JP6549779B2 - Coil component, method of manufacturing the same, electronic device - Google Patents

Coil component, method of manufacturing the same, electronic device Download PDF

Info

Publication number
JP6549779B2
JP6549779B2 JP2018246619A JP2018246619A JP6549779B2 JP 6549779 B2 JP6549779 B2 JP 6549779B2 JP 2018246619 A JP2018246619 A JP 2018246619A JP 2018246619 A JP2018246619 A JP 2018246619A JP 6549779 B2 JP6549779 B2 JP 6549779B2
Authority
JP
Japan
Prior art keywords
lead
pair
magnetic body
circumferential portion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018246619A
Other languages
Japanese (ja)
Other versions
JP2019080073A (en
Inventor
伊藤 賢
賢 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018246619A priority Critical patent/JP6549779B2/en
Publication of JP2019080073A publication Critical patent/JP2019080073A/en
Application granted granted Critical
Publication of JP6549779B2 publication Critical patent/JP6549779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)

Description

本発明は、コイル部品及びその製造方法,電子機器に関し、更に具体的には、空芯コイルの引出構造に関するものである。   The present invention relates to a coil component, a method of manufacturing the same, and an electronic device, and more particularly to a lead-out structure of an air core coil.

携帯機器をはじめとする電子機器の高性能化に伴い、電子機器に使用される部品も高い性能が要求されている。しかしながら、電子機器の高性能化に伴い、部品点数も増加することから、部品自体の小型化の動きが高まっている。これは、巻線を用いた高い電流特性のコイル部品でも同様であり、これまで以上に小型化する対策が検討されている。   With the advancement of high performance of electronic devices including portable devices, high performance is also required for parts used in the electronic devices. However, with the advancement of the performance of electronic devices, the number of parts is also increased, and therefore, the movement toward miniaturization of the parts themselves is increasing. The same is true for coil components with high current characteristics using windings, and measures to reduce the size more than ever have been studied.

高い電流特性を得るために、これまでも平角線と呼ばれる角型の導線を用いたコイル部品は多くあった。しかし、空芯コイルの周回部の形成は比較的容易であるが、引出部から端子電極への接続を安定して行うことは容易ではなく、導線の引き回ししやすい方向に引出部を形成する方法がとられてきた。例えば、下記特許文献1には、同文献の第8図及び第9図に示すように、平板形状の周縁部に柱状凸部を有する形状に形成されたタブレットに、断面が平角形状の導線を巻回したコイルを載置し、該コイルの両端部を前記タブレットの柱状凸部の外側側面に沿わせ、その一部を封止材から露出させて外部電極と接続する構造が示されている。   In order to obtain high current characteristics, there have been many coil parts using a rectangular lead, which is also called a flat wire. However, although the formation of the winding portion of the air core coil is relatively easy, it is not easy to stably connect the lead portion to the terminal electrode, and a method of forming the lead portion in a direction in which the lead wire is easily drawn. Has been taken. For example, as shown in FIGS. 8 and 9 of Patent Document 1 below, a tablet formed in a shape having a columnar convex portion at the peripheral portion of a flat plate shape is a wire having a rectangular cross section. A structure is shown in which a wound coil is placed, and both ends of the coil are placed along the outer side surface of the columnar convex portion of the tablet, and a part of the coil is exposed from the sealing material to connect with an external electrode. .

特開2010−245473号公報(第8図,第9図)Unexamined-Japanese-Patent No. 2010-245473 (FIG. 8, FIG. 9)

上述した特許文献1に記載の技術では、引出部を安定させるために、同文献第8図に示すようにタブレットを用い、この表面を使って引出部を位置決めする方法により成形が行われており、引出位置を安定させることはできる。しかしながら、同文献第9図に示すように、空芯コイルの外側に大きなスペース(同第9図の「12a」参照)を要するようになってしまい、磁性体中に埋め込むタイプのコイル部品において、小型化を進める上での制約となっていた。このため、引出部を省スペース化しつつ、磁性体形成時の引出位置の安定性の確保が課題となっていた。   In the technique described in Patent Document 1 described above, in order to stabilize the lead portion, molding is performed using a tablet as shown in FIG. 8 of the same document and positioning the lead portion using this surface. , It is possible to stabilize the withdrawal position. However, as shown in FIG. 9 of the same document, a large space (see “12a” in FIG. 9) is required outside the air core coil, and in the coil component of the type embedded in the magnetic body, It has been a limitation in promoting miniaturization. For this reason, securing the stability of the drawing-out position at the time of magnetic body formation had become a subject, making space-saving a drawing-out part.

本発明は、以上のような点に着目したもので、空芯コイルにおいて、引出部のスペースを削減して小型化を図るとともに、磁性体形成時の引出位置の安定性が高いコイル部品を及びその製造方法を提供することを、その目的とする。他の目的は、前記コイル部品を用いた電子機器を提供することである。   The present invention focuses on the above points, and in the air core coil, it reduces the space of the lead-out portion to achieve miniaturization, and a coil component having high stability of the lead-out position at the time of forming the magnetic body It aims at providing the manufacturing method. Another object is to provide an electronic device using the coil component.

本発明のコイル部品は、金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、前記引出部と電気的に接続される一対の端子電極と、を有しており、前記基板に実装される側の磁性体の面から見て、別言すれば、磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にあり、前記基板に実装される側の磁性体の面を透過して見て、前記周回部の外側の磁性体の面積S1に対する前記周回部の内側の磁性体の面積S3の比S3/S1を、0.38以上としたことを特徴とする。   The coil component of the present invention is formed of metal magnetic particles and a resin, and a rectangular magnetic body having a long side and a short side on the side mounted on a substrate is in contact with one long side surface of the cross section of the flat wire. And a winding portion formed by repeatedly winding a flat wire so as to be superimposed on the wound flat wire, and being embedded in the magnetic body, and the winding portion on one long side of the magnetic body When the surface of the magnetic body formed from the leader drawn out from the outer peripheral surface and the end of the leader and mounted on the substrate is divided into four areas by two diagonal lines, the four areas A pair of lead-out portions which are respectively included in the two short side sides of the above and further drawn out to the outside of the magnetic body from a position closer to one long side of the magnetic body in the two areas Air core coil, and the lead-out portion and the electrical Viewed from the surface of the magnetic body mounted on the substrate, in other words, viewed through the surface of the magnetic body, the pair of terminal electrodes being connected to each other The lead-out portion is at a position in contact with the outer circumferential surface of the circumferential portion, and the circumferential portion with respect to the area S1 of the magnetic material outside the circumferential portion when seen through the surface of the magnetic body mounted on the substrate. The ratio S3 / S1 of the area S3 of the inner side magnetic body is set to 0.38 or more.

主要な形態の一つは、前記一対の引出部と前記一対の端子電極との電気的な接続部を、前記基板に実装される側の面にのみ形成したことを特徴とする。更に他の形態としては、前記基板に実装される側の磁性体の面を透過して見た前記周回部の内周形状が、長円形又は角丸長方形であることを特徴とする。あるいは、前記一対の端子電極が、前記基板に実装される側の磁性体の面に形成されていることを特徴とする。   One of the main modes is characterized in that the electrical connection portion between the pair of lead portions and the pair of terminal electrodes is formed only on the surface mounted on the substrate. Still another aspect is characterized in that the inner peripheral shape of the circumferential portion seen through the surface of the magnetic body mounted on the substrate is an oval or a rounded rectangle. Alternatively, the pair of terminal electrodes are formed on the surface of the magnetic body mounted on the substrate.

本発明の電子機器は、前記いずれかのコイル部品を備えたことを特徴とする。本発明のコイル部品の製造方法は、金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、前記引出部と電気的に接続される一対の端子電極とを有しており、前記基板に実装される側の磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にあることを特徴とするコイル部品の製法方法であって、前記周回部により形成されるコイル軸方向から見て、前記周回部の両端から引出されるそれぞれの導線が交差部分を持ちながら該周回部の外周面から遠ざかる方向に引出され、更に導線の端部に向って、前記周回部の外周面との間にそれぞれ所定の隙間を形成し、互いに反対方向に向かい、かつ平行となるように曲げ加工され一対の引出線を形成する第1工程と、前記一対の引出線の端部側を曲げ加工し、前記コイル軸と平行で同一方向に向う一対の引出部を形成する第2工程と、前記一対の引出線の交差部分を曲げ加工して、前記周回部の外周面に沿わせる第3工程と、前記一対の引出部を、前記コイル軸と平行に維持しながら、前記周回部の外周面と接するように曲げ加工する第4工程と、前記周回部と一対の引出部の位置をモニタリングしながら、金型に前記第1〜第4工程で形成した空芯コイルをセットし、金属粒子と樹脂からなる磁性体材料を埋め込む際に、前記基板に実装される側の磁性体の面を透過して見て、前記周回部の外側の磁性体の面積S1に対する前記周回部の内側の磁性体の面積S3の比S3/S1が0.38以上となるように、磁性体を成形する第5工程と、を含むことを特徴とする。   An electronic device according to the present invention is characterized by including any one of the above coil components. The method of manufacturing a coil component according to the present invention comprises a rectangular magnetic body formed of metal magnetic particles and a resin and having long sides and short sides on the side mounted on a substrate, and one long side of a cross section of a rectangular wire. A flat wire is wound so that the surfaces are in contact, and a flat wire is repeatedly formed so as to be superimposed on the wound flat wire, and a winding portion to be embedded in the magnetic material and the long side of the magnetic material The lead wire drawn from the outer peripheral surface of the circumferential portion and the end of the lead wire, when the surface of the magnetic body mounted on the substrate is divided into four areas by two diagonal lines, A pair of the two areas which are respectively included in two areas on the short side of the four areas and further drawn out of the two areas from the position closer to one long side of the magnetic body in the two areas. An air core coil having a lead-out portion; And the pair of terminal electrodes electrically connected to each other, and viewed through the surface of the magnetic body mounted on the substrate, the pair of lead-out portions are the outer peripheral surface of the circumferential portion A method of manufacturing a coil part characterized in that the conductor parts drawn from both ends of the circumferential portion have crossing portions when viewed from the direction of the coil axis formed by the circumferential portion. However, a predetermined gap is formed between the outer circumferential surface of the winding portion and the outer circumferential surface of the winding portion toward the end of the conducting wire, and is directed in the opposite direction and parallel to each other. Forming a pair of lead wires and bending the end portions of the pair of lead wires to form a pair of lead portions extending in the same direction in parallel with the coil axis. The intersection of the two processes and the pair of leader lines is curved A third step of processing and extending along the outer peripheral surface of the peripheral portion, and bending the pair of lead portions into contact with the outer peripheral surface of the peripheral portion while maintaining parallel to the coil axis When setting the air core coil formed in the first to fourth steps in a mold while monitoring the process and the positions of the peripheral portion and the pair of lead portions, and embedding a magnetic material made of metal particles and resin The ratio S3 / S1 of the area S3 of the magnetic body inside the circumferential portion to the area S1 of the magnetic body outside the circumferential portion is seen through the surface of the magnetic body mounted on the substrate. And a fifth step of forming the magnetic body so as to be 0.38 or more.

本発明の他のコイル部品の製造方法は、金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、前記引出部と電気的に接続される一対の端子電極と、を有しており、前記基板に実装される側の磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にあることを特徴とするコイル部品の製法方法であって、導線を巻回させて前記周回部を形成し、該周回部により形成されるコイル軸方向から見て、該周回部の両端から引出されるそれぞれの導線が交差部分を持ちながら該周回部の外周面から遠ざかる方向に引出され、更に導線の端部に向って、前記周回部の外周面との間にそれぞれ所定の隙間を形成し、互いに反対方向に向かい、かつ平行となるように曲げ加工され一対の引出線を形成する第1工程と、前記一対の引出線の端部側を曲げ加工し、前記コイル軸と平行で同一方向に向う一対の引出部を形成する第2工程と、前記一対の引出部を、前記コイル軸と平行に維持しながら、前記周回部の外周面と接するように曲げ加工する第3工程と、前記一対の引出線の交差部分を曲げ加工して、前記周回部の外周面に沿わせる第4工程と、前記周回部と一対の引出部の位置をモニタリングしながら、金型に前記第1〜第4工程で形成した空芯コイルをセットし、金属粒子と樹脂からなる磁性体材料を埋め込む際に、前記基板に実装される側の磁性体の面を透過して見て、前記周回部の外側の磁性体の面積S1に対する前記周回部の内側の磁性体の面積S3の比S3/S1が0.38以上となるように、磁性体を成形する第5工程と、を含むことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。   Another coil component manufacturing method of the present invention is a rectangular magnetic body formed of metal magnetic particles and a resin and having long sides and short sides on the side mounted on a substrate, and one long side of a cross section of a flat wire. The flat wire is wound so that the side faces are in contact, and a rectangular wire is repeatedly formed so as to be superimposed on the wound flat wire, and a circumferential portion embedded in the magnetic material, and one long side of the magnetic material When the surface of the magnetic body formed from the lead wire drawn from the outer peripheral surface of the circumferential portion in the above and the end of the lead wire and mounted on the substrate is divided into four areas by two diagonal lines And are respectively included in two areas on the short side of the four areas, and are drawn to the outside of the magnetic body from a position closer to one long side of the magnetic body in the two areas. An air core coil having a pair of lead portions; And a pair of terminal electrodes electrically connected to the projecting portion, and viewed through the surface of the magnetic body mounted on the substrate, the pair of lead-out portions is the circumferential portion A method of manufacturing a coil component characterized by being in contact with the outer peripheral surface of the coil, wherein the conductor is wound to form the circumferential portion, and viewed from the axial direction of the coil formed by the circumferential portion; Each conducting wire drawn out from both ends of the winding portion is pulled out in a direction away from the outer circumferential surface of the winding portion while having a crossing portion, and further toward the end of the conducting wire and between the outer circumferential surface of the winding portion A first step of forming a predetermined gap, bending in opposite directions and in parallel to form a pair of leader lines, and bending an end side of the pair of leader lines, the coil Forming a pair of lead-outs parallel to the axis and directed in the same direction And a third step of bending the pair of lead portions so as to be in contact with the outer peripheral surface of the circumferential portion while maintaining the pair of lead portions parallel to the coil axis, and bending a crossing portion of the pair of lead wires Setting the air core coil formed in the first to fourth steps in a mold while monitoring the fourth step extending along the outer circumferential surface of the circumferential portion and the positions of the circumferential portion and the pair of lead portions When embedding a magnetic material made of metal particles and a resin, the surface of the magnetic material mounted on the substrate is seen through the surface of the magnetic material relative to the area S1 of the magnetic material outside the magnetic material. And a fifth step of molding the magnetic body such that the ratio S3 / S1 of the area S3 of the inner magnetic body is 0.38 or more. The above and other objects, features and advantages of the present invention will be apparent from the following detailed description and the accompanying drawings.

本発明によれば、金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、前記引出部と電気的に接続される一対の端子電極と、を有しており、前記基板に実装される側の磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にある。このため、一対の引出部が磁性体の短辺寄りに配置され、引出部の省スペース化が可能となる。これにより、空芯コイルの外側の磁性体の占める割合を小さくでき、無駄な磁性体を少なくできる。この結果、電流特性を高くすることができる。加えて、周回部の外側の面積S1に対する周回部の内側の面積S3の比S3/S1を、0.38以上とすることで、周回部外側の面積S1を従来の1.3〜1.8倍とすることができるようになり、磁路断面積を大きく取ることでインダクタンスを取りやすくなる。また、引出部の研磨加工が容易であり、引出位置の安定性を高くできる。また、引出部の位置が安定することで、端子電極との接続安定性も得られる。   According to the present invention, a rectangular magnetic body formed of metal magnetic particles and resin and having a long side and a short side on the side mounted on the substrate is in contact with one of the long side surfaces of the cross section of the rectangular wire. And the winding portion is formed by winding a flat wire repeatedly so as to be superimposed on the wound flat wire, and a winding portion embedded in the magnetic body, and an outer periphery of the winding portion on one long side of the magnetic body When the surface of the magnetic body formed from the leader drawn out from the surface and the end of the leader and mounted on the substrate is divided into four areas by two diagonal lines, the four areas It has a pair of lead parts which are respectively included in two areas on the short side of the two, and further drawn to the outside of the magnetic body from a position closer to one long side of the magnetic body in the two areas. Electrically connected to the air core coil and the lead out part And the pair of lead-out portions are in contact with the outer peripheral surface of the circumferential portion when seen through the surface of the magnetic body mounted on the substrate. . For this reason, the pair of lead-out portions are disposed near the short side of the magnetic body, and space saving of the lead-out portions can be achieved. Thereby, the ratio of the magnetic material outside the air core coil can be reduced, and waste magnetic material can be reduced. As a result, current characteristics can be enhanced. In addition, the ratio S3 / S1 of the area S3 of the inner side of the circumferential part to the area S1 of the outer side of the circumferential part is 0.38 or more, the area S1 of the outer side of the circumferential part is 1.3 to 1.8 of the prior art. This can be doubled, and the inductance can be easily obtained by increasing the cross sectional area of the magnetic path. Moreover, the polishing process of the lead-out portion is easy, and the stability of the lead-out position can be enhanced. In addition, by stabilizing the position of the lead portion, connection stability with the terminal electrode can be obtained.

本発明の実施例1のコイル部品を示す図であり、(A)は平面図,(B)は前記(A)を矢印F1方向から見た側面図,(C)はコイルを形成する平角線の断面形状を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the coil components of Example 1 of this invention, (A) is a top view, (B) is a side view which looked at said (A) from arrow F1 direction, (C) is a flat wire which forms a coil. It is a figure which shows the cross-sectional shape of. 本発明の空芯コイルの周回部の製造手順を示す図である。It is a figure which shows the manufacturing procedure of the circumference | surroundings part of the air core coil of this invention. 本発明の空芯コイルの引出部の製造手順を示す図である。It is a figure which shows the manufacture procedure of the extraction part of the air core coil of this invention. 本発明の空芯コイルの具体例を示す図であり、(A)及び(B)は実施例1の製造方法により製造した空芯コイルの平面形状を示す図,(C)〜(E)は実施例2の製造方法により製造した空芯コイルの平面形状を示す図である。It is a figure which shows the specific example of the air core coil of this invention, (A) and (B) is a figure which shows the planar shape of the air core coil manufactured by the manufacturing method of Example 1, (C)-(E) It is a figure which shows the planar shape of the air core coil manufactured by the manufacturing method of Example 2. FIG. 本発明の具体例を示す平面図である。It is a top view which shows the example of this invention. 本発明の具体例と比較例の寸法の違いによる周回部内側と周回部外側の磁性体の面積比を示す表である。It is a table | surface which shows the area ratio of the magnetic body inner side of the circumference | surroundings part by the difference of the dimension of the specific example of this invention, and a comparative example, and the circumference | surroundings part outer side.

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

最初に、図1を参照しながら、本発明のコイル部品の基本構造を説明する。図1は、実施例1のコイル部品を示す図であり、(A)は平面図,(B)は前記(A)を矢印F1方向から見た側面図,(C)は空芯コイルを形成する平角線の断面形状を示す図である。図1(A)に示すように、本実施例のコイル部品10は、チップタイプと呼ばれ、長辺と短辺を有する直方体状の磁性体12中に、空芯コイル20が埋め込まれた構成となっている。具体的には、長辺が2.0mm以下のような小型のコイル部品である。前記磁性体12は、樹脂と金属粒子により形成されている。前記磁性体12は、図示しない基板に実装される側の面(図1(A)に示す面)の両側に、端子電極14,16を有しており、前記空芯コイル20の両端の引出部26A,26Bが、前記端子電極14,16に接続されている。   First, the basic structure of the coil component of the present invention will be described with reference to FIG. FIG. 1 is a view showing a coil component of Example 1, (A) is a plan view, (B) is a side view of (A) viewed from the direction of arrow F1, and (C) forms an air core coil. It is a figure which shows the cross-sectional shape of the rectangular wire to As shown in FIG. 1A, the coil component 10 of the present embodiment is called a chip type, and has a configuration in which an air core coil 20 is embedded in a rectangular solid magnetic body 12 having long sides and short sides. It has become. Specifically, it is a small coil component having a long side of 2.0 mm or less. The magnetic body 12 is formed of a resin and metal particles. The magnetic body 12 has terminal electrodes 14 and 16 on both sides of the surface (the surface shown in FIG. 1A) on the side mounted on the substrate (not shown). The portions 26A and 26B are connected to the terminal electrodes 14 and 16, respectively.

本発明では、前記磁性体12は、直方体状であり、長辺12A,12Bと短辺12C,12Dを有しており、前記基板に実装される側の面を2本の対角線DA,DBで4つのエリアに区切ることができる。すなわち、長辺12A,12B側のエリアEL1,EL2と、短辺側12C,12D側のエリアES1,ES2に区切られる。そして、前記一対の引出部26A,26Bは、前記短辺側12C,12D側のエリアES1,ES2に含まれる。なお、ここで「含まれる」とは、引出部26A,26Bが対角線DA,DBに掛かっており一部が前記エリアES1,ES2に入っている場合と、前記エリアES1,ES2に完全に収まっている場合の双方が含まれる。完全に収まっている例については、後述の具体例で説明する。   In the present invention, the magnetic body 12 is in the form of a rectangular parallelepiped and has long sides 12A and 12B and short sides 12C and 12D, and the surface mounted on the substrate is represented by two diagonal lines DA and DB. It can be divided into four areas. That is, it is divided into areas EL1 and EL2 on the long side 12A and 12B side and areas ES1 and ES2 on the short side 12C and 12D side. The pair of lead portions 26A, 26B are included in the areas ES1, ES2 on the short side 12C, 12D. Here, "included" means that the drawers 26A and 26B are attached to the diagonal lines DA and DB and a part thereof is in the areas ES1 and ES2, and the areas ES1 and ES2 are completely contained. Both cases are included. An example completely contained will be described in a specific example described later.

次に、本実施例1のコイル部品の製造方法を、図2及び図3を参照して説明する。図2は、空芯コイルの周回手順を示す図,図3は、空芯コイルの引出部の形成手順を示す図である。なお、図3(C-2)〜(E-2)については、実施例2で説明する。本実施例では、前記空芯コイル20の巻線用の導線として、図1(C)に示すように、平角線と呼ばれる導線の断面が長辺30C,30Dと、短辺30A,30Bを有する四角形で、導線の表面に絶縁のための被膜付きのものを用いた。前記空芯コイル20は、平角線30を重ねて巻線される周回部22と、該周回部22と前記端子電極14,16をつなぐ引出部26A,26Bにより形成されている。前記周回部22の形成は、α巻といわれる方法で行った。   Next, a method of manufacturing the coil component of the first embodiment will be described with reference to FIGS. 2 and 3. FIG. 2 is a view showing the winding procedure of the air core coil, and FIG. 3 is a view showing the formation procedure of the lead-out portion of the air core coil. Note that FIG. 3 (C-2) to (E-2) will be described in the second embodiment. In this embodiment, as a wire for winding the air core coil 20, as shown in FIG. 1C, the cross section of the wire called a flat wire has long sides 30C and 30D and short sides 30A and 30B. The square was used with a coating for insulation on the surface of the wire. The air core coil 20 is formed of a winding portion 22 in which the flat wire 30 is overlapped and wound, and lead portions 26A and 26B connecting the winding portion 22 and the terminal electrodes 14 and 16. The formation of the circumferential portion 22 was performed by a method called alpha winding.

具体的には、空芯コイル20を作るために、図2(A)に示すように、長円形(オーバル型)と呼ばれる鉄芯40を用意し、この鉄芯40の周囲に、前記平角線30の断面の一方の長辺側の面が接するように巻回し、更に巻回した平角線30の上に重ねるように繰り返し平角線30を巻回させる。すなわち、前記平角線30が内側から外側に向かって重なり周回部22を形成している。このとき、平角線30としては、周回部22と引出部26A,26Bを形成するために必要な長さのものを用い、平角線30の両端からそれぞれの引出部26A,26Bを形成するのに必要な長さを引いた部分の中間点となる部分を、図2(A)に示すように鉄芯40に当て、それぞれの平角線30の両端を鉄芯40の周りを逆向きの方向に動かすことで巻回される。   Specifically, in order to make the air core coil 20, as shown in FIG. 2 (A), an iron core 40 called an oval (oval type) is prepared, and around the iron core 40, the above flat wire is prepared. The flat wire 30 is repeatedly wound so as to be in contact with one of the long side surfaces of the cross section of the cross section 30 and further to be superimposed on the wound flat wire 30. That is, the flat wire 30 overlaps from the inner side to the outer side to form the circular portion 22. At this time, the rectangular wire 30 has a length necessary to form the peripheral portion 22 and the lead portions 26A and 26B, and the respective lead portions 26A and 26B are formed from both ends of the flat wire 30. The middle point of the part where the necessary length is drawn is applied to the iron core 40 as shown in FIG. 2A, and both ends of each flat wire 30 are wound around the iron core 40 in the opposite direction. It is wound by moving it.

巻回の方向は、前記鉄芯40を中心に、それぞれ逆方向に巻回させることで、周回方向が逆の周回部22A,22Bが連続した周回部22が形成される(図2(B)及び(C))。以上のようにして得られる周回部22の内周形状は、平角線30の巻軸として、断面長円形(オーバル型)の鉄芯40を用い、空芯コイル20の周回部22により形成されるコイル軸29(図1(A)参照)は、該コイル軸29の軸方向の内周形状が、2つの半円状の円弧が2つの直線長軸LAの端部にあり、更に短軸LBを有するオーバル形状となっている。   By winding in the opposite direction around the iron core 40 as the winding direction, the winding portion 22 in which the winding portions 22A and 22B having the reverse winding direction are continuous is formed (FIG. 2 (B) And (C)). The inner circumferential shape of the orbiting portion 22 obtained as described above is formed by the orbiting portion 22 of the air core coil 20 using an iron core 40 of oval cross section (oval type) as a winding axis of the flat wire 30. The coil shaft 29 (see FIG. 1A) has an inner circumferential shape in the axial direction of the coil shaft 29 such that two semicircular arcs are at the end of the two linear long axes LA, and the short axis LB It has an oval shape.

次に、周回部22の両端側に引出部26A,26Bを形成する。まず、前記周回部22の両端を、前記コイル軸29の軸方向から見て交差するように引き出す。すなわち、前記引出線24A,24Bの端部28A,28Bが、前記短軸LB側から見てコイル軸29から遠ざかるように引き出す。そして、図3(A)に示すように、一対の引出線24A,24Bの端部28A,28B側が、前記周回部22の外周面と導線1本分以上離れ(間隔d)、かつ、互いに平行となるように前記引出線24A,24Bの曲げ加工を行う(第1フォーミング)。具体的には、図3(A)に示すように、引出線24A,24Bの交差部分23A,23Bと、引出部26A,26Bの根元となる位置PA,PBで曲げ加工を行う。   Next, the lead portions 26A and 26B are formed on both ends of the circumferential portion 22. First, both ends of the circumferential portion 22 are pulled out so as to intersect as seen from the axial direction of the coil shaft 29. That is, the end portions 28A and 28B of the lead wires 24A and 24B are drawn away from the coil axis 29 when viewed from the short axis LB side. Then, as shown in FIG. 3A, the end portions 28A and 28B of the pair of lead wires 24A and 24B are separated from the outer peripheral surface of the circumferential portion 22 by one or more conductive wires (space d) and parallel to each other The lead wires 24A and 24B are subjected to bending so as to be (1st forming). Specifically, as shown in FIG. 3A, bending is performed at the intersections 23A and 23B of the lead wires 24A and 24B and the positions PA and PB at the roots of the lead portions 26A and 26B.

次に、図3(B)に示すように、前記一対の引出線24A,24Bを、引出部26A,26Bの根元となる位置PA,PBで同一方向に曲げ加工し、前記コイル軸29と平行な一対の引出部26A,26Bを形成する(第2フォーミング)。そして、図3(C-1)に示すように、前記一対の引出線24A,24Bの交差部分23A,23Bを曲げ加工して、前記周回部22の外周面に沿うように平面状に加工する(第3フォーミング)。   Next, as shown in FIG. 3B, the pair of lead wires 24A and 24B are bent in the same direction at positions PA and PB which become the roots of the lead portions 26A and 26B, and are parallel to the coil axis 29 A pair of lead portions 26A and 26B are formed (second forming). Then, as shown in FIG. 3 (C-1), the intersections 23A and 23B of the pair of lead wires 24A and 24B are bent and processed into a planar shape along the outer peripheral surface of the circumferential portion 22. (Third forming).

そして、図3(D-1)に示すように、前記一対の引出部26A,26Bを、前記コイル軸29と平行に保ちながら、前記周回部22に近付くように、前記一対の引出線24A,24Bを曲げ加工する(第4フォーミング)。以上のようにして引出部26A,26Bを形成した空芯コイル20を、前記周回部22と一対の引出部26A,26Bの位置をモニタリングしながら、金型にセットし(図3(E-1))、金属粒子と樹脂とを混練した磁性材料を用いて成形する(成形工程)。   Then, as shown in FIG. 3 (D-1), the pair of lead wires 24A, 24B are brought close to the circumferential portion 22 while keeping the pair of lead portions 26A, 26B parallel to the coil shaft 29. 24B is bent (fourth forming). The air core coil 20 in which the lead portions 26A and 26B are formed as described above is set in a mold while monitoring the positions of the circumferential portion 22 and the pair of lead portions 26A and 26B (FIG. 3 (E-1 ), Molding is performed using a magnetic material obtained by kneading metal particles and a resin (molding step).

このように、実施例1によれば、導線を周回させた周回部22と、該周回部22の両端から引き出される一対の引出部26A,26Bを有する空芯コイル20が、金属粒子と樹脂からなる磁性体12中に埋め込まれ、前記一対の引出部26A,26Bのそれぞれに接続する一対の端子電極14,16を有するコイル部品10において、前記磁性体12が長辺及び短辺を有する直方体であり、基板に実装される側の前記磁性体12の面を、2本の対角線DA,DBで4つのエリアに区切ったときに、前記一対の引出部26A,26Bが、前記4つのエリアのうちの短辺側の2つのエリアES1,ES2にそれぞれ含まれることとしたので、次のような効果がある。   As described above, according to the first embodiment, the air core coil 20 having the winding portion 22 around the conducting wire and the pair of lead portions 26A and 26B drawn from both ends of the winding portion 22 is made of metal particles and resin In the coil component 10 having a pair of terminal electrodes 14 and 16 embedded in the magnetic body 12 and connected to the pair of lead portions 26A and 26B, the magnetic body 12 is a rectangular solid having a long side and a short side. When the surface of the magnetic body 12 mounted on the substrate is divided into four areas by two diagonal lines DA and DB, the pair of lead portions 26A and 26B are included in the four areas. The following two effects can be obtained since they are respectively included in the two areas ES1 and ES2 on the short side of.

(1)一対の引出部26A,26Bが、磁性体12の短辺寄りに配置され、引出部26A,26Bの省スペース化が可能となる。これにより、空芯コイル20の外側の磁性体の占める割合を小さくして無駄な磁性体を少なくできる。これは、製品サイズ内において空芯コイル20を大きくすることにつながり、空芯コイル20の外側の磁性体の割合と空芯コイル20の内側の磁性体の割合の差を小さくでき、結果として電流特性を高くすることができる。具体的には、周回部の外側の面積S1に対する周回部の内周のS3の割合「S3/S1」を0.38以上にすることができる。これまで以上に周回部の内側のS3の割合を高くできる。
(2)上述した手順で引出部26A,26Bの形成を行うことにより、引出部26A,26Bの研磨加工を容易に行えるようになり、比較的簡単な方法で精度良く、しかも確実に引出部26A,26Bを磁性体表面に露出させることができる。また、引出部26A,26Bの位置精度が得られやすいため、磁性体に埋め込み段階での位置決めを引出部26A,26Bをモニタリングしながらできるため、組立て精度が良く、安定的に、確実に端子電極14,16と接続することができる。これは、上述した先行文献の引出部では研磨量が足りなければ引出部の露出が不十分となり、逆に削りすぎでは引出位置が変化してしまうことがあるのに対し、本実施例ではこのような不都合が生じないためである。
(3)周回部22の内周形状を長円形(オーバル型)としたので、更に内周面積の割合を大きくして、電流特性の向上に寄与することができる。
(1) The pair of lead portions 26A, 26B is disposed near the short side of the magnetic body 12, and space saving of the lead portions 26A, 26B can be achieved. Thereby, the ratio of the magnetic material outside the air core coil 20 can be reduced to reduce the amount of waste magnetic material. This leads to the enlargement of the air core coil 20 within the product size, and the difference between the ratio of the magnetic material outside the air core coil 20 and the ratio of the magnetic material inside the air core coil 20 can be reduced, resulting in the current The characteristics can be enhanced. Specifically, the ratio “S3 / S1” of the inner circumference S3 of the circumferential portion to the area S1 outside the circumferential portion can be 0.38 or more. The ratio of S3 on the inner side of the orbiting portion can be made higher than before.
(2) By forming the lead portions 26A, 26B according to the above-described procedure, the lead portions 26A, 26B can be easily polished and processed, and the lead portion 26A can be accurately and surely by a relatively simple method. , 26B can be exposed on the surface of the magnetic body. Further, since positional accuracy of the lead portions 26A, 26B can be easily obtained, positioning in the embedding step can be performed in the magnetic body while monitoring the lead portions 26A, 26B, so that assembly accuracy is good, and terminal electrodes reliably. It can be connected with 14, 16. This is because, if the amount of polishing is insufficient in the lead-out portion of the above-mentioned prior art, the exposure of the lead-out portion becomes insufficient, and conversely, the lead-out position may change when it is over-sharpened. It is because such an inconvenience does not occur.
(3) Since the inner circumferential shape of the circumferential portion 22 is oval (oval), the ratio of the inner circumferential area can be further increased to contribute to the improvement of the current characteristics.

次に、本発明の実施例2を説明する。なお、上述した実施例1と同一ないし対応する構成要素には同一の符号を用いることとする(以下の具体例についても同様)。上述した実施例1では、一対の引出部26A,26Bを形成するにあたり、前記交差部23A,23Bを周回部22の外周面に沿う平面状となるように曲げ加工を行ったのち(実施例1の第3フォーミング)、引出部26A,26Bが周回部22に近付くように引出線24A,24Bを曲げ加工することとした(実施例1の第4フォーミング)。本実施例は、前記第3フォーミングと第4フォーミングの手順を逆にすることにより、曲げ精度をよくし、周回部22の外周面と引出部26A,26Bの間に隙間を生じにくくした例である。   Next, a second embodiment of the present invention will be described. In addition, suppose that the same code | symbol is used for the component the same as Example 1 mentioned above thru / or respond | correspond (the same may be said of the following specific examples). In the first embodiment described above, after forming the pair of lead portions 26A and 26B, the intersections 23A and 23B are bent so as to be flat along the outer peripheral surface of the circumferential portion 22 (Example 1) And forming the lead wires 24A and 24B so that the lead portions 26A and 26B approach the winding portion 22 (fourth forming in Example 1). This embodiment is an example in which the bending accuracy is improved by reversing the procedure of the third forming and the fourth forming, and it is difficult to form a gap between the outer peripheral surface of the circumferential portion 22 and the lead portions 26A and 26B. is there.

図3(C-2)〜(E-2)には、本実施例のコイル部品の製造手順の一例が示されている。なお、空芯コイル20の周回部22の形成手順は上述した実施例1と同様であり、図3(A)及び(B)の工程も実施例1と同様のため説明は省略する。図3(B)までの工程において、周回部22から引き出した引出線24A,24Bを曲げ加工して引出部26A,26Bを形成したら、本実施例では、図3(C-2)に示すように、前記一対の引出部26A,26Bを、前記コイル軸29と平行に保ちながら、前記周回部22に近付くように、前記一対の引出線24A,24Bを曲げ加工する。この時の曲げ角度αは、例えば20°〜80°とする。そして、その後に、図3(D-2)に示すように、前記一対の引出線24A,24Bの交差部分23A,23Bを曲げ加工して、前記周回部22の外周面に沿うように平面状に加工する。以上のようにして引出部26A,26Bを形成した空芯コイル20を、前記周回部22と一対の引出部26A,26Bの位置をモニタリングしながら、金型にセットし(図3(E-2))、金属粒子と樹脂とを混練した磁性材料を用いて成形する(成形工程)。   An example of the manufacturing procedure of the coil component of a present Example is shown by FIG. 3 (C-2)-(E-2). The procedure for forming the circumferential portion 22 of the air core coil 20 is the same as that of the first embodiment described above, and the steps of FIGS. 3A and 3B are the same as those of the first embodiment, so the description thereof will be omitted. In the process up to FIG. 3B, when the lead portions 24A and 24B are bent to form the lead portions 26A and 26B in the process shown in FIG. 3C-2 in this embodiment. Then, while keeping the pair of lead portions 26A, 26B parallel to the coil shaft 29, the pair of lead wires 24A, 24B are bent so as to approach the circumferential portion 22. The bending angle α at this time is, for example, 20 ° to 80 °. Thereafter, as shown in FIG. 3 (D-2), the intersections 23A and 23B of the pair of lead wires 24A and 24B are bent and planarized along the outer peripheral surface of the circumferential portion 22. Process to The air core coil 20 in which the lead portions 26A and 26B are formed as described above is set in a mold while monitoring the positions of the circumferential portion 22 and the pair of lead portions 26A and 26B (FIG. 3 (E-2 ), Molding is performed using a magnetic material obtained by kneading metal particles and a resin (molding step).

本実施例では、上述した実施例1よりも、周回部22の外周面と引出部26A,26Bの間の隙間を更に小さくできるため、引出部26A,26Bの安定性をより高くすることができる。例えば、融着層を有する導線を用いて引出線24A,24Bと周回部22の外周面を固定させれば、より引出部26A,26Bの位置の安定性を高めることができる。これにより、更に、周回部22の外側の磁性体12の面積を小さくできるとともに、細い導線を用いることができる。例えば、磁性体12の長さ(L)×幅(W)が2.0×1.6(mm)サイズのような寸法比の場合(図4(C)の例参照)、引出部26A,26Bは、対角線DA,DBに掛かる位置となり、L×W=2.0×1.2サイズのような場合(図4(D)参照)、引出部26A,26Bは、対角線DA,DBより短辺側のエリアES1,ES2に収まるようになる。   In the present embodiment, since the gap between the outer peripheral surface of the circumferential portion 22 and the lead portions 26A and 26B can be further reduced than in the first embodiment described above, the stability of the lead portions 26A and 26B can be further enhanced. . For example, if the lead wires 24A and 24B and the outer peripheral surface of the circumferential portion 22 are fixed using a conductive wire having a fusion layer, the stability of the position of the lead portions 26A and 26B can be further enhanced. Thereby, while the area of the magnetic body 12 of the outer side of the circumference | surroundings part 22 can be made small, a thin conducting wire can be used. For example, in the case where the length (L) × width (W) of the magnetic body 12 is a dimension ratio such as 2.0 × 1.6 (mm) size (see the example of FIG. 4C), the lead portion 26A, 26B is located on the diagonal lines DA and DB, and in the case of L × W = 2.0 × 1.2 size (see FIG. 4D), the lead portions 26A and 26B are shorter than the diagonal lines DA and DB. It will fit in the area ES1, ES2 on the side.

これにより、引出部26A,26Bの位置を最も磁性体側面より遠ざける(図4(C)の間隔IB参照)ことができ、磁性体12の厚みを確保する上で、好ましい位置になる。そして、引出部26A,26Bの周辺をきっかけにクラック等が生じないようにすることで、磁性体の厚みを薄くできる。このようなL×Wの寸法比による引出部26A,26Bの位置については、前記実施例1にも同様に当てはまる。また、本実施例では、上述した実施例1よりも、更に周回部22の内周側の面積を増やすことができるという利点がある。その他の基本的な効果は、上述した実施例1と同様である。   As a result, the positions of the lead portions 26A and 26B can be made farthest from the side surface of the magnetic body (see the interval IB in FIG. 4C), which is a preferable position for securing the thickness of the magnetic body 12. The thickness of the magnetic body can be reduced by preventing the occurrence of cracks or the like triggered by the periphery of the lead portions 26A, 26B. The positions of the lead portions 26A and 26B based on the L × W dimensional ratio also apply to the first embodiment. In addition, the present embodiment has an advantage that the area on the inner peripheral side of the circumferential portion 22 can be further increased as compared with the above-described first embodiment. The other basic effects are the same as those of the first embodiment described above.

<具体例>・・・次に、本発明の具体例と比較例を用い、前記コイル軸29が、長軸LAと短軸LBを有する形状とした場合の、引出部26A,26Bの配置や磁性体12の面積バランスについて、以下に説明する。図5には、具体例のコイル部品10が示されている。製品(コイル部品10)の実装面の長さをL,幅をWとし、周回部20の外周の短軸の長さをX1,長軸の長さをY1とし、周回部22の内周の短軸の長さをX2,長軸の長さをY2とする。また、周回部22の外側の面積をS1,周回部22の面積をS2,周回部22の内側の面積をS3とし、図6に示す条件で比較例1〜4及び具体例1〜8のコイル部品を製作した。   <Specific example> Next, using the specific example and the comparative example of the present invention, the arrangement of the lead portions 26A, 26B and the coil axis 29 having a shape having the major axis LA and the minor axis LB. The area balance of the magnetic body 12 will be described below. FIG. 5 shows an example coil component 10. The length of the mounting surface of the product (coil component 10) is L, the width is W, the length of the minor axis of the outer periphery of the orbiting portion 20 is X1, the length of the major axis is Y1, and the inner periphery of the orbiting portion 22 is The length of the minor axis is X2, and the length of the major axis is Y2. Moreover, the area of the outer side of the winding part 22 is S1, the area of the winding part 22 is S2, the area of the inner side of the winding part 22 is S3, and the coils of Comparative Examples 1 to 4 and Specific Examples 1 to 8 under the conditions shown in FIG. I made parts.

なお、図6中、「引出部」の「側面引出し」とは、引出部26A,26Bを磁性体12の基板に実装される面の短辺側に隣接する側面から引き出したことを意味し、「実施例1」「実施例2」とは、上述した実施例1及び実施例2の製造方法で空芯コイルを形成したことを示している。また、具体例1は、図4(A)の空芯コイル50Aの内周形状を楕円形としたものに相当し、具体例5は、図4(B)の空芯のコイル50Bの内周形状を楕円形としたものに相当する。また、具体例3は、図4(C)の空芯コイル50Cの内周形状を長円形としたものに相当し、具体例7は図4(D)の空芯コイル50Dの内周形状を長円形としたものに相当し、具体例4,8は、図4(E)の空芯コイル50Eの矩形(角丸長方形)としたものに相当する。なお、具体例4,8は、鉄芯40の断面形状が矩形のものを用意し、4つの角にR0.1mmの丸み付けを行ってから空芯コイル50Eを作成している。このため、角の同様のRの付いた角丸長方形のものとなっている。これにより、導線の被膜にダメージを与えることなく、空芯コイル50Eを得ている。   In FIG. 6, "side out" of the "lead out" means that the leads 26A and 26B are pulled out from the side adjacent to the short side of the surface mounted on the substrate of the magnetic body 12, "Example 1" and "Example 2" indicate that the air core coil was formed by the manufacturing method of Example 1 and Example 2 described above. Further, the first specific example corresponds to an elliptical shape of the inner circumferential shape of the air core coil 50A of FIG. 4A, and the fifth specific example is an inner circumferential of the air core coil 50B of FIG. 4B. It corresponds to an elliptical shape. Further, the third specific example corresponds to the oval shape of the inner circumferential shape of the air core coil 50C of FIG. 4C, and the seventh specific example corresponds to the inner circumferential shape of the air core coil 50D of FIG. It corresponds to what was made into the oval shape, and the specific examples 4 and 8 correspond to what made the rectangle (cornered rectangle) of the air core coil 50E of FIG.4 (E). In Examples 4 and 8, the cross section of the iron core 40 is prepared in a rectangular shape, and after rounding of R 0.1 mm at four corners, the air core coil 50E is formed. For this reason, it is a rounded rectangle with the same rounded corner. Thus, the air core coil 50E is obtained without damaging the coating of the conducting wire.

製品サイズとしては、2.0×1.6×1.0mmと、2.0×1.25×1.0mmの2種類とし、いずれも磁性体12の高さは0.9mmとした。また、磁性体12の各角部には、R0.1mmの丸み付けを行った。そして、複合磁性材料は、金属粒子としてFeSiCrBを95w%と、樹脂としてエポキシ樹脂を5wt%の割合で混合したものを用いた。また、空芯コイル20は、断面寸法が0.25×0.05mmと0.25×0.035mmの被膜付き(いずれも融着層あり)の平角線を用い、周回部22の周回数は11ターンとした。また、端子電極14,16としては、スパッタリングによりTi/Ag層を形成したのち、導電性ペーストを重ね、200℃の温度で硬化して、最後にNi/Snをめっきして、合わせて厚みが0.02mmとなるようにして、それぞれ引出部26A,26Bの端部28A,28Bと接続するようにした。   The product size was two types of 2.0 × 1.6 × 1.0 mm and 2.0 × 1.25 × 1.0 mm, and the height of the magnetic body 12 was 0.9 mm in each case. Each corner of the magnetic body 12 was rounded by R 0.1 mm. The composite magnetic material used was a mixture of 95 w% of FeSiCrB as metal particles and 5 wt% of epoxy resin as a resin. Also, for the air core coil 20, a flat wire with a cross-sectional size of 0.25 × 0.05 mm and 0.25 × 0.035 mm (with a fusion layer) is used, and the number of turns of the winding portion 22 is It was 11 turns. In addition, as the terminal electrodes 14 and 16, after a Ti / Ag layer is formed by sputtering, a conductive paste is overlapped, hardened at a temperature of 200 ° C., and finally plated with Ni / Sn to obtain a combined thickness It was made to connect with end parts 28A and 28B of drawer parts 26A and 26B, respectively so as to be 0.02 mm.

以上のようにして形成した比較例1〜4と具体例1〜8の評価は、実装される側の面から見て行った。具体的には、引出部26A,26Bは、端子電極14,16を取り除いた磁性体12の表面において、走査電子顕微鏡(SEM:Scanning Electron Microscope)により50倍の倍率で、磁性体12の2つの対角をそれぞれ10μm相当の幅の直線で結び、この直線(対角線DA,DB)により4つのエリアに区切り、引出部26A,26Bの存在場所を評価した。直線(対角線DA,DB)の引き方については、上記のように磁性体12の各角に丸み付けしたような場合は、磁性体の長辺、短辺をそれぞれ延長し、交差するポイントを決め、このポイントを磁性体の角と見直し、対抗する位置の角を結ぶことで行った。また、上記と同じ方向で、前記磁性体12の高さの半分まで研磨を行い、研磨した面のそれぞれのエリアを画像処理により面積換算して求めた。なお、ここでは、周回部内側の面積S3と、周回部外側の面積S1の比である「S3/S1」が0.38以上とすることができる。これにより、周回部外側の面積S1を従来の1.3〜1.8倍とすることができるようになり、磁路断面積を大きく取れることでインダクタンスを取りやすくなり、結果としてインダクタンス2μH以下とした場合、電流特性を1.5〜2.2倍とする設計が可能となる。なお、上記の倍率については、評価する試料がひとつの画像に収まるように倍率を変えても良く、35〜100倍の範囲とすることで同様の評価が可能となる。   The evaluations of Comparative Examples 1 to 4 and Specific Examples 1 to 8 formed as described above were performed in view of the mounted side. Specifically, on the surface of the magnetic body 12 from which the terminal electrodes 14 and 16 have been removed, the lead-out portions 26A and 26B are two of the magnetic body 12 at a magnification of 50 with a scanning electron microscope (SEM). The diagonals were connected by straight lines each having a width of 10 μm, and the straight lines (diagonals DA, DB) were divided into four areas, and the locations of the lead portions 26A, 26B were evaluated. When the straight lines (diagonals DA and DB) are drawn as described above, when rounding to each corner of the magnetic body 12, the long side and the short side of the magnetic body are extended, and the intersecting points are determined. This point was reconsidered with the corner of the magnetic body, and the corner of the opposing position was connected. In addition, polishing was performed to the half of the height of the magnetic body 12 in the same direction as described above, and the respective areas of the polished surfaces were determined by image conversion. Here, “S3 / S1”, which is the ratio of the area S3 inside the circumferential portion to the area S1 outside the circumferential portion, can be 0.38 or more. As a result, the area S1 on the outer side of the winding portion can be made 1.3 to 1.8 times that of the conventional one, and the magnetic path cross-sectional area can be made large to easily take an inductance. In this case, it is possible to design the current characteristic to be 1.5 to 2.2 times. In addition, about said magnification, magnification may be changed so that the sample to evaluate may be settled in one image, and the same evaluation becomes possible by setting it as the range of 35-100 times.

図6の結果から、以下のことが確認できる。
a.比較例1と比較例2の結果からは、側面引出しの場合には、周回部22を矩形(角丸長方形)としても、面積比S3/S1の改善効果は見られない。
b.比較例3と比較例4の結果からは、側面引出しの場合であっても、周回部22を矩形とすることで前記面積比S3/S1は大きくなるが、面積バランスを取るには至らなかった。
c.具体例1と具体例5では、楕円形にする効果が見られ、比較例1と比較例3に比べ、面積比S3/S1を0.21,0.13から0.38,0.43にすることができた。
d.具体例2と具体例6は、それぞれ製造手順が異なる具体例1及び具体例5と比べて、引出部26A,26Bを周回部22に更に近付けたことの効果が見られ、前記面積比S3/S1を0.41,0.46にすることができた。
e.具体例3,4,7,8は、周回部22を長円形(オーバル形)、角丸長方形にした例であるが、いずれも効果があり、前記面積比を更に高くすることができた。
f.長辺/短辺(L/W)より、長軸/短軸(Y2/X2)の方が大きいと、磁性体12のサイズを活かし、周回部22の外側の磁性体の厚みを長辺側と短辺側とでほぼ同じ厚みにでき、磁束の集中する場所を減らすことができ、インダクタンス、飽和電流等の電気的性能の改善と磁束漏れを少なくすることにもつながる。
The following can be confirmed from the results of FIG.
a. From the results of Comparative Example 1 and Comparative Example 2, no improvement effect of the area ratio S3 / S1 can be seen even when the circumferential portion 22 is rectangular (rounded rectangle) in the case of side drawing.
b. From the results of Comparative Example 3 and Comparative Example 4, even in the case of side drawing, although the area ratio S3 / S1 is increased by making the orbiting portion 22 rectangular, it did not reach the area balance. .
c. In the example 1 and the example 5, the effect of making it elliptical is seen, and compared with the comparison example 1 and the comparison example 3, the area ratio S3 / S1 is 0.21, 0.13 to 0.38, 0.43. We were able to.
d. The effects of bringing the lead portions 26A and 26B closer to the orbiting portion 22 as compared to the specific examples 1 and 5 in which the manufacturing procedures are different, respectively, can be seen in specific example 2 and specific example 6, and the area ratio S3 / S1 could be set to 0.41, 0.46.
e. Although specific examples 3, 4, 7 and 8 are examples in which the orbiting portion 22 is formed into an oval (oval shape) and a rounded rectangle, both are effective, and the area ratio can be further increased.
f. When the major axis / minor axis (Y2 / X2) is larger than the long side / short side (L / W), the thickness of the magnetic material on the outer side of the circumferential portion 22 is taken to be the long side by utilizing the size of the magnetic body 12 It is possible to make the thickness substantially the same on the short side and to reduce the place where the magnetic flux is concentrated, which leads to the improvement of the electrical performance such as the inductance and the saturation current and the reduction of the magnetic flux leakage.

なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1)前記実施例で示した形状,寸法,材質は一例であり、必要に応じて適宜変更してよい。
(2)前記実施例では、コイル部品10を実装する面側に端子電極14,16を設けることとしたが、これも一例であり、必要に応じて適宜変更可能である。
(3)前記具体例で示した寸法も一例であり、同様の効果を奏する範囲内で適宜設計変更可能である。また、空芯コイルの周回部の巻き数も一例であり、必要に応じて適宜増減してよい。
(4)前記実施例では、空芯コイル20の内周形状を長円形(オーバル型)や角丸長方形としたが、これも一例であり、同様の効果を奏する範囲内で適宜設計変更可能である。
(5)前記実施例では、導線として平角線を用いた場合を例に挙げて説明しているが、本発明で使用する導線は丸線であってもよい。なお、導線の断面として、0.01mm以上の断面積を有すると、本発明のフォーミング形状を安定的に形成できるため都合がよい。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the present invention. For example, the following are also included.
(1) The shapes, dimensions, and materials described in the above embodiments are merely examples, and may be changed as appropriate.
(2) In the embodiment described above, the terminal electrodes 14 and 16 are provided on the side of the surface on which the coil component 10 is mounted. However, this is also an example and can be appropriately changed as necessary.
(3) The dimensions shown in the specific example are also an example, and design changes can be made as appropriate within the range where the same effects can be obtained. Further, the number of turns of the winding portion of the air core coil is also an example, and may be appropriately increased or decreased as needed.
(4) In the above embodiment, the inner peripheral shape of the air core coil 20 is an oval (oval type) or a rounded rectangular shape, but this is also an example, and design changes can be made as appropriate within the range of achieving similar effects. is there.
(5) In the above embodiment, although the case where a flat wire is used as the conducting wire is described as an example, the conducting wire used in the present invention may be a round wire. If the cross-sectional area of the conductive wire is 0.01 mm 2 or more, the forming shape of the present invention can be stably formed, which is advantageous.

以上のように、本発明によれば、金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、を有しており、前記基板に実装される側の磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にあることを特徴とする。このため、引出線および引出部が磁性体の一方の長辺側に配置され、導線を引き出すスペースを削減して小型化が可能となる。これにより、空芯コイルの外側の磁性体の占める割合を小さくでき、無駄な磁性体を少なくできる。この結果、電流特性を高くすることができる。加えて、周回部の外側の面積S1に対する周回部の内側の面積S3の比S3/S1を、0.38以上とすることで、周回部外側の面積S1を従来の1.3〜1.8倍とすることができるようになり、磁路断面積を大きく取ることでインダクタンスを取りやすくなる。また、引出部の研磨加工が容易であり、引出位置の安定性を高くできる。このため、コイル部品の用途に適用できる。特に、引出部の位置が安定することで、端子電極との接続安定性も得られるため、小型かつ高性能のコイル部品の用途に好適である。   As described above, according to the present invention, a rectangular magnetic body formed of metal magnetic particles and resin and having a long side and a short side on the side mounted on the substrate, and one long side of the cross section of the rectangular wire The flat wire is repeatedly wound on the flat wire so as to be in contact with each other, and a flat wire is repeatedly formed so as to overlap on the wound flat wire, and a winding portion embedded in the magnetic body and one long side of the magnetic body When the surface of the magnetic body formed from the leader drawn out from the outer peripheral surface of the circumferential portion and the end of the leader and mounted on the substrate is divided into four areas by two diagonal lines, A pair which are respectively included in two areas on the short side of the four areas and further drawn out to the outside of the magnetic body from a position closer to one long side of the magnetic body in the two areas. An air core coil having a lead-out portion of , Look through the surface of the magnetic material on the side mounted on the substrate, the pair of lead-out portion is characterized in that in a position in contact with the outer peripheral surface of the rounding part. For this reason, the lead wire and the lead portion are disposed on one long side of the magnetic body, and the space for drawing the conducting wire can be reduced to miniaturize. Thereby, the ratio of the magnetic material outside the air core coil can be reduced, and waste magnetic material can be reduced. As a result, current characteristics can be enhanced. In addition, the ratio S3 / S1 of the area S3 of the inner side of the circumferential part to the area S1 of the outer side of the circumferential part is 0.38 or more, the area S1 of the outer side of the circumferential part is 1.3 to 1.8 of the prior art. This can be doubled, and the inductance can be easily obtained by increasing the cross sectional area of the magnetic path. Moreover, the polishing process of the lead-out portion is easy, and the stability of the lead-out position can be enhanced. For this reason, it can apply to the use of coil parts. In particular, since the connection stability with the terminal electrode can be obtained by stabilizing the position of the lead portion, it is suitable for the application of a small-sized and high-performance coil component.

10,10A〜10E:コイル部品
12:磁性体
12A,12B:長辺
12C,12D:短辺
14,16:端子電極
20,20A,20B:空芯コイル
22,22A,22B:周回部
23A,23B:交差部
24A,24B:引出線
26A,26B:引出部
28A,28B:端部
29:コイル軸
30:平角線
30A,30B:短辺
30C,30D:長辺
40:鉄芯
50A〜50E:空芯コイル
ES1,ES2,EL1,EL2:エリア
DA,DB:対角線
LA:長軸
LB:短軸
10, 10A to 10E: coil component 12: magnetic body 12A, 12B: long side 12C, 12D: short side 14, 16: terminal electrode 20, 20A, 20B: air core coil 22, 22A, 22B: circulating portion 23A, 23B : Crossing part 24A, 24B: Lead wire 26A, 26B: Leading part 28A, 28B: End 29: Coil shaft 30: Flat wire 30A, 30B: Short side 30C, 30D: Long side 40: Iron core 50A to 50E: Empty Core coil ES1, ES2, EL1, EL2: area DA, DB: diagonal LA: long axis LB: short axis

Claims (7)

金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、
平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、
前記引出部と電気的に接続される一対の端子電極と、
を有しており、
前記基板に実装される側の磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にあり、
前記基板に実装される側の磁性体の面を透過して見て、前記周回部の外側の磁性体の面積S1に対する前記周回部の内側の磁性体の面積S3の比S3/S1を、0.38以上としたことを特徴とするコイル部品。
A rectangular magnetic body formed of metal magnetic particles and a resin and having long sides and short sides on the side mounted on a substrate,
A winding portion which is wound such that the surface on one long side of the cross section of the flat wire is in contact, and the flat wire is repeatedly wound so as to overlap on the wound flat wire and embedded in the magnetic material; A lead wire drawn from the outer peripheral surface of the circumferential portion at one long side of the magnetic body, and an end of the lead wire, formed with diagonals of the magnetic body on the side mounted on the substrate are two diagonal lines Divided into four areas, which are respectively included in the two areas on the short side of the four areas, and further from the position closer to one long side of the magnetic body in the two areas An air core coil having a pair of lead-out portions drawn out of the magnetic body;
A pair of terminal electrodes electrically connected to the lead-out portion;
And have
When seen through the surface of the magnetic body mounted on the substrate, the pair of lead-out portions are in contact with the outer peripheral surface of the circumferential portion,
The ratio S3 / S1 of the area S3 of the magnetic material on the inner side of the circumferential portion to the area S1 of the magnetic material on the outer side of the circumferential portion is 0 when seen through the surface of the magnetic body mounted on the substrate. A coil component characterized by .38 or more.
前記一対の引出部と前記一対の端子電極との電気的な接続部を、前記基板に実装される側の面に形成したことを特徴とする請求項1記載のコイル部品。   The coil component according to claim 1, wherein an electrical connection portion between the pair of lead-out portions and the pair of terminal electrodes is formed on a surface to be mounted on the substrate. 前記基板に実装される側の磁性体の面を透過して見て、前記周回部の内周形状が、長円形又は角丸長方形であることを特徴とする請求項1又は2記載のコイル部品。   The coil component according to claim 1 or 2, wherein an inner peripheral shape of the circumferential portion is an oval or a rounded rectangle when seen through the surface of the magnetic body mounted on the substrate. . 前記一対の端子電極が、前記基板に実装される側の磁性体の面に形成されていることを特徴とする請求項1〜3のいずれか一項に記載のコイル部品。   The coil component according to any one of claims 1 to 3, wherein the pair of terminal electrodes are formed on the surface of the magnetic body mounted on the substrate. 請求項1〜4のいずれか一項に記載のコイル部品を備えたことを特徴とする電子機器。   An electronic device comprising the coil component according to any one of claims 1 to 4. 金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、
平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、
前記引出部と電気的に接続される一対の端子電極と、を有しており、
前記基板に実装される側の磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にあることを特徴とするコイル部品の製法方法であって、
前記周回部により形成されるコイル軸方向から見て、前記周回部の両端から引出されるそれぞれの導線が交差部分を持ちながら該周回部の外周面から遠ざかる方向に引出され、更に導線の端部に向って、前記周回部の外周面との間にそれぞれ所定の隙間を形成し、互いに反対方向に向かい、かつ平行となるように曲げ加工され一対の引出線を形成する第1工程と、
前記一対の引出線の端部側を曲げ加工し、前記コイル軸と平行で同一方向に向う一対の引出部を形成する第2工程と、
前記一対の引出線の交差部分を曲げ加工して、前記周回部の外周面に沿わせる第3工程と、
前記一対の引出部を、前記コイル軸と平行に維持しながら、前記周回部の外周面と接するように曲げ加工する第4工程と、
前記周回部と一対の引出部の位置をモニタリングしながら、金型に前記第1〜第4工程で形成した空芯コイルをセットし、金属粒子と樹脂からなる磁性体材料を埋め込む際に、前記基板に実装される側の磁性体の面を透過して見て、前記周回部の外側の磁性体の面積S1に対する前記周回部の内側の磁性体の面積S3の比S3/S1が0.38以上となるように、磁性体を成形する第5工程と、
を含むことを特徴とするコイル部品の製造方法。
A rectangular magnetic body formed of metal magnetic particles and a resin and having long sides and short sides on the side mounted on a substrate,
A winding portion which is wound such that the surface on one long side of the cross section of the flat wire is in contact, and the flat wire is repeatedly wound so as to overlap on the wound flat wire and embedded in the magnetic material; A lead wire drawn from the outer peripheral surface of the circumferential portion at one long side of the magnetic body, and an end of the lead wire, formed with diagonals of the magnetic body on the side mounted on the substrate are two diagonal lines Divided into four areas, which are respectively included in the two areas on the short side of the four areas, and further from the position closer to one long side of the magnetic body in the two areas An air core coil having a pair of lead-out portions drawn out of the magnetic body;
And a pair of terminal electrodes electrically connected to the lead-out portion,
In a method of manufacturing a coil component, the pair of lead-out portions are in contact with the outer peripheral surface of the circumferential portion when seen through the surface of the magnetic body mounted on the substrate. ,
When viewed from the coil axis direction formed by the winding portion, the respective lead wires drawn from both ends of the winding portion are drawn in a direction away from the outer peripheral surface of the winding portion while having crossing portions, and further ends of the wires A first step of forming a pair of lead wires by forming predetermined gaps respectively with the outer circumferential surface of the circumferential portion, bending in opposite directions and in parallel to each other, and
A second step of bending an end portion side of the pair of lead wires to form a pair of lead portions parallel to the coil axis and directed in the same direction;
A third step of bending an intersection portion of the pair of leader lines to extend along an outer peripheral surface of the circumferential portion;
A fourth step of bending the pair of lead portions so as to be in contact with the outer peripheral surface of the circumferential portion while maintaining the pair of lead portions parallel to the coil axis;
The air core coil formed in the first to fourth steps is set in a mold while monitoring the positions of the peripheral portion and the pair of lead portions, and the magnetic material made of metal particles and resin is embedded in the mold. The ratio S3 / S1 of the area S3 of the magnetic material on the inner side of the circumferential portion to the area S1 of the magnetic material on the outer side of the circumferential portion is 0.38 when seen through the surface of the magnetic body mounted on the substrate. A fifth step of forming the magnetic body so as to become the above;
A method of manufacturing a coil component comprising:
金属磁性粒子と樹脂から形成され、基板に実装される側において長辺と短辺を有する直方体の磁性体と、
平角線の断面の一方の長辺側の面が接するように巻回され、巻回した平角線の上に重ねるように繰り返し平角線を巻回し形成され、前記磁性体に埋め込まれる周回部と、前記磁性体の一方の長辺側における前記周回部の外周面から引き出される引出線と、前記引出線の端部から形成され、前記基板に実装される側の磁性体の面を2本の対角線で4つのエリアに区切ったときに、前記4つのエリアのうちの短辺側の2つのエリアにそれぞれ含まれ、さらに前記2つのエリア内において前記磁性体の一方の長辺側に寄った位置より前記磁性体の外側に引出される一対の引出部を持つ空芯コイルと、
前記引出部と電気的に接続される一対の端子電極と、を有しており、
前記基板に実装される側の磁性体の面を透過して見て、前記一対の引出部は、前記周回部の外周面と接する位置にあることを特徴とするコイル部品の製法方法であって、
導線を巻回させて前記周回部を形成し、該周回部により形成されるコイル軸方向から見て、該周回部の両端から引出されるそれぞれの導線が交差部分を持ちながら該周回部の外周面から遠ざかる方向に引出され、更に導線の端部に向って、前記周回部の外周面との間にそれぞれ所定の隙間を形成し、互いに反対方向に向かい、かつ平行となるように曲げ加工され一対の引出線を形成する第1工程と、
前記一対の引出線の端部側を曲げ加工し、前記コイル軸と平行で同一方向に向う一対の引出部を形成する第2工程と、
前記一対の引出部を、前記コイル軸と平行に維持しながら、前記周回部の外周面と接するように曲げ加工する第3工程と、
前記一対の引出線の交差部分を曲げ加工して、前記周回部の外周面に沿わせる第4工程と、
前記周回部と一対の引出部の位置をモニタリングしながら、金型に前記第1〜第4工程で形成した空芯コイルをセットし、金属粒子と樹脂からなる磁性体材料を埋め込む際に、前記基板に実装される側の磁性体の面を透過して見て、前記周回部の外側の磁性体の面積S1に対する前記周回部の内側の磁性体の面積S3の比S3/S1が0.38以上となるように、磁性体を成形する第5工程と、
を含むことを特徴とするコイル部品の製造方法。
A rectangular magnetic body formed of metal magnetic particles and a resin and having long sides and short sides on the side mounted on a substrate,
A winding portion which is wound such that the surface on one long side of the cross section of the flat wire is in contact, and the flat wire is repeatedly wound so as to overlap on the wound flat wire and embedded in the magnetic material; A lead wire drawn from the outer peripheral surface of the circumferential portion at one long side of the magnetic body, and an end of the lead wire, formed with diagonals of the magnetic body on the side mounted on the substrate are two diagonal lines Divided into four areas, which are respectively included in the two areas on the short side of the four areas, and further from the position closer to one long side of the magnetic body in the two areas An air core coil having a pair of lead-out portions drawn out of the magnetic body;
And a pair of terminal electrodes electrically connected to the lead-out portion,
In a method of manufacturing a coil component, the pair of lead-out portions are in contact with the outer peripheral surface of the circumferential portion when seen through the surface of the magnetic body mounted on the substrate. ,
The conducting wire is wound to form the winding portion, and when viewed from the coil axis direction formed by the winding portion, the respective lead wires drawn from both ends of the winding portion have crossing portions and the outer periphery of the winding portion It is drawn out in the direction away from the surface, and is further processed so as to form predetermined gaps respectively with the outer peripheral surface of the circumferential portion toward the end of the conducting wire, and so as to be opposite to each other and parallel. A first step of forming a pair of leader lines;
A second step of bending an end portion side of the pair of lead wires to form a pair of lead portions parallel to the coil axis and directed in the same direction;
A third step of bending the pair of lead portions so as to be in contact with the outer peripheral surface of the circumferential portion while maintaining the pair of lead portions parallel to the coil axis;
A fourth step of bending an intersection portion of the pair of lead wires to extend along an outer peripheral surface of the circumferential portion;
The air core coil formed in the first to fourth steps is set in a mold while monitoring the positions of the peripheral portion and the pair of lead portions, and the magnetic material made of metal particles and resin is embedded in the mold. The ratio S3 / S1 of the area S3 of the magnetic material on the inner side of the circumferential portion to the area S1 of the magnetic material on the outer side of the circumferential portion is 0.38 when seen through the surface of the magnetic body mounted on the substrate. A fifth step of forming the magnetic body so as to become the above;
A method of manufacturing a coil component comprising:
JP2018246619A 2018-12-28 2018-12-28 Coil component, method of manufacturing the same, electronic device Active JP6549779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018246619A JP6549779B2 (en) 2018-12-28 2018-12-28 Coil component, method of manufacturing the same, electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018246619A JP6549779B2 (en) 2018-12-28 2018-12-28 Coil component, method of manufacturing the same, electronic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015242171A Division JP6463256B2 (en) 2015-12-11 2015-12-11 Coil parts, manufacturing method thereof, electronic equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019120567A Division JP6734444B2 (en) 2019-06-27 2019-06-27 Coil component, manufacturing method thereof, and electronic device

Publications (2)

Publication Number Publication Date
JP2019080073A JP2019080073A (en) 2019-05-23
JP6549779B2 true JP6549779B2 (en) 2019-07-24

Family

ID=66628902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246619A Active JP6549779B2 (en) 2018-12-28 2018-12-28 Coil component, method of manufacturing the same, electronic device

Country Status (1)

Country Link
JP (1) JP6549779B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081575B2 (en) 2019-09-30 2022-06-07 株式会社村田製作所 Coil parts
JP7111086B2 (en) * 2019-11-01 2022-08-02 株式会社村田製作所 inductor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5329202B2 (en) * 2008-12-19 2013-10-30 東光株式会社 Molded coil manufacturing method
JP4961441B2 (en) * 2009-01-30 2012-06-27 東光株式会社 Molded coil manufacturing method
JP2010186910A (en) * 2009-02-13 2010-08-26 Toko Inc Method of manufacturing mold coil
JP4714779B2 (en) * 2009-04-10 2011-06-29 東光株式会社 Manufacturing method of surface mount inductor and surface mount inductor
JP5450675B2 (en) * 2012-01-20 2014-03-26 東光株式会社 Surface mount inductor and manufacturing method thereof
JP5755615B2 (en) * 2012-08-31 2015-07-29 東光株式会社 Surface mount inductor and manufacturing method thereof
JP2014107422A (en) * 2012-11-28 2014-06-09 Minebea Co Ltd Coil component
JP6340805B2 (en) * 2014-01-31 2018-06-13 株式会社村田製作所 Electronic components

Also Published As

Publication number Publication date
JP2019080073A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
JP5971231B2 (en) Common mode choke coil and manufacturing method thereof
JP6340805B2 (en) Electronic components
JP6399010B2 (en) Coil parts
JP6400335B2 (en) Coil parts and electronic equipment
JP6737260B2 (en) Inductor
JP6549779B2 (en) Coil component, method of manufacturing the same, electronic device
JP2019009254A (en) Pulse transformer
CN111354544B (en) Coil component
JP2004103624A (en) Transformer and its manufacturing method
JP6463256B2 (en) Coil parts, manufacturing method thereof, electronic equipment
JP2020107861A (en) Method of manufacturing coil component
JP2015070153A (en) Common mode choke coil
JP2016058471A (en) Wound coil and method of manufacturing the same
US9859048B2 (en) Coil component
JP6734444B2 (en) Coil component, manufacturing method thereof, and electronic device
WO2016052257A1 (en) Magnetic core component and chip inductor
JP6614024B2 (en) Coil unit and coil device
JP2023136455A (en) Coil component, circuit board, electronic equipment, and method for manufacturing coil component
JP6918870B2 (en) Coil parts and electronic devices
WO2017006585A1 (en) Winding-type inductor
JP2004111457A (en) Method of manufacturing coil component
JP7140085B2 (en) Methods of manufacturing inductor components and cores for inductor components
JP7078006B2 (en) Inductor
US20170032886A1 (en) Coil electronic component and method of manufacturing the same
JP6567152B2 (en) Coil parts and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190627

R150 Certificate of patent or registration of utility model

Ref document number: 6549779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250