JP2020046315A - 超音波流量計 - Google Patents

超音波流量計 Download PDF

Info

Publication number
JP2020046315A
JP2020046315A JP2018175164A JP2018175164A JP2020046315A JP 2020046315 A JP2020046315 A JP 2020046315A JP 2018175164 A JP2018175164 A JP 2018175164A JP 2018175164 A JP2018175164 A JP 2018175164A JP 2020046315 A JP2020046315 A JP 2020046315A
Authority
JP
Japan
Prior art keywords
ultrasonic
sensor
reception
sensors
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018175164A
Other languages
English (en)
Other versions
JP7151311B2 (ja
Inventor
増永 靖行
Yasuyuki Masunaga
靖行 増永
晃 森田
Akira Morita
晃 森田
雅哉 田原
Masaya Tahara
雅哉 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2018175164A priority Critical patent/JP7151311B2/ja
Publication of JP2020046315A publication Critical patent/JP2020046315A/ja
Application granted granted Critical
Publication of JP7151311B2 publication Critical patent/JP7151311B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】回路設計の自由度が高く、高感度で且つ誤差が少ない超音波流量計を提供すること。【解決手段】超音波流量計(10)は、流体(14)に向って超音波パルスを送信する上流側送信センサ(12)及び下流側送信センサ(13)と、管路(11)の、上流側送信センサと下流側送信センサとの間に、流体の流れ方向に沿って順次取り付けられた、2つの受信センサ(15、16)と、2つの受信センサの受信信号の時間差を測定する時間差測定部(25)と、上流側送信センサから超音波パルスを送信したときの時間差及び下流側送信センサから超音波パルスを送信したときの時間差に基づいて流体の流量を算出する演算部と、を具備する。2つの受信センサは、各々、入射された超音波パルスを受信して受信信号を出力すると共に、一つ隣に配置された他の受信センサに向って超音波パルスを反射する。【選択図】図1

Description

本発明は、超音波流量計に関する。
超音波を利用して、管路内を流れる液体及び気体(以下、「流体」と記載する)の流量を計測することが行われている。
その計測原理の一つとして、伝搬時間逆数差法が知られている。図7は、従来の超音波測定方法を示す模式図である。図7に示すように、管路71に一対の送受信兼用の超音波センサ72、73を配置して交互に超音波パルスを送受信する。超音波パルスのうち管路71内のみの伝搬時間を考える。管路71内の超音波パルスの伝搬経路長をL、管路71内の流体74中での音速をC、管路71の中心軸と超音波パルスの伝搬軸との角度をθとすると、超音波センサ72、73の間を行き来する超音波パルスの音速Coは、流速Vの影響を受け、式1で表される。
Figure 2020046315
ここで、超音波パルスの管路71内の伝搬時間を、順方向(超音波センサ72から超音波センサ73へ向かう方向)のときをtd、逆方向(超音波センサ73から超音波センサ72へ向かう方向)のときをtuとする。伝搬時間td、tuはそれぞれ次式で表される。
Figure 2020046315
式2と式3の逆数を取り、その差を計算し、整理すると、式4となる。
Figure 2020046315
つまり、伝搬時間td、tuを計測することで管路71内を流れる流体74の流速Vを求めることができる。そして、流速Vに管路71の断面積Aを積算することにより、流体74の流量Qを求めることができる。
このような伝搬時間逆数差法を利用した超音波流量計では、送受信兼用の超音波センサ72、73を使用する。このため、送信回路の出力先及び受信回路の入力元を超音波センサ72、73の間で交互に切り換えるための切り換えスイッチを設ける必要がある。また、高電圧を扱う送信回路と微弱信号を扱う受信回路が切り替えスイッチを介して接続されるため、送信回路から受信回路へ高圧の信号が漏れ込み、ノイズが発生する要因となる。これを防ぐために、受信回路においては、クランプ回路を設けて入力信号から微弱信号のみを取り出し、増幅回路により受信信号を増幅する必要がある。このように、従来の超音波流量計は、回路設計上の制約が発生する。
また、超音波センサ72、73は、超音波の送信及び受信を兼用し、すなわち超音波の送信及び受信を交互に行う。このため、超音波の周波数を、送信及び受信の感度が中間になるように選択するか、或いは、送信又は受信の感度のどちらかが高くなるように選択せざるをえない。言い換えれば、例えば、送信時の超音波センサ72の共振周波数と受信時の超音波センサ73の反共振周波数とを一致させることができない。
また、超音波センサ72、73の指向性に差を付けることができない。例えば、受信感度を高めるために指向性が広い超音波センサを採用すれば、送信感度が低下してしまう。
超音波センサを送信及受信に兼用しない超音波流量計が提案されている(例えば、特許文献1参照)。
特許文献1の超音波流量計では、1つの送信用超音波センサ(トランスジューサ)から管内の複数方向に超音波信号を出射し、それぞれの超音波信号を複数の受信用超音波センサにより受信するようにし、受信した受信用超音波センサのみの受信信号に基づいて管内の流量の測定を行う。
特開2001−356034号公報
しかしながら、特許文献1の超音波流量計では、伝搬時間tu、tdを測定する超音波パルスの経路が異なる。このため、上述の式2及び式3における伝搬経路長Lが異なるため、流量測定の誤差の原因となる。
本発明はかかる点に鑑みてなされたものであり、回路設計の自由度が高く、高感度で且つ誤差が少ない超音波流量計を提供することを目的の1つとする。
本発明の超音波流量計の一態様は、管路内の流体に向って超音波パルスを送信する上流側送信センサ及び下流側送信センサと、前記管路の、前記上流側送信センサと前記下流側送信センサとの間に、前記流体の流れ方向に沿って順次取り付けられた、少なくとも2つの受信センサと、前記少なくとも2つの受信センサのうち、いずれか2つにおける受信信号の時間差を測定する時間差測定部と、前記上流側送信センサから前記超音波パルスを送信したときの前記時間差を順方向伝搬時間とし、かつ、前記下流側送信センサから前記超音波パルスを送信したときの前記時間差を逆方向伝搬時間とし、前記順方向伝搬時間及び前記逆方向伝搬時間に基づいて前記流体の流量を算出する演算部と、を具備し、前記少なくとも2つの受信センサは、各々、入射された前記超音波パルスを受信して前記受信信号を出力すると共に、一つ隣に配置された他の前記受信センサに向って前記超音波パルスを反射することを特徴とする。
本発明の一態様によれば、回路設計の自由度が高く、高感度で且つ誤差が少ない超音波流量計を提供することができる。
第1の実施の形態に係る超音波流量計の概略構成図である。 第1の実施の形態に係る超音波流量計における制御回路の概略構成図である。 第1の実施の形態に係る超音波流量計の概略構成図である。 第2の実施の形態に係る超音波流量計の概略構成図である。 第2の実施の形態に係る超音波流量計における制御回路の概略構成図である。 第3の実施の形態に係る超音波流量計の概略構成図である。 従来の超音波測定方法を示す模式図である。
本発明者らは、上記課題を解決するために鋭意検討した結果、送信用超音波センサから送信された超音波パルスが、受信用超音波センサで反射されることを利用して、順方向の伝搬時間を測定するときの超音波パルスの伝搬経路と、逆方向の伝搬時間を測定するときの超音波パルスの伝搬経路とを方向が正反対であるが同じにすることにより、流量測定の誤差を抑えることができることを見出し、本発明を完成した。
すなわち、本発明の超音波流量計の一態様は、管路内の流体に向って超音波パルスを送信する上流側送信センサ及び下流側送信センサと、前記管路の、前記上流側送信センサと前記下流側送信センサとの間に、前記流体の流れ方向に沿って順次取り付けられた、少なくとも2つの受信センサと、前記少なくとも2つの受信センサのうち、いずれか2つにおける受信信号の時間差を測定する時間差測定部と、前記上流側送信センサから前記超音波パルスを送信したときの前記時間差を順方向伝搬時間とし、かつ、前記下流側送信センサから前記超音波パルスを送信したときの前記時間差を逆方向伝搬時間とし、前記順方向伝搬時間及び前記逆方向伝搬時間に基づいて前記流体の流量を算出する演算部と、を具備し、前記少なくとも2つの受信センサは、各々、入射された前記超音波パルスを受信して前記受信信号を出力すると共に、一つ隣に配置された他の前記受信センサに向って前記超音波パルスを反射することを特徴とする。
以上のような構成により、本発明の一態様によれば、回路設計の自由度が高く、高感度で且つ誤差が少ない超音波流量計を提供することができるという効果を奏する。
(第1の実施の形態)
以下、第1の実施の形態に係る超音波流量計について説明する。図1は、第1の実施の形態に係る超音波流量計の概略構成図である。図1に示す超音波流量計は、超音波センサを既設の管路に外装するクランプオン形である。図1において、超音波パルス及び各種信号を、順方向伝搬時間td(後述)を測定するときを例に挙げて図示している。
図1に示すように、超音波流量計10は、管路11の外面に、2つの送信用超音波センサ(以下、単に送信センサと記載する)12、13が取り付けられている。送信センサ12、13は、管路11内の流体14に向って超音波パルスを送信する。
送信センサ12、13は、管路11の軸方向に沿った断面(以下、管軸断面と記載する)でみたとき(以下、管軸断面視と記載する)に、軸方向に沿って離間して配置される。以下、上流側の送信センサ12を単独で記載するときは上流側送信センサとする。また、下流側の送信センサ13を単独で記載するときは下流側送信センサとする。
また、送信センサ12、13は、管路11の軸方向に対して直交する断面(以下、直交断面と記載する)でみたときに、管路11の中心軸Oを中心に点対称の位置に配置されている。なお、直交断面でみたときの送信センサ12、13の位置関係は、点対称に限定されず、以下で説明するように、送信センサ12、13のいずれか一方から送信された超音波パルスを、受信センサ(後述)で反射した後、他方で受信できるのであれば、特に限定されない。
送信センサ12、13は、例えば、圧電セラミックで構成される超音波振動子を備えている。超音波振動子に電圧を印加すると振動し、超音波を発信する。超音波振動子の大きさ及び形状を適宜選択することにより、共振周波数及び指向性を制御することができる。
また、送信センサ12、13は、後述のように受信センサにおける超音波の反射を利用するために、管路11の中心軸Oに対し角度をつけて超音波を入射させることができるように、管路11の外面に対して傾けて取り付けられている。
送信センサ12、13の間には、2つの受信用超音波センサ(以下、単に受信センサと記載する)15、16が配置されている。
受信センサ15、16は、いずれも、送信センサ12、13のうち一つから発信された超音波パルスを受信できると共に、一つ隣に配置された他の1つに向って超音波パルスを反射するように配置されている。反射については後述する。
より具体的には、第1の実施の形態では、管軸断面視において、軸方向に沿って、送信センサ12、13の間に、上流側に受信センサ15が、下流側に受信センサ16が配置されている。以下、上流側の受信センサ15を単独で記載するときは第1の受信センサとする。また、下流側の受信センサ16を単独で記載するときは第2の受信センサとする。
また、受信センサ15、16は、直交断面でみたときに、管路11の中心軸Oを中心に点対称の位置に配置されている。なお、ここで、直交断面でみたときの送信センサ12、13の位置関係は、点対称に限定されず、受信センサ15、16のいずれか一方で反射した超音波を、他方で受信できるのであれば、特に限定されない。
受信センサ15、16は、例えば、圧電セラミックで構成される超音波振動子を備えている。超音波振動子に加わった振動により電極間に、振動に応じた起電力が発生し、受信信号として出力する。したがって、管路11の内面に超音波パルスが突き当たる管路11の壁が振動する。この振動が壁を伝って受信センサ15、16の超音波振動子に伝達され、超音波振動子で起電力が発生し、受信信号が出力される。
また、受信センサ15、16は、超音波振動子の大きさ及び形状を適宜選択することにより、反共振周波数及び指向性を制御することができる。
次に、図1を参照して、第1の実施の形態における回路構成について説明する。送信センサ12、13は、送信回路21に電気的に接続されている。上流側送信センサ12は、送信回路21の第1の出力端子aに、下流側送信センサ13は、送信回路21の第2の出力端子bに、それぞれ接続されている。
送信回路21は、送信センサ12、13の超音波発振子に高電圧を印加し、超音波を発振させる。送信回路21は、制御回路22に電気的に接続されている。
図2は、第1の実施の形態に係る超音波流量計における制御回路の概略構成図である。制御回路22は、送信制御部221、演算部222及び出力部223を備えている。
ここで、制御回路22は、例えば、各種処理を実行する集積回路である。しかしながら、制御回路22に代えて、各種処理を実行するプロセッサやメモリ等で構成される制御装置を用いてもよい。メモリは、用途に応じてROM(Read Only Memory)、RAM(Random Access Memory)等の一つ又は複数の記憶媒体で構成される。メモリには、各種処理を実行させるプログラムが記憶されている。
制御回路22の送信制御部221は、送信回路21に送信開始信号を出力し、送信回路21に、出力端子a、bのいずれか一方からバースト信号を出力させるように構成されている。
一方、受信センサ15、16には、増幅回路23、24がそれぞれ電気的に接続されている。増幅回路23、24で増幅された受信信号は、本発明の時間差測定部の一例である、時間差測定回路25に入力される。
時間差測定回路25は、受信センサ15、16から入力された受信信号に基づいて、受信センサ15、16における超音波の検出時間の時間差を測定する。時間差測定回路25は、制御回路22に電気的に接続されている。
制御回路22において、演算部222は、時間差測定回路25が測定した伝搬時間td及びtu(後述)に基づいて流体14の流速Vを算出する。また演算部222は、流速Vに管路11の断面積Aを積算し、流量Qを得る。
また、出力部223は、演算部222での演算結果を表示部26に表示させる。出力部223は、例えば、ペーパーレスレコーダのような外部記録装置に、演算結果を、通信経路を介して送信し、記録させてもよい。
次に、図1及び図3を参照して、第1の実施の形態に係る超音波流量計における流量測定について説明する。まず、図1を参照して、順方向伝搬時間tdの測定について説明する。図1中、超音波パルスの伝搬経路を矢印付き点線で示す。
まず、制御回路22の送信制御部221は、送信回路21に送信開始信号を出力する。この送信回路信号には、送信回路21に出力端子aからバースト信号を出力させる命令を含んでいる。これにより、送信回路21から上流側送信センサ12へ周波数fのバースト信号が入力される。
上流側送信センサ12において、バースト信号に応じて超音波発振子が振動し、周波数fの超音波パルスが発生される。超音波パルスは、管路11の壁を振動させて流体14に達する。流体14に達した超音波パルスは、流体14内を第1の受信センサ15に向って伝搬していく。
その後、超音波パルスは、管路11の内面に突き当り、超音波パルスにより管路11の壁が振動する。この振動は第1の受信センサ15の超音波振動子まで達し、超音波振動子が振動する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路23へ出力される。
超音波振動子の振動は、起電力を発生させるだけでなく、管路11の壁を再び振動させる。この振動は流体14まで達し、流体14内を伝搬していく。この結果、超音波パルスは、第1の受信センサ15で方向転換し、その入射角と略同じ角度で射出されたかのような挙動を示す。本明細書においては、このような超音波パルスの挙動を「反射」と呼ぶ。第1の受信センサ15で反射した超音波パルスは、流体14内を第2の受信センサ16に向って伝搬していく。
超音波パルスは、管路11の内面に突き当り、管路11の壁を振動させ、第2の受信センサ16の超音波振動子まで達する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路24へ出力される。
第2の受信センサ16においても、上述の第1の受信センサ15と同様に、超音波パルスの反射が起こる。第2の受信センサ16で反射した超音波パルスは、流体14内に戻って下流側送信センサ13に向って伝搬していく。このような結果、図1に示すように、超音波パルスは略N字形の伝搬経路で流体14内を伝搬する。
時間差測定回路25は、第1の受信センサ15の受信信号と、第2の受信センサ16の受信信号との時間差を測定する。時間差の測定には、例えば、相関法を用いる。相関法は、2つの受信信号の波形データの相互相関関数を計算し、その最大値に対応する時間シフト量から求める。時間差測定回路25は、測定した時間差を制御回路22へ出力する。制御回路22の演算部222(図2参照)は、上流側送信センサ12から超音波パルスを送信したときの時間差を、順方向伝搬時間tdとして取り扱う。
時間差測定回路25に入力される受信信号には、受信センサ15、16での超音波パルスの反射に起因する波形(A)の他に、管路11の内面での超音波パルスの反射に起因する波形(B)が含まれる。このため、時間差測定回路25は、これらを区別するためには、例えば、以下の方法が考えられる。超音波パルスは、管路11の内面に受信センサ15、16よりも先に突き当たる。このため、波形(B)は必ず波形(A)よりも先に現れる。したがって、時間差測定回路25は、先に現れた波形(B)ではなく、次に現われる波形(A)を時間差の測定に用いればよい。
なお、波形(A)及び(B)が重畳しないように、管路11の壁が薄いときは、管路11の外面と受信センサ15、16との間にスペーサを配置し、管路11の内面と受信センサ15、16との距離を大きくすることが好ましい。
次に、図3を参照して、逆方向伝搬時間tuの測定について説明する。図3は、第1の実施の形態に係る超音波流量計の概略構成図である。図3において、超音波パルス及び各種信号を、逆方向伝搬時間tuを測定するときを例に挙げて図示している。また、図3中、超音波パルスの伝搬経路を矢印付き点線で示す。
まず、制御回路22の送信制御部221は、送信回路21に送信開始信号を出力する。この送信回路信号には、送信回路21に出力端子bからバースト信号を出力させる命令を含んでいる。これにより、送信回路21から下流側送信センサ13へバースト信号が入力される。
下流側送信センサ13において、バースト信号に応じて超音波発振子が振動し、超音波パルスを発生させる。超音波パルスは、管路11の壁を振動させて流体14に達する。流体14に達した超音波パルスは、流体14内を第2の受信センサ16に向って伝搬していく。
次いで、超音波パルスは、管路11の内面に突き当る。超音波パルスにより管路11の壁が振動し、第2の受信センサ16の超音波振動子まで達する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路24へ出力される。
第2の受信センサ16において、図1を参照して説明したのと同様に、超音波パルスの反射が起こる。第2の受信センサ16で反射した超音波パルスは、流体14内を第1の受信センサ15に向って伝搬していく。
その後、超音波パルスは、管路11の内面に突き当り、管路11の壁を振動させる。この振動は第1の受信センサ15の超音波振動子まで達し、超音波振動子が振動する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路23へ出力される。
また、第1の受信センサ15においても超音波パルスの反射が起こる。第1の受信センサ15で反射した超音波パルスは、流体14内に戻って上流側送信センサ12に向って伝搬していく。この結果、下流側送信センサ13から第2の受信センサ16、第1の受信センサ15を経由し、上流側送信センサ12に至る超音波パルスの伝搬経路は、図1を参照して説明した順方向伝搬時間tdの測定のときの伝搬経路と方向が正反対であるが同じになる。
時間差測定回路25は、第1の受信センサ15の受信信号と、第2の受信センサ16の受信信号との時間差を測定する。時間差測定回路25は、測定した時間差を、制御回路22へ出力する。制御回路22の演算部222(図2参照)は、下流側送信センサ13から超音波パルスを送信したときの時間差を、逆方向伝搬時間tuとして取り扱う。
このようにして伝搬時間td、tuが得られる。制御回路22の演算部222は、伝搬時間td、tuに基づき、上記式4を用いて流体14の流速Vを算出し、さらに、流速Vに管路11の断面積Aを積算し、流量Qを得る。
以上説明したように、第1の実施の形態に係る超音波流量計10は、図1及び図3を参照して説明した伝搬時間td、tuの測定のときに、超音波パルスの伝搬経路は、受信センサ15、16の間であり、向きが反対であるが同一である。このため、上記式2、3における伝搬経路長Lが同じになるので、誤差が生じにくくなる。
また、送信センサ12、13のいずれか一方から送信された超音波パルスを、受信センサ15、16のいずれか一方で反射させ、他方で受信しているので、従来のように送受信兼用の超音波センサの間で超音波を送受信するときに比べ、超音波パルスの飛行距離を長くできる。超音波パルスの飛行距離が長くなるほど流速の測定時間が長くなり、超音波パルスが流体14から受ける影響が大きくなるので、流速感度を上げることができる。これにより、超音波流量計10の精度を向上できる。ここで、流速感度とは、流体の流速に対応した伝搬時間td、tuの時間差の発生量をいう。
また、超音波センサとして送受信兼用のものを用いる必要がなく、切り替えスイッチが不要である。また、送信回路21及び送信センサ12、13で構成される送信系回路と、受信センサ15、16及び増幅回路23、24で構成される受信系回路が独立しているので、送信回路21から出力されたバースト信号が増幅回路23、24に漏れ込み、ノイズが増加するおそれがない。このため、増幅回路23、24にクランプ回路を設ける必要がないため、ノイズにより計測する伝搬時間の変動を防ぐことが可能になる。この結果、超音波流量計10の回路設計の自由度が上がる。
また、超音波センサとして送受信兼用のものを用いる必要がなく、送信センサ12、13、又は、受信センサ15、16に最適化した特性を有する超音波センサを用いることができる。
第1に、送信センサ12、13の共振周波数と受信センサ15、16の反共振周波数とを一致させることができる。共振周波数及び反共振周波数は、超音波センサのインピーダンス特性を表す。共振周波数は、超音波センサのアドミッタンスが極大になる周波数であり、超音波センサの送信効率が大きくなる。
一方、反共振周波数は、超音波センサのアドミッタンスが極小になる周波数であり、超音波センサの受信効率が大きくなる。
したがって、送信センサ12、13の共振周波数と、受信センサ15、16の反共振周波数とを、一致させることが、超音波パルスの送受信の効率を高め、受信信号のS/N比を向上させるので、好ましい。これにより、バースト信号の周波数fを送信センサ12、13の共振周波数に設定すれば、送信感度を良くすることができる。また、周波数fは、受信センサ15、16の反共振周波数でもあるので、受信感度を良くすることができる。
なお、第1の実施の形態において、送信センサ12、13から送信する超音波パルスの周波数を、送信センサ12、13の共振周波数にすること、および、受信センサ15、16の反共振周波数にすること、のいずれか一方を行なってもよい。言い換えれば、第1の実施の形態において、送信センサ12、13の共振周波数と、受信センサ15、16の反共振周波数とを、一致させることは必須ではない。
また、送信センサ12、13と受信センサ15、16との指向性に差を付けることができる。すなわち、送信センサ12、13は、受信センサ15、16に向けて指向性を狭くして、送信感度を高める。一方、受信センサ15、16は、指向性を広くすることにより、斜め方向からの超音波パルスを効率よく受信信号に変換し、受信感度を高める。この結果、超音波パルスの送受信の効率を高め、受信信号のS/N比を向上できるので、好ましい。
すなわち、第1の実施の形態において、受信センサ15、16は、送信センサ12、13よりも指向性を広くすることが、測定精度を高くする観点で、好ましい。例えば、受信センサ15、16の指向性を45度とし、送信センサ12、13の指向性を30度とすることが特に好ましい。
(第2の実施の形態)
以下、第2の実施の形態に係る超音波流量計について説明する。図4は、第2の実施の形態に係る超音波流量計の概略構成図である。図4において、超音波パルス及び各種信号を、順方向伝搬時間td(後述)を測定するときを例に挙げて図示している。図4において、図1〜図3と同様の構成については、同一の符号を付与し、説明を省略する。
第2の実施の形態に係る超音波流量計40は、受信センサを3つ備えている点で第1の実施の形態と相違する。
送信センサ12、13の位置関係は、第1の実施の形態と異なり、管路11に対して同じ側に配置されている。
また、3つの受信センサ41、42、43が、管軸断面視において、流れ方向に沿って、送信センサ12、13の間に、上流側から順番に配置されている。以下、上流側の受信センサ41を単独で記載するときは第1の受信センサとする。また、中間の受信センサ42を単独で記載するときは第2の受信センサとする。また、下流側の受信センサ43を単独で記載するときは第3の受信センサとする。
また、受信センサ41、42、43は、隣り合うもの同士の間では、第1の実施の形態における受信センサ15、16と同じ関係が成り立つ。すなわち、第1の受信センサ41と第2の受信センサ42とは、送信センサ12、13のうち一つから発信された超音波パルスを受信できると共に、一つ隣の他の1つに向って超音波パルスを反射するように配置されている。
また、第2の受信センサ42と第3の受信センサ43とは、送信センサ12、13のうち一つから発信された超音波パルスを受信できると共に、超音波パルスを他の1つに向って反射するように配置されている。
上記説明において、第2の受信センサ42及び第3の受信センサ43が、送信センサ12、13のうち一つから発信された超音波パルスを受信できることには、超音波パルスが他の受信センサで反射した後に受信することを含む。
第2の実施の形態において、受信系回路は、第1の実施の形態と同様であり、受信センサ41、42、43のそれぞれに増幅回路44、45、46が電気的に接続されている。
図5は、第2の実施の形態に係る超音波流量計40における制御回路の概略構成図である。制御回路22は、送信制御部221、演算部222及び出力部223に加え、受信センサ選択部224を備えている。
受信センサ選択部224は、時間差測定回路25に対し、受信センサ41、42、43のうちいずれの2つを選択し、選択したものから出力された受信信号に基づいて時間差測定を行うように命令をするように構成されている。
次に、図4を参照して、第2の実施の形態に係る超音波流量計における流量測定について説明する。まず、図4を参照して、順方向伝搬時間tdの測定について説明する。図4中、超音波パルスの伝搬経路を矢印付き点線で示す。
まず、制御回路22の送信制御部221は、送信回路21に送信開始信号を出力する。これにより、送信回路21から上流側送信センサ12へ周波数fのバースト信号が入力される。
また、制御回路22の受信センサ選択部224にセンサ選択信号を出力する。センサ選択信号は、時間差測定回路25に、第1の受信センサ41及び第3の受信センサ43からの受信信号に基づいて時間差測定を行なわせる命令を含んでいる。
上流側送信センサ12は、バースト信号に応じて超音波パルスを送信する。送信された超音波パルスは、流体14内を第1の受信センサ41に向って伝搬していく。
その後、超音波パルスは、管路11の内面に突き当り、超音波パルスにより管路11の壁が振動する。この振動は第1の受信センサ41の超音波振動子まで達し、超音波振動子が振動する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路44へ出力される。
また、超音波パルスは、第1の受信センサ41で反射する。第1の受信センサ41で反射した超音波パルスは、流体14内を第2の受信センサ42に向って伝搬していく。
次いで、超音波パルスは、管路11の内面に突き当り、管路11の壁を振動させ、第2の受信センサ42の超音波振動子まで達する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路45へ出力される。
第2の受信センサ42においても、上述の第1の受信センサ41と同様に、超音波パルスの反射が起こる。第2の受信センサ42で反射した超音波パルスは、流体14内に戻って第3の受信センサ43に向かって伝搬していく。
その後、超音波パルスは、管路11の内面に突き当り、管路11の壁を振動させ、第3の受信センサ43の超音波振動子まで達する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路46へ出力される。
第3の受信センサ43においても、上述の第1、第2の受信センサ41、42と同様に、超音波パルスの反射が起こる。第3の受信センサ43で反射した超音波パルスは、流体14内に戻って下流側送信センサ13に向って伝搬していく。この結果、図4に示すように、超音波パルスは、上流側送信センサ12から第1の受信センサ41、第2の受信センサ42及び第3の受信センサ43を経由し、下流側送信センサ13に至る略W字形の伝搬経路で流体14内を伝搬する。
時間差測定回路25は、第1の受信センサ41の受信信号と、第3の受信センサ43の受信信号との時間差を測定する。時間差測定回路25は、測定した時間差を制御回路22へ出力する。制御回路22の演算部222(図5参照)は、上流側送信センサ12から超音波パルスを送信したときの時間差を、順方向伝搬時間tdとして取り扱う。
次に、逆方向伝搬時間tuの測定について説明する。まず、制御回路22の送信制御部221は、送信回路21に送信開始信号を出力する。この送信回路信号には、送信回路21に出力端子bからバースト信号を出力させる命令を含んでいる。これにより、送信回路21から下流側送信センサ13へバースト信号が入力される。
下流側送信センサ13において、バースト信号に応じて超音波パルスを発信する。超音波パルスは、流体14内を第3の受信センサ43に向って伝搬していく。
次いで、超音波パルスは、管路11の内面に突き当る。超音波パルスにより管路11の壁が振動し、第3の受信センサ43の超音波振動子まで達する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路46へ出力される。
第3の受信センサ43において、超音波パルスの反射が起こる。第2の受信センサ42で反射した超音波パルスは、流体14内を第2の受信センサ42に向って伝搬していく。
さらに、超音波パルスは、管路11の内面に突き当る。超音波パルスにより管路11の壁が振動し、第2の受信センサ42の超音波振動子まで達する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路45へ出力される。
第2の受信センサ42において、超音波パルスの反射が起こる。第2の受信センサ42で反射した超音波パルスは、流体14内を第1の受信センサ41に向って伝搬していく。
その後、超音波パルスは、管路11の内面に突き当り、管路11の壁を振動させる。この振動は第1の受信センサ41の超音波振動子まで達し、超音波振動子が振動する。このとき、超音波振動子で起電力が発生し、受信信号が増幅回路23へ出力される。
また、第1の受信センサ41においても超音波パルスの反射が起こる。反射した超音波パルスは、流体14内に戻って上流側送信センサ12に向って伝搬していく。この結果、下流側送信センサ13から、第3の受信センサ43、第2の受信センサ42、及び、第1の受信センサ41を経由し、上流側送信センサ12に至る超音波パルスの伝搬経路は、図4を参照して説明した順方向伝搬時間tdの測定のときの伝搬経路と方向が正反対であるが同じになる。
時間差測定回路25は、第3の受信センサ43の受信信号と、第1の受信センサ41の受信信号との時間差を測定する。時間差測定回路25は、測定した時間差を、制御回路22へ出力する。制御回路22の演算部222(図5参照)は、下流側送信センサ13から超音波パルスを送信したときの時間差を、逆方向伝搬時間tuとして取り扱う。
このようにして伝搬時間td、tuが得られる。制御回路22の演算部222は、伝搬時間td、tuに基づき、上記式4を用いて流体14の流速Vを算出し、さらに、流速Vに管路11の断面積Aを積算し、流量Qを得る。
ここで、式4における伝搬経路長は、第1及び第3の受信センサ41、43の間の伝搬経路の長さに相当する。したがって、第1の実施の形態に係る超音波流量計10に比べ、伝搬経路長は2倍になる。
第1の実施の形態に係る超音波流量計10では、伝搬経路が、従来の超音波流量計の配置方法のZ型に相当する。これに対し、第2の実施の形態に係る超音波流量計40では、従来の配置方法のV法(反射法)と同じになる。
第2の実施の形態に係る超音波流量計40は、受信センサ選択部224によって時間差測定回路25が用いる2つの受信センサの組み合わせを変更すれば、超音波センサの配置方法を変更することができる。すなわち、Z法(透過法)であれば、第1の受信センサ41及び第2の受信センサ42、又は、第2の受信センサ42及び第3の受信センサ43の組み合わせを使用する。一方、V法であれば、上述のように、第1の受信センサ41及び第3の受信センサ43の組み合わせを使用する。
第2の実施の形態に係る超音波流量計40によれば、受信センサ41、42、43の取り付け位置を変更することなしに、Z法及びV法を任意に切り替えて、流体14の流量Qを測定することができる。
したがって、超音波流量計40は、測定環境の違いに応じて、Z法及びV法のいずれかを適宜選択して、流体14の流量Qをより高精度で測定できるという利点がある。Z法は、V法に比べて流体14内の粒子又は気泡によって生じる減衰による影響を少なくしたり、流体14内の偏流又は旋回流の影響を少なくできる。一方、V法は、Z法に比べ、流れの隔たりの影響による誤差を軽減できるという利点がある。流れの隔たりとは、流体14の流れの成分が管路11と平行な成分とは別の成分を含むこという。流れの隔たりがあるとは、流れが管路11を管軸断面で見たときに不均一であること意味する。
第2の実施の形態に係る超音波流量計40では、3つの受信センサ41、42、43を用いることにより、超音波センサの配置方法のうちZ法及びV法に対応している。本発明はこれに限定されず、例えば、5つの受信センサを用いて、Z法、V法及びW法に対応することが可能である。
(第3の実施の形態)
以下、第3の実施の形態に係る超音波流量計について説明する。図6は、第3の実施の形態に係る超音波流量計の概略構成図である。図6において、超音波パルス及び各種信号を、順方向伝搬時間td(後述)を測定するときを例に挙げて図示している。図6において、図1〜図3と同様の構成については、同一の符号を付与し、説明を省略する。
第3の実施の形態に係る超音波流量計60は、本発明のピーク値検出部の一例であるピーク検出回路61、62を、増幅回路23、24の出力側に電気的に接続している点で、第1の実施の形態に係る超音波流量計10と相違している。
ピーク検出回路61、62は、受信センサ15、16における受信信号の大きさを表す量としてそのピーク値を検出し、制御回路22の演算部222(図2参照)へ出力するように構成されている。
ピーク値は超音波パルスの振幅に対応している。そして、超音波パルスの振幅は、流体14の密度が高いほど大きくなり、密度が低いほど小さくなる。したがって、同一の流体14であれば圧力が高いほど振幅は大きくなる。
このような流体の圧力と超音波パルスの振幅との関係を利用すれば、ピーク値から流体の圧力値を求めることができる。
しかしながら、流体14中における超音波の伝わり方は、流体14の温度に影響を受ける。したがって、超音波パルスの振幅は、流体14の温度に影響を受ける。このため、ピーク検出回路により、一つの超音波センサにおける受信信号からピーク値を検出し、それに対応する圧力値を求める場合、流体14の温度を実測し、得られた温度を用いて補正を行うことが考えられるが、超音波流量計60のコストが高くなるという不利益がある。
第3の実施の形態に係る超音波流量計60において、演算部222は、受信センサ15、16における受信信号から得られた2つのピーク値の比(以下、受信信号比と記載する)を算出する。この受信信号比は、受信センサ15、16における超音波パルスの振幅比に相当する。受信センサ15、16のそれぞれにおいて、超音波パルスの振幅は、流体14の温度の影響を同様に受けている。このため2つの振幅の間で比をとれば、温度の影響を失くすことができる。
受信信号比から流体14の圧力値を求める方法は、特に限定されないが、例えば、次のような方法が考えられる。例えば、実験により、流体14の圧力値を横軸、受信信号比を縦軸にそれぞれとったグラフに、複数の測定値をプロットして検量線を作成し、これを演算部222(図2参照)の記憶部(不図示)に記憶しておく。超音波流量計60で実際に受信信号比を測定し、検量線を用いて、受信信号比に対応する流体14の圧力値を求めることができる。
この他の方法としては、上記検量線を関数化し、当該関数に受信信号比の実測値を代入して流体14の圧力値を算出してもよい。また、流体14の圧力値と受信信号比との関係を表すテーブルを演算部222(図2参照)の記憶部(不図示)に記憶しておき、受信信号比の実測値からテーブルを参照し、これに対応する流体14の圧力値を求めることもできる。
上述のように、第3の実施の形態に係る超音波流量計60は、ピーク検出回路61、62を用いて、流体14の圧力を流体14の温度による影響を抑えて測定できるので、超音波流量計60、流体14の圧力を正確に測定できる。
また、第3の実施の形態に係る超音波流量計60は、得られた流体14の圧力値を用いて流量Qの値を補正すれば、流体14の温度による影響をなくしながら、流量Qの測定精度を向上できる。
流体14の圧力値による流量Qの補正は、公知の方法により行うことができる。例えば、以下の通りに行うことができる。制御回路22の演算部222(図2参照)の記憶部(不図示)に補正係数テーブルを記憶しておく。補正係数テーブルには、圧力値ごとに各流速の補正係数が記憶されている。例えば、圧力値をテーブルの列にとり、流速をテーブルの行にとり、各圧力値及び各流速に対応する行と列との交差する位置に補正係数が入っている。
超音波流量計60において、演算部222が、流体14の流速V及び圧力値を求め、補正係数テーブルを参照し、流速V及び圧力値に対応する補正係数を求める。流速Vを補正係数で補正する。
なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている構成要素の大きさや形状、機能などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。
例えば、上記実施の形態では、受信センサを2個及び3個用いた場合を例に挙げて説明したが、受信センサを4個以上用いてもよい。
また、第2の実施の形態では、第1〜第3の受信センサ41、42、43を、管路11の垂直断面において、第2の受信センサ42を0時位置とすると、第1の受信センサ42及び第3の受信センサ43を6時位置にそれぞれ配置している。しかし、本発明は、このような配置に限定されない。例えば、第1の受信センサ41を8時位置に、第2の受信センサ42を0時位置に、第3の受信センサ43を4時位置に、それぞれ配置しても構わない。このような位置関係も一例に過ぎず、本発明を限定するものではない。
また、上記実施の形態では、クランプオン形の超音波流量計を例に挙げて説明したが、本発明は、管路に超音波センサを内装するスプール形にも適用できる。この場合、受信センサの表面を管路内に露出させ、受信センサの表面で超音波パルスを直接反射させることができる。
また、上記第3の実施の形態では、第1の実施の形態に係る超音波流量計10(図1、図3参照)に、ピーク検出回路61、62(図6参照)を追加した構成を例に挙げて説明した。しかし、これに限定されず、第2の実施の形態に係る超音波流量計40に第3の実施の形態におけるピーク検出回路61、62を組み合わせてもよい。
本発明は、回路設計の自由度が高く、高感度で且つ誤差が少ない超音波流量計を提供することができるという効果を発揮し、あらゆる分野で使用される超音波流量計に適用して好適である。
10、40、60 超音波流量計
11 管路
12 上流側送信センサ(送信センサ)
13 下流側送信センサ(送信センサ)
14 流体
15、41 第1の受信センサ(受信センサ)
16、42 第2の受信センサ(受信センサ)
41 第3の受信センサ(受信センサ)
21 送信回路
22 制御回路
23、23、45、46 増幅回路
25 時間差測定回路(時間差測定部)
26 表示部
61、61 ピーク検出回路
221 送信制御部
222 演算部
223 出力部
224 受信センサ選択部

Claims (4)

  1. 管路内の流体に向って超音波パルスを送信する上流側送信センサ及び下流側送信センサと、
    前記管路の、前記上流側送信センサと前記下流側送信センサとの間に、前記流体の流れ方向に沿って順次取り付けられた、少なくとも2つの受信センサと、
    前記少なくとも2つの受信センサのうち、いずれか2つにおける受信信号の時間差を測定する時間差測定部と、
    前記上流側送信センサから前記超音波パルスを送信したときの前記時間差を順方向伝搬時間とし、かつ、前記下流側送信センサから前記超音波パルスを送信したときの前記時間差を逆方向伝搬時間とし、前記順方向伝搬時間及び前記逆方向伝搬時間に基づいて前記流体の流量を算出する演算部と、
    を具備し、
    前記少なくとも2つの受信センサは、各々、入射された前記超音波パルスを受信して前記受信信号を出力すると共に、一つ隣に配置された他の前記受信センサに向って前記超音波パルスを反射する
    ことを特徴とする超音波流量計。
  2. 前記上流側送信センサ及び前記下流側送信センサの共振周波数と前記受信センサの反共振周波数とを一致させたことを特徴とする請求項1に記載の超音波流量計。
  3. 前記受信センサは、前記上流側送信センサ及び前記下流側送信センサよりも指向性を広くしたことを特徴とする請求項1又は請求項2に記載の超音波流量計。
  4. 前記少なくとも2つの受信センサのうちいずれか2つにおける前記受信信号のピーク値を検出するピーク値検出部をさらに具備し、
    前記演算部は、前記ピーク値検出部が検出した2つの前記ピーク値の比を用いて前記流体の圧力を求めることを特徴とする請求項1に記載の超音波流量計。
JP2018175164A 2018-09-19 2018-09-19 超音波流量計 Active JP7151311B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018175164A JP7151311B2 (ja) 2018-09-19 2018-09-19 超音波流量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018175164A JP7151311B2 (ja) 2018-09-19 2018-09-19 超音波流量計

Publications (2)

Publication Number Publication Date
JP2020046315A true JP2020046315A (ja) 2020-03-26
JP7151311B2 JP7151311B2 (ja) 2022-10-12

Family

ID=69901124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018175164A Active JP7151311B2 (ja) 2018-09-19 2018-09-19 超音波流量計

Country Status (1)

Country Link
JP (1) JP7151311B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754032A (zh) * 2023-08-22 2023-09-15 青岛鼎信通讯科技有限公司 一种超声水表及其自校准方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003252A (en) * 1974-08-16 1977-01-18 The Institutes Of Medical Sciences Acoustical wave flowmeter
US4495822A (en) * 1982-12-23 1985-01-29 Shell Oil Company Fluid flow meter
US4628725A (en) * 1985-03-29 1986-12-16 Schlumberger Technology Corporation Apparatus and method for analyzing a fluid that includes a liquid phase, contained in a tubular conduit
JPH1183579A (ja) * 1997-07-01 1999-03-26 Peus Syst Gmbh 管内を流れるガス状媒体の体積流を時間的に高分解能で測定する装置
JPH11108717A (ja) * 1997-10-07 1999-04-23 Matsushita Electric Ind Co Ltd 超音波伝搬時間の測定方法とそれを用いた超音波流量計測装置
JPH11118551A (ja) * 1997-10-15 1999-04-30 Matsushita Electric Ind Co Ltd 超音波伝搬時間の測定方法とこれを用いた超音波流量計測装置
JP2001004416A (ja) * 1999-06-22 2001-01-12 Fuji Electric Co Ltd 超音波ガスメータ
JP2001194198A (ja) * 2000-01-13 2001-07-19 Natl Inst Of Advanced Industrial Science & Technology Meti 超音波流量計
JP2001526787A (ja) * 1997-05-28 2001-12-18 デグサ−ヒュルス アクチェンゲゼルシャフト 密度および質量流量の測定方法
JP2003315355A (ja) * 2002-04-23 2003-11-06 Koden Electronics Co Ltd 流速測定装置および吐出量測定装置
JP2012127654A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 超音波計測装置
CN102589627A (zh) * 2012-02-23 2012-07-18 北京理工大学 一种用于超声波流量计的绝对传播时间测量方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4003252A (en) * 1974-08-16 1977-01-18 The Institutes Of Medical Sciences Acoustical wave flowmeter
US4495822A (en) * 1982-12-23 1985-01-29 Shell Oil Company Fluid flow meter
US4628725A (en) * 1985-03-29 1986-12-16 Schlumberger Technology Corporation Apparatus and method for analyzing a fluid that includes a liquid phase, contained in a tubular conduit
JP2001526787A (ja) * 1997-05-28 2001-12-18 デグサ−ヒュルス アクチェンゲゼルシャフト 密度および質量流量の測定方法
JPH1183579A (ja) * 1997-07-01 1999-03-26 Peus Syst Gmbh 管内を流れるガス状媒体の体積流を時間的に高分解能で測定する装置
JPH11108717A (ja) * 1997-10-07 1999-04-23 Matsushita Electric Ind Co Ltd 超音波伝搬時間の測定方法とそれを用いた超音波流量計測装置
JPH11118551A (ja) * 1997-10-15 1999-04-30 Matsushita Electric Ind Co Ltd 超音波伝搬時間の測定方法とこれを用いた超音波流量計測装置
JP2001004416A (ja) * 1999-06-22 2001-01-12 Fuji Electric Co Ltd 超音波ガスメータ
JP2001194198A (ja) * 2000-01-13 2001-07-19 Natl Inst Of Advanced Industrial Science & Technology Meti 超音波流量計
JP2003315355A (ja) * 2002-04-23 2003-11-06 Koden Electronics Co Ltd 流速測定装置および吐出量測定装置
JP2012127654A (ja) * 2010-12-13 2012-07-05 Panasonic Corp 超音波計測装置
CN102589627A (zh) * 2012-02-23 2012-07-18 北京理工大学 一种用于超声波流量计的绝对传播时间测量方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116754032A (zh) * 2023-08-22 2023-09-15 青岛鼎信通讯科技有限公司 一种超声水表及其自校准方法
CN116754032B (zh) * 2023-08-22 2023-11-10 青岛鼎信通讯科技有限公司 一种超声水表及其自校准方法

Also Published As

Publication number Publication date
JP7151311B2 (ja) 2022-10-12

Similar Documents

Publication Publication Date Title
US7069793B2 (en) Ultrasonic flow meter and ultrasonic sensor
JP5371066B2 (ja) 超音波センサ及びこれを用いた超音波流量計
US8505391B1 (en) Flange mounted ultrasonic flowmeter
JP2011179940A (ja) 超音波流量計
EA006792B1 (ru) Ультразвуковой способ измерения расхода жидких и/или газообразных сред и устройство для его осуществления
JP4535065B2 (ja) ドップラー式超音波流量計
JPH109914A (ja) 超音波流量計
JP7151311B2 (ja) 超音波流量計
AU2015249080A1 (en) Apparatus and a method for providing a time measurement
JP5827809B2 (ja) 超音波探触子及び管状対象物の周長測定方法
RU2692824C1 (ru) Ультразвуковое устройство измерения расхода и способ определения скорости потока
US3204457A (en) Ultrasonic flowmeter
CN113167618A (zh) 用于夹持式超声流量测量点的超声换能器装置和夹持式超声流量测量点以及用于将夹持式超声流量测量点投入运行的方法
JP3136002B2 (ja) 超音波流量計
WO2022059540A1 (ja) 伝搬時間測定装置
JP2005345445A (ja) 超音波流量計
JP2007322186A (ja) 超音波流量計
RU2284015C2 (ru) Способ измерения расхода потока и устройство для его осуществления
JPH09287990A (ja) 超音波流量計
JP2883057B2 (ja) 超音波送受波器
EP3676573A1 (en) Acoustic measurement of a fluid flow
JP3973920B2 (ja) クランプオン型超音波流量計
JP2009270882A (ja) 超音波流量計
JP2006138667A (ja) 超音波流量計および流体漏洩検知装置
JP2004340622A (ja) 管状もしくは溝状の流路を移動する流体の流量の測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220912

R150 Certificate of patent or registration of utility model

Ref document number: 7151311

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150