivalent to the PQ type defined in JIS C2560-1, and includes an axial inner core 21 and an outer core 22 arranged on the outer diameter side of the inner core 21. Having. No air gap is provided in the core 2.

本実施形態の内芯コア21は、円筒状をなしている。内芯コア21の中心には、巻線軸方向(図2の上下方向)の全長にわたって孔210が形成されている。中芯コア21は、円筒状の他、角筒状に形成することもできる。   The inner core 21 of the present embodiment has a cylindrical shape. A hole 210 is formed at the center of the inner core 21 over the entire length in the winding axis direction (vertical direction in FIG. 2). The core 21 may be formed in a square tube shape in addition to a cylindrical shape.

外殻コア22は、側部22aと、側部22aの巻線軸方向の両端部から半径方向の内側に向けて延びたフランジ部22bとを一体に有する。本実施形態において、側部22aは円筒状に形成され、各フランジ部22bは、中心に孔を有する孔空き円板状に形成される。フランジ部22bの内面220は、内芯コア21の巻線軸方向の両端部の外周面に嵌合している。側部22aの円周方向一部領域に、巻線3と接続する配線を通すための切欠き221(図1参照)が設けられている。内芯コア21の端面は、インダクタ1の表面に露出しており、フランジ部22bの外端面と同一平面上にある。   The outer shell core 22 integrally includes a side portion 22a and a flange portion 22b extending radially inward from both ends of the side portion 22a in the winding axis direction. In the present embodiment, the side portion 22a is formed in a cylindrical shape, and each flange portion 22b is formed in a holed disk shape having a hole in the center. The inner surface 220 of the flange portion 22b is fitted to the outer peripheral surfaces of both ends of the inner core 21 in the winding axis direction. A cutout 221 (see FIG. 1) for passing a wiring connected to the winding 3 is provided in a part of the side portion 22a in the circumferential direction. The end face of the inner core 21 is exposed on the surface of the inductor 1 and is flush with the outer end face of the flange portion 22b.

図2に示すように、巻線3は、内芯コア21の外周に巻回される。側部22aと内芯コア21との間の環状空間に巻線3が配置される。外殻コア22の側部22aが巻線3の外周面と対向し、両フランジ部22bが巻線3の両端面とそれぞれ対向している。   As shown in FIG. 2, the winding 3 is wound around the outer periphery of the inner core 21. The winding 3 is arranged in an annular space between the side part 22 a and the inner core 21. The side portions 22a of the outer core 22 face the outer peripheral surface of the winding 3 and the two flange portions 22b face both end surfaces of the winding 3, respectively.

インダクタ1の組立前の状態では、内芯コア21および外殻コア22は、それぞれ図2に示す分割線Mで二分割された状態にある。インダクタ1の組立に際しては、先ず、内芯コア21の半体および外殻コア22の半体をそれぞれ個別に製作する。次いで、内芯コア21の半体を外殻コア22の半体の内面220に嵌合固定してアセンブリとし、このアセンブリを二組製作する。各アセンブリの内芯コア21と外殻コア22は、接着等の手段で固定する。次いで、一方のアセンブリの内芯コア21の外周に巻線3を配置した状態で、二組のアセンブリを衝合し、接着等の手段で両者を一体化する。これにより、図1に示すインダクタ1が完成する。   Before the inductor 1 is assembled, the inner core 21 and the outer core 22 are each divided into two by a dividing line M shown in FIG. When assembling the inductor 1, first, the half of the inner core 21 and the half of the outer core 22 are individually manufactured. Next, the half of the inner core 21 is fitted and fixed to the inner surface 220 of the half of the outer core 22 to form an assembly, and two sets of this assembly are manufactured. The inner core 21 and the outer core 22 of each assembly are fixed by means such as adhesion. Next, in a state where the winding 3 is arranged on the outer periphery of the inner core 21 of one of the assemblies, the two assemblies are abutted and integrated by means such as adhesion. Thus, the inductor 1 shown in FIG. 1 is completed.

内芯コア21は、例えば、金型を用いて軟磁性粉末を圧縮成形した後、圧粉体に焼鈍処理を施すことで製作される。軟磁性粉末としては、純鉄系、アモルファス系、フェライト系、軟磁性合金系(センダスト、パーマロイ等)、ナノ結晶系等からなる軟磁性金属粉末に絶縁被膜をコーティングした絶縁被膜付き軟磁性粉末を使用することができる。絶縁被膜としては、Al23、Y23、MgO、ZrO2等の金属酸化物あるいは半金属の酸化物、ガラス材料、またはこれらの混合物に、バインダーとしての樹脂材料を配合したものが使用される。焼鈍に伴ってバインダー成分は分解し、ガスとなって揮散する。この絶縁被膜付き軟磁性粉末を用いた内芯コア21の初透磁率(磁界0 A/m時の比透磁率を意味する)は、30以上200以下が好ましい。 The inner core 21 is produced, for example, by compressing soft magnetic powder using a mold and then performing an annealing process on the green compact. As the soft magnetic powder, a soft magnetic powder with an insulating coating obtained by coating an insulating coating on a soft magnetic metal powder composed of pure iron, amorphous, ferrite, soft magnetic alloy (Sendust, Permalloy, etc.), nanocrystalline, or the like is used. Can be used. As the insulating coating, a metal oxide or semi-metal oxide such as Al 2 O 3 , Y 2 O 3 , MgO, ZrO 2 , a glass material, or a mixture thereof with a resin material as a binder is used. used. With annealing, the binder component is decomposed and volatilizes as a gas. The initial permeability (meaning the relative permeability when the magnetic field is 0 A / m) of the inner core 21 using the soft magnetic powder with the insulating coating is preferably 30 or more and 200 or less.

外殻コア22は、以上に述べた絶縁被膜付き軟磁性粉末に熱可塑性樹脂を加えた原料を射出成形することで製作される。熱可塑性樹脂としては、射出成形に用いることができるものであれば、特に制限なく使用することができ、ポリエチレン(PE)、ポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)等が使用可能である。例えば、熱可塑性樹脂としてPPSを使用すれば、射出成形時に良好な流動性を得ることができ、かつ成形後は高い耐熱性を得ることができる。上記原料における熱可塑性樹脂の配合量は5〜20%程度が好ましい。内芯コア21と外殻コア22では、同種の軟磁性粉末を使用する他、異なる種類の軟磁性粉末を使用することもできる。   The outer shell core 22 is manufactured by injection molding a raw material obtained by adding a thermoplastic resin to the above-described soft magnetic powder with an insulating coating. Any thermoplastic resin can be used without particular limitation as long as it can be used for injection molding. Polyethylene (PE), polypropylene (PP), polyphenylene sulfide (PPS), liquid crystal polymer (LCP), Ether ether ketone (PEEK) and the like can be used. For example, if PPS is used as a thermoplastic resin, good fluidity can be obtained during injection molding, and high heat resistance can be obtained after molding. The amount of the thermoplastic resin in the above raw materials is preferably about 5 to 20%. For the inner core 21 and the outer core 22, the same kind of soft magnetic powder can be used, or different kinds of soft magnetic powder can be used.

このように外殻コア22を射出成形が可能となる材料で形成し、外殻コア22を射出成形で成形することにより、外殻コア22の形状自由度が向上し、任意の形態のコア2、例えば切欠き部221(図1参照)を有するような複雑な形状の外殻コア22も低コストに製作することが可能となる。   The outer shell core 22 is formed of a material that can be injection-molded as described above, and the outer shell core 22 is formed by injection molding. For example, the outer shell core 22 having a complicated shape having the notch 221 (see FIG. 1) can be manufactured at low cost.

内芯コア21の巻線軸方向の両端部に、外殻コア22のフランジ部22bの内面220を接着等により接合することでコア2が得られる。このコア2では、外殻コア22に熱可塑性樹脂を配合している関係で、外殻コア22の透磁率が内芯コア21の透磁率よりも小さくなる。ここでの透磁率は、例えば初透磁率で表される。本実施形態のインダクタ1は、このように内芯コア21と外殻コア22とで透磁率を異ならせた、いわゆる複合コア2を対象とするものである。   The core 2 is obtained by joining the inner surface 220 of the flange portion 22b of the outer shell core 22 to both ends of the inner core 21 in the winding axis direction by bonding or the like. In the core 2, the permeability of the outer core 22 is smaller than the permeability of the inner core 21 because the outer core 22 is mixed with a thermoplastic resin. The magnetic permeability here is represented by, for example, initial magnetic permeability. The inductor 1 of the present embodiment is intended for a so-called composite core 2 in which the inner core 21 and the outer core 22 have different magnetic permeability.

このように本実施形態では、外殻コア22の射出成形を可能にする観点から、外殻コア22のコア材料に熱可塑性樹脂を添加しており、その結果として、外殻コア22の透磁率が内芯コア21の透磁率よりも低くなっているが、内芯コア21と外殻コア22の比透磁率の差は、射出成形性とは異なる別の技術的観点から、別の手段によって与えることもできる。例えば、内芯コア21と外殻コア22の双方を個別に圧縮成形し、この際に外殻コア22の密度を内芯コア21の密度よりも低くし、あるいは外殻コア22に含まれる軟磁性粉末の平均粒径を内芯コア21bに含まれる軟磁性粉末の平均粒径よりも小さくする。かかる手段によっても、外殻コア22の透磁率を内芯コア21の透磁率よりも小さくすることができる。   As described above, in the present embodiment, the thermoplastic resin is added to the core material of the outer core 22 from the viewpoint of enabling the injection molding of the outer core 22, and as a result, the permeability of the outer core 22 is increased. Is lower than the magnetic permeability of the inner core 21, but the difference in the relative magnetic permeability between the inner core 21 and the outer core 22 is determined by another means from another technical viewpoint different from injection moldability. Can also be given. For example, both the inner core 21 and the outer core 22 are individually compression-molded. At this time, the density of the outer core 22 is made lower than the density of the inner core 21, or the soft core included in the outer core 22. The average particle size of the magnetic powder is made smaller than the average particle size of the soft magnetic powder contained in the inner core 21b. By such means, the magnetic permeability of the outer core 22 can be made smaller than the magnetic permeability of the inner core 21.

本実施形態にかかる複合コア2は、さらに以下に述べる特徴を備えている。   The composite core 2 according to the present embodiment further has the following features.

図2(a)に示すように、内芯コア21の外周面には、外殻コア22と接触した接触部23と、外殻コア21と接触しない非接触部24とが設けられる。接触部23は非接触部24よりも小径の円筒面状に形成される。これにより内芯コア21の両端に、巻線軸方向と直交する方向の断面積を、非接触部24の巻線軸方向と直交する方向の断面積よりも小さくした縮小部25が形成される。縮小部25は、例えば、内芯コア21の全体を圧縮成形する際に同時に成形することができる。この他、内芯コア21の圧縮成形および焼鈍後、その両端部の外周を切削等により除去することによって縮小部25を形成することもできる。   As shown in FIG. 2A, a contact portion 23 in contact with the outer core 22 and a non-contact portion 24 not in contact with the outer core 21 are provided on the outer peripheral surface of the inner core 21. The contact portion 23 is formed in a cylindrical shape having a smaller diameter than the non-contact portion 24. As a result, reduced portions 25 are formed at both ends of the inner core 21 in which the cross-sectional area in the direction orthogonal to the winding axis direction is smaller than the cross-sectional area of the non-contact portion 24 in the direction orthogonal to the winding axis direction. The reduction portion 25 can be formed at the same time as, for example, compression-molding the entire inner core 21. In addition, after compression molding and annealing of the inner core 21, the reduced portions 25 can be formed by removing the outer periphery of both ends by cutting or the like.

図2(a)に示す実施形態では、内芯コア21の縮小部25と非接触部24の外周面の半径寸法差をXとし、縮小部25の巻線軸方向の長さをYとして、X>Yに設定している(以下、「実施例1」と称する)。この他、図3(a)に示すように、X=Yとしてもよく(以下、「実施例2」と称する)、図4(a)に示すように、X<Yとしてもよい(以下、「実施例3」と称する)。   In the embodiment shown in FIG. 2A, X is the difference in radius dimension between the outer peripheral surface of the reduced portion 25 of the inner core 21 and the non-contact portion 24, and Y is the length of the reduced portion 25 in the winding axis direction. > Y (hereinafter referred to as “Example 1”). In addition, as shown in FIG. 3A, X = Y (hereinafter, referred to as “Example 2”), or as shown in FIG. 4A, X <Y (hereinafter, referred to as “Example 2”). "Example 3").

次に、以上に述べた実施例1〜3および比較例1,2について、磁束密度の分布を解析した結果を説明する。ここで比較例1は、図5(a)に示すように、内芯コア21に縮小部25を設けず、内芯コア21をその軸方向全長にわたって同径寸法に形成し、その両端部に外殻コア22のフランジ部22bの内面220を接合したものである。また、比較例2は、図6(a)に示すように、中芯コア21の巻線軸方向の両端部に、外径側に突出する円板状のフランジ部21aを設け、フランジ部21aの外周面に外殻コア22に接合したものである。この場合、フランジ部21aの外周面が非接触部24よりも大径の接触部23を構成する。外殻コア22は円筒状の側部22aだけで形成され、実施例1〜3のようなフランジ部は有しない。   Next, the results of analyzing the magnetic flux density distribution of the above-described Examples 1 to 3 and Comparative Examples 1 and 2 will be described. Here, in Comparative Example 1, as shown in FIG. 5 (a), the inner core 21 is formed with the same diameter over the entire length in the axial direction without providing the reduced portion 25 on the inner core 21. The inner surface 220 of the flange portion 22b of the outer shell core 22 is joined. Further, in Comparative Example 2, as shown in FIG. 6A, disk-shaped flange portions 21 a protruding toward the outer diameter side are provided at both ends in the winding axis direction of the core core 21, and the flange portions 21 a The outer peripheral surface is joined to the outer shell core 22. In this case, the outer peripheral surface of the flange portion 21a forms a contact portion 23 having a larger diameter than the non-contact portion 24. The outer shell core 22 is formed only of the cylindrical side portion 22a, and does not have the flange portion as in the first to third embodiments.

なお、実施例1〜3および比較例1,2の内芯コア21は、何れも軟磁性粉末としてアモルフォス系を使用し、これを圧縮成形後、焼鈍して製作される。焼鈍後の絶縁被膜はAl23で形成されている。また、外殻コア22は、同じ絶縁被膜付きアモルフォス系磁性粉末にPPSを配合し、射出成形したものである。 The inner cores 21 of Examples 1 to 3 and Comparative Examples 1 and 2 are each manufactured by using an amorphous material as a soft magnetic powder, compressing the same, and then annealing. The insulating coating after annealing is formed of Al 2 O 3 . The outer core 22 is formed by mixing PPS with the same amorphous magnetic powder having an insulating coating and injection molding.

図2(b)、図3(b)、図4(b)、図5(b)、図6(b)に、実施例1〜3、および比較例1,2における磁束密度のコンター図を示す。図2(b)が実施例1、図3(b)が実施例2、図4(b)が実施例3、図5(b)が比較例1、図6(b)が比較例2に対応する。   FIGS. 2 (b), 3 (b), 4 (b), 5 (b), and 6 (b) show contour diagrams of magnetic flux densities in Examples 1 to 3 and Comparative Examples 1 and 2. Show. 2 (b) is Example 1, FIG. 3 (b) is Example 2, FIG. 4 (b) is Example 3, FIG. 5 (b) is Comparative Example 1, and FIG. 6 (b) is Comparative Example 2. Corresponding.

図5(b)に示す比較例1のコンター図によれば、コア2の隅部となる、内芯コア21の接触部23と外殻コア22との接合部(符号A)で磁束密度が局所的に高くなり、磁束密度の高い部分と低い部分の差が大きくなることが理解される。一方、図6(b)に示す比較例2では、内芯コア21の接触部23と外殻コア22との接合部における磁束の集中は、比較例1よりも緩和されているものの、内芯コア21の磁束密度が極端に大きくなっている。そのため、依然として、磁束密度の高い部分と低い部分の差が大きく、磁束の分布がアンバランスになっている。   According to the contour diagram of Comparative Example 1 shown in FIG. 5B, the magnetic flux density is reduced at the joint (symbol A) between the contact portion 23 of the inner core 21 and the outer core 22, which is the corner of the core 2. It is understood that the magnetic flux density locally increases, and the difference between the high magnetic flux density portion and the low magnetic flux density portion increases. On the other hand, in Comparative Example 2 shown in FIG. 6B, the concentration of magnetic flux at the joint between the contact portion 23 of the inner core 21 and the outer core 22 is lessened than in Comparative Example 1, but the inner core is The magnetic flux density of the core 21 is extremely large. Therefore, there is still a large difference between a portion where the magnetic flux density is high and a portion where the magnetic flux density is low, and the distribution of the magnetic flux is unbalanced.

これに対し、図2(b)、図3(b)、図4(b)に示す実施例1〜3では、内芯コア21の接触部23と外殻コア22との接合部の磁束密度が比較例1よりも抑えられ、かつ内芯コア21の磁束密度も比較例2より抑えられている。従って、磁束密度の高い部分と低い部分の差が小さくなり、コア内でバランス良く磁束が分布している。そのため、実施例1〜3であれば、比較例1,2よりも直流重畳特性を向上させることが可能となる。   In contrast, in Examples 1 to 3 shown in FIGS. 2B, 3B, and 4B, the magnetic flux density at the joint between the contact portion 23 of the inner core 21 and the outer core 22 is shown. Are suppressed as compared with Comparative Example 1, and the magnetic flux density of the inner core 21 is also suppressed as compared with Comparative Example 2. Therefore, the difference between the high magnetic flux density portion and the low magnetic flux density portion is small, and the magnetic flux is distributed in the core in a well-balanced manner. Therefore, according to Examples 1 to 3, it is possible to improve the DC superimposition characteristics as compared with Comparative Examples 1 and 2.

図7は、最大磁束密度の解析結果およびインダクタンス値の測定結果を表にまとめたものである。図7における「最大磁束密度」は、内芯コア21に近いコア隅部(角部)での磁束密度の最大値を示す。比較例1の最大磁束密度を1として、比較例1に対する最大磁束密度の低減量が誤差の範囲(±1%未満)を評価「1」、1.0%以上10%未満の範囲を評価「2」、10%以上20%未満の範囲を評価「3」、20%以上30%未満の範囲を評価「4」、30%以上40%未満の範囲を評価「5」、40%以上50%未満の範囲を評価「6」としている。また、「インダクタンス値」の欄は、直流重畳下のインダクタンス値を示す。比較例1のインダクタンス値を1として、その増加量が誤差の範囲(±1%未満)を評価「1」、1.0%以上10%未満の範囲を評価「2」にしている。「総合判定」の欄は、「最大磁束密度」の評価と「インダクタンス値」の評価の和とした。   FIG. 7 is a table summarizing the analysis result of the maximum magnetic flux density and the measurement result of the inductance value. The “maximum magnetic flux density” in FIG. 7 indicates the maximum value of the magnetic flux density at a core corner (corner) near the inner core 21. Assuming that the maximum magnetic flux density of Comparative Example 1 is 1, the amount of reduction of the maximum magnetic flux density with respect to Comparative Example 1 evaluates an error range (less than ± 1%) “1”, and a range of 1.0% or more and less than 10% 2) Evaluate the range of 10% or more to less than 20% "3", Evaluate the range of 20% to less than 30% "4", Evaluate the range of 30% to less than 40% "5", 40% to 50% The range of less than "6" is evaluated as "6". The column of “inductance value” indicates an inductance value under DC superposition. Assuming that the inductance value of Comparative Example 1 is 1, the range of the increase (less than ± 1%) is evaluated as “1”, and the range of 1.0% or more and less than 10% is evaluated as “2”. The column of “overall judgment” is the sum of the evaluation of “maximum magnetic flux density” and the evaluation of “inductance value”.

図7からも明らかなように、実施例1〜3によれば、比較例1よりも最大磁束密度が低下し、直流重畳下のインダクタンス値も大きくなっている。また、比較例2との対比では、実施例1〜3は、最大磁束密度が同等もしくは低下し、直流重畳下のインダクタンス値が大きくなっている。従って、実施例1〜3であれば、実際に直流重畳特性が向上することが明らかになった。特に実施例1(X>Y:図2(a)参照)であれば、最も良好な結果を得ることも明らかになった。   As is clear from FIG. 7, according to Examples 1 to 3, the maximum magnetic flux density is lower than that of Comparative Example 1, and the inductance value under DC superposition is also higher. In comparison with Comparative Example 2, in Examples 1 to 3, the maximum magnetic flux densities are equal or lower, and the inductance value under DC superposition increases. Therefore, it became clear that in Examples 1 to 3, the DC superposition characteristics actually improved. In particular, it was also found that the best result was obtained in Example 1 (X> Y: see FIG. 2A).

次に、本発明の他の実施形態を説明する。
図8は、内芯コア21の縮小部25(接触部23)を、テーパ面状に形成したものである。この場合も、縮小部25では、巻線軸方向と直交する方向の断面積が、非接触部24の巻線軸方向と直交する方向の断面積よりも小さくなる。図9は、内芯コア21の両端部に縮小部25を設ける一方、外殻コア22を縮小部25と非接触部24に跨る形で接合したものである。この場合、内芯コア21の縮小部25と、縮小部25に隣接する、非接触部24と同径寸法の部分が外殻コア22に接触する接触部23となる。図8および図9に示す何れの実施形態でも、実施例1〜3と同様の効果を得ることができる。
Next, another embodiment of the present invention will be described.
FIG. 8 shows a reduced portion 25 (contact portion 23) of the inner core 21 formed in a tapered surface shape. Also in this case, in the reduced portion 25, the cross-sectional area in the direction orthogonal to the winding axis direction is smaller than the cross-sectional area in the direction orthogonal to the winding axis direction of the non-contact portion 24. FIG. 9 shows a structure in which reduced portions 25 are provided at both ends of the inner core 21, and the outer shell core 22 is joined so as to straddle the reduced portion 25 and the non-contact portion 24. In this case, the reduced portion 25 of the inner core 21 and a portion adjacent to the reduced portion 25 and having the same diameter as the non-contact portion 24 become the contact portion 23 that contacts the outer core 22. In any of the embodiments shown in FIGS. 8 and 9, the same effects as those of Examples 1 to 3 can be obtained.

また、以上の説明では、外殻コア22が内芯コア21の全周を覆う所謂ポット形コアを例に挙げたが、本実施形態の構成は、巻線軸方向に沿った断面においてコア2の半体が3本の脚部を有する形状であれば、同様に適用可能である。このような形態のコア2に該当するものとして、JIS C2560-1に定義されるEE形、EEP形、ER形、RM形等のコアを挙げることができる。   Further, in the above description, a so-called pot-shaped core in which the outer core 22 covers the entire circumference of the inner core 21 has been described as an example. The same applies if the half has a shape with three legs. Cores such as EE type, EEP type, ER type, and RM type defined in JIS C2560-1 are applicable to the core 2 having such a form.

図10は、EE形コアに本実施形態の構成を適用した場合を示す斜視図である(巻線3の図示は省略している)。図10に示すように、このタイプのコア2では、外殻コア22の側部22aが平板状に形成され、内芯コア21の180°対向位置に外殻コア22の側部22aが配置される。内芯コア21の巻線軸方向の両端部に凸条をなす縮小部25が形成され、この縮小部25に外殻コア22のフランジ部22bの内面220が接触している。中芯コア21は、図10に示すように角筒状に形成する他、円筒状に形成することもできる。   FIG. 10 is a perspective view illustrating a case where the configuration of the present embodiment is applied to the EE-type core (illustration of the windings 3 is omitted). As shown in FIG. 10, in this type of core 2, the side 22 a of the outer core 22 is formed in a flat plate shape, and the side 22 a of the outer core 22 is arranged at a position 180 ° opposite to the inner core 21. You. Reduced portions 25 are formed on both ends of the inner core 21 in the winding axis direction to form convex stripes. The reduced portion 25 is in contact with the inner surface 220 of the flange portion 22 b of the outer core 22. As shown in FIG. 10, the core 21 may be formed in a cylindrical shape in addition to a rectangular tube shape.

1 インダクタ
2 コア
3 巻線
21 内芯コア
22 外殻コア
22a 側部
22b フランジ部
23 接触部
24 非接触部
25 縮小部
DESCRIPTION OF SYMBOLS 1 Inductor 2 Core 3 Winding 21 Inner core 22 Outer core 22a Side 22b Flange 23 Contact part 24 Non-contact part 25 Reduction part

Claims (4)

コアおよび巻線を備え、
前記コアが、前記巻線を外周に巻回した内芯コアと、前記内芯コアよりも低透磁率の磁性材料で形成され、かつ前記内芯コアの両端部に接合された外殻コアとを有し、
前記内芯コアが、前記外殻コアと接触した接触部と、前記外殻コアと接触しない非接触部とを備えるインダクタにおいて、
前記接触部に、巻線軸方向と直交する方向の断面積が、前記非接触部の巻線軸方向と直交する方向の断面積よりも小さい縮小部を設けたことを特徴とするインダクタ。
With a core and a winding,
An inner core formed by winding the winding around the outer periphery, and an outer core formed of a magnetic material having a lower magnetic permeability than the inner core, and joined to both ends of the inner core. Has,
In the inductor, wherein the inner core has a contact portion in contact with the outer core, and a non-contact portion not in contact with the outer core.
An inductor, wherein the contact portion is provided with a reduced portion having a cross-sectional area in a direction orthogonal to the winding axis direction smaller than a cross-sectional area in a direction orthogonal to the winding axis direction of the non-contact portion.
前記縮小部を円筒面状に形成した請求項1に記載のインダクタ。   The inductor according to claim 1, wherein the reduced portion has a cylindrical shape. 前記縮小部と非接触部の半径寸法の径差をXとし、前記縮小部の巻線軸方向の長さをYとして、X>Yにした請求項2に記載のインダクタ。   3. The inductor according to claim 2, wherein X> Y, where X is a difference in radius between the reduced portion and the non-contact portion, and Y is a length of the reduced portion in the winding axis direction. 4. 前記縮小部をテーパ面状に形成した請求項1に記載のインダクタ。   The inductor according to claim 1, wherein the reduced portion is formed in a tapered shape.
JP2018180229A 2018-09-26 2018-09-26 inductor Active JP7253891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018180229A JP7253891B2 (en) 2018-09-26 2018-09-26 inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180229A JP7253891B2 (en) 2018-09-26 2018-09-26 inductor

Publications (2)

Publication Number Publication Date
JP2020053514A true JP2020053514A (en) 2020-04-02
JP7253891B2 JP7253891B2 (en) 2023-04-07

Family

ID=69997692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018180229A Active JP7253891B2 (en) 2018-09-26 2018-09-26 inductor

Country Status (1)

Country Link
JP (1) JP7253891B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824517A (en) * 1972-02-28 1974-07-16 Const Electrotechniques Du Cer Inductor having a magnetic casing formed by stacked stampings
JPH05283251A (en) * 1992-03-31 1993-10-29 Kawatetsu Magunetsukusu Kk Pot type inductor
JP2000252130A (en) * 1999-03-04 2000-09-14 Taiyo Yuden Co Ltd Common mode choke coil
JP2000311817A (en) * 1999-04-27 2000-11-07 Mitsumi Electric Co Ltd Surface mount coil unit
WO2002021546A1 (en) * 2000-09-07 2002-03-14 Nucore, Inc. High efficiency inductor
JP2002280223A (en) * 2001-03-15 2002-09-27 Tdk Corp Core
JP2011243715A (en) * 2010-05-18 2011-12-01 Kobe Steel Ltd Reactor
JP2014203845A (en) * 2013-04-01 2014-10-27 住友電気工業株式会社 Inductor
CN104425099A (en) * 2013-09-05 2015-03-18 重庆美桀电子科技有限公司 Assembled-type inductance element and manufacturing method thereof
JP2015185673A (en) * 2014-03-24 2015-10-22 Ntn株式会社 Magnetic device
JP2019117829A (en) * 2017-12-26 2019-07-18 株式会社村田製作所 Inductor

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824517A (en) * 1972-02-28 1974-07-16 Const Electrotechniques Du Cer Inductor having a magnetic casing formed by stacked stampings
JPH05283251A (en) * 1992-03-31 1993-10-29 Kawatetsu Magunetsukusu Kk Pot type inductor
JP2000252130A (en) * 1999-03-04 2000-09-14 Taiyo Yuden Co Ltd Common mode choke coil
JP2000311817A (en) * 1999-04-27 2000-11-07 Mitsumi Electric Co Ltd Surface mount coil unit
WO2002021546A1 (en) * 2000-09-07 2002-03-14 Nucore, Inc. High efficiency inductor
JP2002280223A (en) * 2001-03-15 2002-09-27 Tdk Corp Core
JP2011243715A (en) * 2010-05-18 2011-12-01 Kobe Steel Ltd Reactor
JP2014203845A (en) * 2013-04-01 2014-10-27 住友電気工業株式会社 Inductor
CN104425099A (en) * 2013-09-05 2015-03-18 重庆美桀电子科技有限公司 Assembled-type inductance element and manufacturing method thereof
JP2015185673A (en) * 2014-03-24 2015-10-22 Ntn株式会社 Magnetic device
JP2019117829A (en) * 2017-12-26 2019-07-18 株式会社村田製作所 Inductor

Also Published As

Publication number Publication date
JP7253891B2 (en) 2023-04-07

Similar Documents

Publication Publication Date Title
US6392525B1 (en) Magnetic element and method of manufacturing the same
US8686820B2 (en) Reactor
JP6331060B2 (en) Surface mount type reactor and manufacturing method thereof
JP2015115406A (en) Common mode choke coil and manufacturing method therefor
US11145450B2 (en) Magnetic element
US9984810B2 (en) Reactor
JP2004281778A (en) Choke coil and its producing method
JP5079316B2 (en) Inductance element
JP2020053514A (en) Inductor
JP2004111456A (en) Coil component
JP6549779B2 (en) Coil component, method of manufacturing the same, electronic device
CN107887106B (en) Coil component
JP3707461B2 (en) Coil parts manufacturing method
JP2017168564A (en) Magnetic element
WO2017047740A1 (en) Magnetic element
JP7255153B2 (en) Reactor and manufacturing method thereof
JP2018133499A (en) Reactor and manufacturing method thereof
JP4786744B2 (en) Composite magnetic element
JP2018074072A (en) Coil component
JP6781043B2 (en) Composite magnetic circuit inductor
US20200402707A1 (en) Magnetic element
TWI831730B (en) Integrated magnetic component and magnetic core structure thereof
JP2018056396A (en) Coil component
JP7420092B2 (en) isolation transformer
WO2019168151A1 (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230328

R150 Certificate of patent or registration of utility model

Ref document number: 7253891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150