WO2017047740A1 - Magnetic element - Google Patents

Magnetic element Download PDF

Info

Publication number
WO2017047740A1
WO2017047740A1 PCT/JP2016/077412 JP2016077412W WO2017047740A1 WO 2017047740 A1 WO2017047740 A1 WO 2017047740A1 JP 2016077412 W JP2016077412 W JP 2016077412W WO 2017047740 A1 WO2017047740 A1 WO 2017047740A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
magnetic element
coil
magnetic
coil assembly
Prior art date
Application number
PCT/JP2016/077412
Other languages
French (fr)
Japanese (ja)
Inventor
香代 堺
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016087024A external-priority patent/JP6608762B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US15/761,105 priority Critical patent/US11145450B2/en
Priority to CN201680053852.4A priority patent/CN108028119B/en
Priority to EP16846611.8A priority patent/EP3352182B1/en
Publication of WO2017047740A1 publication Critical patent/WO2017047740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core

Definitions

  • the present invention relates to a magnetic element in which a coil assembly is arranged around a magnetic body, and relates to a magnetic element used in an electric device or an electronic device as an inductor, a transformer, an antenna (bar antenna), a choke coil, a filter, a sensor, or the like.
  • the present invention relates to a magnetic element that can be mounted on a substrate.
  • the magnetic element In recent years, as electric and electronic devices are becoming higher in frequency and larger in current, the magnetic element is required to have the same response.
  • the material properties of the mainstream ferrite material as a magnetic material have reached their limits. New magnetic materials are being sought. For example, ferrite materials are being replaced by compression molded magnetic materials such as sendust and amorphous, amorphous foil strips, and the like.
  • the compression-molded magnetic material has poor moldability and low mechanical strength after firing.
  • the amorphous foil strip is expensive to manufacture due to winding, cutting, and gap formation. For this reason, the practical application of these magnetic materials has been delayed.
  • Patent Document 1 has been proposed as a method for producing a small and inexpensive magnetic core component having a variety of shapes and characteristics using magnetic powder having poor formability.
  • magnetic powder contained in a resin composition used for injection molding is covered with an insulating material, and either a compression-molded magnetic body or a compacted magnet molded body is insert-molded into the resin composition, and compression molding is performed.
  • a method of manufacturing a core part having a predetermined magnetic property, which contains a binder having a melting point lower than the injection molding temperature, by a magnetic body or a compacted magnet molded body see Patent Document 1).
  • FIG. 17A is a perspective view showing an assembly method
  • FIG. 17B is a completed perspective view.
  • the magnetic element 41 is assembled by inserting the core core 42a and the outer core 42 integrally formed into two parts, with the core core 42a facing the core core 42a.
  • the two parts need to be positioned in the radial direction and the axial direction.
  • resin sealing since it is necessary to make positioning accurate, the number of work steps increases. Further, since it is necessary to seal the resin with the coil 43 built therein, it takes time to fill the sealing resin, and voids are easily generated.
  • the number of parts increases because two coil outer cores and one or more coil inner cores are combined.
  • the conventional EEP type magnetic element is desired to be improved in terms of production and quality.
  • the magnetic element of a closed magnetic circuit has a small air gap in the magnetic path, such as a pot-shaped core, an EER core, an EEP core, a core combining a drum core and an outer peripheral core, etc. Therefore, magnetic flux leakage is small, and the physique can be made smaller than a magnetic element having an open magnetic path.
  • the above-mentioned pot-type core, EER-type core, EEP-type core, etc. are used when the magnetic element is assembled or when the gap between the coil and the outer core is filled with resin, the core core of the coil assembly in which the coil is arranged is used. Since it is necessary to position in the radial direction and axial direction of the coil, there is a problem that the number of work steps increases.
  • a core that combines a drum-shaped core, a coil, and an outer peripheral core has a large coil wire radius when the magnet wire has a large cross-sectional area. There is a problem that the degree of freedom becomes lower and the magnetic element size becomes larger.
  • the present invention has been made to cope with such problems, and has an object to provide a magnetic element that can reduce the number of work steps and reduce the number of parts and the amount of metal having excellent conductivity such as copper wire.
  • the magnetic element of the present invention includes a coil assembly in which a coil is disposed on the outer periphery of a core core, and an outer peripheral core that covers the outer periphery of the coil assembly.
  • the outer peripheral core includes an opening through which the coil assembly can be inserted, and the coil assembly. It has the fixing means fixed in an outer periphery core, It is characterized by the above-mentioned.
  • the core is a compression molded magnetic body
  • the outer core is an injection molded magnetic body.
  • the fixing means closely contacts the outer peripheral shape of the pair of flange portions with the inner peripheral surface of the outer core.
  • the fixing means includes (1) a pair of grooves provided inside the outer core and into which both axial ends of the columnar core can be inserted.
  • the coil assembly is fixed in the outer core by providing any one means of providing the outer core with at least one through hole for inserting the core core.
  • the core core is a magnetic element having a columnar core, and the columnar core is formed on at least one of an axial intermediate portion, an axial end surface portion, and a circumferential portion in the vicinity of the axial end surface of the columnar core core.
  • a spacer to be fitted is provided.
  • the outer peripheral core in which the coil assembly is fixed is characterized in that at least one outer peripheral surface of the outer peripheral core has a shape that can be fixed to a substrate of an electronic device.
  • the magnetic element of the present invention has an opening through which the coil assembly can be inserted and a fixing means for fixing the coil assembly in the outer core, workability when fixing the coil assembly in the outer core is improved. Further, in the case of a hybrid magnetic element in which a magnetic body serving as a core core is a compression molded magnetic body having excellent thermal conductivity and a magnetic body serving as an outer core is an injection molded magnetic body, the core core and the outer core are divided. Thus, since the outer core is not divided into two, the number of parts can be reduced. In addition, since the spacer that can be fitted to the core core is provided, when the coil and the core are assembled into a coil assembly, the spacer is not required to be bonded, and the workability is improved.
  • FIG. 2 is an assembly process diagram of the EEP type magnetic element shown in FIG. 1. It is a perspective view which shows the other example of the EEP type
  • FIG. 5 is an assembly process diagram of the EEP type magnetic element shown in FIG. 4. It is a perspective view of another EEP type magnetic element.
  • FIG. 7 is an assembly process diagram of the EEP type magnetic element shown in FIG. 6. It is the perspective view and sectional drawing of an EEP type magnetic element with a spacer.
  • FIG. 9 is an assembly process diagram of the EEP type magnetic element shown in FIG. 8. It is the perspective view and sectional drawing of another EEP type magnetic element with a spacer.
  • FIG. 11 is an assembly process diagram of the EEP type magnetic element shown in FIG. 10. It is the perspective view and sectional drawing of another EEP type magnetic element with a spacer.
  • FIG. 13 is an assembly process diagram of the EEP type magnetic element shown in FIG. 12. It is the perspective view and sectional drawing of another EEP type magnetic element with a spacer.
  • FIG. 15 is an assembly process diagram of the EEP type magnetic element shown in FIG. 14. It is a figure which shows the example which uses a magnetic element as surface mounting components. It is a perspective view of the conventional EEP type magnetic element. It is a figure of an EEP type magnetic element with a spacer.
  • Magnetic elements using ferrite materials obtained by current mainstream compression molding methods with high frequency and large current in electrical and electronic equipment have excellent magnetic permeability and easy to obtain inductance value, but frequency characteristics and superimposed current characteristics
  • a magnetic element using an injection-molded magnetic material containing an amorphous material is excellent in frequency characteristics and superimposed current characteristics, but has a low magnetic permeability.
  • heat generation due to copper loss heat generation due to iron loss cannot be ignored in the magnetic element for large current.
  • the present invention relates to a hybrid magnetic element in which a magnetic body that is a core core that is a part that easily generates heat or a part that does not easily dissipate heat is a compression-molded magnetic body having excellent thermal conductivity, and a magnetic body that is an outer core is an injection-molded magnetic body. It is preferable that By adopting the structure of the present invention, the number of parts is reduced and the assembly workability is improved.
  • FIG. 1A is a perspective view of an EEP type magnetic element
  • FIG. 1B is a cross-sectional view in the AA direction.
  • the magnetic element 1 includes a coil assembly 4 in which a coil 3 is arranged on the outer periphery of a cylindrical core core 2 and an outer core 5 that covers the outer periphery of the coil assembly 4.
  • a groove 5b is provided on the opening 5a side of the outer peripheral core 5, and the opposite back surface 5c is semicircular in plan view.
  • the columnar core 2 is inserted perpendicular to the axis of the magnetic element 1, and the core 2 and the outer core 5 are magnetically integrated.
  • the assembly method of the magnetic element 1 is shown in FIG. 2 (a) to 2 (c) are assembly steps shown in perspective views.
  • the magnetic component constituting the magnetic element 1 is composed of two components divided into a core core 2 and an outer peripheral core 5.
  • the outer core 5 is provided with an opening 5a into which the coil assembly 4 can be inserted and a groove 5b for fixing the coil assembly 4 in the outer core 5 in the vertical direction of the opening.
  • a cylindrical core 2 is inserted in the coil 3 wound in advance in the direction of the arrow (FIG. 2A). Both end portions 2a of the cylindrical core core 2 are inserted in the direction of the arrow along the upper and lower grooves 5b provided on the inner peripheral surface of the outer peripheral core 5.
  • This groove 5b also serves as a positioning in the radial direction excluding the axial direction of the cylindrical core core 2 and the insertion direction (FIG. 2B). That is, the assembly 4 is fixed in the outer core 5 by being inserted along the groove 5b (FIG. 2C).
  • the cylindrical core core 2 is inserted from a direction perpendicular to the coil axis direction, positioning in the radial direction and the axial direction other than the insertion direction is unnecessary, and the assembly is simplified.
  • the core core 2 may have a polygonal shape other than the columnar shape as long as it is columnar.
  • the conventional EEP type core shown in FIG. 17 needs to be accurately positioned in the radial direction and the axial direction, but the magnetic element of the present invention does not need to be positioned in the radial direction or the axial direction. Improves.
  • the filling time can be shortened and voids can be reduced, resulting in a highly reliable magnetic element.
  • FIG. 3 shows another example of the EEP type magnetic element shown in FIG.
  • the magnetic element 1a shown in FIG. 3A is the case where the opposite back surface 5c in FIG. 1 is a straight line, that is, the case where the outer core 5 is square in plan view, and the magnetic element 1b shown in FIG. Similarly, the back surface 5c is a polygon in plan view. Since the present invention does not require positioning of the core 2, the shape of the outer core 5 can be arbitrarily set according to the specifications of the magnetic element, the arrangement method, and the like. For example, by increasing the surface area of the outer peripheral surface other than the opening of the outer core 5, the heat dissipation can be improved and the temperature of the magnetic element can be lowered.
  • FIG. 4 is a perspective view of the EEP type magnetic element
  • FIG. 5 is an assembly process shown in the perspective view.
  • the magnetic element 6 includes a coil assembly 9 in which a coil 8 having a magnet wire wound around an outer periphery of a cylindrical core core 7 having a pair of flange portions 7a provided at both ends in the axial direction, and an outer periphery of the coil assembly 9.
  • the outer peripheral core 10 to cover is provided.
  • the back surface 10b opposite to the opening 10a side of the outer peripheral core 10 is semicircular in plan view.
  • the magnetic component constituting the magnetic element 6 is composed of a core core 7 and an outer peripheral core 10 which are divided into drum-shaped cores.
  • the outer peripheral core 10 is not provided with the groove shown in FIG. 1, and the outer peripheral shape of the flange portion 7a is in close contact with the inner peripheral surface 10c of the outer peripheral core, and the outer periphery of the flange portion 7a is in close contact with the inner peripheral surface 10c.
  • a coil assembly 9 is fixed in the outer core 10.
  • the drum core 7 divided into two is inserted in the direction of the arrow in the axial direction of the coil 8 around which the magnet wire is wound (FIG. 5A).
  • the coil 8 may wind a magnet wire directly around the drum-shaped core 7, and in this case, the drum-shaped core 7 may not be divided into two.
  • the drum core 7 is inserted in the direction of the arrow so as to be in close contact with the inner peripheral surface 10c provided on the inner peripheral surface of the outer peripheral core 10 (FIG. 5B). That is, the coil assembly is fixed in the outer core 10 when the outer peripheral surface of the flange 7a is in close contact with the inner peripheral surface 10c of the outer core 10 (FIG. 5C).
  • the shape shown in FIGS. 1, 3, 4 and 5 described above and the following FIGS. 8 and 10 are preferable.
  • the sealing resin can be pre-filled before the coil insertion process at the time of assembly. Further, it is preferable that the outer diameter surface of the outer peripheral core other than the coil insertion opening has a large surface area as long as the magnetic characteristics are not deteriorated. By increasing the surface area, the temperature rise of the magnetic element can be suppressed.
  • FIG. 6 is a perspective view of the EEP type magnetic element
  • FIG. 7 is an assembly process shown in the perspective view.
  • the magnetic element 11 includes a coil assembly 14 including a coil 13 around which a magnet wire is wound around an outer periphery of a cylindrical core core 12, and an outer core 15 that covers a substantially outer periphery of the coil assembly 14.
  • the outer core 15 is provided with a through hole 15b in the outer core 15 into which the core 12 can be inserted.
  • Two through holes 15b may be provided in the insertion direction of the core core 12, and one may be a through hole 15b and the other may be a non-through hole.
  • the coil 13 wound in advance is inserted through the opening 15a of the outer core 15 in the direction of the arrow (FIG. 7A), and the core core 12 is inserted through the through hole 15b provided in the end face of the outer core 15 in the direction of the arrow. (FIG. 7B).
  • a coil assembly 14 composed of the coil 13 and the core core 12 is fixed in the outer core 15 (FIG. 7C).
  • the core 12 having excellent thermal conductivity exists on the surface of the outer core 15, the heat dissipation of the magnetic element 11 is improved.
  • FIG. 18 shows another example of the EEP type magnetic element.
  • the EEP type magnetic element may have a gap for adjusting the magnetic characteristics of the inductor.
  • FIG. 18 shows an example of a magnetic element in which a spacer is provided in the middle of the core core to provide a gap.
  • 18 (a) and 18 (b) are perspective views showing an assembling method
  • FIG. 18 (c) is a completed perspective view
  • FIG. 18 (d) is a cross-sectional view in the FF direction.
  • the magnetic element 44 includes a coil assembly 47 in which a coil 46 is disposed on the outer periphery of a cylindrical core core 45, and an outer core 48 that covers the outer periphery of the coil assembly 47.
  • a spacer 49 is provided in the middle of the columnar core 45.
  • the magnetic element 44 is assembled by inserting the coil assembly 47 into the outer core 48.
  • FIG. 8A is a perspective view of an EEP type magnetic element
  • FIGS. 8B and 8C are cross-sectional views in the BB direction.
  • the magnetic element 16 includes a coil assembly 19 in which a coil 18 is disposed on the outer periphery of a cylindrical core core 17 and an outer core 20 that covers the outer periphery of the coil assembly 19.
  • a groove 20b is provided on the opening 20a side of the outer peripheral core 20, and the opposite back surface 20c is semicircular in plan view.
  • the columnar core 17 is inserted from a direction perpendicular to the axis of the magnetic element 16, and the core 17 and the outer core 20 are magnetically integrated.
  • the cylindrical core 17 has a spacer 21 in the middle, and the spacer 21 has a core 17 and a fitting portion 21a.
  • the fitting portion 21a may be provided at the circumferential portion of the core core 17 as shown in FIG. 8B, and at the axial center portion of the core core 17 as shown in FIG. 8C. It may be provided.
  • a fitting portion 17a of the core core 17 is provided in a corresponding portion to which the fitting portion 21a of the spacer 21 is fitted. If either one of the fitting portion 21a and the fitting portion 17a is convex, the other is concave, and both can be integrated by fitting each other without providing an adhesive or the like.
  • FIG. 9 shows a method for assembling the magnetic element 16.
  • FIGS. 9A to 9C are assembly steps shown in perspective views.
  • the magnetic component constituting the magnetic element 16 includes two components divided into a core 17 having a spacer 21 and an outer core 20.
  • the outer core 20 is provided with an opening 20a into which the coil assembly 19 can be inserted and a groove 20b for fixing the coil assembly 19 in the outer core 20 in the vertical direction of the opening.
  • a cylindrical core 17 is inserted in the coil 18 wound in advance in the arrow direction (FIG. 9A). Both end portions 17b of the cylindrical core core 17 are inserted in the direction of the arrow along the upper and lower grooves 20b provided on the inner peripheral surface of the outer peripheral core 20.
  • This groove 20b also serves as positioning in the radial direction excluding the axial direction of the cylindrical core 17 and the one direction in which it is inserted (FIG. 9B). That is, the assembly 19 is fixed in the outer core 20 by being inserted along the groove 20b (FIG. 9C).
  • the cylindrical core core 17 is inserted from the direction perpendicular to the coil axis direction, and the core core 17 is provided with the spacer fitted in advance, so that the insertion direction Positioning in the radial direction and the axial direction other than the above is unnecessary, the assembly is simplified, and the magnetic characteristics can be easily adjusted.
  • the core core 17 may have a polygonal shape other than the columnar shape as long as it is columnar.
  • FIG. 10A is a perspective view of the EEP type magnetic element
  • FIG. 10B is a cross-sectional view in the CC direction
  • FIGS. 11A to 11D are assembly steps shown in the perspective view.
  • the magnetic element 22 includes a coil assembly 25 in which a coil 24 in which a magnet wire is wound around an outer periphery of a cylindrical core core 23 provided with a pair of flange-shaped spacers 27 at both ends in the axial direction, and the coil assembly 25. And an outer peripheral core 26 covering the outer periphery of the outer periphery.
  • the back surface 26b on the opposite side to the opening 26a side of the outer peripheral core 26 has a semicircular shape in plan view.
  • Two spacers 27 are provided at both axial end surfaces of the cylindrical core core 23 made of a magnetic material.
  • the diameter of the spacer 27 is larger than the diameter of the core core 23, and both are provided concentrically.
  • the spacer 27 is formed in a flat plate cylindrical shape, and the axial end surface of the core core 23 is fitted inside the flat plate cylindrical shape.
  • the outer peripheral core 26 has a groove 26 c formed on the inner peripheral surface thereof, the outer periphery of the spacer 27 is inserted along the groove 26 c, and the outer periphery of the spacer 27 is in close contact, so that the coil assembly 25 is fixed in the outer core 26.
  • the spacer 27 is fitted in advance to both axial end surfaces 23a of the core core 23, and the coil 24 is prepared.
  • the coil 24 may be obtained by winding a magnet wire directly around the core core 23, or a coil 24 around which a magnet wire is wound may be inserted into the core core 23 (FIGS. 11A and 11B).
  • the coil assembly 25 is fixed in the outer core 26 when the outer peripheral surface of the spacer 27 is in close contact with the inner peripheral surface 26c of the outer core 26 (FIGS. 11C and 11D).
  • FIGS. 12A is a perspective view of the EEP type magnetic element
  • FIG. 12B is a sectional view in the DD direction
  • FIGS. 13A to 13C are assembly steps shown in the perspective view.
  • the magnetic element 28 includes a coil assembly 31 including a coil 30 in which a magnet wire is wound around the outer periphery of a cylindrical core core 29, and an outer core 32 covering the substantially outer periphery of the coil assembly 31.
  • the outer core 32 is provided with a through hole 32 b in the outer core 32 into which the core 29 can be inserted.
  • a spacer 33 is fitted to the circumferential portion 29 a in the vicinity of the end surface in the axial direction of the cylindrical core core 29.
  • the spacer 33 has a cylindrical shape, and is fitted to a circumferential portion 29 a that is a small-diameter portion provided in the vicinity of the axial end surface of the core core 29.
  • the coil 30 wound in advance is inserted from the opening 32a of the outer core 32 in the direction of the arrow (FIG. 13A), and the core 29 with the spacer is inserted in the direction of the arrow from the through hole 32b provided in the end face of the outer core 32. Insert (FIG. 13B).
  • a coil assembly 31 composed of the coil 30 and the core core 29 is fixed in the outer core 32 (FIG. 13C). Moreover, since the end surface of the core core 29 excellent in thermal conductivity exists on the surface of the outer core 32, the heat dissipation of the magnetic element 28 is improved.
  • FIGS. 14A is a perspective view of the EEP type magnetic element
  • FIG. 14B is a sectional view taken along the line EE
  • FIGS. 15A to 15D are assembly steps shown in the perspective view.
  • the magnetic element 34 includes a coil assembly 37 including a coil 36 around which a magnet wire is wound around an outer periphery of a cylindrical core core 35, and an outer core 38 covering the outer periphery of the coil assembly 37.
  • the outer core 38 has a through hole 38b in the outer core 38 into which the core 35 can be inserted.
  • Spacers 39 are provided on the circumferential portion and the end surface in the vicinity of both end surfaces in the axial direction of the cylindrical core core 35.
  • the diameter of the spacer 39 is the same as the diameter of the core core 35, and both are provided concentrically.
  • the spacer 39 is formed in a flat plate cylindrical shape, and the convex portion 35a on the axial end surface of the core core 35 is fitted into the flat plate cylindrical shape.
  • the spacers 39 are fitted from both ends of the core core 35, and the coil 36 wound in advance is inserted in the direction of the arrow from the opening 38a of the outer core 38, and from the through hole 38b provided in the end surface of the outer core 38.
  • the core core 35 is inserted in the direction of the arrow (FIGS. 15A to 15C).
  • a coil assembly 37 including a coil 36 and a core core 35 is fixed in the outer core 38 (FIG. 15 (d)).
  • the core core and the outer core are preferably molded magnetic bodies including a compression molded magnetic body and an injection molded magnetic body, and more preferably, the core core described above is a compression molded magnetic body, and the outer core is It is an injection-molded magnetic body.
  • compression-molded magnetic materials that can be used as the core are, for example, pure iron-based soft magnetic materials such as iron powder and iron nitride powder, Fe—Si—Al alloy (Sendust) powder, super Sendust powder, Ni—Fe.
  • Magnetic materials such as iron-based alloy soft magnetic materials such as alloy (permalloy) powder, Co—Fe alloy powder, Fe—Si—B alloy powder, ferrite magnetic materials, amorphous magnetic materials, and fine crystal materials are used as raw materials. it can.
  • Ferrite magnetic materials include manganese zinc ferrite, nickel zinc ferrite, copper zinc ferrite, spinel ferrite having a spinel crystal structure such as magnetite, hexagonal ferrite such as barium ferrite and strontium ferrite, and garnet ferrite such as yttrium iron garnet. Can be mentioned.
  • spinel ferrite which is soft magnetic ferrite having high permeability and low eddy current loss in a high frequency region, is preferable.
  • the amorphous magnetic material include iron alloy, cobalt alloy, nickel alloy, and mixed alloy amorphous thereof.
  • the oxide forming the insulating coating on the surface of the particles of the soft magnetic metal powder material as a raw material Al 2 O 3, Y 2 O 3, MgO, insulating metal or metalloid oxides, such as ZrO 2, glass, These mixtures are mentioned.
  • a powder coating method such as mechanofusion, a wet thin film manufacturing method such as electroless plating or a sol-gel method, or a dry thin film manufacturing method such as sputtering can be used.
  • the compression-molded magnetic body is formed by compressing the raw material powder having an insulating coating formed on the particle surface, or a powder in which a thermosetting resin such as an epoxy resin is blended into the raw material powder into a green compact. It can be manufactured by firing a green compact.
  • the ratio of the raw material powder is preferably 96 to 100% by mass, where the total amount of the raw material powder and the thermosetting resin is 100% by mass. If it is less than 96% by mass, the blending ratio of the raw material powder may decrease, and the magnetic flux density and permeability may decrease.
  • the average particle diameter of the raw material powder is preferably 1 to 150 ⁇ m. More preferably, it is 5 to 100 ⁇ m.
  • the average particle size is smaller than 1 ⁇ m, the compressibility at the time of pressure molding (a measure indicating the ease with which powder is solidified) is lowered, and the material strength after firing is significantly lowered.
  • the average particle diameter is larger than 150 ⁇ m, the iron loss in the high frequency region increases, and the magnetic characteristics (frequency characteristics) deteriorate.
  • Compressive molding can be performed by filling the above raw material powder into a mold and press molding with a predetermined pressure.
  • the green compact is fired to obtain a fired body.
  • the firing temperature needs to be lower than the crystallization start temperature of the amorphous alloy.
  • an injection-molded magnetic body that can be used as an outer peripheral core can be obtained by blending a binder resin into the raw material powder of the compression-molded magnetic body and injection-molding this mixture.
  • the magnetic powder is preferably an amorphous metal powder because of easy injection molding, easy shape maintenance after injection molding, and excellent magnetic properties of the composite magnetic material.
  • the amorphous metal powder the above-described iron alloy series, cobalt alloy series, nickel alloy series, mixed alloy series amorphous, or the like can be used.
  • the insulating coating described above is formed on the surface of these amorphous metal powders.
  • thermoplastic resin capable of injection molding
  • thermoplastic resins include polyolefins such as polyethylene and polypropylene, polyvinyl alcohol, polyethylene oxide, polyphenylene sulfide (PPS), liquid crystal polymers, polyether ether ketone (PEEK), polyimide, polyether imide, polyacetal, polyether sulfone, and polysulfone.
  • polyphenylene sulfide which is excellent in fluidity at the time of injection molding when mixed with amorphous metal powder, can cover the surface of the molded article after injection molding with a resin layer, and has excellent heat resistance, etc. Is more preferable.
  • the ratio of the raw material powder is preferably 80 to 95% by mass, where the total amount of the raw material powder and the thermoplastic resin is 100% by mass. If it is less than 80% by mass, magnetic properties cannot be obtained, and if it exceeds 95% by mass, the injection moldability may be inferior.
  • Injection molding can be performed by, for example, a method of injecting and molding the raw material powder in a mold in which a movable mold and a fixed mold are abutted.
  • the injection molding conditions vary depending on the type of thermoplastic resin.
  • the resin temperature is preferably 290 to 350 ° C. and the mold temperature is preferably 100 to 150 ° C.
  • the compression-molded magnetic body serving as the core and the injection-molded magnetic body serving as the outer peripheral core are separately produced by the above-described method. Moreover, when bonding a compression molding magnetic body and an injection molding magnetic body, the solventless type epoxy-type adhesive which can mutually adhere is preferable.
  • the compression molded magnetic body is preferably amorphous or pure iron powder
  • the injection molded magnetic body is preferably an amorphous metal powder and a thermoplastic resin. More preferably, the amorphous metal is Fe—Si—Cr-based amorphous, and the thermoplastic resin is polyphenylene sulfide (PPS).
  • a thermosetting resin is preferable as the sealing resin, and examples thereof include an epoxy resin, a phenol resin, and an acrylic resin that are excellent in heat resistance and corrosion resistance.
  • an epoxy resin it has the same resin component as what was enumerated by the said resin binder, and a one-pack type or two-pack type epoxy resin etc. can be used.
  • the curing agent in this epoxy resin in addition to the latent epoxy curing agent, an amine curing agent, a polyamide curing agent, an acid anhydride curing agent and the like can be used as appropriate, and the curing temperature range and curing time are as described above. It is preferable to be the same as the resin binder.
  • the phenol resin for example, a novolak type phenol resin or a resol type phenol resin can be used as a resin component, and hexamethylenetetramine can be used as a curing agent.
  • the spacer that can be used in the present invention can be used as long as it is a non-magnetic material.
  • the above-described materials such as thermoplastic resins as binder resins, thermosetting resins as sealing resins, ceramics, non-magnetic metals, etc. Can be used.
  • the spacer can be formed into a cylindrical shape or a flat plate cylindrical shape by a method such as injection molding.
  • the magnetic element of the present invention can be provided with an inductor function by, for example, arranging a coil around which a magnet wire is wound around the compression molded magnetic body to form a coil assembly.
  • This magnetic element is incorporated in an electric / electronic device circuit.
  • An enameled wire can be used as the magnet wire, and the types thereof are urethane wire (UEW), formal wire (PVF), polyester wire (PEW), polyesterimide wire (EIW), polyamideimide wire (AIW), polyimide.
  • a wire (PIW), a double coated wire combining these, a self-bonding wire, a litz wire, or the like can be used.
  • Polyamideimide wire (AIW), polyimide wire (PIW) and the like excellent in heat resistance are preferred.
  • a round wire or a square wire can be used as the cross-sectional shape of the magnet wire.
  • a coil assembly with improved coil density can be obtained by winding the short axis side of the cross-sectional shape of the rectangular wire in contact with the periphery of the compression-molded magnetic body.
  • the conductor of the magnet wire may be any metal having excellent conductivity, and examples thereof include copper, aluminum, gold, and silver.
  • the magnetic element of the present invention is used as a magnetic element used in power circuits, filter circuits, switching circuits, etc. of automobiles, industrial devices and medical devices including motorcycles, such as inductors, transformers, antennas, choke coils, filters, etc. it can. It can also be used as a surface mounting component.
  • the inductor of the present invention is preferably used. be able to.
  • FIG. 16A is a partially cutaway perspective view showing a preferred mounting example of the magnetic element
  • FIG. 16B is another mounting example.
  • the opening 5a of the outer core 5 is opposed to the electronic component substrate 40, so that the distance from the coil winding portion to the substrate 40 is shortened and the amount of magnet wire used is suppressed. it can.
  • the coil terminal 3a is taken out in the tangential direction of the coil 3 and can be surface-mounted on the substrate 40 with a minimum bending process, which contributes to a reduction in processing cost. Furthermore, since bending is less than the magnetic element shown in FIG.
  • the direct current resistance can be reduced and the processing cost can be reduced.
  • the opening 5a of the outer peripheral core 5 is an open surface, and at least one outer peripheral surface of the outer core 5 is in close contact with the substrate 40 and can be fixed. By doing so, the physique of the magnetic element is increased, but the magnetic element is excellent in heat dissipation.
  • the magnetic element of the present invention can reduce the number of parts and the number of manufacturing steps, it has excellent productivity and can be suitably used as a magnetic element for various electric / electronic devices.

Abstract

To provide a magnetic element in which the number of components and the amount of copper wire used can be reduced and the working man-hours can be lowered. The magnetic element 1 is provided with a coil assembly 4, in which a coil 3 is wound around the outer periphery of a core 2 comprising a compression-molded magnetic material, and an outer periphery core 5 covering the outer periphery of the coil assembly 4. The outer periphery core 5 comprises an injection-molded magnetic material, and has, on the inner peripheral surface of the outer periphery core, an opening part 5a into which the coil can be inserted, and a pair of grooves 5b into which both axial ends of the core 2 can be inserted as a fixing means for fixing the coil assembly 4 in the outer periphery core.

Description

磁性素子Magnetic element
 本発明は、磁性体の周囲にコイルアッシィを配置した磁性素子であって、インダクタ、トランス、アンテナ(バーアンテナ)、チョークコイル、フィルタ、センサ等として電気機器あるいは電子機器に使用される磁性素子に関する。特に、基板に実装できる磁性素子に関する。 The present invention relates to a magnetic element in which a coil assembly is arranged around a magnetic body, and relates to a magnetic element used in an electric device or an electronic device as an inductor, a transformer, an antenna (bar antenna), a choke coil, a filter, a sensor, or the like. In particular, the present invention relates to a magnetic element that can be mounted on a substrate.
 近年、電気・電子機器の高周波数化、大電流化が進む中で、磁性素子にも同様の対応が求められているが、現在磁性体として主流のフェライト材料では材料特性そのものが限界にきており、新たな磁性体材料が模索されている。例えば、フェライト材料は、センダストやアモルファスなどの圧縮成形磁性材料やアモルファス箔帯等に置き換えられつつある。しかし、上記圧縮成形磁性材料は成形性が悪く、焼成後の機械的強度も低い。また、上記アモルファス箔帯は巻線・切断・ギャップ形成から製造コストが高くなる。このため、これら磁性材料の実用化が遅れている。 In recent years, as electric and electronic devices are becoming higher in frequency and larger in current, the magnetic element is required to have the same response. However, the material properties of the mainstream ferrite material as a magnetic material have reached their limits. New magnetic materials are being sought. For example, ferrite materials are being replaced by compression molded magnetic materials such as sendust and amorphous, amorphous foil strips, and the like. However, the compression-molded magnetic material has poor moldability and low mechanical strength after firing. In addition, the amorphous foil strip is expensive to manufacture due to winding, cutting, and gap formation. For this reason, the practical application of these magnetic materials has been delayed.
 成形性の悪い磁性粉末を使用してバリエーションのある形状や特性を有する小型で安価な磁性コア部品の製造方法を提供するものとして特許文献1が提案されている。特許文献1では、射出成形に用いる樹脂組成物に含まれる磁性粉末を絶縁材で被覆し、圧縮成形磁性体および圧粉磁石成形体のいずれかを上記樹脂組成物中にインサート成形し、圧縮成形磁性体あるいは圧粉磁石成形体が射出成形温度よりも低い融点を持つ結着剤を含有する、所定の磁気特性を有するコア部品を射出成形により製造する方法が提案されている(特許文献1参照)。 Patent Document 1 has been proposed as a method for producing a small and inexpensive magnetic core component having a variety of shapes and characteristics using magnetic powder having poor formability. In Patent Document 1, magnetic powder contained in a resin composition used for injection molding is covered with an insulating material, and either a compression-molded magnetic body or a compacted magnet molded body is insert-molded into the resin composition, and compression molding is performed. There has been proposed a method of manufacturing a core part having a predetermined magnetic property, which contains a binder having a melting point lower than the injection molding temperature, by a magnetic body or a compacted magnet molded body (see Patent Document 1). ).
 部品点数および製造工数の削減、製品の低背化、信頼性向上を図ることのできる磁性素子として、磁気コア構造体の磁路の一部を複合磁性成形体の絶縁性ベースにて構成し、コイルの端末を外部端子としてベース側に直接引き出した構成とした磁性素子が知られている(特許文献2参照)。 As a magnetic element that can reduce the number of parts and manufacturing man-hours, reduce the product height, improve reliability, configure part of the magnetic path of the magnetic core structure with the insulating base of the composite magnetic molded body, 2. Description of the Related Art A magnetic element having a configuration in which a coil terminal is directly pulled out to the base side as an external terminal is known (see Patent Document 2).
 従来のEEP形磁性素子を図17に示す。図17(a)は組み立て方法を示す斜視図であり、図17(b)は完成斜視図である。磁性素子41は、コア芯42aおよび外周コア42が一体成形された2個の部品を、コア芯42aを対向させながらコイル43にコア芯42aを挿入して組み立てられる。組み立て時に、上記2個の部品は径方向および軸方向に位置決めする必要がある。特に樹脂封止する場合、位置決めを正確にする必要があるため作業工数が増加する。また、コイル43が内蔵された状態で樹脂封止する必要があるため、封止樹脂を充填するのに時間がかかり、ボイドも発生しやすくなる。
 外周コア42とコア芯42aを異なる材質で組み合わせたハイブリッド磁性素子とする場合、コイル外周コア2個とコイル内径側コア1個以上を組み合わせるため部品点数が多くなる。上記したように、従来のEEP形磁性素子は、製造上、品質上の改善が望まれている。
A conventional EEP type magnetic element is shown in FIG. FIG. 17A is a perspective view showing an assembly method, and FIG. 17B is a completed perspective view. The magnetic element 41 is assembled by inserting the core core 42a and the outer core 42 integrally formed into two parts, with the core core 42a facing the core core 42a. At the time of assembly, the two parts need to be positioned in the radial direction and the axial direction. In particular, in the case of resin sealing, since it is necessary to make positioning accurate, the number of work steps increases. Further, since it is necessary to seal the resin with the coil 43 built therein, it takes time to fill the sealing resin, and voids are easily generated.
In the case of a hybrid magnetic element in which the outer core 42 and the core 42a are combined with different materials, the number of parts increases because two coil outer cores and one or more coil inner cores are combined. As described above, the conventional EEP type magnetic element is desired to be improved in terms of production and quality.
特許第4763609号公報Japanese Patent No. 4766609 特開2000-331841号公報JP 2000-331841 A
 開磁路のドラム形コアに対して、例えばポット形コア、EER形コア、EEP形コア、ドラム形コアと外周コアとを組み合わせたコア等、閉磁路の磁性素子は磁路におけるエアギャップが小さいため磁束漏れが小さく、開磁路の磁性素子に比べて体格を小さくすることができる。しかしながら、上記した、ポット形コア、EER形コア、EEP形コア等は、磁性素子組立時、またはコイルと外周コアとの隙間に樹脂を充填する場合に、コイルが配置されたコイルアッシィのコア芯をコイルの径方向および軸方向に位置決めする必要があるため作業工数が多くなるという問題がある。また、ドラム形コアとコイルと外周コアとを組み合わせたコアは、マグネットワイヤの断面積が大きい場合、コイルの曲げ半径が大きくなり、コイル端子がコア外周に大きく突出することなど、コイル端子の取り回しの自由度が低くなり磁性素子体格が大きくなるという問題がある。 The magnetic element of a closed magnetic circuit has a small air gap in the magnetic path, such as a pot-shaped core, an EER core, an EEP core, a core combining a drum core and an outer peripheral core, etc. Therefore, magnetic flux leakage is small, and the physique can be made smaller than a magnetic element having an open magnetic path. However, the above-mentioned pot-type core, EER-type core, EEP-type core, etc. are used when the magnetic element is assembled or when the gap between the coil and the outer core is filled with resin, the core core of the coil assembly in which the coil is arranged is used. Since it is necessary to position in the radial direction and axial direction of the coil, there is a problem that the number of work steps increases. In addition, a core that combines a drum-shaped core, a coil, and an outer peripheral core has a large coil wire radius when the magnet wire has a large cross-sectional area. There is a problem that the degree of freedom becomes lower and the magnetic element size becomes larger.
 本発明はこのような問題に対処するためになされたものであり、作業工数を少なく、部品点数および銅線など導電性に優れた金属の使用量を削減できる磁性素子の提供を目的とする。 The present invention has been made to cope with such problems, and has an object to provide a magnetic element that can reduce the number of work steps and reduce the number of parts and the amount of metal having excellent conductivity such as copper wire.
 本発明の磁性素子は、コア芯の外周にコイルが配置されたコイルアッシィと、該コイルアッシィの外周を覆う外周コアとを備え、上記外周コアは、上記コイルアッシィを挿入できる開口部と、上記コイルアッシィを上記外周コア内に固定する固定手段とを有することを特徴とする。特にコア芯が圧縮成形磁性体であり、外周コアが射出成形磁性体であることを特徴とする。 The magnetic element of the present invention includes a coil assembly in which a coil is disposed on the outer periphery of a core core, and an outer peripheral core that covers the outer periphery of the coil assembly. The outer peripheral core includes an opening through which the coil assembly can be inserted, and the coil assembly. It has the fixing means fixed in an outer periphery core, It is characterized by the above-mentioned. In particular, the core is a compression molded magnetic body, and the outer core is an injection molded magnetic body.
 上記コア芯が柱状コア芯の軸方向両端に一対のフランジ部が設けられたコア芯を有する磁性素子の場合、上記固定手段は、一対のフランジ部の外周形状を外周コアの内周面に密接する形状とすることで、コイルアッシィが外周コア内に固定されることを特徴とする。 In the case of a magnetic element having a core core in which the core core is provided with a pair of flange portions at both axial ends of the columnar core core, the fixing means closely contacts the outer peripheral shape of the pair of flange portions with the inner peripheral surface of the outer core. By adopting such a shape, the coil assembly is fixed in the outer core.
 上記コア芯が柱状コア芯を有する磁性素子の場合、上記固定手段は、(1)外周コア内部に設けられ、柱状コア芯の軸方向両端部を挿入できる一対の溝を外周コアの内周面に設ける、(2)コア芯を挿入する少なくとも1つの貫通穴を外周コアに設けることのいずれか1つの手段を設けることで、コイルアッシィが外周コア内に固定されることを特徴とする。 In the case where the core core is a magnetic element having a columnar core, the fixing means includes (1) a pair of grooves provided inside the outer core and into which both axial ends of the columnar core can be inserted. (2) The coil assembly is fixed in the outer core by providing any one means of providing the outer core with at least one through hole for inserting the core core.
 上記コア芯が柱状コア芯を有する磁性素子であり、この柱状コア芯の軸方向中間部、軸方向端面部、および軸方向端面近傍の円周部の少なくとも1つの部位に、上記柱状コア芯と嵌合するスペーサが設けられていることを特徴とする。 The core core is a magnetic element having a columnar core, and the columnar core is formed on at least one of an axial intermediate portion, an axial end surface portion, and a circumferential portion in the vicinity of the axial end surface of the columnar core core. A spacer to be fitted is provided.
 また、内部に上記コイルアッシィが固定されている外周コアは、該外周コアの少なくとも1つの外周面が電子機器の基板に固定できる形状であることを特徴とする。 Further, the outer peripheral core in which the coil assembly is fixed is characterized in that at least one outer peripheral surface of the outer peripheral core has a shape that can be fixed to a substrate of an electronic device.
 本発明の磁性素子は、コイルアッシィを挿入できる開口部と、上記コイルアッシィを外周コア内に固定する固定手段とを有するので、コイルアッシィを外周コア内部に固定するときの作業性が向上する。また、コア芯となる磁性体を熱伝導性に優れた圧縮成形磁性体とし、外周コアとなる磁性体を射出成形磁性体としたハイブリッド磁性素子の場合、コア芯と外周コアとが分割されることで、外周コアを2分割しないので部品点数を削減できる。また、コア芯と嵌合できるスペーサを設けているので、コイルとコアとを組み立ててコイルアッシィとする際にスペーサの接着が不要となり、作業性が向上する。スペーサの有無をコイルとコアを組み立てた後に目視で確認できるため、誤組みを防止できる。さらに、電子機器の基板に磁性素子を固定するとき、開口部と基板を対向させるなどの最適配置を採用できやすくなり、コイルに使用されるマグネットワイヤ使用量と加工費を削減できる。 Since the magnetic element of the present invention has an opening through which the coil assembly can be inserted and a fixing means for fixing the coil assembly in the outer core, workability when fixing the coil assembly in the outer core is improved. Further, in the case of a hybrid magnetic element in which a magnetic body serving as a core core is a compression molded magnetic body having excellent thermal conductivity and a magnetic body serving as an outer core is an injection molded magnetic body, the core core and the outer core are divided. Thus, since the outer core is not divided into two, the number of parts can be reduced. In addition, since the spacer that can be fitted to the core core is provided, when the coil and the core are assembled into a coil assembly, the spacer is not required to be bonded, and the workability is improved. Since the presence or absence of the spacer can be visually confirmed after assembling the coil and the core, misassembly can be prevented. Furthermore, when fixing a magnetic element to the board | substrate of an electronic device, it becomes easy to employ | adopt optimal arrangement | positioning, such as making an opening part and a board | substrate oppose, and can reduce the usage amount and processing cost of a magnet wire used for a coil.
EEP形磁性素子の斜視図である。It is a perspective view of an EEP type magnetic element. 図1に示すEEP形磁性素子の組み立て工程図である。FIG. 2 is an assembly process diagram of the EEP type magnetic element shown in FIG. 1. 図1に示すEEP形磁性素子の他の例を示す斜視図である。It is a perspective view which shows the other example of the EEP type | mold magnetic element shown in FIG. 他のEEP形磁性素子の斜視図である。It is a perspective view of another EEP type magnetic element. 図4に示すEEP形磁性素子の組み立て工程図である。FIG. 5 is an assembly process diagram of the EEP type magnetic element shown in FIG. 4. 他のEEP形磁性素子の斜視図である。It is a perspective view of another EEP type magnetic element. 図6に示すEEP形磁性素子の組み立て工程図である。FIG. 7 is an assembly process diagram of the EEP type magnetic element shown in FIG. 6. スペーサ付きEEP形磁性素子の斜視図および断面図である。It is the perspective view and sectional drawing of an EEP type magnetic element with a spacer. 図8に示すEEP形磁性素子の組み立て工程図である。FIG. 9 is an assembly process diagram of the EEP type magnetic element shown in FIG. 8. 他のスペーサ付きEEP形磁性素子の斜視図および断面図である。It is the perspective view and sectional drawing of another EEP type magnetic element with a spacer. 図10に示すEEP形磁性素子の組み立て工程図である。FIG. 11 is an assembly process diagram of the EEP type magnetic element shown in FIG. 10. 他のスペーサ付きEEP形磁性素子の斜視図および断面図である。It is the perspective view and sectional drawing of another EEP type magnetic element with a spacer. 図12に示すEEP形磁性素子の組み立て工程図である。FIG. 13 is an assembly process diagram of the EEP type magnetic element shown in FIG. 12. 他のスペーサ付きEEP形磁性素子の斜視図および断面図である。It is the perspective view and sectional drawing of another EEP type magnetic element with a spacer. 図14に示すEEP形磁性素子の組み立て工程図である。FIG. 15 is an assembly process diagram of the EEP type magnetic element shown in FIG. 14. 磁性素子を表面実装用部品として使用する例を示す図である。It is a figure which shows the example which uses a magnetic element as surface mounting components. 従来のEEP形磁性素子の斜視図である。It is a perspective view of the conventional EEP type magnetic element. スペーサ付きEEP形磁性素子の図である。It is a figure of an EEP type magnetic element with a spacer.
 電気・電子機器の高周波数化、大電流化において、現在主流の圧縮成形法で得られるフェライト材料を用いた磁性素子は透磁率が優れており、インダクタンス値を得やすいが周波数特性や重畳電流特性に劣る。一方、アモルファス材料を含有する射出成形磁性材料を用いた磁性素子は、周波数特性や重畳電流特性に優れているが、透磁率が低い。また、大電流用の磁性素子は銅損による発熱に加えて、鉄損による発熱を無視できない。本発明は、発熱しやすい個所または放熱しにくい個所であるコア芯となる磁性体を熱伝導性に優れた圧縮成形磁性体とし、外周コアとなる磁性体を射出成形磁性体としたハイブリッド磁性素子とすることが好ましい。本発明構造とすることで、部品点数を少なくし、組み立て作業性が向上する。 Magnetic elements using ferrite materials obtained by current mainstream compression molding methods with high frequency and large current in electrical and electronic equipment have excellent magnetic permeability and easy to obtain inductance value, but frequency characteristics and superimposed current characteristics Inferior to On the other hand, a magnetic element using an injection-molded magnetic material containing an amorphous material is excellent in frequency characteristics and superimposed current characteristics, but has a low magnetic permeability. Moreover, in addition to heat generation due to copper loss, heat generation due to iron loss cannot be ignored in the magnetic element for large current. The present invention relates to a hybrid magnetic element in which a magnetic body that is a core core that is a part that easily generates heat or a part that does not easily dissipate heat is a compression-molded magnetic body having excellent thermal conductivity, and a magnetic body that is an outer core is an injection-molded magnetic body. It is preferable that By adopting the structure of the present invention, the number of parts is reduced and the assembly workability is improved.
 本発明の磁性素子の一例を図1に示す。図1(a)はEEP形磁性素子の斜視図であり、図1(b)はA-A方向断面図である。磁性素子1は、円柱状のコア芯2の外周にコイル3を配置したコイルアッシィ4と、このコイルアッシィ4の外周を覆う外周コア5とを備えている。外周コア5の開口部5a側には溝5bが設けられ、反対側の裏面5cは平面視半円形である。円柱状のコア芯2は磁性素子1の軸に対して垂直に挿入され、コア芯2と外周コア5とは磁気的に一体となっている。 An example of the magnetic element of the present invention is shown in FIG. FIG. 1A is a perspective view of an EEP type magnetic element, and FIG. 1B is a cross-sectional view in the AA direction. The magnetic element 1 includes a coil assembly 4 in which a coil 3 is arranged on the outer periphery of a cylindrical core core 2 and an outer core 5 that covers the outer periphery of the coil assembly 4. A groove 5b is provided on the opening 5a side of the outer peripheral core 5, and the opposite back surface 5c is semicircular in plan view. The columnar core 2 is inserted perpendicular to the axis of the magnetic element 1, and the core 2 and the outer core 5 are magnetically integrated.
 磁性素子1の組み立て方法を図2に示す。図2(a)~(c)は斜視図で示す組み立て工程である。磁性素子1を構成する磁性部品は、コア芯2と外周コア5とに分割された2部品からなる。外周コア5は、コイルアッシィ4を挿入できる開口部5aと、コイルアッシィ4を外周コア5内に固定するための溝5bが開口部の上下方向に設けられている。あらかじめ巻回されたコイル3に円柱状のコア芯2が矢印方向に挿入される(図2(a))。外周コア5の内周面に設けられた上下の溝5bに沿って円柱状のコア芯2の両端部2aが矢印方向に挿入される。この溝5bは円柱状のコア芯2の軸方向と挿入する1方向を除いた径方向の位置決めを兼ねている(図2(b))。すなわち、アッシィ4は、溝5bに沿って挿入されることで外周コア5内に固定される(図2(c))。このように、本発明は、コイル軸方向に対して垂直な方向から円柱状のコア芯2を挿入するため、挿入方向以外の径方向と軸方向の位置決めが不要となり組立が簡便になる。また、外周コア5と円柱状のコア芯2との組み合わせとなるため、部品点数を削減できる。なお、コア芯2は柱状であれば円柱状以外に多角形状であってもよい。 The assembly method of the magnetic element 1 is shown in FIG. 2 (a) to 2 (c) are assembly steps shown in perspective views. The magnetic component constituting the magnetic element 1 is composed of two components divided into a core core 2 and an outer peripheral core 5. The outer core 5 is provided with an opening 5a into which the coil assembly 4 can be inserted and a groove 5b for fixing the coil assembly 4 in the outer core 5 in the vertical direction of the opening. A cylindrical core 2 is inserted in the coil 3 wound in advance in the direction of the arrow (FIG. 2A). Both end portions 2a of the cylindrical core core 2 are inserted in the direction of the arrow along the upper and lower grooves 5b provided on the inner peripheral surface of the outer peripheral core 5. This groove 5b also serves as a positioning in the radial direction excluding the axial direction of the cylindrical core core 2 and the insertion direction (FIG. 2B). That is, the assembly 4 is fixed in the outer core 5 by being inserted along the groove 5b (FIG. 2C). Thus, in the present invention, since the cylindrical core core 2 is inserted from a direction perpendicular to the coil axis direction, positioning in the radial direction and the axial direction other than the insertion direction is unnecessary, and the assembly is simplified. Moreover, since it becomes the combination of the outer periphery core 5 and the cylindrical core core 2, the number of parts can be reduced. The core core 2 may have a polygonal shape other than the columnar shape as long as it is columnar.
 樹脂封止する場合、図17に示す従来のEEP形コアは径方向および軸方向に正確に位置決めする必要があるが、本発明の磁性素子は径方向または軸方向に位置決めする必要がないため作業性が向上する。また、封止樹脂を先入れすることで、充填時間の短縮とボイドの低減ができ、信頼性の高い磁性素子となる。 In the case of resin sealing, the conventional EEP type core shown in FIG. 17 needs to be accurately positioned in the radial direction and the axial direction, but the magnetic element of the present invention does not need to be positioned in the radial direction or the axial direction. Improves. In addition, by pre-filling the sealing resin, the filling time can be shortened and voids can be reduced, resulting in a highly reliable magnetic element.
 図1に示すEEP形磁性素子の他の例を図3に示す。図3(a)に示す磁性素子1aは、図1において、反対側の裏面5cが直線の場合、すなわち、外周コア5が平面視方形の場合であり、図3(b)に示す磁性素子1bは同じく裏面5cが平面視多角形の場合である。本願発明はコア芯2の位置決めが不要となるので、外周コア5の形状を磁性素子の仕様、配置方法等に応じて任意にできる。例えば、外周コア5の開口部以外の外周面は表面積を増やすことで放熱性が向上し、磁性素子の温度を下げることができる。 FIG. 3 shows another example of the EEP type magnetic element shown in FIG. The magnetic element 1a shown in FIG. 3A is the case where the opposite back surface 5c in FIG. 1 is a straight line, that is, the case where the outer core 5 is square in plan view, and the magnetic element 1b shown in FIG. Similarly, the back surface 5c is a polygon in plan view. Since the present invention does not require positioning of the core 2, the shape of the outer core 5 can be arbitrarily set according to the specifications of the magnetic element, the arrangement method, and the like. For example, by increasing the surface area of the outer peripheral surface other than the opening of the outer core 5, the heat dissipation can be improved and the temperature of the magnetic element can be lowered.
 EEP形磁性素子の他の例を図4および図5に示す。図4はEEP形磁性素子の斜視図であり、図5は斜視図で示す組み立て工程である。磁性素子6は、軸方向両端に一対のフランジ部7aが設けられた円柱状のコア芯7の外周にマグネットワイヤを巻回したコイル8が配置されているコイルアッシィ9と、このコイルアッシィ9の外周を覆う外周コア10とを備えている。外周コア10の開口部10a側と反対側の裏面10bは平面視半円形である。 Another example of the EEP type magnetic element is shown in FIGS. FIG. 4 is a perspective view of the EEP type magnetic element, and FIG. 5 is an assembly process shown in the perspective view. The magnetic element 6 includes a coil assembly 9 in which a coil 8 having a magnet wire wound around an outer periphery of a cylindrical core core 7 having a pair of flange portions 7a provided at both ends in the axial direction, and an outer periphery of the coil assembly 9. The outer peripheral core 10 to cover is provided. The back surface 10b opposite to the opening 10a side of the outer peripheral core 10 is semicircular in plan view.
 磁性素子6を構成する磁性部品は、ドラム形コアに分割した形状のコア芯7と外周コア10とからなる。外周コア10は図1に示す溝を設けることなく、フランジ部7aの外周形状を外周コアの内周面10cに密接する形状とし、この内周面10cにフランジ部7aの外周が密接することでコイルアッシィ9が外周コア10内に固定される。なお、図1に示す磁性素子1の場合と同様に、外周コア10内にドラム形コア芯の最外径部を挿入する溝があってもよい。 The magnetic component constituting the magnetic element 6 is composed of a core core 7 and an outer peripheral core 10 which are divided into drum-shaped cores. The outer peripheral core 10 is not provided with the groove shown in FIG. 1, and the outer peripheral shape of the flange portion 7a is in close contact with the inner peripheral surface 10c of the outer peripheral core, and the outer periphery of the flange portion 7a is in close contact with the inner peripheral surface 10c. A coil assembly 9 is fixed in the outer core 10. As in the case of the magnetic element 1 shown in FIG. 1, there may be a groove for inserting the outermost diameter portion of the drum core in the outer core 10.
 あらかじめマグネットワイヤが巻回されたコイル8の軸方向に、2分割されたドラム形コア芯7が矢印方向に挿入される(図5(a))。なお、コイル8はドラム形コア芯7にマグネットワイヤを直接巻回してもよく、この場合はドラム形コア芯7を2分割しなくてもよい。外周コア10の内周面に設けられた内周面10cに密接するようにドラム形コア芯7が矢印方向に挿入される(図5(b))。すなわち、コイルアッシィは、フランジ7aの外周面が外周コア10の内周面10cに密接することで外周コア10内に固定される(図5(c))。 The drum core 7 divided into two is inserted in the direction of the arrow in the axial direction of the coil 8 around which the magnet wire is wound (FIG. 5A). In addition, the coil 8 may wind a magnet wire directly around the drum-shaped core 7, and in this case, the drum-shaped core 7 may not be divided into two. The drum core 7 is inserted in the direction of the arrow so as to be in close contact with the inner peripheral surface 10c provided on the inner peripheral surface of the outer peripheral core 10 (FIG. 5B). That is, the coil assembly is fixed in the outer core 10 when the outer peripheral surface of the flange 7a is in close contact with the inner peripheral surface 10c of the outer core 10 (FIG. 5C).
 樹脂封止型の磁性素子とする場合、上記図1、図3、図4および図5で示す形状、また、下記図8、図10であることが好ましい。組み立て時に封止樹脂をコイル挿入工程の前にあらかじめ先入れすることができる。また、外周コアのコイル挿入口以外の外径面は、磁気特性が低下しない範囲で表面積を大きく取るのが好ましい。表面積を大きく取ることで磁性素子の温度上昇を抑えることができる。 In the case of a resin-sealed magnetic element, the shape shown in FIGS. 1, 3, 4 and 5 described above and the following FIGS. 8 and 10 are preferable. The sealing resin can be pre-filled before the coil insertion process at the time of assembly. Further, it is preferable that the outer diameter surface of the outer peripheral core other than the coil insertion opening has a large surface area as long as the magnetic characteristics are not deteriorated. By increasing the surface area, the temperature rise of the magnetic element can be suppressed.
 EEP形磁性素子の他の例を図6および図7に示す。図6はEEP形磁性素子の斜視図であり、図7は斜視図で示す組み立て工程である。磁性素子11は、円柱状のコア芯12の外周にマグネットワイヤが巻回されたコイル13を備えてなるコイルアッシィ14と、このコイルアッシィ14の略外周を覆う外周コア15とを備えている。外周コア15はコア芯12を挿入できる貫通穴15bを外周コア15に設けてある。この貫通穴15bはコア芯12の挿入方向に2個設けてもよく、一方を貫通穴15bとし、他方を非貫通の穴としてもよい。一方を貫通させないことで軸方向の片側の抜け止めとすることができる。
 あらかじめ巻回されたコイル13を外周コア15の開口部15aから矢印方向に挿入し(図7(a))、外周コア15の端面に設けた貫通穴15bからコア芯12を矢印方向に挿入する(図7(b))。コイル13とコア芯12とから構成されるコイルアッシィ14が外周コア15内に固定される(図7(c))。また、熱伝導率に優れたコア芯12が外周コア15表面に存在するので磁性素子11の放熱性が向上する。
Another example of the EEP type magnetic element is shown in FIGS. FIG. 6 is a perspective view of the EEP type magnetic element, and FIG. 7 is an assembly process shown in the perspective view. The magnetic element 11 includes a coil assembly 14 including a coil 13 around which a magnet wire is wound around an outer periphery of a cylindrical core core 12, and an outer core 15 that covers a substantially outer periphery of the coil assembly 14. The outer core 15 is provided with a through hole 15b in the outer core 15 into which the core 12 can be inserted. Two through holes 15b may be provided in the insertion direction of the core core 12, and one may be a through hole 15b and the other may be a non-through hole. By preventing one side from penetrating, it can be prevented from coming off on one side in the axial direction.
The coil 13 wound in advance is inserted through the opening 15a of the outer core 15 in the direction of the arrow (FIG. 7A), and the core core 12 is inserted through the through hole 15b provided in the end face of the outer core 15 in the direction of the arrow. (FIG. 7B). A coil assembly 14 composed of the coil 13 and the core core 12 is fixed in the outer core 15 (FIG. 7C). In addition, since the core 12 having excellent thermal conductivity exists on the surface of the outer core 15, the heat dissipation of the magnetic element 11 is improved.
 EEP形磁性素子の他の例を図18に示す。EEP形磁性素子は、インダクタの磁気特性を調整するためのギャップを設ける場合がある。図18は、コア芯の中間にスペーサを配置してギャップを設けた磁性素子の例である。図18(a)および(b)は組み立て方法を示す斜視図であり、図18(c)は完成斜視図であり、図18(d)はF-F方向断面図である。磁性素子44は、円柱状のコア芯45の外周にコイル46を配置したコイルアッシィ47と、このコイルアッシィ47の外周を覆う外周コア48とを備えている。円柱状のコア芯45の中間にはスペーサ49が設けられている。磁性素子44は、コイルアッシィ47を、外周コア48に挿入して組み立てられる。 FIG. 18 shows another example of the EEP type magnetic element. The EEP type magnetic element may have a gap for adjusting the magnetic characteristics of the inductor. FIG. 18 shows an example of a magnetic element in which a spacer is provided in the middle of the core core to provide a gap. 18 (a) and 18 (b) are perspective views showing an assembling method, FIG. 18 (c) is a completed perspective view, and FIG. 18 (d) is a cross-sectional view in the FF direction. The magnetic element 44 includes a coil assembly 47 in which a coil 46 is disposed on the outer periphery of a cylindrical core core 45, and an outer core 48 that covers the outer periphery of the coil assembly 47. A spacer 49 is provided in the middle of the columnar core 45. The magnetic element 44 is assembled by inserting the coil assembly 47 into the outer core 48.
 本発明のスペーサ付き磁性素子の一例を図8に示す。図8(a)はEEP形磁性素子の斜視図であり、図8(b)および(c)はB-B方向断面図である。磁性素子16は、円柱状のコア芯17の外周にコイル18を配置したコイルアッシィ19と、このコイルアッシィ19の外周を覆う外周コア20とを備えている。外周コア20の開口部20a側には溝20bが設けられ、反対側の裏面20cは平面視半円形である。円柱状のコア芯17は磁性素子16の軸に対して垂直方向から挿入され、コア芯17と外周コア20とは磁気的に一体となっている。また、円柱状のコア芯17は中間部にスペーサ21を有し、このスペーサ21はコア芯17と嵌合部21aを有している。嵌合部21aは、図8(b)に示すように、コア芯17の円周部に設けてもよく、また、図8(c)に示すように、コア芯17の軸方向中心部に設けてもよい。スペーサ21の嵌合部21aが嵌合する対応部にコア芯17の嵌合部17aが設けられている。嵌合部21aおよび嵌合部17aはいずれか一方が凸であれば他方が凹であり、両者は接着剤等を設けることなく相互に嵌合することで一体化できる。 An example of the magnetic element with a spacer of the present invention is shown in FIG. FIG. 8A is a perspective view of an EEP type magnetic element, and FIGS. 8B and 8C are cross-sectional views in the BB direction. The magnetic element 16 includes a coil assembly 19 in which a coil 18 is disposed on the outer periphery of a cylindrical core core 17 and an outer core 20 that covers the outer periphery of the coil assembly 19. A groove 20b is provided on the opening 20a side of the outer peripheral core 20, and the opposite back surface 20c is semicircular in plan view. The columnar core 17 is inserted from a direction perpendicular to the axis of the magnetic element 16, and the core 17 and the outer core 20 are magnetically integrated. The cylindrical core 17 has a spacer 21 in the middle, and the spacer 21 has a core 17 and a fitting portion 21a. The fitting portion 21a may be provided at the circumferential portion of the core core 17 as shown in FIG. 8B, and at the axial center portion of the core core 17 as shown in FIG. 8C. It may be provided. A fitting portion 17a of the core core 17 is provided in a corresponding portion to which the fitting portion 21a of the spacer 21 is fitted. If either one of the fitting portion 21a and the fitting portion 17a is convex, the other is concave, and both can be integrated by fitting each other without providing an adhesive or the like.
 磁性素子16の組み立て方法を図9に示す。図9(a)~(c)は斜視図で示す組み立て工程である。磁性素子16を構成する磁性部品は、スペーサ21を有するコア芯17と外周コア20とに分割された2部品からなる。外周コア20は、コイルアッシィ19を挿入できる開口部20aと、コイルアッシィ19を外周コア20内に固定するための溝20bが開口部の上下方向に設けられている。あらかじめ巻回されたコイル18に円柱状のコア芯17が矢印方向に挿入される(図9(a))。外周コア20の内周面に設けられた上下の溝20bに沿って円柱状のコア芯17の両端部17bが矢印方向に挿入される。この溝20bは円柱状のコア芯17の軸方向と挿入する1方向を除いた径方向の位置決めを兼ねている(図9(b))。すなわち、アッシィ19は、溝20bに沿って挿入されることで外周コア20内に固定される(図9(c))。このように、本発明は、コイル軸方向に対して垂直な方向から円柱状のコア芯17を挿入するため、また、このコア芯17があらかじめ嵌合されたスペーサを備えているので、挿入方向以外の径方向と軸方向の位置決めが不要となり組立が簡便になり、磁気特性の調整が容易である。また、外周コア20と円柱状のコア芯17との組み合わせとなるため、部品点数を削減できる。なお、コア芯17は柱状であれば円柱状以外に多角形状であってもよい。 FIG. 9 shows a method for assembling the magnetic element 16. FIGS. 9A to 9C are assembly steps shown in perspective views. The magnetic component constituting the magnetic element 16 includes two components divided into a core 17 having a spacer 21 and an outer core 20. The outer core 20 is provided with an opening 20a into which the coil assembly 19 can be inserted and a groove 20b for fixing the coil assembly 19 in the outer core 20 in the vertical direction of the opening. A cylindrical core 17 is inserted in the coil 18 wound in advance in the arrow direction (FIG. 9A). Both end portions 17b of the cylindrical core core 17 are inserted in the direction of the arrow along the upper and lower grooves 20b provided on the inner peripheral surface of the outer peripheral core 20. This groove 20b also serves as positioning in the radial direction excluding the axial direction of the cylindrical core 17 and the one direction in which it is inserted (FIG. 9B). That is, the assembly 19 is fixed in the outer core 20 by being inserted along the groove 20b (FIG. 9C). Thus, in the present invention, the cylindrical core core 17 is inserted from the direction perpendicular to the coil axis direction, and the core core 17 is provided with the spacer fitted in advance, so that the insertion direction Positioning in the radial direction and the axial direction other than the above is unnecessary, the assembly is simplified, and the magnetic characteristics can be easily adjusted. Moreover, since it becomes the combination of the outer periphery core 20 and the cylindrical core core 17, the number of parts can be reduced. The core core 17 may have a polygonal shape other than the columnar shape as long as it is columnar.
 スペーサ付きEEP形磁性素子の他の例を図10および図11に示す。図10(a)はEEP形磁性素子の斜視図、および図10(b)はC-C方向断面図であり、図11(a)~(d)は斜視図で示す組み立て工程である。磁性素子22は、軸方向両端に一対のフランジ部状のスペーサ27が設けられた円柱状のコア芯23の外周にマグネットワイヤを巻回したコイル24が配置されているコイルアッシィ25と、このコイルアッシィ25の外周を覆う外周コア26とを備えている。外周コア26の開口部26a側に対して反対側になる裏面26bは平面視半円形である。スペーサ27は、磁性体からなる円柱状のコア芯23の軸方向両端面部に2つ設けられている。スペーサ27の直径はコア芯23の直径よりも大きく、両者は同心に設けられている。スペーサ27は平皿円筒状に形成され、この平皿円筒状の内部にコア芯23の軸方向端面が嵌合する。
 外周コア26は、内周面に溝26cが形成され、スペーサ27の外周がこの溝26cに沿って挿入され、スペーサ27の外周が密接することでコイルアッシィ25が外周コア26内に固定される。
Another example of the EEP type magnetic element with the spacer is shown in FIGS. FIG. 10A is a perspective view of the EEP type magnetic element, FIG. 10B is a cross-sectional view in the CC direction, and FIGS. 11A to 11D are assembly steps shown in the perspective view. The magnetic element 22 includes a coil assembly 25 in which a coil 24 in which a magnet wire is wound around an outer periphery of a cylindrical core core 23 provided with a pair of flange-shaped spacers 27 at both ends in the axial direction, and the coil assembly 25. And an outer peripheral core 26 covering the outer periphery of the outer periphery. The back surface 26b on the opposite side to the opening 26a side of the outer peripheral core 26 has a semicircular shape in plan view. Two spacers 27 are provided at both axial end surfaces of the cylindrical core core 23 made of a magnetic material. The diameter of the spacer 27 is larger than the diameter of the core core 23, and both are provided concentrically. The spacer 27 is formed in a flat plate cylindrical shape, and the axial end surface of the core core 23 is fitted inside the flat plate cylindrical shape.
The outer peripheral core 26 has a groove 26 c formed on the inner peripheral surface thereof, the outer periphery of the spacer 27 is inserted along the groove 26 c, and the outer periphery of the spacer 27 is in close contact, so that the coil assembly 25 is fixed in the outer core 26.
 コア芯23の軸方向の両端面部23aにスペーサ27があらかじめ嵌合されると共に、コイル24が準備される。コイル24はコア芯23にマグネットワイヤを直接巻回してもよく、あらかじめマグネットワイヤが巻回されたコイル24をコア芯23に挿入していてもよい(図11(a)および(b))。コイルアッシィ25は、スペーサ27の外周面が外周コア26の内周面26cに密接することで外周コア26内に固定される(図11(c)および(d))。 The spacer 27 is fitted in advance to both axial end surfaces 23a of the core core 23, and the coil 24 is prepared. The coil 24 may be obtained by winding a magnet wire directly around the core core 23, or a coil 24 around which a magnet wire is wound may be inserted into the core core 23 (FIGS. 11A and 11B). The coil assembly 25 is fixed in the outer core 26 when the outer peripheral surface of the spacer 27 is in close contact with the inner peripheral surface 26c of the outer core 26 (FIGS. 11C and 11D).
 スペーサ付きEEP形磁性素子の他の例を図12および図13に示す。図12(a)はEEP形磁性素子の斜視図、および図12(b)はD-D方向断面図であり、図13(a)~(c)は斜視図で示す組み立て工程である。
 磁性素子28は、円柱状のコア芯29の外周にマグネットワイヤが巻回されたコイル30を備えてなるコイルアッシィ31と、このコイルアッシィ31の略外周を覆う外周コア32とを備えている。外周コア32はコア芯29を挿入できる貫通穴32bを外周コア32に設けてある。
 円柱状のコア芯29の軸方向端面近傍の円周部29aにスペーサ33が嵌合される。スペーサ33は円筒状であり、コア芯29の軸方向端面近傍に設けられた軸小径部である円周部29aに嵌合する。
Another example of the EEP type magnetic element with the spacer is shown in FIGS. 12A is a perspective view of the EEP type magnetic element, FIG. 12B is a sectional view in the DD direction, and FIGS. 13A to 13C are assembly steps shown in the perspective view.
The magnetic element 28 includes a coil assembly 31 including a coil 30 in which a magnet wire is wound around the outer periphery of a cylindrical core core 29, and an outer core 32 covering the substantially outer periphery of the coil assembly 31. The outer core 32 is provided with a through hole 32 b in the outer core 32 into which the core 29 can be inserted.
A spacer 33 is fitted to the circumferential portion 29 a in the vicinity of the end surface in the axial direction of the cylindrical core core 29. The spacer 33 has a cylindrical shape, and is fitted to a circumferential portion 29 a that is a small-diameter portion provided in the vicinity of the axial end surface of the core core 29.
 あらかじめ巻回されたコイル30を外周コア32の開口部32aから矢印方向に挿入し(図13(a))、外周コア32の端面に設けた貫通穴32bからスペーサ付きコア芯29を矢印方向に挿入する(図13(b))。コイル30とコア芯29とから構成されるコイルアッシィ31が外周コア32内に固定される(図13(c))。また、熱伝導率に優れたコア芯29の端面が外周コア32表面に存在するので磁性素子28の放熱性が向上する。 The coil 30 wound in advance is inserted from the opening 32a of the outer core 32 in the direction of the arrow (FIG. 13A), and the core 29 with the spacer is inserted in the direction of the arrow from the through hole 32b provided in the end face of the outer core 32. Insert (FIG. 13B). A coil assembly 31 composed of the coil 30 and the core core 29 is fixed in the outer core 32 (FIG. 13C). Moreover, since the end surface of the core core 29 excellent in thermal conductivity exists on the surface of the outer core 32, the heat dissipation of the magnetic element 28 is improved.
 スペーサ付きEEP形磁性素子の他の例を図14および図15に示す。図14(a)はEEP形磁性素子の斜視図、および図14(b)はE-E方向断面図であり、図15(a)~(d)は斜視図で示す組み立て工程である。
 磁性素子34は、円柱状のコア芯35の外周にマグネットワイヤが巻回されたコイル36を備えてなるコイルアッシィ37と、このコイルアッシィ37の外周を覆う外周コア38とを備えている。外周コア38はコア芯35を挿入できる貫通穴38bを外周コア38に設けてある。
 円柱状のコア芯35の軸方向両端面近傍の円周部および端面にスペーサ39が設けられている。スペーサ39の直径はコア芯35の直径と同じであり、両者は同心に設けられている。スペーサ39は平皿円筒状に形成され、この平皿円筒状の内部にコア芯35の軸方向端面の凸部35aが嵌合する。
Another example of the EEP type magnetic element with the spacer is shown in FIGS. 14A is a perspective view of the EEP type magnetic element, FIG. 14B is a sectional view taken along the line EE, and FIGS. 15A to 15D are assembly steps shown in the perspective view.
The magnetic element 34 includes a coil assembly 37 including a coil 36 around which a magnet wire is wound around an outer periphery of a cylindrical core core 35, and an outer core 38 covering the outer periphery of the coil assembly 37. The outer core 38 has a through hole 38b in the outer core 38 into which the core 35 can be inserted.
Spacers 39 are provided on the circumferential portion and the end surface in the vicinity of both end surfaces in the axial direction of the cylindrical core core 35. The diameter of the spacer 39 is the same as the diameter of the core core 35, and both are provided concentrically. The spacer 39 is formed in a flat plate cylindrical shape, and the convex portion 35a on the axial end surface of the core core 35 is fitted into the flat plate cylindrical shape.
 コア芯35の両端面側からスペーサ39を嵌合し、あらかじめ巻回されたコイル36を外周コア38の開口部38aから矢印方向に挿入し、外周コア38の端面に設けられた貫通穴38bからコア芯35を矢印方向に挿入する(図15(a)~(c))。コイル36とコア芯35とから構成されるコイルアッシィ37が外周コア38内に固定される(図15(d))。 The spacers 39 are fitted from both ends of the core core 35, and the coil 36 wound in advance is inserted in the direction of the arrow from the opening 38a of the outer core 38, and from the through hole 38b provided in the end surface of the outer core 38. The core core 35 is inserted in the direction of the arrow (FIGS. 15A to 15C). A coil assembly 37 including a coil 36 and a core core 35 is fixed in the outer core 38 (FIG. 15 (d)).
 本発明において、コア芯および外周コアは、圧縮成形磁性体および射出成形磁性体を含む、成形磁性体であることが好ましく、より好ましくは上述したコア芯が圧縮成形磁性体であり、外周コアが射出成形磁性体である。 In the present invention, the core core and the outer core are preferably molded magnetic bodies including a compression molded magnetic body and an injection molded magnetic body, and more preferably, the core core described above is a compression molded magnetic body, and the outer core is It is an injection-molded magnetic body.
 本発明において、コア芯として使用できる圧縮成形磁性体は、例えば、鉄粉、窒化鉄粉等の純鉄系軟磁性材料、Fe-Si-Al合金(センダスト)粉末、スーパーセンダスト粉末、Ni-Fe合金(パーマロイ)粉末、Co-Fe合金粉末、Fe-Si-B系合金粉末等の鉄基合金系軟磁性材料、フェライト系磁性材料、アモルファス系磁性材料、微細結晶材料などの磁性材料を原料とできる。 In the present invention, compression-molded magnetic materials that can be used as the core are, for example, pure iron-based soft magnetic materials such as iron powder and iron nitride powder, Fe—Si—Al alloy (Sendust) powder, super Sendust powder, Ni—Fe. Magnetic materials such as iron-based alloy soft magnetic materials such as alloy (permalloy) powder, Co—Fe alloy powder, Fe—Si—B alloy powder, ferrite magnetic materials, amorphous magnetic materials, and fine crystal materials are used as raw materials. it can.
 フェライト系磁性材料としては、マンガン亜鉛フェライト、ニッケル亜鉛フェライト、銅亜鉛フェライト、磁鉄鉱等のスピネル型結晶構造を有するスピネルフェライト、バリウムフェライト、ストロンチウムフェライト等の六方晶フェライト、イットリウム鉄ガーネットなどのガーネットフェライトが挙げられる。これらフェライト系磁性材料の中でも透磁率が高く、高周波数領域での渦電流損失が小さい軟磁性フェライトであるスピネルフェライトが好ましい。また、アモルファス系磁性材料としては、鉄合金系、コバルト合金系、ニッケル合金系、これらの混合合金系アモルファスなどが挙げられる。 Ferrite magnetic materials include manganese zinc ferrite, nickel zinc ferrite, copper zinc ferrite, spinel ferrite having a spinel crystal structure such as magnetite, hexagonal ferrite such as barium ferrite and strontium ferrite, and garnet ferrite such as yttrium iron garnet. Can be mentioned. Among these ferrite-based magnetic materials, spinel ferrite, which is soft magnetic ferrite having high permeability and low eddy current loss in a high frequency region, is preferable. Examples of the amorphous magnetic material include iron alloy, cobalt alloy, nickel alloy, and mixed alloy amorphous thereof.
 原料となる軟磁性金属粉末材料の粒子表面に絶縁被覆を形成する酸化物としては、Al23、Y23、MgO、ZrO2等の絶縁性金属または半金属の酸化物、ガラス、これらの混合物が挙げられる。絶縁被覆の形成方法としては、メカノフュージョン等の粉末コーティング法や、無電解メッキやゾル-ゲル法等の湿式薄膜作製法、またはスパッタリング等の乾式薄膜作製法等を用いることができる。 The oxide forming the insulating coating on the surface of the particles of the soft magnetic metal powder material as a raw material, Al 2 O 3, Y 2 O 3, MgO, insulating metal or metalloid oxides, such as ZrO 2, glass, These mixtures are mentioned. As a method for forming the insulating coating, a powder coating method such as mechanofusion, a wet thin film manufacturing method such as electroless plating or a sol-gel method, or a dry thin film manufacturing method such as sputtering can be used.
 圧縮成形磁性体は、粒子表面に絶縁被覆が形成された上記原料粉末単体、または上記原料粉末にエポキシ樹脂などの熱硬化性樹脂が配合された粉末を加圧成形して圧粉体とし、この圧粉体を焼成して製造できる。原料粉末の割合は、原料粉末と熱硬化性樹脂との合計量を100質量%として、96~100質量%であることが好ましい。96質量%未満であると、原料粉末の配合割合が低下し、磁束密度や透磁率が低下するおそれがある。 The compression-molded magnetic body is formed by compressing the raw material powder having an insulating coating formed on the particle surface, or a powder in which a thermosetting resin such as an epoxy resin is blended into the raw material powder into a green compact. It can be manufactured by firing a green compact. The ratio of the raw material powder is preferably 96 to 100% by mass, where the total amount of the raw material powder and the thermosetting resin is 100% by mass. If it is less than 96% by mass, the blending ratio of the raw material powder may decrease, and the magnetic flux density and permeability may decrease.
 原料粉末の平均粒子径は1~150μmであることが好ましい。より好ましくは5~100μmである。平均粒子径が1μmよりも小さくなると、加圧成形時の圧縮性(粉末の固まり易さを示す尺度)が低下し、焼成後の材料強度が著しく低下する。平均粒子径が150μmよりも大きくなると、高周波数領域での鉄損が大きくなり、磁気特性(周波数特性)が低下する。 The average particle diameter of the raw material powder is preferably 1 to 150 μm. More preferably, it is 5 to 100 μm. When the average particle size is smaller than 1 μm, the compressibility at the time of pressure molding (a measure indicating the ease with which powder is solidified) is lowered, and the material strength after firing is significantly lowered. When the average particle diameter is larger than 150 μm, the iron loss in the high frequency region increases, and the magnetic characteristics (frequency characteristics) deteriorate.
 圧縮成形は、上記原料粉末を金型内に充填し、所定の加圧力でプレス成形する方法を用いることができる。この圧粉体を焼成して焼成体を得る。なお、原料に非晶質合金粉末を用いる場合には、焼成温度を非晶質合金の結晶化開始温度より低温とする必要がある。また、熱硬化性樹脂が配合された粉末を用いる場合には、焼成温度を樹脂の硬化温度範囲とする必要がある。 Compressive molding can be performed by filling the above raw material powder into a mold and press molding with a predetermined pressure. The green compact is fired to obtain a fired body. When amorphous alloy powder is used as a raw material, the firing temperature needs to be lower than the crystallization start temperature of the amorphous alloy. Moreover, when using the powder with which the thermosetting resin was mix | blended, it is necessary to make baking temperature into the curing temperature range of resin.
 本発明において、外周コアとして使用できる射出成形磁性体は、上記圧縮成形磁性体の原料粉末に結着樹脂を配合して、この混合物を射出成形することにより得られる。射出成形がしやすいこと、射出成形後の形状維持が容易であること、複合磁性体の磁気特性に優れること等から、磁性粉末がアモルファス金属粉末であることが好ましい。アモルファス金属粉末は上述した鉄合金系、コバルト合金系、ニッケル合金系、これらの混合合金系アモルファスなどを使用できる。これらアモルファス金属粉末表面に上述した絶縁被覆が形成されている。 In the present invention, an injection-molded magnetic body that can be used as an outer peripheral core can be obtained by blending a binder resin into the raw material powder of the compression-molded magnetic body and injection-molding this mixture. The magnetic powder is preferably an amorphous metal powder because of easy injection molding, easy shape maintenance after injection molding, and excellent magnetic properties of the composite magnetic material. As the amorphous metal powder, the above-described iron alloy series, cobalt alloy series, nickel alloy series, mixed alloy series amorphous, or the like can be used. The insulating coating described above is formed on the surface of these amorphous metal powders.
 結着樹脂としては、射出成形が可能な熱可塑性樹脂を使用できる。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリビニルアルコール、ポリエチレンオキサイド、ポリフェニレンサルファイド(PPS)、液晶ポリマー、ポリエーテルエーテルケトン(PEEK)、ポリイミド、ポリエーテルイミド、ポリアセタール、ポリエーテルサルホン、ポリサルホン、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリフタールアミド、ポリアミド、これらの混合物が挙げられる。これらの中で、アモルファス金属粉末に混合したときの射出成形時の流動性に優れ、射出成形後の成形体の表面を樹脂層で覆うことができると共に、耐熱性などに優れるポリフェニレンサルファイド(PPS)がより好ましい。 As the binder resin, a thermoplastic resin capable of injection molding can be used. Examples of thermoplastic resins include polyolefins such as polyethylene and polypropylene, polyvinyl alcohol, polyethylene oxide, polyphenylene sulfide (PPS), liquid crystal polymers, polyether ether ketone (PEEK), polyimide, polyether imide, polyacetal, polyether sulfone, and polysulfone. , Polycarbonate, polyethylene terephthalate, polybutylene terephthalate, polyphenylene oxide, polyphthalamide, polyamide, and mixtures thereof. Among these, polyphenylene sulfide (PPS), which is excellent in fluidity at the time of injection molding when mixed with amorphous metal powder, can cover the surface of the molded article after injection molding with a resin layer, and has excellent heat resistance, etc. Is more preferable.
 原料粉末の割合は、原料粉末と熱可塑性樹脂との合計量を100質量%として、80~95質量%であることが好ましい。80質量%未満であると磁気特性が得られず、95質量%をこえると射出成形性に劣るおそれがある。 The ratio of the raw material powder is preferably 80 to 95% by mass, where the total amount of the raw material powder and the thermoplastic resin is 100% by mass. If it is less than 80% by mass, magnetic properties cannot be obtained, and if it exceeds 95% by mass, the injection moldability may be inferior.
 射出成形は、例えば可動型および固定型が衝合された金型内に上記原料粉末を射出して成形する方法を用いることができる。射出成形条件としては熱可塑性樹脂の種類によっても異なるが、例えばポリフェニレンサルファイド(PPS)の場合、樹脂温度が290~350℃、金型温度が100~150℃であることが好ましい。 Injection molding can be performed by, for example, a method of injecting and molding the raw material powder in a mold in which a movable mold and a fixed mold are abutted. The injection molding conditions vary depending on the type of thermoplastic resin. For example, in the case of polyphenylene sulfide (PPS), the resin temperature is preferably 290 to 350 ° C. and the mold temperature is preferably 100 to 150 ° C.
 好ましい形態としてのコア芯となる圧縮成形磁性体および外周コアとなる射出成形磁性体は、上述した方法によりそれぞれ別々に作製される。また、圧縮成形磁性体および射出成形磁性体を接着する場合、相互に密着できる無溶剤型のエポキシ系接着剤が好ましい。 As a preferred embodiment, the compression-molded magnetic body serving as the core and the injection-molded magnetic body serving as the outer peripheral core are separately produced by the above-described method. Moreover, when bonding a compression molding magnetic body and an injection molding magnetic body, the solventless type epoxy-type adhesive which can mutually adhere is preferable.
 圧縮成形磁性体および射出成形磁性体の好ましい材料の組み合わせとしては、圧縮成形磁性体がアモルファスまたは純鉄粉であり、射出成形磁性体がアモルファス金属粉末および熱可塑性樹脂であることが好ましい。より好ましくは、アモルファス金属がFe-Si-Cr系アモルファスであり、熱可塑性樹脂がポリフェニレンサルファイド(PPS)である。 As a preferable combination of materials of the compression molded magnetic body and the injection molded magnetic body, the compression molded magnetic body is preferably amorphous or pure iron powder, and the injection molded magnetic body is preferably an amorphous metal powder and a thermoplastic resin. More preferably, the amorphous metal is Fe—Si—Cr-based amorphous, and the thermoplastic resin is polyphenylene sulfide (PPS).
 樹脂封止する場合の封止樹脂としては熱硬化性樹脂が好ましく、耐熱性や耐食性に優れる、エポキシ樹脂、フェノール樹脂、アクリル系樹脂などが挙げられる。エポキシ樹脂としては、上記樹脂バインダで列挙したものと同様の樹脂成分を有し、一液型または二液型のエポキシ樹脂などを使用できる。また、このエポキシ樹脂における硬化剤としては、上記潜在性エポキシ硬化剤以外に、アミン系硬化剤、ポリアミド系硬化剤、酸無水物系硬化剤などを適宜使用でき、硬化温度範囲や硬化時間は上記樹脂バインダと同様とすることが好ましい。フェノール樹脂としては、例えば、樹脂成分としてノボラック型フェノール樹脂やレゾール型フェノール樹脂を、硬化剤としてヘキサメチレンテトラミンなどを使用できる。 When the resin is sealed, a thermosetting resin is preferable as the sealing resin, and examples thereof include an epoxy resin, a phenol resin, and an acrylic resin that are excellent in heat resistance and corrosion resistance. As an epoxy resin, it has the same resin component as what was enumerated by the said resin binder, and a one-pack type or two-pack type epoxy resin etc. can be used. Moreover, as the curing agent in this epoxy resin, in addition to the latent epoxy curing agent, an amine curing agent, a polyamide curing agent, an acid anhydride curing agent and the like can be used as appropriate, and the curing temperature range and curing time are as described above. It is preferable to be the same as the resin binder. As the phenol resin, for example, a novolak type phenol resin or a resol type phenol resin can be used as a resin component, and hexamethylenetetramine can be used as a curing agent.
 本発明に使用できるスペーサは非磁性体であれば使用することができ、例えば上記した結着樹脂としての熱可塑性樹脂、封止樹脂としての熱硬化性樹脂、セラミックス、非磁性金属等、これら材料の発泡体等を使用できる。スペーサは、例えば射出成形などの方法で円筒状、平皿円筒状に形成できる。 The spacer that can be used in the present invention can be used as long as it is a non-magnetic material. For example, the above-described materials such as thermoplastic resins as binder resins, thermosetting resins as sealing resins, ceramics, non-magnetic metals, etc. Can be used. The spacer can be formed into a cylindrical shape or a flat plate cylindrical shape by a method such as injection molding.
 本発明の磁性素子は、例えば、上記圧縮成形磁性体の周囲に、マグネットワイヤが巻回されたコイルを配置して、コイルアッシィを形成し、インダクタ機能を持たせることができる。この磁性素子は電気・電子機器回路に組み込まれる。マグネットワイヤとしてはエナメル線を使用することができ、その種類としてはウレタン線(UEW)、ホルマール線(PVF)、ポリエステル線(PEW)、ポリエステルイミド線(EIW)、ポリアミドイミド線(AIW)、ポリイミド線(PIW)、これらを組み合わせた二重被複線、または自己融着線、リッツ線等を使用できる。耐熱性に優れるポリアミドイミド線(AIW)、ポリイミド線(PIW)等が好ましい。マグネットワイヤの断面形状としては丸線や角線を使用できる。特に、平角線の断面形状の短径側を圧縮成形磁性体の周囲に接して重ね巻きすることにより、コイル密度を向上させたコイルアッシィが得られる。マグネットワイヤの導体としては、導電性に優れた金属であればよく、銅、アルミニウム、金、銀等が挙げられる。 The magnetic element of the present invention can be provided with an inductor function by, for example, arranging a coil around which a magnet wire is wound around the compression molded magnetic body to form a coil assembly. This magnetic element is incorporated in an electric / electronic device circuit. An enameled wire can be used as the magnet wire, and the types thereof are urethane wire (UEW), formal wire (PVF), polyester wire (PEW), polyesterimide wire (EIW), polyamideimide wire (AIW), polyimide. A wire (PIW), a double coated wire combining these, a self-bonding wire, a litz wire, or the like can be used. Polyamideimide wire (AIW), polyimide wire (PIW) and the like excellent in heat resistance are preferred. A round wire or a square wire can be used as the cross-sectional shape of the magnet wire. In particular, a coil assembly with improved coil density can be obtained by winding the short axis side of the cross-sectional shape of the rectangular wire in contact with the periphery of the compression-molded magnetic body. The conductor of the magnet wire may be any metal having excellent conductivity, and examples thereof include copper, aluminum, gold, and silver.
 本発明の磁性素子は、二輪車を含む自動車や産業用機器および医療用機器の電源回路、フィルタ回路やスイッチング回路等に使用される磁性素子、例えばインダクタ、トランス、アンテナ、チョークコイル、フィルタなどとして使用できる。また、表面実装用部品として使用できる。特に、高効率のDC/DCコンバータ、充電装置、インバータで、これらの用途が太陽光発電用や車載用の場合には小型化や低背化が求められるため、本発明のインダクタは好適に用いることができる。 The magnetic element of the present invention is used as a magnetic element used in power circuits, filter circuits, switching circuits, etc. of automobiles, industrial devices and medical devices including motorcycles, such as inductors, transformers, antennas, choke coils, filters, etc. it can. It can also be used as a surface mounting component. In particular, in the case of high efficiency DC / DC converters, charging devices, and inverters, when these uses are for photovoltaic power generation or in-vehicle use, downsizing and low profile are required. Therefore, the inductor of the present invention is preferably used. be able to.
 本願発明の磁性素子を表面実装用部品として使用する場合の例を図16に示す。図16(a)は磁性素子の好ましい実装例を示す一部切欠き斜視図であり、図16(b)は同じく他の実装例である。
 図16(a)に示すように、外周コア5の開口部5aを電子部品の基板40と対向させることで、コイル巻回部から基板40までの距離が短くなり、マグネットワイヤの使用量を抑制できる。また、コイル端子3aはコイル3の接線方向に取り出し、最小限の曲げ加工で基板40に面実装が可能となり、加工コスト削減に寄与する。さらに、図16(b)に示す磁性素子に比べて曲げ加工が少なくなるため、直流抵抗を減らし、加工費を削減できる。なお、図16(b)に示す磁性素子であっても、外周コア5の開口部5aを開放面にすると共に、外周コア5の少なくとも1つの外周面を基板40に密着させて固定できる形状とすることにより、磁性素子の体格は大きくなるが放熱性に優れた磁性素子となる。
An example in which the magnetic element of the present invention is used as a surface mounting component is shown in FIG. FIG. 16A is a partially cutaway perspective view showing a preferred mounting example of the magnetic element, and FIG. 16B is another mounting example.
As shown in FIG. 16 (a), the opening 5a of the outer core 5 is opposed to the electronic component substrate 40, so that the distance from the coil winding portion to the substrate 40 is shortened and the amount of magnet wire used is suppressed. it can. Further, the coil terminal 3a is taken out in the tangential direction of the coil 3 and can be surface-mounted on the substrate 40 with a minimum bending process, which contributes to a reduction in processing cost. Furthermore, since bending is less than the magnetic element shown in FIG. 16B, the direct current resistance can be reduced and the processing cost can be reduced. 16B, the opening 5a of the outer peripheral core 5 is an open surface, and at least one outer peripheral surface of the outer core 5 is in close contact with the substrate 40 and can be fixed. By doing so, the physique of the magnetic element is increased, but the magnetic element is excellent in heat dissipation.
 本発明の磁性素子は、部品点数および製造工数を少なくできるので、生産性に優れ、各種の電気・電子機器用の磁性素子として好適に利用できる。 Since the magnetic element of the present invention can reduce the number of parts and the number of manufacturing steps, it has excellent productivity and can be suitably used as a magnetic element for various electric / electronic devices.
 1、6、11、16、22、28、34、44 磁性素子
 2、7、12 17、23、29、35、45 コア芯
 3、8、13、18、24、30、36、46 コイル
 4、9、14、19、25、31、37、47 コイルアッシィ
 5、10、15、20、26、32、38、48 外周コア
 21、27、33、39、49 スペーサ
 40 基板
 41 従来例の磁性素子
 42 従来例の外周コア
 43 従来例のコイル
1, 6, 11, 16, 22, 28, 34, 44 Magnetic element 2, 7, 12 17, 23, 29, 35, 45 Core core 3, 8, 13, 18, 24, 30, 36, 46 Coil 4 9, 14, 19, 25, 31, 37, 47 Coil assembly 5, 10, 15, 20, 26, 32, 38, 48 Outer core 21, 27, 33, 39, 49 Spacer 40 Substrate 41 Conventional magnetic element 42 Conventional outer core 43 Conventional coil

Claims (7)

  1.  コア芯の外周にコイルが配置されたコイルアッシィと、該コイルアッシィの外周を覆う外周コアとを備えた磁性素子であって、
     前記外周コアは、前記コイルアッシィを挿入できる開口部と、前記コイルアッシィを前記外周コア内に固定する固定手段とを有することを特徴とする磁性素子。
    A magnetic element comprising a coil assembly in which a coil is disposed on the outer periphery of a core core, and an outer peripheral core covering the outer periphery of the coil assembly,
    The outer peripheral core has an opening through which the coil assembly can be inserted, and a fixing means for fixing the coil assembly in the outer core.
  2.  前記コア芯は柱状コア芯の軸方向両端に一対のフランジ部が設けられたコア芯であり、前記固定手段は、前記フランジ部の外周形状を前記外周コアの内周面に密接する形状とすることで、前記コイルアッシィが前記外周コア内に固定されることを特徴とする請求項1記載の磁性素子。 The core core is a core core having a pair of flange portions provided at both axial ends of the columnar core core, and the fixing means has a shape in which the outer peripheral shape of the flange portion is in close contact with the inner peripheral surface of the outer peripheral core. The magnetic element according to claim 1, wherein the coil assembly is fixed in the outer peripheral core.
  3.  前記コア芯は柱状コア芯であり、前記固定手段は、前記外周コア内部に設けられ、前記柱状コア芯の軸方向両端部を挿入できる一対の溝を前記外周コアの内周面に設けることで、前記コイルアッシィが前記外周コア内に固定されることを特徴とする請求項1記載の磁性素子。 The core core is a columnar core, and the fixing means is provided inside the outer core, and a pair of grooves into which both axial ends of the columnar core can be inserted are provided on the inner peripheral surface of the outer core. The magnetic element according to claim 1, wherein the coil assembly is fixed in the outer peripheral core.
  4.  前記コア芯は柱状コア芯であり、前記固定手段は、前記コア芯を挿入する少なくとも1つの貫通穴を前記外周コアに設けることで、前記コイルアッシィが前記外周コア内に固定されることを特徴とする請求項1記載の磁性素子。 The core core is a columnar core, and the fixing means is configured to fix the coil assembly in the outer core by providing at least one through hole for inserting the core core in the outer core. The magnetic element according to claim 1.
  5.  前記コア芯は柱状コア芯であり、この柱状コア芯の軸方向中間部、軸方向端面部、および軸方向端面近傍の円周部の少なくとも1つの部位に、前記柱状コア芯と嵌合するスペーサが設けられていることを特徴とする請求項1記載の磁性素子。 The core core is a columnar core, and a spacer that fits with the columnar core in at least one of an axial intermediate portion, an axial end surface, and a circumferential portion in the vicinity of the axial end surface of the columnar core. The magnetic element according to claim 1, wherein the magnetic element is provided.
  6.  内部に前記コイルアッシィが固定されている前記外周コアは、該外周コアの少なくとも1つの外周面が電子機器の基板に固定できる形状であることを特徴とする請求項1記載の磁性素子。 The magnetic element according to claim 1, wherein the outer peripheral core having the coil assembly fixed therein has a shape in which at least one outer peripheral surface of the outer peripheral core can be fixed to a substrate of an electronic device.
  7.  前記コア芯が圧縮成形磁性体であり、前記外周コアが射出成形磁性体であることを特徴とする請求項1記載の磁性素子。 The magnetic element according to claim 1, wherein the core is a compression-molded magnetic body, and the outer core is an injection-molded magnetic body.
PCT/JP2016/077412 2015-09-17 2016-09-16 Magnetic element WO2017047740A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/761,105 US11145450B2 (en) 2015-09-17 2016-09-16 Magnetic element
CN201680053852.4A CN108028119B (en) 2015-09-17 2016-09-16 Magnetic element
EP16846611.8A EP3352182B1 (en) 2015-09-17 2016-09-16 Magnetic element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-184384 2015-09-17
JP2015184384 2015-09-17
JP2016087024A JP6608762B2 (en) 2015-09-17 2016-04-25 Magnetic element
JP2016-087024 2016-04-25

Publications (1)

Publication Number Publication Date
WO2017047740A1 true WO2017047740A1 (en) 2017-03-23

Family

ID=58289534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/077412 WO2017047740A1 (en) 2015-09-17 2016-09-16 Magnetic element

Country Status (1)

Country Link
WO (1) WO2017047740A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447659A (en) * 2018-02-09 2018-08-24 曹颂 The magnetically soft alloy formed iron core of low-frequency transformer
US20210343464A1 (en) * 2018-08-14 2021-11-04 Samsung Electronics Co., Ltd. Inductor

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289119A (en) * 1996-04-19 1997-11-04 Hitachi Ferrite Denshi Kk Inductance element
JPH11329859A (en) * 1998-05-13 1999-11-30 Fuji Elelctrochem Co Ltd Winding component
JP3255621B2 (en) * 1999-05-31 2002-02-12 東京コイルエンジニアリング株式会社 Surface mount choke coil
JP2006032559A (en) * 2004-07-14 2006-02-02 Tdk Corp Coil component
JP2009141117A (en) * 2007-12-06 2009-06-25 Daikin Ind Ltd Reactor
JP2013051402A (en) * 2011-08-01 2013-03-14 Sumitomo Electric Ind Ltd Choke coil and manufacturing method of the same
JP2014027050A (en) * 2012-07-25 2014-02-06 Ntn Corp Composite magnetic core and magnetic element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09289119A (en) * 1996-04-19 1997-11-04 Hitachi Ferrite Denshi Kk Inductance element
JPH11329859A (en) * 1998-05-13 1999-11-30 Fuji Elelctrochem Co Ltd Winding component
JP3255621B2 (en) * 1999-05-31 2002-02-12 東京コイルエンジニアリング株式会社 Surface mount choke coil
JP2006032559A (en) * 2004-07-14 2006-02-02 Tdk Corp Coil component
JP2009141117A (en) * 2007-12-06 2009-06-25 Daikin Ind Ltd Reactor
JP2013051402A (en) * 2011-08-01 2013-03-14 Sumitomo Electric Ind Ltd Choke coil and manufacturing method of the same
JP2014027050A (en) * 2012-07-25 2014-02-06 Ntn Corp Composite magnetic core and magnetic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108447659A (en) * 2018-02-09 2018-08-24 曹颂 The magnetically soft alloy formed iron core of low-frequency transformer
CN108447659B (en) * 2018-02-09 2023-06-13 曹颂 Soft magnetic alloy integrated iron core of low-frequency transformer
US20210343464A1 (en) * 2018-08-14 2021-11-04 Samsung Electronics Co., Ltd. Inductor

Similar Documents

Publication Publication Date Title
US10204725B2 (en) Composite magnetic core and magnetic element
JP6608762B2 (en) Magnetic element
JP6374683B2 (en) Magnetic element
KR101259388B1 (en) Coil component and method for manufacturing coil component
JP4763609B2 (en) Manufacturing method of magnetic core parts
CN107615414B (en) Magnetic element
WO2017047740A1 (en) Magnetic element
WO2016052257A1 (en) Magnetic core component and chip inductor
JP2019153808A (en) Magnetic element
CN111816405B (en) Inductance element
JP6529825B2 (en) Magnetic element
WO2019187952A1 (en) Magnetic element
JP6676405B2 (en) Magnetic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16846611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15761105

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016846611

Country of ref document: EP