JP7255153B2 - Reactor and manufacturing method thereof - Google Patents

Reactor and manufacturing method thereof Download PDF

Info

Publication number
JP7255153B2
JP7255153B2 JP2018229671A JP2018229671A JP7255153B2 JP 7255153 B2 JP7255153 B2 JP 7255153B2 JP 2018229671 A JP2018229671 A JP 2018229671A JP 2018229671 A JP2018229671 A JP 2018229671A JP 7255153 B2 JP7255153 B2 JP 7255153B2
Authority
JP
Japan
Prior art keywords
core
reactor
magnetic core
coil
annular magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018229671A
Other languages
Japanese (ja)
Other versions
JP2020092218A (en
Inventor
直樹 芦谷
亨 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PROTERIAL, LTD.
Original Assignee
PROTERIAL, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PROTERIAL, LTD. filed Critical PROTERIAL, LTD.
Priority to JP2018229671A priority Critical patent/JP7255153B2/en
Publication of JP2020092218A publication Critical patent/JP2020092218A/en
Application granted granted Critical
Publication of JP7255153B2 publication Critical patent/JP7255153B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

本発明は、ハイブリッド車、燃料電池車、電気自動車などのコンバータ回路、平滑回路、アクティブ回路に用いられるリアクトルとその製造方法に関する。 The present invention relates to reactors used in converter circuits, smoothing circuits, and active circuits of hybrid vehicles, fuel cell vehicles, electric vehicles, etc., and methods of manufacturing the same.

近年急速に普及しつつあるハイブリッド車や電気自動車には大出力の電気モータが設けられており、この駆動に用いる電力変換装置にはリアクトルが用いられる。リアクトルは、一般的な構成形態として、環状磁心と、それに巻装されるコイルを含み、高電圧・大電流に対応して、平角導線を筒状に巻回して形成された占積率の高い平角導線縦巻きコイル(エッジワイズコイルとも呼ばれる)を使用する場合がある。 2. Description of the Related Art Hybrid vehicles and electric vehicles, which are rapidly becoming popular in recent years, are equipped with high-output electric motors, and reactors are used in power converters used for driving these motors. A reactor, as a general configuration form, includes a toroidal magnetic core and a coil wound around it. In some cases, a longitudinally wound flat wire coil (also called an edgewise coil) is used.

平角導線を巻くためには大きな変形力を作用させる必要があり、環状磁心に直接巻回するのは困難で有る。そのため特許文献1から3に記載されるように、平角導線を直線状に伸びる筒状の平角導線縦巻きコイルとし、環状磁心を分割コアで構成して、平角導線縦巻きコイルの両端から分割コアを通して組み合わせて結合することが行われる。例えば特許文献1では、平角導線縦巻きコイルに分割コアを挿入し、分割コアを互いに締め付けて環状に組み付け、平角導線縦巻きコイルの巻線間隔を広げている。それによって、環状磁心の略全周に亘って平角導線縦巻きコイルが配置されたリアクトルとしている。 In order to wind the rectangular conductor, it is necessary to apply a large deformation force, and it is difficult to wind the conductor directly around the annular magnetic core. Therefore, as described in Patent Literatures 1 to 3, the rectangular conducting wire is formed into a tubular rectangular conducting wire longitudinally wound coil extending linearly, the annular magnetic core is composed of split cores, and the split cores are formed from both ends of the longitudinally wound rectangular conducting wire coil. Combining and combining is done through For example, in Patent Literature 1, a split core is inserted into a longitudinally wound flat conductor wire coil, and the split cores are tightened together to be assembled in an annular shape to widen the winding interval of the longitudinally wound flat conductor wire coil. As a result, a reactor in which a longitudinally wound flat wire coil is arranged over substantially the entire circumference of the annular magnetic core is formed.

特開2018-56511号公報JP 2018-56511 A 中国特許出願公開第105825998号明細書Chinese Patent Application Publication No. 105825998 中国特許出願公開第104269242号明細書Chinese Patent Application Publication No. 104269242

分割コアを組み合わせて構成される環状磁心は周方向に組み合わせ部を有する。組み合わせ部は磁路のつなぎ目であって、平角導線縦巻きコイルにより発生する磁束が通りにくい部分でもある。そのため、その周囲に磁束の漏れが発生し易い。一般にコイルは抵抗損失によって発熱するが、漏れ磁束もコイル発熱を増す要因となっている。組み合わせ部の周囲の平角導線に漏れ磁束が入ると渦電流損失を生じコイルが発熱する。著しい発熱はリアクトルの機能低下や熱損傷を招くため、別に冷却手段を設けるなど熱対策を講じて冷却効果を高めることが必要となる、リアクトルの大型化やコストの増加を招いてしまう。また、漏れ磁束の影響を減じるように、環状磁心とコイルとの間隔を離して渦電流損失を低減する方法があるが、この場合もリアクトルの大型化を招き、特には環状磁心の内周側の領域は限定されるので、漏れ磁束の影響を受けない程度に間隔を設けるのは困難であった。 An annular magnetic core configured by combining split cores has a combined portion in the circumferential direction. The combined portion is a joint of the magnetic path, and is also a portion through which the magnetic flux generated by the longitudinally wound coil of the rectangular conductor is difficult to pass. Therefore, leakage of magnetic flux is likely to occur around it. In general, coils generate heat due to resistance loss, and leakage magnetic flux is also a factor that increases coil heat generation. When leakage magnetic flux enters the rectangular conductor around the combined part, eddy current loss occurs and the coil heats up. Since significant heat generation leads to functional deterioration and thermal damage of the reactor, it is necessary to take heat countermeasures such as providing a separate cooling means to enhance the cooling effect, which leads to an increase in size and cost of the reactor. There is also a method of reducing the eddy current loss by increasing the distance between the annular magnetic core and the coil so as to reduce the influence of the leakage magnetic flux. Since the area of is limited, it was difficult to provide an interval that would not be affected by the leakage magnetic flux.

そこで本発明では、分割コアで構成される環状磁心の組み合わせ部での漏れ磁束の影響を低減したリアクトルとその製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a reactor in which the influence of leakage flux at a combined portion of annular magnetic cores composed of split cores is reduced, and a manufacturing method thereof.

第1の発明は、分割コアを組み合わせた環状磁心と、前記分割コアのそれぞれを内包し環状に組み合わされたコアケースと、前記コアケースに巻き付けられた平角導線縦巻きコイルと、を備えたリアクトルであって、前記平角導線縦巻きコイルは、コイルの一端から他端の間に、隣り合う平角導線の間隔が狭い幅狭分と広い幅広部とを備え、前記幅広部が前記分割コアの組み合わせ部に位置し、前記幅広部では前記環状磁心の内周面側においてのみ平角導線が前記組み合わせ部を跨ぐリアクトルである。 A first invention is a reactor comprising an annular magnetic core in which split cores are combined, a core case in which each of the split cores is enclosed and combined in an annular shape, and a rectangular conducting wire longitudinally wound coil wound around the core case. The longitudinally-wound rectangular conductor wire coil includes a narrow portion with a narrow interval between adjacent rectangular conductors and a wide portion between one end and the other end of the coil, and the wide portion is a combination of the split cores. In the wide portion, a rectangular conducting wire straddles the combination portion only on the inner peripheral surface side of the annular magnetic core.

本発明においては、前記分割コアはそれぞれ前記組み合わせ部となる端面に面取り部を有し、前記面取り部が少なくとも前記環状磁心の内周面側にあるのが好ましい。 In the present invention, it is preferable that each of the split cores has a chamfered portion on the end face that becomes the combined portion, and the chamfered portion is located at least on the inner peripheral surface side of the annular magnetic core.

本発明においては、前記環状磁心の内周面側において平角導線が前記組み合わせ部を跨ぐ回数が1であるのが好ましい。 In the present invention, it is preferable that the number of times the rectangular conducting wire straddles the combined portion on the inner peripheral surface side of the annular magnetic core is one.

本発明においては、平角導線縦巻きコイルの両端側において平角導線がいずれの組み合わせ部も跨がないのが好ましい。 In the present invention, it is preferable that the rectangular conductive wire does not straddle any combined portion on both end sides of the longitudinally wound coil of the rectangular conductive wire.

本発明においては、前記組み合わせ部は環状磁心の中心に対して略180度の回転対称に位置するのが好ましい。 In the present invention, it is preferable that the combined portion be positioned in rotational symmetry of approximately 180 degrees with respect to the center of the annular magnetic core.

本発明においては、前記平角導線縦巻きコイルは隣り合う平角導線の間隔がコイル中間部で最も幅広であるのが好ましい。 In the present invention, it is preferable that the interval between the adjacent flat conductor wires in the longitudinally wound flat conductor wire coil is the widest at the middle portion of the coil.

本発明においては、前記分割コアのそれぞれがFe基非晶質軟磁性合金の偏平粉を使用した圧粉磁心であって、前記環状磁心の周方向に磁化が容易であるのが好ましい。 In the present invention, each of the split cores is preferably a powder magnetic core using flat powder of an Fe-based amorphous soft magnetic alloy, and is easily magnetized in the circumferential direction of the annular magnetic core.

第2の発明は、平角導線を縦巻きした平角導線縦巻きコイルを用意する工程と、前記平角導線縦巻きコイルの両端から分割コアを内持するコアケースを挿入し組み合わせ、前記分割コアで環状磁心を形成するとともに、前記コアケースに前記平角導線縦巻きコイルを装着する工程と、前記環状磁心の内周面側においてのみ前記平角導線が前記分割コアの組み合わせ部を跨ぐように、前記分割コアの組み合わせ部に対応する位置で、前記平角導線縦巻きコイルの隣り合う平角導線の間隔を前記環状磁心の周方向に広げて変形させ幅広部を形成する工程、または予め前記平角導線縦巻きコイルの隣り合う平角導線の間隔を広げ変形させた幅広部を、前記分割コアの組み合わせ部に位置させる工程とを有するリアクトルの製造方法ある。 A second invention comprises a step of preparing a longitudinally wound flat conductor wire coil in which a flat conductor wire is longitudinally wound, inserting a core case holding a split core from both ends of the longitudinally wound flat conductor wire coil, and combining the split core with the split core. a step of forming a magnetic core and mounting the longitudinal coil of flat conductor wire in the core case; At a position corresponding to the combined portion of the flat conducting wire longitudinally wound coil, a step of expanding the interval between adjacent flat conducting wires of the flat conducting wire vertical winding coil in the circumferential direction of the annular magnetic core and deforming it to form a wide portion, or in advance of the flat conducting wire vertical winding coil and locating a deformed wide portion formed by widening an interval between adjacent rectangular conductors at a combined portion of the split cores.

本発明においては、前記平角導線縦巻きコイルの幅広部にあらわれるコアケースに平角導線縦巻きコイルの移動を規制するコイル移動規制部材を取り付ける工程を有するリアクトルの製造方法。 In the present invention, the method for manufacturing a reactor includes the step of attaching a coil movement restricting member for restricting the movement of the longitudinally wound flat conducting wire to the core case appearing in the wide portion of the longitudinally wound flat conducting wire.

また本発明においては、前記平角導線縦巻きコイルの幅広部で平角導線とコアケースとを接着する工程を有するのもリアクトルの製造方法。 In the present invention, the reactor manufacturing method also includes a step of adhering the flat conducting wire and the core case at the wide portion of the longitudinally wound flat conducting wire coil.

本発明によれば、環状磁心を構成する分割コアの組み合わせ部での漏れ磁束の影響を低減したリアクトルとその製造方法を提供することが出来る。 ADVANTAGE OF THE INVENTION According to this invention, the reactor which reduced the influence of the leakage magnetic flux in the combination part of the split core which comprises an annular magnetic core, and its manufacturing method can be provided.

本発明の一実施例に係るリアクトルの正面図である。1 is a front view of a reactor according to one embodiment of the present invention; FIG. 本発明の一実施例に係るリアクトルの斜視図である。1 is a perspective view of a reactor according to an embodiment of the invention; FIG. 本発明の一実施例に係るリアクトルの製造方法を説明するための、端子台を除くリアクトルの分解斜視図である。1 is an exploded perspective view of a reactor excluding a terminal block for explaining a method of manufacturing a reactor according to an embodiment of the present invention; FIG. 平角導線縦巻きコイルの幅広部形成前のリアクトルの正面図である。FIG. 4 is a front view of the reactor before forming the wide portion of the longitudinally wound coil of flat conducting wire; 平角導線縦巻きコイルの幅広部形成後のリアクトルの正面図である。FIG. 10 is a front view of the reactor after the formation of the wide portion of the longitudinally-wound coil of flat conducting wire; 分割コアの組み合わせ部と平角導線との関係を説明するための図である。FIG. 10 is a diagram for explaining the relationship between the combined portion of the split core and the flat conductor wire; 本発明の一実施例に係るリアクトルに使用する環状磁心の平面図である。1 is a plan view of an annular magnetic core used in a reactor according to one embodiment of the present invention; FIG. 本発明の一実施例に係るリアクトルに使用する分割コアの斜視図である。1 is a perspective view of a split core used in a reactor according to one embodiment of the present invention; FIG. 本発明の一実施例に係るリアクトルに使用するコアケースの分解斜視図である。1 is an exploded perspective view of a core case used in a reactor according to one embodiment of the present invention; FIG. 本発明の一実施例に係るリアクトルにおける分割コアを内持するコアケースの平面図である。FIG. 4 is a plan view of a core case that internally holds split cores in a reactor according to an embodiment of the present invention;

以下、本発明の実施形態に係るリアクトルについて具体的に説明する。図の一部又は全部において、説明に不要な部分は省略し、また説明を容易にするために拡大又は縮小等して図示した部分がある。また説明において示される寸法形状、図面を参照して説明する構成部材の相対的な位置関係等は、特に断わりのない限りは、それらの説明、図面等のみに限定されない。さらに説明においては、同一の名称、符号については同一又は同質の部材を示していて、図示していても詳細説明を省略する場合がある。 Hereinafter, reactors according to embodiments of the present invention will be specifically described. In some or all of the drawings, parts that are not necessary for explanation are omitted, and some parts are enlarged or reduced in order to facilitate explanation. Also, the dimensions and shapes shown in the description, the relative positional relationships of the constituent members described with reference to the drawings, etc. are not limited to those descriptions, the drawings, etc., unless otherwise specified. Furthermore, in the description, the same names and symbols indicate the same or homogeneous members, and detailed description may be omitted even if they are illustrated.

図1は本発明の一実施例に係るリアクトルの正面図であり、図2はその斜視図である。また図3から図5は本発明の一実施例に係るリアクトルの作製方法を説明するための図であって、図3は平角導線縦巻きコイルに分割コアを内持するコアケースを挿入する工程を説明するための図である。図4は平角導線縦巻きコイルを通されたコアケースを環状に組み合わせ、平角導線縦巻きコイルを略全周に亘って展開した状態を示す正面図である。図5は平角導線縦巻きコイルのコイル中間部において、平角導線の間隔を幅広に拡張した状態を示す平面図である。 FIG. 1 is a front view of a reactor according to one embodiment of the present invention, and FIG. 2 is its perspective view. 3 to 5 are diagrams for explaining a method of manufacturing a reactor according to an embodiment of the present invention, and FIG. 3 shows a process of inserting a core case containing split cores into a longitudinally wound flat conductor wire coil. It is a figure for explaining. FIG. 4 is a front view showing a state in which a core case, in which a longitudinally wound flat conductor wire is passed, is combined in an annular shape, and the longitudinally wound flat conductor wire coil is deployed over substantially the entire circumference. FIG. 5 is a plan view showing a state in which the intervals between the flat conductor wires are widened in the coil intermediate portion of the vertical winding coil of the flat conductor wire.

図示したように本実施形態のリアクトル1は、環状磁心を構成する分割コア(図示せず)と、その分割コアのそれぞれを内包し環状に組み合わせ可能なコアケース20と、環状に組み合ったコアケース20の外方に巻き付けられた平角導線縦巻きコイル30を備えている。図示した例では、回路基板への実装を容易にするようにリアクトル1を実装するための金属ピン52が立てられた端子台50にリアクトル1が立設し接着固定されている。平角導線縦巻きコイル30の端部32側は端子台50の貫通孔を通って、端子台の下側(金属ピン52側)に引き出されている。このような態様を含め、本発明のリアクトルは、分割コア5、コアケース20、平角導線縦巻きコイル30の基本構成に加えて、他の機能部材を付加した場合を含むものである。 As shown, the reactor 1 of the present embodiment includes split cores (not shown) forming an annular magnetic core, core cases 20 that enclose the respective split cores and can be combined in an annular manner, and core cases that are annularly combined. It has 20 outwardly wound longitudinal coils 30 of flat conductor wire. In the illustrated example, the reactor 1 is erected and adhesively fixed to a terminal block 50 on which metal pins 52 for mounting the reactor 1 are erected so as to facilitate mounting on a circuit board. The end portion 32 side of the longitudinally wound flat wire coil 30 passes through the through hole of the terminal block 50 and is pulled out to the lower side of the terminal block (toward the metal pin 52 side). Including such a mode, the reactor of the present invention includes a case where other functional members are added in addition to the basic configuration of the split core 5, the core case 20, and the longitudinally wound flat wire coil 30.

図示したリアクトル1では、そのz方向の上方側に平角導線縦巻きコイル30の中間部(コイルの一端から他端の間の中間部)で平角導線の間隔が広げられた幅広部33を備えていて、平角導線縦巻きコイル30の端部側はリアクトル1の下方側に引き出されている。なお、コイルの一端から幅広部の間と幅広部からコイルの他端の間は、平角導線の間隔が狭い幅狭部となっている。コアケース20内にある環状磁心はコアケースの形状に沿った形状を有しており、一組の円弧状の分割コアの周方向の端部を組み合わせて構成される。例えば中心角が略180度の円弧状の分割コアを組み合わせた環状磁心では、環状磁心の中心に対して180度の回転対称の二箇所に分割コアの組み合わせ部を有する。分割コアの組み合わせ部(以下、単に「組み合わせ部」ともいう)は環状磁心を単独で確認すれば、表面にて線状に確認される。詳細は後述するが、図示したリアクトル1で使用される環状磁心も180度の回転対称の二箇所に組み合わせ部を有していて、一方の組み合わせ部に対応する部分に平角導線縦巻きコイル30の幅広部33が設けられていて、コイル中間部の平角導線の間隔が最も幅広となっている。なおコイル中間部とは、数学的な中間に限定されず、その前後の領域を含む部分を言う。 In the reactor 1 shown in the figure, a wide portion 33 is provided on the upper side in the z-direction, in which the space between the rectangular conductors is widened at the intermediate portion of the longitudinally wound rectangular conductor coil 30 (the intermediate portion between one end and the other end of the coil). In addition, the end portion of the longitudinally-wound flat wire coil 30 is pulled out to the lower side of the reactor 1 . Between one end of the coil and the wide portion and between the wide portion and the other end of the coil are narrow portions in which the distance between the flat conductor wires is narrow. The annular magnetic core in the core case 20 has a shape that follows the shape of the core case, and is constructed by combining the circumferential ends of a pair of arc-shaped split cores. For example, an annular magnetic core in which arc-shaped split cores having a center angle of approximately 180 degrees are combined has two joint portions of the split cores that are 180 degrees rotationally symmetrical with respect to the center of the annular magnetic core. If the annular magnetic core is confirmed alone, the combined portion of the split cores (hereinafter also simply referred to as "combined portion") can be confirmed linearly on the surface. Although the details will be described later, the annular magnetic core used in the illustrated reactor 1 also has a combination portion at two locations with 180° rotational symmetry, and a longitudinally wound flat wire coil 30 is attached to a portion corresponding to one of the combination portions. A wide portion 33 is provided, and the interval between the flat conductor wires in the intermediate portion of the coil is the widest. Note that the intermediate portion of the coil is not limited to a mathematical intermediate portion, and refers to a portion including areas before and after the intermediate portion.

また、他方の分割コアの組み合わせ部は、図1の端子52側となり、コイルの一端と他端との間となる。このコイルの一端と他端との間も間隔が空いている。このため、他方の分割コアの組み合わせ部を跨ぐ平角導線は存在しない。 Also, the combined portion of the other split core is on the terminal 52 side in FIG. 1 and is between one end and the other end of the coil. There is also a space between one end and the other end of this coil. Therefore, there is no rectangular conducting wire that straddles the combined portion of the other split core.

なお、分割コアの組み合わせ部は、コアケースの内部となるので直接は確認できないが、分割コアの組み合わせ部とコアケースの組み合わせ部は同じ箇所に存在しているので、コアケースの組み合わせ部を確認することにより、分割コアの組み合わせ部を確認することができる。またコアケースの一部に開口を設けて、そこから分割コアの組み合わせ部を直接確認するようにしても良い。その場合は、確認の後、絶縁樹脂等で開口を閉じて環状磁心と平角導線縦巻きコイルとの間の絶縁を確保するのが望ましい。 The joint of the split core is inside the core case, so it is not possible to directly check it. By doing so, it is possible to confirm the combined portion of the divided cores. Alternatively, an opening may be provided in a part of the core case so that the combined portion of the split cores can be directly checked through the opening. In that case, after confirmation, it is desirable to close the opening with an insulating resin or the like to ensure insulation between the annular magnetic core and the longitudinally wound flat wire coil.

平角導線縦巻きコイル30は、所定の厚みと幅を有し、エナメルで絶縁被覆された連続する一本の平角導線を同じ巻径で所定のターン数で巻回して構成されている。平角導線の断面寸法や巻数は限定されず、用途に応じて適宜選択することができる。平角導線縦巻きコイル30の空芯部分はコアケース20を挿入可能な寸法形状となっていて、図示した例では矩形の空間となっている。コアケース20に巻き付けられた状態で平角導線縦巻きコイル30の平角導線の間隔を広げる場合、コアケース20の円弧状の外形や径方向の厚みによる制限で、平角導線縦巻きコイル30を変形可能な方向は実質的に周方向に限定される。また予め平角導線の間隔を広げた幅広部を作る場合もコアケース20の挿入を考慮して平角導線縦巻きコイル30を変形させることが必要となる。どちらの場合でも、幅広部においてコアケース20をy方向に見て現れる平角導線で画定される領域は、コアケース20の外周面側から内周面側に向かって縮小する扇型となる。 The longitudinally-wound flat conductor wire coil 30 has a predetermined thickness and width, and is formed by winding a single continuous flat conductor wire, which is insulated with enamel, with the same winding diameter and a predetermined number of turns. The cross-sectional dimensions and the number of turns of the rectangular conducting wire are not limited, and can be appropriately selected according to the application. The air core portion of the longitudinally wound flat wire coil 30 has a dimension and shape that allows insertion of the core case 20, and in the illustrated example, it is a rectangular space. When the intervals between the flat conductor wires of the longitudinally wound flat conductor wire coil 30 are widened while being wound around the core case 20, the longitudinally wound flat conductor wire coil 30 can be deformed due to the restrictions imposed by the arc-shaped outer shape and the radial thickness of the core case 20. direction is substantially limited to the circumferential direction. Also, when forming a wide portion by increasing the distance between rectangular conductors in advance, it is necessary to deform the longitudinally wound rectangular conductor coil 30 in consideration of the insertion of the core case 20 . In either case, the area defined by the flat conductor wire that appears when looking at the core case 20 in the y direction in the wide portion forms a fan shape that shrinks from the outer peripheral surface side to the inner peripheral surface side of the core case 20 .

図示したリアクトル1では、環状磁心10の内周面側において平角導線が組み合わせ部8を斜めに跨いでいる。ここで平角導線が組み合わせ部を跨ぐとは、図6に示すように、コアケース20の内周面に近接する平角導線31と分割コア5の組み合わせ部8との重なりを見るとき、平角導線が環状磁心の表面にて線状に確認される組み合わせ部8と交差する状態を言う。本発明によれば環状磁心の内周面側でのみ、平角導線31が組み合わせ部8を跨ぐように構成出来る。組み合わせ部を跨ぐ平角導線を少なくすることによって、組み合わせ部での漏れ磁束の影響を低減することが出来る。好ましくは、環状磁心10の内周面側において平角導線が組み合わせ部8を跨ぐ回数は1である。 In the illustrated reactor 1 , the rectangular conductor diagonally straddles the combined portion 8 on the inner peripheral surface side of the annular magnetic core 10 . Here, the rectangular conductive wire straddles the combined portion, as shown in FIG. It refers to the state of crossing the combined portion 8 linearly confirmed on the surface of the annular magnetic core. According to the present invention, the rectangular conducting wire 31 can be configured to straddle the combined portion 8 only on the inner peripheral surface side of the annular magnetic core. By reducing the number of rectangular conductors crossing over the combined portion, it is possible to reduce the influence of leakage magnetic flux at the combined portion. Preferably, the number of times the rectangular conducting wire straddles the combined portion 8 on the inner peripheral surface side of the annular magnetic core 10 is one.

下側の組み合わせ部の近傍には平角導線縦巻きコイル30の端部側が位置する。図1に示したように平角導線縦巻きコイル30の端部側の平角導線を下方の組み合わせ部から離れた位置で引き出し、組み合わせ部を跨がせないようにするのが好ましい。 The end portion side of the longitudinally wound flat wire coil 30 is positioned in the vicinity of the lower combined portion. As shown in FIG. 1, it is preferable to pull out the flat conductor wire on the end side of the vertically wound flat conductor wire coil 30 at a position away from the lower combination portion so that it does not straddle the combination portion.

図7に分割コアを組み合わせて構成される環状磁心の平面図を示し、図8に図7の環状磁心に使用する分割コアの斜視図を示す。分割コア5の周方向の端面6どうしを対面させて組み合わせ、円環状の環状磁心10とする。図示した分割コア5は中心角が略180度の円弧状であるが、それに限定されず、平角導線縦巻きコイル30の巻き付けや、幅広部33の形成に支障が生じない範囲で異同があってもかまわない。一部を直線状としたアルファベットのU字状としても良く、それを組み合わせた環状磁心10は扁平楕円状となる。同じ形状の分割コア5を組み合わせると環状磁心10の中心に対して回転対称に組み合わせ部8が形成される。なお、環状磁心10を構成する分割コア5の数は3以上であっても良いが、組み合わせ数に応じて組み合わせ部8が増加し、平角導線縦巻きコイル30の巻線間隔が密である場合には、組み合わせ部8に応じた幅広部33を設けるのが困難となるため、組み合わせ数を2とするのが好ましい。また中心角の角度が異なる分割コア5を組み合わせて環状磁心10を構成しても良い。 FIG. 7 shows a plan view of an annular magnetic core configured by combining split cores, and FIG. 8 shows a perspective view of a split core used for the annular magnetic core of FIG. The end faces 6 of the split cores 5 in the circumferential direction face each other and are combined to form an annular magnetic core 10 having an annular shape. The illustrated split core 5 has an arcuate shape with a central angle of approximately 180 degrees, but is not limited to this, and may differ within a range that does not interfere with the winding of the rectangular conducting wire longitudinally wound coil 30 and the formation of the wide portion 33 . I don't mind. A U-shaped alphabet with a part of the linear shape may be used, and the annular magnetic core 10 combining them has a flattened elliptical shape. Combining the split cores 5 of the same shape forms a combined portion 8 rotationally symmetrical with respect to the center of the annular magnetic core 10 . Although the number of split cores 5 constituting the toroidal magnetic core 10 may be three or more, when the number of combination portions 8 increases according to the number of combinations and the winding intervals of the longitudinally wound rectangular conducting wire coil 30 are dense. , it is difficult to provide the wide portion 33 corresponding to the combined portion 8, so it is preferable to set the number of combinations to two. Alternatively, the annular magnetic core 10 may be configured by combining split cores 5 having different central angles.

図示した分割コア5の端面6には、環状磁心10の内周面11及び外周面12となる側に曲面状に丸く面取り(R面取り)が施されている。分割コア5の端面6に面取りを形成することで、漏れ磁束が面取り部から漏れだす距離が抑えられる。環状磁心10の内周面側では平角導線に入る漏れ磁束が減少し、渦電流損失の発生を抑制して、コイル発熱を一層効果的に防ぐことが出来る。特には、環状磁心10の組み合わせ部8にギャップを設ける場合に面取りを施すのが好ましい。面取りは、端面6の角稜を落として斜面状とするような、例えばC面取りであっても良い。 The end face 6 of the split core 5 shown in the figure is chamfered (R-chamfered) in a curved shape on the inner peripheral surface 11 and the outer peripheral surface 12 of the annular magnetic core 10 . By chamfering the end faces 6 of the split cores 5, the distance over which leakage magnetic flux leaks from the chamfered portion can be suppressed. On the inner peripheral surface side of the annular magnetic core 10, the leakage magnetic flux entering the rectangular conductor is reduced, the occurrence of eddy current loss is suppressed, and heat generation of the coil can be prevented more effectively. In particular, it is preferable to chamfer when providing a gap in the combined portion 8 of the annular magnetic core 10 . The chamfering may be, for example, C-chamfering in which the corner edges of the end face 6 are dropped to form a slope.

分割コア5には、Mn系やNi系のソフトフェライトで形成されたフェライト磁心や、純鉄、Fe-Si合金、Fe-Cr合金、Fe-Cr-Si合金、Fe-Al合金、Fe-Al-Si合金、Fe-Al-Cr合金、Fe-Al-Cr-Si合金、Fe-Ni合金、Fe-M-B系合金等の結晶質もしくは非晶質の軟磁性合金の粉末で構成される圧粉磁心を用いるのが好ましい。軟磁性合金の粉末は、水アトマイズ、ガスアトマイズ等のアトマイズ法により得られるアトマイズ粉や、それを偏平加工した偏平粉、あるいは薄帯状に鋳造された合金を粉砕して得られる偏平粉であるのが好ましい。アトマイズ粉であれば平均粒径(メジアン径D50)が3μm以上80μm以下であるのが好ましい。偏平粉であれば、その厚さが10μmから50μmであって、厚さ方向に垂直な方向での粒径が厚さの2倍超から6倍以下であるのが好ましい。軟磁性合金の粉末は、異なる組成の粉末や、形状の異なる粉末(例えば、アトマイズ粉と偏平粉等)を混合したり、更に成形密度を向上するようにCu、SnあるいはAl等の非磁性の金属粉を混合したりしたものでも良い。中でも飽和磁束密度が1.2Tを超えるFe基非晶質軟磁性合金の粉末であるのが好ましい。また薄帯を粉砕して得られる偏平粉であれば、形状異方性を有する圧粉磁心とすることが出来るので好ましい。 The split core 5 includes a ferrite magnetic core made of Mn-based or Ni-based soft ferrite, pure iron, Fe—Si alloy, Fe—Cr alloy, Fe—Cr—Si alloy, Fe—Al alloy, Fe—Al - Si alloy, Fe-Al-Cr alloy, Fe-Al-Cr-Si alloy, Fe-Ni alloy, Fe-MB alloy, etc., crystalline or amorphous soft magnetic alloy powder It is preferred to use a dust core. Soft magnetic alloy powders are atomized powders obtained by atomization methods such as water atomization and gas atomization, flattened powders obtained by flattening them, and flattened powders obtained by pulverizing alloys cast into strips. preferable. In the case of atomized powder, the average particle diameter (median diameter D50) is preferably 3 μm or more and 80 μm or less. In the case of flat powder, it is preferable that the thickness is 10 μm to 50 μm and the grain size in the direction perpendicular to the thickness direction is more than twice to 6 times the thickness. Powders of soft magnetic alloys are mixed with powders of different compositions or different shapes (for example, atomized powder and flattened powder, etc.). A mixture of metal powder may also be used. Among them, Fe-based amorphous soft magnetic alloy powder having a saturation magnetic flux density exceeding 1.2 T is preferable. A flat powder obtained by pulverizing a ribbon is preferable because it can be used as a powder magnetic core having shape anisotropy.

偏平粉を使用した圧粉磁心とした分割コア5について説明する。図8にて矢印で示した加圧方向Pは圧縮成形での加圧方向を示している。一般的な圧縮成形では固定型と可動型とを含む金型を使用する。固定型の上下に固定型の開口部を塞ぐ一対の可動型が配置され、固定型の開口部と、そこに通された下側の可動型とで区画されたキャビティーに軟磁性合金の粉末を含む造粒粉が充填され、上下の可動型が互いに近付く方向(図8のP方向)に摺動して、キャビティー内の造粒粉が圧縮成形され分割コア5が成形される。造粒粉は、軟磁性合金の粉末とアクリル樹脂やエポキシ樹脂等の有機バインダーや、水ガラス等の無機バインダーを含み、例えば40~150μmの平均粒径(メジアン径D50)の粉末としてスプレードライヤー等の噴霧乾燥機により得られる。造粒粉を使用することで成形の際のキャビティーへの給粉性(粉の流動性)が高く、分割コア5の成形密度を上げることが出来る、成形圧力は、典型的には0.5GPa以上、かつ2GPa以下の圧力で、数秒程度の保持時間で成形できる。バインダーの含有量や必要な成形体強度によって圧力及び保持時間は適宜設定される。 The split core 5, which is a powder magnetic core using flat powder, will be described. A pressing direction P indicated by an arrow in FIG. 8 indicates a pressing direction in compression molding. General compression molding uses a mold that includes a fixed mold and a movable mold. A pair of movable molds are arranged above and below the fixed mold to close the opening of the fixed mold, and the soft magnetic alloy powder is placed in the cavity partitioned by the opening of the fixed mold and the lower movable mold that is passed through the opening. is filled, the upper and lower movable molds are slid in the direction toward each other (direction P in FIG. 8), and the granulated powder in the cavity is compression-molded to mold the split cores 5 . The granulated powder contains a soft magnetic alloy powder, an organic binder such as an acrylic resin or an epoxy resin, or an inorganic binder such as water glass. obtained by a spray dryer. By using granulated powder, the powder feeding property (powder fluidity) into the cavity during molding is high, and the molding density of the split cores 5 can be increased. Molding can be performed at a pressure of 5 GPa or more and 2 GPa or less for a holding time of about several seconds. The pressure and holding time are appropriately set according to the content of the binder and the required strength of the compact.

円弧状の分割コア5の場合、固定型には各隅部にRの付いたアルファベットのC字型の貫通穴が形成されていて、可動型は前記C字型の貫通穴に対応して、各角部にRの付いたC字型をなす多角柱となっている。このような形態によれば、分割コア5の周方向の端面6と内周面11側、外周面12側との間に面取りを形成するのが容易である。環状磁心10の軸方向となる分割コア5の端面7側には面取りを形成する場合は、加圧方向を変えて複雑な多段成形や、成形後に機械加工等が必要となるが、本発明においては平角導線が端面7側にて組み合わせ部8を跨がないので漏れ磁束の影響を受け難く、内周面側の様に積極的に面取りを形成する必要が無い。 In the case of the arc-shaped split core 5, the fixed mold has a C-shaped through hole with an R at each corner, and the movable mold corresponds to the C-shaped through hole, It is a C-shaped polygonal column with rounded corners. According to such a form, chamfering can be easily formed between the circumferential end surface 6 of the split core 5 and the inner peripheral surface 11 side and the outer peripheral surface 12 side. When chamfering is formed on the end face 7 side of the split core 5 in the axial direction of the annular magnetic core 10, complex multistage molding by changing the pressure direction and machining after molding are required. Since the rectangular conducting wire does not straddle the combined portion 8 on the side of the end surface 7, it is not easily affected by leakage magnetic flux, and it is not necessary to intentionally form a chamfer as in the case of the inner peripheral surface.

また、偏平の軟磁性合金の粉末は、その厚さ方向が加圧方向Pに揃う傾向がある。分割コア5の端面7を可動型による押圧面とすることで、分割コア5は加圧方向Pと直交する面内で磁化が容易となり易く、もって環状磁心10を周方向に磁化が容易な、形状磁気異方性をもったものとすることが出来る。 Further, the thickness direction of the flat soft magnetic alloy powder tends to be aligned with the pressing direction P. As shown in FIG. By forming the end surface 7 of the split core 5 as a pressing surface by the movable die, the split core 5 is easily magnetized in the plane orthogonal to the pressurizing direction P. It can have shape magnetic anisotropy.

図9は本発明の一実施例に係るリアクトルに使用するコアケースの分解斜視図であり、図10は第1ケース部材に分割コアを収めた状態を示す平面図である。コアケース20は第1ケース部材21と第2ケース部材22の2つのケース部材から構成されている。分割コアを配置する第1ケース部材21はC字状の有底空間25を有し、その底部から一体的に上側に延びる外側壁部26及び内側壁部27によって画定される形態を有する。第1ケース部材21の周方向の一方の端部側には有底空間25側が段差状に窪んだ受容部23と、周方向の他方の端部側には外周側が段差状に窪んだ突片部24が形成されている。第2ケース部材22は第1ケース部材21の有底空間25を閉じるものでC字板状に形成されている。第2ケース部材22の一方の端部側には図面上側が段差状に窪んだ受容部28と、他方の端部側には下側が段差状に窪んだ突片部29が形成されている。このような構成によって、同一形状のコアケース20を使用して環状に組み合わせることができるので、部品点数を減じて製造コストを低下させることができる。 FIG. 9 is an exploded perspective view of a core case used in a reactor according to an embodiment of the present invention, and FIG. 10 is a plan view showing a state in which split cores are accommodated in the first case member. The core case 20 is composed of two case members, a first case member 21 and a second case member 22 . The first case member 21 in which the split cores are arranged has a C-shaped space 25 with a bottom, and has a shape defined by an outer wall portion 26 and an inner wall portion 27 integrally extending upward from the bottom portion. At one end in the circumferential direction of the first case member 21, there is a receiving portion 23 recessed stepwise on the side of the bottomed space 25, and at the other end in the circumferential direction, a protruding piece recessed stepwise on the outer peripheral side. A portion 24 is formed. The second case member 22 closes the bottomed space 25 of the first case member 21 and is formed in a C-shaped plate. At one end of the second case member 22, there is formed a receiving portion 28 whose upper side in the drawing is recessed in a stepped manner, and at the other end side, a protruding portion 29 whose lower side is recessed in a stepped manner. With such a configuration, the core case 20 having the same shape can be combined in an annular shape, so that the number of parts can be reduced and the manufacturing cost can be lowered.

またコアケース20は絶縁樹脂で構成される。その材質は。絶縁性、機械強度、耐薬品性、耐熱性、耐湿性及び成形性を有する樹脂であれば良い。PPS(Poly Phenylene Sulfide:ポリフェニレンサルファイド)樹脂、液晶ポリマー、PET(Polyethylene Terephthalate:ポリエチレンテレフタレート)樹脂、PBT(Poly Butylene Terephthalate:ポリブチレンテレフタレート)樹脂、ABS(Acrylonitrile butadiene styrene:アクリロニトリルブタジエンスチレン)樹脂等が好ましく、それらを射出成形法等の公知の方法で成形したものを用いることができる。 The core case 20 is made of insulating resin. What is its material? Any resin having insulating properties, mechanical strength, chemical resistance, heat resistance, moisture resistance and moldability may be used. PPS (Polyphenylene sulfide) resin, liquid crystal polymer, PET (Polyethylene terephthalate) resin, PBT (Polybutylene terephthalate) resin, ABS (Acrylonitrile butadiene butadiene butadiene resin) is preferable. , and those molded by a known method such as an injection molding method can be used.

分割コア5を内持するコアケース20は、図10に示すように第1ケース部材21の有底空間に分割コア5を収めて、更に第2ケース部材22によって閉じて形成される。コアケース20の両端側は開口していて、そこから分割コア5の端面6が現れる。分割コア5の端面6はコアケース20の周方向の端部23からほぼ均等に引き下がった位置にある。 As shown in FIG. 10, the core case 20 containing the split core 5 is formed by housing the split core 5 in the bottomed space of the first case member 21 and closing it with the second case member 22 . Both ends of the core case 20 are open, and the end faces 6 of the split cores 5 appear therefrom. The end faces 6 of the split cores 5 are positioned substantially uniformly downward from the circumferential ends 23 of the core case 20 .

次にリアクトル1の作製方法を説明する。図3に示したように、平角導線を用いた直管状の平角導線縦巻きコイル30と分割コア5を内持する一対のコアケース20を準備し、コイルの両端側からその空芯部分に一対のコアケース20を挿入する。コアケース20の周囲に沿わせて平角導線縦巻きコイル30を被せていくように変形させながら挿入を進め、コアケース20の端部の突片部を受容部に嵌入することでコアケース20を環状に組み合わせる。この状態で図4に示すような、コアケース20の外方の略全周に亘って平角導線縦巻きコイル30が巻き付いた状態となる。 Next, a method for manufacturing the reactor 1 will be described. As shown in FIG. 3, a pair of core cases 20 holding a flat rectangular conducting wire longitudinally wound coil 30 using a flat conducting wire and a pair of core cases 20 holding a split core 5 are prepared. insert the core case 20 of . The core case 20 is inserted while being deformed so as to cover the core case 20 along the periphery of the core case 20, and the protruding piece at the end of the core case 20 is fitted into the receiving portion. Combine in a circle. In this state, as shown in FIG. 4, the longitudinally wound coil 30 of rectangular conducting wire is wound around the outer circumference of the core case 20 .

コアケース20の組み合わせを、突片部と受容部とで行うことにより、組み合わせ位置が正確に決められ、かつそれを容易に行うことができて、分割コア5の組み合わせを、ばらつきが少なく高精度に行うことができる。また、一対の分割コア5の端面間に、樹脂フィルム、セラミックや油紙等の絶縁スペーサーを挿入して磁気ギャップを構成する場合があっても、同じコアケース20を用いることが出来る。絶縁スペーサーは分割コア5の端面とエポキシ樹脂で接着しても良い。 By assembling the core case 20 with the projecting piece and the receiving part, the assembling position can be accurately determined and can be easily performed, and the assembling of the split cores 5 can be performed with little variation and high accuracy. can be done. Further, the same core case 20 can be used even when an insulating spacer such as a resin film, ceramic, or oil paper is inserted between the end faces of the pair of split cores 5 to form a magnetic gap. The insulating spacer may be adhered to the end surface of the split core 5 with an epoxy resin.

コアケース20内にはシリコーン樹脂が充填材として注入されていて、それによってコアケース20と分割コア5とが仮固定されている。シリコーン樹脂が常温放置で硬化するまでの間は、コアケース20内の分割コア5は周方向に移動可能でとなっている。そのため、コアケース20内の分割コア5の位置に多少のずれがあっても、コアケース20を環状に組み合わせの際に分割コア5の端面どうしが近接あるいは当接するように移動して、精度よく組み合わせることが出来る。 A silicone resin is injected into the core case 20 as a filler, whereby the core case 20 and the split core 5 are temporarily fixed. The split cores 5 in the core case 20 are movable in the circumferential direction until the silicone resin is cured at room temperature. Therefore, even if the positions of the split cores 5 in the core case 20 are slightly misaligned, the end surfaces of the split cores 5 move close to each other or in contact with each other when the core case 20 is assembled into an annular shape. Can be combined.

コアケース20の外方の略全周に亘って平角導線縦巻きコイル30が巻き付いた状態から、環状磁心10の組み合わせ部8に対応する位置に図5に示すような幅広部33を形成する。コアケース20の表面には組み合わせで生じた筋状の組み合わせ部が形成されているので、それを目安に平角導線縦巻きコイル30の隣り合う平角導線の間隔を環状磁心10の周方向に広げて変形させる。コアケース20に充填されたエポキシ樹脂を硬化させてコアケース20内で分割コア5が固定された状態とし、コアケース20どうしをエポキシ樹脂等の接着手段で固定してリアクトル1とする。この様な構成によって、環状磁心10の内周面側においてのみ平角導線が環状磁心10の組み合わせ部8を跨ぐリアクトル1とすることが出来る。 A wide portion 33 as shown in FIG. On the surface of the core case 20, a streak-like combined portion is formed as a result of combination. Transform. The epoxy resin filled in the core case 20 is cured to fix the split cores 5 in the core case 20, and the core cases 20 are fixed together by an adhesive means such as an epoxy resin to form the reactor 1. - 特許庁With such a configuration, the reactor 1 can be configured such that the rectangular conductor straddles the combined portion 8 of the annular magnetic core 10 only on the inner peripheral surface side of the annular magnetic core 10 .

なお、予め平角導線縦巻きコイル30の隣り合う平角導線の間隔を広げ変形させて幅広部33を形成しておいても良い。その場合には、コアケース20の組み合わせ部を目安に、環状磁心10の組み合わせ部8に幅広部33を位置させればよい。 Note that the wide portion 33 may be formed in advance by widening the space between the adjacent flat conductor wires of the vertically wound flat conductor wire coil 30 and deforming them. In that case, the wide portion 33 may be positioned at the combined portion 8 of the annular magnetic core 10 using the combined portion of the core case 20 as a guide.

組立の後にコイルが移動して幅広部33に位置ずれが生じないように、クリップ等のコイル移動規制部材を取り付けても良いし、平角導線縦巻きコイルの幅広部で平角導線とコアケースとを接着して固定しても良い。 A coil movement restricting member such as a clip may be attached so that the wide portion 33 will not be misaligned due to movement of the coil after assembly, or the wide portion of the vertically wound flat wire coil may be used to separate the flat wire and the core case. It can be fixed by gluing.

本発明は上述の説明の内容に限定されるものではなく、同じ技術思想の範囲内であれば、適宜改変可能である。本発明のリアクトルによれば、分割コアで構成される環状磁心の組み合わせ部での漏れ磁束の影響を低減することができる。 The present invention is not limited to the contents of the above description, and can be modified as appropriate within the scope of the same technical idea. Advantageous Effects of Invention According to the reactor of the present invention, it is possible to reduce the influence of leakage flux at the combined portion of the annular magnetic core composed of split cores.

1 リアクトル
5 分割コア
10 環状磁心
20 コアケース
30 平角導線縦巻きコイル

1 Reactor 5 Split Core 10 Annular Magnetic Core 20 Core Case 30 Rectangular Conducting Wire Vertical Winding Coil

Claims (10)

分割コアを組み合わせた環状磁心と、前記分割コアを内包し環状に組み合わされたコアケースと、前記コアケースに巻き付けられた平角導線縦巻きコイルとを備えたリアクトルであって、
前記平角導線縦巻きコイルは、コイルの一端から他端の間に、隣り合う平角導線の間隔が狭い幅狭部と広い幅広部とを備え、前記幅広部が前記分割コアの組み合わせ部に位置し、
前記幅広部では前記環状磁心の内周面側においてのみ平角導線が前記組み合わせ部を跨ぎ、前記環状磁心の内周面側において前記平角導線が前記組み合わせ部を斜めに跨いでいるリアクトル。
A reactor comprising an annular magnetic core combined with split cores, a core case enclosing the split cores and combined in an annular shape, and a longitudinally wound rectangular conducting wire coil wound around the core case,
The longitudinally-wound flat conductor wire coil has a narrow width portion with a narrow interval between adjacent flat conductor wires and a wide width portion between one end and the other end of the coil, and the wide width portion is located at the joint portion of the split core. ,
In the wide portion, the rectangular conducting wire straddles the combined portion only on the inner peripheral surface side of the annular magnetic core, and the rectangular conductive wire straddles the combined portion obliquely on the inner peripheral surface side of the annular magnetic core .
請求項1に記載のリアクトルであって、
前記分割コアはそれぞれ前記組み合わせ部となる端面に面取り部を有し、前記面取り部が少なくとも前記環状磁心の内周面側にあるリアクトル。
The reactor according to claim 1,
A reactor in which each of the split cores has a chamfered portion on an end surface serving as the combined portion, and the chamfered portion is at least on the inner peripheral surface side of the annular magnetic core.
請求項1または2に記載のリアクトルであって、
前記環状磁心の内周面側において平角導線が前記組み合わせ部を跨ぐ回数が1であるリアクトル。
The reactor according to claim 1 or 2,
A reactor in which the number of times that a rectangular conducting wire straddles the combined portion on the inner peripheral surface side of the annular magnetic core is one.
請求項1から3のいずれかに記載のリアクトルであって、
平角導線縦巻きコイルはその両端側において平角導線がいずれの組み合わせ部も跨がないリアクトル。
The reactor according to any one of claims 1 to 3,
A flat wire vertically wound coil is a reactor in which the flat wire does not straddle any combination part at both ends.
請求項1から4のいずれかに記載のリアクトルであって、
前記組み合わせ部は環状磁心の中心に対して略180度の回転対称に位置するリアクトル。
The reactor according to any one of claims 1 to 4,
The combined portion is a reactor positioned rotationally symmetrically about 180 degrees with respect to the center of the annular magnetic core.
請求項1から5のいずれかに記載のリアクトルであって、
前記平角導線縦巻きコイルは隣り合う平角導線の間隔がコイル中間部で最も幅広であるリアクトル。
The reactor according to any one of claims 1 to 5,
In the longitudinally-wound rectangular conductor wire coil, the interval between adjacent rectangular conductor wires is the widest at the coil intermediate portion.
請求項1から6のいずれかに記載のリアクトルであって、
前記分割コアのそれぞれがFe基非晶質軟磁性合金の偏平粉を使用した圧粉磁心であって、前記環状磁心の周方向に磁化が容易なリアクトル。
The reactor according to any one of claims 1 to 6,
Each of the split cores is a powder magnetic core using flat powder of Fe-based amorphous soft magnetic alloy, and the reactor is easily magnetized in the circumferential direction of the annular magnetic core.
平角導線を縦巻きした平角導線縦巻きコイルを用意する工程と、
前記平角導線縦巻きコイルの両端から分割コアを内持するコアケースを挿入し組み合わせ、前記分割コアで環状磁心を形成するとともに、前記コアケースに平角導線縦巻きコイルを装着する工程と、
前記環状磁心の内周面側においてのみ前記平角導線が前記分割コアの組み合わせ部を跨ぐように、前記分割コアの組み合わせ部に対応する位置で、前記平角導線縦巻きコイルの隣り合う平角導線の間隔を前記環状磁心の周方向に広げ変形させて幅広部を形成する工程、または予め前記平角導線縦巻きコイルの隣り合う平角導線の間隔を広げ変形させた幅広部を、前記分割コアの組み合わせ部に位置させる工程と、を有し、
前記幅広部では前記環状磁心の内周面側においてのみ平角導線が前記組み合わせ部を跨ぎ、前記環状磁心の内周面側において前記平角導線が前記組み合わせ部を斜めに跨いでいるリアクトルの製造方法。
A step of preparing a longitudinally wound flat conductor wire coil in which the flat conductor wire is longitudinally wound;
a step of inserting a core case holding a split core from both ends of the longitudinally wound rectangular conducting wire coil and combining them, forming an annular magnetic core with the split cores, and mounting the longitudinally wound rectangular conducting wire coil on the core case;
A space between adjacent flat conducting wires of the longitudinally wound flat conducting wire coil at a position corresponding to the joining portion of the split cores so that the flat conducting wire straddles the joining portion of the split cores only on the inner peripheral surface side of the annular magnetic core. is expanded in the circumferential direction of the annular magnetic core and deformed to form a wide portion, or the wide portion formed by expanding the interval between adjacent flat conductor wires of the longitudinally wound rectangular conductor wire coil and deformed in advance is applied to the combined portion of the split core. a step of positioning ;
A method of manufacturing a reactor, wherein in the wide portion, the rectangular conducting wire straddles the combined portion only on the inner peripheral surface side of the annular magnetic core, and the rectangular conductive wire straddles the combined portion obliquely on the inner peripheral surface side of the annular magnetic core.
請求項8に記載のリアクトルの製造方法であって、
前記平角導線縦巻きコイルの幅広部にあらわれるコアケースに平角導線縦巻きコイルの移動を規制するコイル移動規制部材を取り付ける工程を有するリアクトルの製造方法。
A method for manufacturing the reactor according to claim 8,
A method for manufacturing a reactor, comprising the step of attaching a coil movement restricting member for restricting movement of the vertically wound flat conductor wire to a core case appearing in the wide portion of the vertically wound flat conductor wire.
請求項8に記載のリアクトルの製造方法であって、
前記平角導線縦巻きコイルの幅広部で平角導線とコアケースとを接着する工程を有するリアクトルの製造方法。
A method for manufacturing the reactor according to claim 8,
A method for manufacturing a reactor, comprising a step of adhering a flat conducting wire and a core case at a wide portion of the longitudinally wound flat conducting wire coil.
JP2018229671A 2018-12-07 2018-12-07 Reactor and manufacturing method thereof Active JP7255153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018229671A JP7255153B2 (en) 2018-12-07 2018-12-07 Reactor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018229671A JP7255153B2 (en) 2018-12-07 2018-12-07 Reactor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2020092218A JP2020092218A (en) 2020-06-11
JP7255153B2 true JP7255153B2 (en) 2023-04-11

Family

ID=71013291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018229671A Active JP7255153B2 (en) 2018-12-07 2018-12-07 Reactor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7255153B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102560985B1 (en) * 2021-07-26 2023-07-28 주식회사 일렉트로엠 Semicircular soft magnetic metallic power core molded body, manufacturing apparatus of semicircular soft magnetic core molded body and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052945A (en) 1999-08-06 2001-02-23 Concorde Denshi Kogyo:Kk Closed magnetic path inductor and manufacture thereof
JP2001068364A (en) 1999-06-24 2001-03-16 Soshin Electric Co Ltd Toroidal coil and its manufacturing method
JP2013254929A (en) 2012-05-09 2013-12-19 Sumitomo Electric Ind Ltd Reactor, converter, electric power conversion device, and method of manufacturing resin core piece

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185310U (en) * 1984-05-02 1985-12-09 東北金属工業株式会社 Core insulation case structure
JPH0221721U (en) * 1988-07-27 1990-02-14
JPH0493116U (en) * 1990-12-25 1992-08-13

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068364A (en) 1999-06-24 2001-03-16 Soshin Electric Co Ltd Toroidal coil and its manufacturing method
JP2001052945A (en) 1999-08-06 2001-02-23 Concorde Denshi Kogyo:Kk Closed magnetic path inductor and manufacture thereof
JP2013254929A (en) 2012-05-09 2013-12-19 Sumitomo Electric Ind Ltd Reactor, converter, electric power conversion device, and method of manufacturing resin core piece

Also Published As

Publication number Publication date
JP2020092218A (en) 2020-06-11

Similar Documents

Publication Publication Date Title
WO2011089941A1 (en) Reactor
JP4737477B1 (en) Reactor manufacturing method
JP6478065B2 (en) Reactor and manufacturing method of reactor
JP2007201203A (en) Reactor
JP5637391B2 (en) Reactor and reactor manufacturing method
JP2011142193A (en) Reactor
JP2018032730A (en) Core-coil mold structure and method of manufacturing the same
JP2011129593A (en) Reactor
JP7255153B2 (en) Reactor and manufacturing method thereof
JP6651879B2 (en) Reactor
JP5381673B2 (en) Reactor
CN112771633B (en) Reactor with a reactor body
JP6808177B2 (en) Reactor
WO2019102842A1 (en) Reactor
JP6809440B2 (en) Reactor
JP7491441B2 (en) Bobbin
JP7296047B2 (en) Reactor
CN112840419B (en) Electric reactor
JP7187905B2 (en) Ferrite core and coil parts using the same
JP2016167521A (en) Reactor and method of manufacturing core coupling body
JP2012015382A (en) Reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221103

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7255153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150