JP2020044839A - Thermoplastic resin film and electric/electronic component including the same, and insulation material - Google Patents

Thermoplastic resin film and electric/electronic component including the same, and insulation material Download PDF

Info

Publication number
JP2020044839A
JP2020044839A JP2019166024A JP2019166024A JP2020044839A JP 2020044839 A JP2020044839 A JP 2020044839A JP 2019166024 A JP2019166024 A JP 2019166024A JP 2019166024 A JP2019166024 A JP 2019166024A JP 2020044839 A JP2020044839 A JP 2020044839A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
layer
resin film
film
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019166024A
Other languages
Japanese (ja)
Inventor
山内 英幸
Hideyuki Yamauchi
英幸 山内
葉子 若原
Yoko Wakahara
葉子 若原
高橋 健太
Kenta Takahashi
健太 高橋
青山 滋
Shigeru Aoyama
滋 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2020044839A publication Critical patent/JP2020044839A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a thermoplastic resin film that is excellent in heat resistance, electric insulation and/or heat insulation and film-making stability as well as has reduced defects and excellent quality.SOLUTION: A thermoplastic resin film has a polyarylene sulfide resin as the main component, including a multilayer structure of two layers or more, where at least one layer of them is a layer (I) having holes, and a melting point of 275°C or lower.SELECTED DRAWING: None

Description

本発明は、熱可塑性樹脂フィルムに関する。   The present invention relates to a thermoplastic resin film.

ポリアリーレンスルフィド、ポリエーテルイミド、ポリエチレンナフタレート、ポリアミド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂などに代表される熱可塑性樹脂からなるフィルムや不織布は耐熱性・電気絶縁性・低吸湿性、高温下での寸法安定性および耐薬品性に優れることから、電気・電子部品、電池用部材、機械部品および自動車部品の絶縁材や断熱材として好適に使用されている。
特に、ポリフェニレンスルフィド(以下、PPSと略称することがある。)に代表されるポリアリーレンスルフィドからなるフィルムは、耐熱性、難燃性の特性を活かし、フィルターやセパレータへの適用や絶縁体・断熱材・回路基盤用基材として適用検討が進められている(例えば特許文献1、2)。これらの用途では電気絶縁性・低誘電特性といった電気特性について、近年高い水準が要求される傾向にあり、これらの特性を向上させる観点からフィルムを多孔化する手法が検討されている。フィルムを多孔化するには低融点物を混合するといった製法(例えば特許文献3)や、Tダイを用いて溶融樹脂を押出した直後のシートをドラフトにて微延伸し多孔化する手法があげられているが(例えば特許文献4)、低融点を含むため口金汚れが発生する場合や、滞留安定性が低く生産性が劣るといった問題があった。
また、ポリアリーレンスルフィド樹脂などの熱可塑性樹脂に無機粒子を添加して2軸延伸することで空孔を形成する手法が提案されているが(特許文献5)、無機粒子を多量に添加するために、空孔間距離が短くなり空孔が連結し目視できる欠点が発生するという問題があった。
Films and nonwoven fabrics made of thermoplastic resins represented by polyarylene sulfide, polyetherimide, polyethylene naphthalate, polyamide, polyetheretherketone, liquid crystal polymer, fluororesin, etc. have heat resistance, electrical insulation, low moisture absorption, and high temperature. Because of its excellent dimensional stability and chemical resistance underneath, it is suitably used as an insulating material and a heat insulating material for electric / electronic parts, battery members, mechanical parts, and automobile parts.
In particular, a film made of polyarylene sulfide represented by polyphenylene sulfide (hereinafter, sometimes abbreviated as PPS) makes use of its heat resistance and flame retardant properties, and can be applied to filters and separators, and to insulators and heat insulation. Application studies on materials and substrates for circuit boards are underway (for example, Patent Documents 1 and 2). In these applications, a high level of electrical properties such as electrical insulation and low dielectric properties has recently been required, and techniques for making the film porous have been studied from the viewpoint of improving these properties. In order to make the film porous, a method of mixing a low melting point material (for example, Patent Document 3) or a method of finely stretching the sheet immediately after extruding the molten resin using a T-die by drafting to make the film porous may be used. However, there are problems such as the occurrence of stains on the mouthpiece due to the low melting point and the low retention stability and poor productivity.
In addition, a method has been proposed in which inorganic particles are added to a thermoplastic resin such as a polyarylene sulfide resin and biaxially stretched to form pores (Patent Document 5). In addition, there is a problem that the distance between the holes becomes short, the holes are connected, and a defect that can be visually observed occurs.

特開2010−106408号公報JP 2010-106408 A 特開平10−259561号公報JP-A-10-259561 特開2015−13913号公報JP 2015-13913 A 特開昭58−67733号公報JP-A-58-67733 特開2015−98577号公報JP-A-2005-98577

本発明の課題は、上記した問題を解決することにある。耐熱性、電気絶縁性および/または断熱性および製膜安定性に優れるだけでなく欠点の少なく品位に優れる熱可塑性樹脂フィルムを提供することである。   An object of the present invention is to solve the above problems. An object of the present invention is to provide a thermoplastic resin film which is excellent not only in heat resistance, electric insulation and / or heat insulation and film formation stability but also with few defects and excellent quality.

本発明の熱可塑性樹脂フィルムは、上記課題を解決するために次の構成を有する。
(1)ポリアリーレンスルフィド樹脂を主成分としてなる熱可塑性樹脂フィルムであって、2層以上の積層構成を有し、構成する層の少なくとも1層は空孔を有し、かつ融点が275℃以下の層(I)であることを特徴とする熱可塑性樹脂フィルム。
(2)前記熱可塑性樹脂フィルムに直径50μm以上のクレーター状の欠点が20個/m以下であることを特徴とする(1)に記載の熱可塑性樹脂フィルム。
(3)前記熱可塑性樹脂フィルムの層(I)以外の層(II)の配向パラメーターが0.8〜1.4であることを特徴とする(1)又は(2)に記載の熱可塑性樹脂フィルム。
(4)(1)〜(3)のいずれかに記載の熱可塑性樹脂フィルムを用いた電気・電子部品。
(5)(1)〜(3)のいずれかに記載の熱可塑性樹脂フィルムを用いた絶縁材。
(6)フィルムが二軸延伸されていることを特徴とする、(1)に記載の熱可塑性樹脂フィルム。
The thermoplastic resin film of the present invention has the following configuration in order to solve the above problems.
(1) A thermoplastic resin film containing a polyarylene sulfide resin as a main component, having a laminated structure of two or more layers, at least one of the constituent layers having pores, and a melting point of 275 ° C. or less. A thermoplastic resin film characterized by being the layer (I).
(2) a thermoplastic resin film according to (1), wherein the thermoplastic resin film to at least the diameter 50μm crater-like defect is 20 / m 2 or less.
(3) The thermoplastic resin according to (1) or (2), wherein the orientation parameter of the layer (II) other than the layer (I) of the thermoplastic resin film is 0.8 to 1.4. the film.
(4) An electric / electronic component using the thermoplastic resin film according to any one of (1) to (3).
(5) An insulating material using the thermoplastic resin film according to any one of (1) to (3).
(6) The thermoplastic resin film according to (1), wherein the film is biaxially stretched.

本発明の熱可塑性樹脂フィルムは耐熱性・電気絶縁性および/または断熱性に優れることから、電気・電子機器、電池用部材、機械部品および自動車部品や絶縁材、断熱材、テープ、回路基盤用基材、印刷用トナー攪拌子用フィルム、離型用フィルムとして好適に用いることができる。 Since the thermoplastic resin film of the present invention is excellent in heat resistance, electric insulation and / or heat insulation, it is used for electric / electronic devices, battery members, mechanical parts and automobile parts, insulating materials, heat insulating materials, tapes and circuit boards. It can be suitably used as a substrate, a film for a toner stirring bar for printing, and a film for release.

本発明の熱可塑性樹脂フィルムは、ポリアリーレンスルフィド樹脂を主成分とする樹脂からなる。
ここで主成分とは、熱可塑性樹脂フィルムを構成する原料の80質量%以上をポリアリーレンスルフィド樹脂が占めることをいう。
本発明で用いるポリアリーレンスルフィド樹脂とは、−(Ar−S)−の繰り返し単位を有するホモポリマーあるいはコポリマーである。Arとしては下記の式(1)〜式(11)などであらわされる単位などがあげられる。
The thermoplastic resin film of the present invention comprises a resin containing a polyarylene sulfide resin as a main component.
Here, the main component means that the polyarylene sulfide resin accounts for 80% by mass or more of the raw material constituting the thermoplastic resin film.
The polyarylene sulfide resin used in the present invention is a homopolymer or a copolymer having a repeating unit of-(Ar-S)-. Examples of Ar include units represented by the following formulas (1) to (11).

Figure 2020044839
Figure 2020044839

(R1,R2は、水素、アルキル基、アルコキシ基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい)
本発明の熱可塑性樹脂フィルムは、2層以上の積層構成を有する。空孔を有する層(I)以外の層(II)に用いるポリアリーレンスルフィド樹脂の繰り返し単位としては、上記の式(1)で表されるp−アリーレンスルフィド単位が好ましく、これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンなどが挙げられ、特に好ましいp−アリーレンスルフィド単位としては、フィルム物性と経済性の観点から、p−フェニレンスルフィド単位が好ましく例示される。
(R1 and R2 are substituents selected from hydrogen, an alkyl group, an alkoxy group, and a halogen group, and R1 and R2 may be the same or different.)
The thermoplastic resin film of the present invention has a laminated structure of two or more layers. As the repeating unit of the polyarylene sulfide resin used in the layer (II) other than the layer (I) having a vacancy, a p-arylene sulfide unit represented by the above formula (1) is preferable. Examples thereof include polyphenylene sulfide, polyphenylene sulfide sulfone, and polyphenylene sulfide ketone. As a particularly preferable p-arylene sulfide unit, a p-phenylene sulfide unit is preferably exemplified from the viewpoint of film physical properties and economic efficiency.

本発明の熱可塑性樹脂フィルムは、空孔を有する層(I)と層(I)とは異なる組成の層(II)をそれぞれ少なくとも1層以上を含む構成を有する。   The thermoplastic resin film of the present invention has a structure including at least one or more layers (I) each having a hole and a layer (II) having a composition different from that of the layer (I).

本発明の熱可塑性樹脂フィルム層(II)に用いるポリアリーレンスルフィド樹脂とは、主要構成単位として下記構造式で示されるp−アリーレンスルフィド単位を全繰り返し単位の97モル%以上で構成されていることが好ましく、より好ましくは、98モル%以上である。かかる主成分が97モル%未満では、結晶性やガラス転移温度などが低くなり、耐熱性、電気特性、耐薬品性が低下する場合がある。   The polyarylene sulfide resin used in the thermoplastic resin film layer (II) of the present invention means that a p-arylene sulfide unit represented by the following structural formula is constituted by 97 mol% or more of all repeating units as a main structural unit. Is more preferable, and more preferably 98 mol% or more. If the content of such a main component is less than 97 mol%, the crystallinity, the glass transition temperature, and the like will be low, and the heat resistance, electric characteristics, and chemical resistance may be reduced.

Figure 2020044839
Figure 2020044839

また、繰り返し単位の3モル%未満であれば共重合可能なスルフィド結合を含有する単位が含まれていても差し支えない。このような繰り返し単位としては、例えば、3官能単位、エーテル単位、スルホン単位、ケトン単位、メタ結合単位、アルキル基等の置換基を有するアリール単位、ビフェニル単位、ターフェニレン単位、ビニレン単位、カーボネート単位などが具体例としてあげられ、このうち1つまたは2つ以上共存させて構成することができる。この場合、該構成単位は、ランダム共重合、ブロック共重合のいずれの形態でも差し支えない。   Further, as long as it is less than 3 mol% of the repeating unit, a unit containing a copolymerizable sulfide bond may be contained. Examples of such a repeating unit include a trifunctional unit, an ether unit, a sulfone unit, a ketone unit, a meta bonding unit, an aryl unit having a substituent such as an alkyl group, a biphenyl unit, a terphenylene unit, a vinylene unit, and a carbonate unit. Specific examples are given, and one or two or more of them can coexist. In this case, the structural unit may be in any form of random copolymerization or block copolymerization.

本発明の熱可塑性樹脂フィルム層(II)に用いるポリアリーレンスルフィド樹脂の分子量は重量平均分子量で40,000以上であることが好ましく、40,00〜80,000であることがより好ましく、45,000〜75,000であることがさらに好ましい。分子量を上記範囲とすることで、分子鎖の絡み合いが増えることから延伸性や優れた機械特性が発現する。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。
本発明の熱可塑性樹脂フィルム層(II)は無機粒子を含んでもよいし、含まなくてもよい。
The molecular weight of the polyarylene sulfide resin used in the thermoplastic resin film layer (II) of the present invention is preferably 40,000 or more in weight average molecular weight, more preferably 40,000 to 80,000, more preferably 45,000 to 80,000. More preferably, it is from 000 to 75,000. When the molecular weight is in the above range, the entanglement of the molecular chains increases, so that stretchability and excellent mechanical properties are exhibited. The weight average molecular weight can be measured by gel permeation chromatography (GPC).
The thermoplastic resin film layer (II) of the present invention may or may not contain inorganic particles.

本発明の熱可塑性樹脂フィルム層(II)に粒子が含まれる場合、その粒子の濃度は層(II)に対して0.01〜10質量%であることが好ましく、0.01〜5質量%がより好ましい。上記の濃度とすることで、フィルムを延伸する際に層(II)の支持体としての機能が発現できる。層(II)に含まれる粒子の濃度が10質量%を上回ると、延伸時にフィルムにかかる応力に対してフィルムが耐えることができず破断しやすくなり、製膜安定性が損なわれる場合がある。   When particles are contained in the thermoplastic resin film layer (II) of the present invention, the concentration of the particles is preferably 0.01 to 10% by mass relative to the layer (II), and 0.01 to 5% by mass. Is more preferred. With the above concentration, the function as a support of the layer (II) can be exhibited when the film is stretched. When the concentration of the particles contained in the layer (II) is more than 10% by mass, the film cannot withstand the stress applied to the film during stretching, so that the film is easily broken, and the film forming stability may be impaired.

本発明の熱可塑性樹脂フィルム層(I)の融点は275℃以下である。熱可塑性樹脂フィルム層(I)の融点を上記の範囲とすることで、後述する延伸条件で空孔を形成する際に、一部分が溶融もしくは軟化し、延伸応力を吸収し空孔の連結を防ぐため、高い空孔率を保持したまま欠点の増大抑制や製膜時のフィルム破れを抑制することができる。融点が275℃より高いと欠点が増大する場合や製膜安定性が低下する場合がある。また、耐熱性の低下や製膜安定性の観点から融点の下限は230℃以上であることが好ましい。熱可塑性樹脂フィルム層(I)の融点は、ポリアリーレンスルフィド樹脂を前述する組成にて重合することで制御できる。熱可塑性樹脂フィルム層(I)の融点はより好ましくは245℃以上275℃以下、さらに好ましくは245℃以上260℃以下である。熱可塑性樹脂フィルム層(I)の融点は、後述する手法を用いて測定できる。   The melting point of the thermoplastic resin film layer (I) of the present invention is 275 ° C. or less. By setting the melting point of the thermoplastic resin film layer (I) within the above range, when forming the pores under the stretching conditions described later, a part of the pores is melted or softened, the stretching stress is absorbed, and the connection of the pores is prevented. For this reason, it is possible to suppress an increase in defects and breakage of the film during film formation while maintaining a high porosity. If the melting point is higher than 275 ° C., the number of defects may increase or the stability of film formation may decrease. Further, the lower limit of the melting point is preferably 230 ° C. or more from the viewpoints of heat resistance reduction and film formation stability. The melting point of the thermoplastic resin film layer (I) can be controlled by polymerizing the polyarylene sulfide resin with the above-described composition. The melting point of the thermoplastic resin film layer (I) is more preferably from 245 ° C to 275 ° C, even more preferably from 245 ° C to 260 ° C. The melting point of the thermoplastic resin film layer (I) can be measured using a method described later.

本発明の熱可塑性樹脂フィルム層(I)の融点を上記範囲とする方法としては、層(I)に共重合ポリアリーレンスルフィド樹脂を用いるのが好ましく、好ましくは80〜95モル%以下がポリ‐p‐アリーレンスルフィドユニットで構成されてなり、より好ましくは85〜92モル%以下であることにより、上記範囲の融点を有するポリアリーレンスルフィド樹脂を得ることが可能となる。かかる成分が80モル%未満では、結晶性が低下し、耐熱性、製膜安定性が低下する場合があり、95モル%を超えると、熱可塑性樹脂フィルム層(I)に用いるポリアリーレンスルフィド樹脂の融点を充分低下させることができず欠点が増大する場合がある。   As a method for keeping the melting point of the thermoplastic resin film layer (I) of the present invention in the above range, it is preferable to use a copolymerized polyarylene sulfide resin for the layer (I), and preferably 80 to 95 mol% or less is a poly-arylene sulfide resin. By being composed of a p-arylene sulfide unit, more preferably 85 to 92 mol%, it is possible to obtain a polyarylene sulfide resin having a melting point in the above range. If the content of such a component is less than 80 mol%, the crystallinity may decrease, and the heat resistance and the film formation stability may decrease. If the content exceeds 95 mol%, the polyarylene sulfide resin used for the thermoplastic resin film layer (I) may be used. May not be able to sufficiently lower the melting point, thereby increasing the number of defects.

好ましい共重合単位は、   Preferred copolymer units are

Figure 2020044839
Figure 2020044839

Figure 2020044839
Figure 2020044839

Figure 2020044839
Figure 2020044839

(ここでXは、アルキレン、CO、SO単位を示す。) (Here, X represents an alkylene, CO, or SO 2 unit.)

Figure 2020044839
Figure 2020044839

Figure 2020044839
Figure 2020044839

(ここでRはアルキル、ニトロ、フェニレン、アルコキシ基を示す。)が挙げられ、特に好ましい共重合単位は、m−フェニレンスルフィド単位である。共重合成分との共重合の態様は特に限定されないが、ランダムコポリマーであることが好ましい。 (Where R represents an alkyl, nitro, phenylene, or alkoxy group), and a particularly preferred copolymer unit is an m-phenylene sulfide unit. The mode of copolymerization with the copolymer component is not particularly limited, but is preferably a random copolymer.

本発明の熱可塑性樹脂フィルム層(I)は空孔率が20%以上であり、好ましくは20〜70%、より好ましくは35〜60%、さらに好ましくは45〜60%である。ここで空孔率とは、層(I)の任意のサイズの断面画像の面積を100とした際に、その画像中に含まれる空孔の面積の割合を指し、層(I)の任意サイズの断面画像に空孔が観察されない場合が空孔率0%となる。空孔率が20%より小さくなると、熱可塑性樹脂フィルム中に含まれる空孔が少なくなり、フィルム中に占める誘電率の小さい空気の割合が減るため、電気特性が低下する場合がある。また空孔率は高ければ高いほど好ましいが生産性保持の観点から70%以下が好ましい。空孔率を上記の範囲とするには後述する粒子濃度や製膜条件を適用することで達成できる。空孔率は積層体の断面について後述する手法で評価することで確認できる。   The porosity of the thermoplastic resin film layer (I) of the present invention is 20% or more, preferably 20 to 70%, more preferably 35 to 60%, and still more preferably 45 to 60%. Here, the porosity refers to the ratio of the area of the vacancies contained in the image of an arbitrary size of the layer (I) when the area of the image is 100, and the arbitrary size of the layer (I) In the case where no vacancy is observed in the cross-sectional image, the porosity is 0%. If the porosity is smaller than 20%, the number of porosity contained in the thermoplastic resin film is reduced, and the proportion of air having a small dielectric constant in the film is reduced, so that electric characteristics may be reduced. The porosity is preferably as high as possible, but is preferably 70% or less from the viewpoint of maintaining productivity. The porosity within the above range can be achieved by applying the particle concentration and film forming conditions described later. The porosity can be confirmed by evaluating the cross section of the laminate by a method described later.

本発明の熱可塑性樹脂フィルム層(I)に空孔を形成する手法としては、工程を簡略化でき生産性に優れることから乾式法(樹脂を溶融し、シート状に押出したものを延伸により多孔化する方法)を用いることが好ましい。また、乾式法の中でも滞留安定性と生産性を考慮して、空孔を形成させる層に無機粒子を添加して延伸することで、粒子の周囲に空孔を形成させる手法が好適に用いられる。   As a method of forming pores in the thermoplastic resin film layer (I) of the present invention, a dry method (a method in which a resin is melted and extruded into a sheet shape, and a porous material is stretched to form a porous film) is used because the process is simplified and the productivity is excellent. Is preferable. In addition, in consideration of the retention stability and productivity in the dry method, a method of forming the pores around the particles by adding and stretching the inorganic particles to the layer for forming the pores is preferably used. .

本発明の熱可塑性樹脂フィルム層(I)に含まれる粒子の濃度は、熱可塑性樹脂フィルム層(I)を構成する樹脂やその他の添加物からなる当該層の原料組成を100質量%とした際に、10質量%以上であることが好ましく、10〜60質量%がより好まし15〜40質量%であることが特に好ましい。粒子濃度を上記の範囲とすることで効率よく空孔を形成することができる。粒子濃度が10質量%未満であると、後述するフィルム製造時に粒子濃度が低いため空孔が形成されにくくなる場合がある。また粒子濃度が60質量%を上回ると熱可塑性樹脂フィルムの製造時に延伸が困難となり、生産性が低下する場合がある。   The concentration of the particles contained in the thermoplastic resin film layer (I) of the present invention is based on 100% by mass of the raw material composition of the resin resin layer constituting the thermoplastic resin film layer (I) and other additives. The content is preferably 10% by mass or more, more preferably 10 to 60% by mass, and particularly preferably 15 to 40% by mass. By setting the particle concentration within the above range, pores can be efficiently formed. When the particle concentration is less than 10% by mass, pores may be difficult to be formed because the particle concentration is low at the time of film production described below. On the other hand, when the particle concentration exceeds 60% by mass, stretching becomes difficult during the production of the thermoplastic resin film, and the productivity may be reduced.

本発明の熱可塑性樹脂フィルム層(I)に好ましく用いられる粒子としてはアルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックスや窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、硫酸バリウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維等のなどの無機化合物があげられる。用いる粒子は1種でもよく、複数種を混合して用いてもかまわない。上記の中でも分散性や欠点抑制の観点から炭酸カルシウム、硫酸バリウム、酸化亜鉛、シリカが好ましく、特に欠点抑制の観点から炭酸カルシウム、硫酸バリウム、シリカが最も好ましい。   Particles preferably used in the thermoplastic resin film layer (I) of the present invention include oxide ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, silicon nitride, titanium nitride, and the like. Nitride ceramics such as boron nitride, silicon carbide, calcium carbonate, aluminum sulfate, barium sulfate, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite And inorganic compounds such as asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth, silica sand and other ceramics, glass fibers and the like. One type of particles may be used, or a plurality of types may be mixed and used. Among these, calcium carbonate, barium sulfate, zinc oxide and silica are preferred from the viewpoint of dispersibility and defect suppression, and calcium carbonate, barium sulfate and silica are most preferred from the viewpoint of defect suppression.

本発明の熱可塑性樹脂フィルム層(I)に用いる粒子は、熱可塑性樹脂フィルムの物性を損なわない範囲で表面処理を施すことができる。   The particles used in the thermoplastic resin film layer (I) of the present invention can be subjected to a surface treatment as long as the physical properties of the thermoplastic resin film are not impaired.

本発明の熱可塑性樹脂フィルム層(I)に用いる粒子の体積平均粒径は1〜20μmであることが好ましく、3〜20μmであることがより好ましく、5〜10μmであることがさらに好ましい。上記の体積平均粒径の粒子を用いることで、粒子を高濃度で配合した際に発生しやすくなる粒子同士の凝集を抑制し、延伸した際に粒子の周囲に応力が集中するため、層(I)中に効率よく空孔を形成させることができる。粒子の体積平均粒径が3μm未満であると、延伸時に空孔が形成しにくくなったり、空孔の大きさが小さくなるため空孔率が低下したり、粒子の表面積が増えるため凝集を起こす場合がある。また、体積平均粒径が20μmより大きいと粒子の突き抜けにより延伸の際にフィルム破れが発生しやすくなり、熱可塑性樹脂フィルムの生産性が低下する場合がある。本発明の熱可塑性樹脂フィルム層(I)に用いる粒子の体積平均粒径および濃度は、後述する手法を用いて確認することができる。   The volume average particle diameter of the particles used in the thermoplastic resin film layer (I) of the present invention is preferably from 1 to 20 μm, more preferably from 3 to 20 μm, even more preferably from 5 to 10 μm. By using particles having the above volume average particle size, aggregation of particles that are likely to occur when the particles are blended at a high concentration is suppressed, and stress is concentrated around the particles when stretched. Voids can be efficiently formed in I). When the volume average particle diameter of the particles is less than 3 μm, it is difficult to form pores during stretching, the porosity is reduced due to the reduced size of the pores, and the aggregation is caused due to the increased surface area of the particles. There are cases. If the volume average particle size is larger than 20 μm, the film may easily break during stretching due to penetration of the particles, and the productivity of the thermoplastic resin film may be reduced. The volume average particle diameter and concentration of the particles used for the thermoplastic resin film layer (I) of the present invention can be confirmed by using a method described later.

本発明の熱可塑性樹脂フィルムを構成する層(I)に好ましく用いられる粒子は、レーザー回折法(粒子にレーザービームを照射することで得られる回折光の強度分布を解析して粒子径を求める手法)によって得られる粒度分布(累積分布)の中央値に対応する50%数値の粒子径(D50:メジアン径)が1〜10μmであることが好ましく、3〜20mであることがより好ましく、5〜10μmであることがさらに好ましい。上記のD50の粒子を用いることで、粒子を高濃度で配合した際に発生しやすくなる粒子同士の凝集を抑制し、延伸した際に粒子の周囲に応力が集中するため、層(I)中に効率よく空孔を形成させることができる。粒子のD50が1μm未満であると、粒子の表面積増加により凝集が起こりやすく生産性が低下したり、延伸時に空孔が形成されにくくなるため空孔率が低下する場合がある。また、D50が10μmより大きいと粒子の突き抜けにより延伸の際にフィルム破れが発生しやすくなり、熱可塑性樹脂フィルムの生産性が低下する場合がある。   The particles preferably used for the layer (I) constituting the thermoplastic resin film of the present invention are a laser diffraction method (a method for determining the particle size by analyzing the intensity distribution of diffracted light obtained by irradiating the particles with a laser beam). ), The particle diameter (D50: median diameter) of a 50% numerical value corresponding to the median of the particle size distribution (cumulative distribution) obtained is preferably 1 to 10 μm, more preferably 3 to 20 m, and More preferably, it is 10 μm. By using the particles of D50 described above, it is possible to suppress the aggregation of particles that are likely to occur when the particles are blended at a high concentration, and to concentrate stress around the particles when stretched. Holes can be formed efficiently. If the D50 of the particles is less than 1 μm, aggregation may easily occur due to an increase in the surface area of the particles, and productivity may decrease, or porosity may decrease due to difficulty in forming pores during stretching. On the other hand, when D50 is larger than 10 μm, film breakage is likely to occur during stretching due to penetration of particles, and the productivity of the thermoplastic resin film may be reduced.

本発明の熱可塑性樹脂フィルムを構成する層(I)に用いる粒子は、粒度分布測定で得られる累積分布の90%数値の粒子径(D90)が20μm以下であることが好ましく、16μm以下であることがより好ましい。D90が上記の範囲を満たすことで、粒度分布の幅を狭くでき、延伸時の応力分散を均一化できることから微小な空孔の発生を抑制することができる。D90が20μmよりも大きくなると、延伸時に応力集中しやすい大径粒子の含有率が増加することから、延伸の不均一化が起こり、延伸応力が伝達されにくい小径粒子の近傍に微小な空孔が増加し、機械特性が低下する場合がある。D90の下限は粒子径の均一化の観点からD50に近ければ近いほど好ましい。   The particles used in the layer (I) constituting the thermoplastic resin film of the present invention preferably have a particle diameter (D90) of 90% of the cumulative distribution obtained by the particle size distribution measurement of 20 μm or less, and 16 μm or less. Is more preferable. When D90 satisfies the above range, the width of the particle size distribution can be narrowed, and the stress distribution during stretching can be made uniform, so that the generation of minute voids can be suppressed. When D90 is larger than 20 μm, the content of large-diameter particles, which tend to concentrate stress during stretching, increases, so that non-uniform stretching occurs, and fine pores are formed near small-diameter particles, which are difficult to transmit stretching stress. May increase and the mechanical properties may decrease. The lower limit of D90 is preferably as close to D50 from the viewpoint of making the particle diameter uniform.

本発明の熱可塑性樹脂フィルムを構成する層(I)に用いる粒子は、粒度分布測定で得られるD90とD50との比(D90/D50)が4.0以下であることが好ましく、D3.0以下であることがより好ましく、2.5以下であることがさらに好ましい。D90/D50を上記の範囲とすることで粒度分布の幅を狭くでき、延伸時の応力分散を均一化できることから、微小な空孔の発生を抑制することができる。また粒径をD50に近づけることで形成された空孔の径をより均一に制御できるため電気特性のばらつきを抑制することができる。D90/D50が4.0よりも大きくなると、含まれるD90以上の粒子の周辺に延伸時の応力が集中し、D50よりも小径側の粒子への応力の均一伝搬が困難となり、微小な空孔が増加する場合やD90を形成する大径粒子の近傍で粗大な空孔ができ、電気特性にばらつきが生じる場合がある。D90/D50の下限は粒子径の均一化の観点から1に近ければ近いほど好ましい。熱可塑性樹脂フィルムに含まれる粒子の粒度分布は後述する手法で確認できる。   The particles used in the layer (I) constituting the thermoplastic resin film of the present invention preferably have a D90 / D50 ratio (D90 / D50) of 4.0 or less obtained by particle size distribution measurement, and D3.0. It is more preferably at most 2.5, more preferably at most 2.5. By setting D90 / D50 within the above range, the width of the particle size distribution can be narrowed, and the stress distribution during stretching can be made uniform, so that the generation of minute pores can be suppressed. In addition, since the diameter of the pores formed can be controlled more uniformly by making the particle diameter close to D50, variation in electrical characteristics can be suppressed. When D90 / D50 is larger than 4.0, stress at the time of stretching is concentrated around the included particles of D90 or more, and it becomes difficult to uniformly transmit the stress to the particles on the smaller diameter side than D50. May increase, or coarse pores may be formed in the vicinity of large-diameter particles forming D90, and the electric characteristics may vary. The lower limit of D90 / D50 is preferably as close to 1 as possible from the viewpoint of making the particle diameter uniform. The particle size distribution of the particles contained in the thermoplastic resin film can be confirmed by a method described later.

本発明の熱可塑性樹脂フィルムを構成する層(I)に好ましく用いられる粒子の粒度分布測定で得られる累積分布50、90%数値の粒子径および粒子濃度は、後述する手法を用いて確認することができる。 本発明の熱可塑性樹脂フィルム層(II)に用いるポリアリーレンスルフィド樹脂および/または層(I)に用いるポリアリーレンスルフィド樹脂組成物には、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤やブロッキング防止剤などの各種添加剤を含有させてもよい。   The particle diameter and particle concentration of the cumulative distribution of 50 and 90% obtained by the particle size distribution measurement of the particles preferably used for the layer (I) constituting the thermoplastic resin film of the present invention should be confirmed by the method described later. Can be. The polyarylene sulfide resin used for the thermoplastic resin film layer (II) of the present invention and / or the polyarylene sulfide resin composition used for the layer (I) may include an antioxidant, a heat-resistant agent, and the like as long as the effects of the present invention are not impaired. Various additives such as a stabilizer, an antistatic agent and an antiblocking agent may be contained.

本発明の熱可塑性樹脂フィルムは未延伸フィルム、一軸配向フィルム(任意の一方向に延伸されたフィル)、二軸延伸フィルム(任意の方向およびその直角方向の二軸に延伸されたフィルム)のいずれの形態でもよいが、特性および生産性の観点から二軸配向フィルムであることが好ましい。二軸配向フィルムを得る方法としては、逐次二軸延伸法(長手方向に延伸した後に幅方向に延伸を行う方法などの一方向ずつの延伸を組み合わせた延伸法)、同時二軸延伸法(長手方向と幅方向を同時に延伸する方法)、又はそれらを組み合わせた方法が挙げられる。中でも逐次二軸延伸法が生産性の観点から特に好ましい。延伸の有無および軸方向についてはフィルムの250℃における収縮率を後述の手法で測定することで確認できる。   The thermoplastic resin film of the present invention may be any of an unstretched film, a uniaxially oriented film (a film stretched in any one direction), and a biaxially stretched film (a film stretched biaxially in any direction and a direction perpendicular thereto). However, from the viewpoint of characteristics and productivity, a biaxially oriented film is preferable. As a method for obtaining a biaxially oriented film, a sequential biaxial stretching method (a stretching method in which stretching in one direction is combined such as a method of stretching in the longitudinal direction and then stretching in the width direction), a simultaneous biaxial stretching method (long (A method of simultaneously stretching in the width direction and the width direction) or a method of combining them. Among them, the sequential biaxial stretching method is particularly preferable from the viewpoint of productivity. The presence or absence of stretching and the axial direction can be confirmed by measuring the shrinkage at 250 ° C. of the film by a method described later.

本発明の熱可塑性樹脂フィルムは、2層以上の積層構成を有する。2層以上の層構成を有することで、熱可塑性樹脂フィルム自体の延伸性が向上し破れが抑制され生産性を向上することができる。積層構成としては、層(I)、層(II)で構成される(I)/(II)の2層、(I)/(II)/(I)、(II)/(I)/(II)、(II)/(I)/(II)/(I)、(II)/(I)/(II)/(I)/(II)などの多層構成が挙げられるが、これに限定されない。   The thermoplastic resin film of the present invention has a laminated structure of two or more layers. By having two or more layers, the stretchability of the thermoplastic resin film itself is improved, tearing is suppressed, and productivity can be improved. As a laminated structure, two layers (I) / (II) composed of a layer (I) and a layer (II), (I) / (II) / (I), (II) / (I) / ( (II), (II) / (I) / (II) / (I), (II) / (I) / (II) / (I) / (II) Not done.

本発明の熱可塑性樹脂フィルムの厚みは、特に制限はないが、製膜性の観点から1〜300μmが好ましく、5〜300μmがより好ましく、10〜250μmがさらに好ましい。   The thickness of the thermoplastic resin film of the present invention is not particularly limited, but is preferably 1 to 300 μm, more preferably 5 to 300 μm, and still more preferably 10 to 250 μm from the viewpoint of film forming properties.

熱可塑性樹脂フィルムの厚みは、未延伸シートを得る際に原料の供給量や引取り速度、延伸倍率を調整することで制御できる。またフィルム厚みは後述する手法にて評価できる。
本発明の熱可塑性樹脂フィルムは、層(I)、層(II)からなる積層構成であって、式(a)で表される層(I)の積層比が0.40〜0.95であることが好ましい。
The thickness of the thermoplastic resin film can be controlled by adjusting the supply amount of the raw material, the take-up speed, and the stretching ratio when obtaining an unstretched sheet. The film thickness can be evaluated by a method described later.
The thermoplastic resin film of the present invention has a laminated structure composed of a layer (I) and a layer (II), and the layer (I) represented by the formula (a) has a laminated ratio of 0.40 to 0.95. Preferably, there is.

(a)層(I)の積層比=層(I)厚み/(層(I)+層(II)厚み)
積層比を上記の範囲とすることで誘電率などの電気特性と軽量化を両立することができる。層(I)の積層比が0.40未満の場合、軽量化が困難となりコストアップに繋がる場合がある。また、層(I)厚みの比率が0.95を超えると、誘電率などの電気特性が不良となる場合がある。層(I)厚みの比率はより好ましくは0.60以上0.90以下であり、さらに好ましくは0.70以上0.85以下である。熱可塑性樹脂フィルムの層(I)の積層比を上記の範囲とするには、溶融押出の際の吐出量を調整することで達成できる。本発明の熱可塑性樹脂フィルムの層(I)の積層比は後述する手法を用いて測定することができる。
(A) Lamination ratio of layer (I) = layer (I) thickness / (layer (I) + layer (II) thickness)
By setting the lamination ratio in the above range, both electrical characteristics such as dielectric constant and weight reduction can be achieved. When the lamination ratio of the layer (I) is less than 0.40, it is difficult to reduce the weight, which may lead to an increase in cost. On the other hand, when the ratio of the thickness of the layer (I) exceeds 0.95, electric characteristics such as a dielectric constant may be poor. The ratio of the thickness of the layer (I) is more preferably 0.60 or more and 0.90 or less, and further preferably 0.70 or more and 0.85 or less. The lamination ratio of the layer (I) of the thermoplastic resin film within the above range can be achieved by adjusting the discharge amount during melt extrusion. The lamination ratio of the layer (I) of the thermoplastic resin film of the present invention can be measured using a method described later.

本発明の熱可塑性樹脂フィルムは、蒸着時の蒸着斑抑制や誘電率などの電気特性向上の観点から、直径50μm以上のクレーター状の欠点が20個/m以下であることが好ましく、より好ましくは10個/m以下である。 クレーター状欠点が発生すると本発明の熱可塑性樹脂フィルムを電気絶縁材料や断熱材料に使用する場合に蒸着などの加工時に蒸着斑が発生する場合や、折り曲げ加工などの加工時に欠点部分に貫通孔が発生し、誘電率などの電気特性が劣る場合があるので好ましくない。 The thermoplastic resin film of the present invention, from the viewpoint of electrical characteristic improvement such as vapor deposition plaque inhibition and the dielectric constant at the time of deposition, it is preferable that disadvantages of more in diameter 50μm crater-like is 20 / m 2 or less, more preferably Is 10 / m 2 or less. When a crater-like defect occurs, when the thermoplastic resin film of the present invention is used for an electrical insulating material or a heat insulating material, when a deposition unevenness occurs during processing such as vapor deposition, or when a defect such as bending is formed, a through hole is formed in the defect portion. This is not preferable because electrical characteristics such as dielectric constant may occur.

また、クレーター状の欠点が20個/mを超えると蒸着斑や電気特性が劣るだけではなく加工時のフィルム走行時のフィルム破断や欠点部分に貫通孔が発生する場合がある。 Further, when the number of crater-like defects exceeds 20 / m 2 , not only the deposition unevenness and the electrical characteristics are inferior, but also the film breaks during running of the film during processing and through holes may be generated in the defect portions.

ここでクレーター状の欠点とは、ほぼ円形のくぼみ状の形態を示し、Vert SCan法で欠点表面を観察した際に凹型の形状になっており、かつ、その欠点を顕微鏡で写真撮影し、その写真から画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて、面積と周囲長を導き出して、次式(a)で計算した円形度が0.8〜1.0の範囲かつ直径が50μm以上であるものを指す。円形度は1.0が最大値であり、1.0が真円となる。
式(b)円形度=4Π×(面積)÷(周囲長)2
熱可塑性樹脂フィルムのクレーター状の欠点を上記範囲にする方法としては、層(I)に前述する275℃以下の融点を有する共重合ポリアリーレンスルフィド樹脂を用いて、後述する製造方法で製造することにより好ましく達成できる。
Here, the crater-shaped defect refers to a substantially circular concave shape, which has a concave shape when the defect surface is observed by the Vert SCan method, and the defect is photographed with a microscope. Using image analysis software (MacView ver. 4.0, manufactured by Mountech Co., Ltd.) from the photograph, the area and perimeter were derived, and the circularity calculated by the following equation (a) was in the range of 0.8 to 1.0. It refers to those having a diameter of 50 μm or more. As for the degree of circularity, 1.0 is the maximum value and 1.0 is a perfect circle.
Equation (b) circularity = 4 = × (area) ÷ (perimeter) 2
As a method for keeping the crater-like defects of the thermoplastic resin film in the above range, the layer (I) may be produced by using the above-mentioned copolymerized polyarylene sulfide resin having a melting point of 275 ° C. or less and by the production method described below. Can be more preferably achieved.

本発明の熱可塑性樹脂フィルム層(II)の配向パラメーターは、0.8〜1.4が好ましく、より好ましくは0.9〜1.2である。配向パラメーターが上記の範囲となることで機械特性が向上し、耐熱性や加工性を改良することができる。配向パラメーターが0.8以下となると耐熱性や加工性が劣る場合がある。また1.4より大きくなると引き裂き易くなる場合があり、加工時にフィルムが破断する場合がある。配向パラメーターを上記の範囲とするには後述する製造方法で製造することで達成できる。配向パラメーターは後述する手法にて確認することができる。   The orientation parameter of the thermoplastic resin film layer (II) of the present invention is preferably from 0.8 to 1.4, and more preferably from 0.9 to 1.2. When the orientation parameter falls within the above range, mechanical properties are improved, and heat resistance and workability can be improved. When the orientation parameter is 0.8 or less, heat resistance and workability may be poor. On the other hand, if the ratio is larger than 1.4, the film may be easily torn, and the film may be broken during processing. Making the orientation parameter fall within the above range can be achieved by manufacturing by a manufacturing method described later. The orientation parameter can be confirmed by a method described later.

本発明の熱可塑性樹脂フィルムは温度23℃、65%RH下で周波数10GHzにおける誘電率が3.0以下であることが好ましく、2.5以下であることがより好ましい。上記の特性を有することで、高周波領域における回路基板材料として使用した際に、絶縁材の奇生容量を減らすことができるため伝送損失を効果的に抑制することができる。誘電率が3.0より大きいと、基板材料として用いた場合、伝送損失が大きくなる場合がある。誘電率は低いほど好ましいが、実現可能な範囲は1.8以上である。誘電率を上記の範囲とするには、後述する製造方法で製膜することで達成できる。誘電率は後述する手法にて評価できる。   The dielectric constant of the thermoplastic resin film of the present invention at a frequency of 10 GHz at a temperature of 23 ° C. and 65% RH is preferably 3.0 or less, more preferably 2.5 or less. By having the above characteristics, when used as a circuit board material in a high frequency region, the parasitic capacity of the insulating material can be reduced, so that transmission loss can be effectively suppressed. When the dielectric constant is higher than 3.0, transmission loss may increase when used as a substrate material. The lower the dielectric constant, the better, but the feasible range is 1.8 or more. The dielectric constant within the above range can be achieved by forming a film by a manufacturing method described later. The dielectric constant can be evaluated by a method described later.

本発明の熱可塑性樹脂フィルムは200℃/1000時間処理後の長さ方向及びフィルム面内で長さ方向に垂直な方向の強度保持率の平均値が50〜100%であることが好ましく、60〜100%であることがより好ましく、80〜100%であることがより好ましい。ここで長さ方向とは、熱可塑性樹脂フィルムのいずれかの方向を0°とし、フィルム面内に−90°から90°まで10°毎に方向を変えながら測定した際に、破断強度が最も小さくなった方向のことである。強度保持率を上記の範囲とすることで、高温下で長時間使用した際の熱可塑性樹脂フィルムの機械特性、電気特性を維持することができる。強度保持率が50%未満であると長期耐熱性に劣り、高温化で長時間使用した際に劣化によりクラックが入ったり、電気特性が低下したりする場合がある。強度保持率を上記の範囲とするためには、前述の融点の樹脂を用い、後述の手法で延伸することで達成できる。強度保持率は後述する手法にて評価することができる。   The thermoplastic resin film of the present invention preferably has an average strength retention of 50 to 100% in the length direction after treatment at 200 ° C./1000 hours and in the direction perpendicular to the length direction in the film plane, and 60%. It is more preferably from 100 to 100%, more preferably from 80 to 100%. Here, the length direction is defined as 0 ° in any direction of the thermoplastic resin film, and when measured while changing the direction in the film plane from −90 ° to 90 ° in steps of 10 °, the breaking strength is the highest. It is the direction in which it has become smaller. By setting the strength retention in the above range, the mechanical properties and electrical properties of the thermoplastic resin film when used at high temperatures for a long time can be maintained. If the strength retention is less than 50%, the long-term heat resistance is inferior, and when used for a long time at a high temperature, cracks may occur due to deterioration and electrical characteristics may be deteriorated. In order to maintain the strength retention in the above range, it can be achieved by using a resin having the above-mentioned melting point and stretching by a method described later. The strength retention can be evaluated by a method described later.

本発明のフィルムを製造する方法について、熱可塑性樹脂フィルム層(II)にポリアリーレンスルフィド樹脂としてポリ−p−フェニレンスルフィド樹脂(以下PPS樹脂と略紀する場合がある)を用い、熱可塑性樹脂フィルム層(I)にポリアリーレンスルフィド樹脂としてPPSにm−フェニレンスルフィドを共重合させたポリ−m−フェニレンスルフィド樹脂(以下共重合PPS樹脂と略記する場合がある)を用いた場合のフィルムの製造方法を例にとって説明するが、本発明は、この例に限定されない。   In the method for producing the film of the present invention, a thermoplastic resin film using a poly-p-phenylene sulfide resin (hereinafter sometimes abbreviated as a PPS resin) as a polyarylene sulfide resin in the thermoplastic resin film layer (II). Method for producing film in the case of using poly-m-phenylene sulfide resin obtained by copolymerizing m-phenylene sulfide with PPS as polyarylene sulfide resin in layer (I) (hereinafter sometimes abbreviated as copolymerized PPS resin) Will be described as an example, but the present invention is not limited to this example.

PPS樹脂の製造方法としては、例えば、次のような方法が挙げられる。硫化ナトリウムとp−ジクロロベンゼンを、N−メチル−2−ピロリドン(NMP)などのアミド系極性溶媒中で高温高圧下で反応させる。必要によって、トリハロベンゼンなどの共重合成分を含ませることもできる。重合度調整剤として、苛性カリやカルボン酸アルカリ金属塩などを添加し、230〜280℃の温度で重合反応させる。重合後にポリマーを冷却し、ポリマーを水スラリーとしてフィルターで濾過後、粒状ポリマーを得る。これを酢酸塩などの水溶液中で30〜100℃の温度で10〜60分間攪拌処理し、イオン交換水にて30〜80℃の温度で数回洗浄、乾燥してPPS粒状ポリマーを得る。これを30〜100℃の高温水で洗浄した後、酢酸水溶液や酢酸塩水溶液(たとえば酢酸ナトリウムや酢酸カルシウム)にて、2回以上、より好ましくは3回以上洗浄処理したのち、30〜80℃のイオン交換水にて洗浄、乾燥してPPSの粒状ポリマーを得る。   Examples of the method for producing the PPS resin include the following method. Sodium sulfide and p-dichlorobenzene are reacted in an amide-based polar solvent such as N-methyl-2-pyrrolidone (NMP) under high temperature and high pressure. If necessary, a copolymer component such as trihalobenzene can be included. Caustic potash, alkali metal carboxylate and the like are added as a polymerization degree regulator, and the polymerization reaction is performed at a temperature of 230 to 280 ° C. After the polymerization, the polymer is cooled, and the polymer is converted into a water slurry and filtered through a filter to obtain a granular polymer. This is stirred in an aqueous solution of acetate or the like at a temperature of 30 to 100 ° C. for 10 to 60 minutes, washed several times with ion-exchanged water at a temperature of 30 to 80 ° C., and dried to obtain a PPS granular polymer. After washing this with high-temperature water of 30 to 100 ° C., it is washed twice or more, more preferably three or more times with an aqueous solution of acetic acid or an aqueous solution of acetate (eg, sodium acetate or calcium acetate). After washing with ion-exchanged water and drying, a granular polymer of PPS is obtained.

共重合PPS樹脂の製造方法としては、例えば、次のような方法がある。硫化ナトリウムとp−ジクロロベンゼンおよびm−ジクロロベンゼンを本発明でいう比率で配合し、N−メチル−2−ピロリドン(NMP)などのアミド系極性溶媒中で重合助剤の存在下、高温高圧下で反応させる。必要によって、トリハロベンゼンなどの共重合成分を含ませることもできる。重合度調整剤として、苛性カリやカルボン酸アルカリ金属塩などを添加し、200〜280℃の温度で重合反応させる。重合後にポリマーを冷却し、ポリマーを水スラリーとしてフィルターで濾過後、粒状ポリマーを得る。これを30〜100℃の高温水で洗浄した後、酢酸水溶液や酢酸塩水溶液(たとえば酢酸ナトリウムや酢酸カルシウム)にて、2回以上、より好ましくは3回以上洗浄処理したのち、30〜80℃のイオン交換水にて洗浄、乾燥して共重合PPSの粒状ポリマーを得る。
ポリアリーレンスルフィド樹脂および共重合ポリアリーレンスルフィド樹脂として上記で得られたPPS、共重合PPSポリマーを、ベント付き押出機に投入してストランド状に溶融押出し、温度25℃の水で冷却した後、カッティングしてチップを作製する。
As a method for producing the copolymerized PPS resin, for example, there is the following method. Sodium sulfide and p-dichlorobenzene and m-dichlorobenzene are blended in the ratio according to the present invention, and in an amide polar solvent such as N-methyl-2-pyrrolidone (NMP) in the presence of a polymerization aid under high temperature and high pressure. To react. If necessary, a copolymer component such as trihalobenzene can be included. Caustic potash or alkali metal carboxylate is added as a polymerization degree regulator, and the polymerization reaction is performed at a temperature of 200 to 280 ° C. After the polymerization, the polymer is cooled, and the polymer is converted into a water slurry and filtered through a filter to obtain a granular polymer. After washing this with high-temperature water of 30 to 100 ° C., it is washed twice or more, more preferably three or more times with an aqueous solution of acetic acid or an aqueous solution of acetate (eg, sodium acetate or calcium acetate). After washing with ion-exchanged water and drying, a granular polymer of copolymerized PPS is obtained.
PPS obtained as a polyarylene sulfide resin and a copolymerized polyarylene sulfide resin, the copolymerized PPS polymer, are introduced into a vented extruder, melt-extruded into strands, cooled with water at a temperature of 25 ° C., and then cut. To produce a chip.

熱可塑性樹脂フィルムは、PPS樹脂チップと、共重合PPS樹脂チップを別々の溶融押出装置に供給し、各樹脂の融点以上に加熱する。加熱により溶融された各原料は、溶融押出装置と口金出口の間に設けられた合流装置に溶融状態でPPS層/共重合PPS層/PPS層の3層に積層され、スリット上の口金出口から押出される。このシート状物を表面温度20〜70℃の冷却ドラム上に密着させて冷却固化し、実質的に無配向状態の層(II)/層(I)/層(II)の3層積層シートを得る。   As for the thermoplastic resin film, the PPS resin chip and the copolymerized PPS resin chip are supplied to separate melt extruders and heated to the melting point of each resin or higher. Each raw material melted by heating is laminated in a molten state into three layers of PPS layer / copolymerized PPS layer / PPS layer in a joining device provided between the melt extruder and the outlet of the die. Extruded. The sheet is closely adhered to a cooling drum having a surface temperature of 20 to 70 ° C. to be cooled and solidified, thereby forming a substantially non-oriented three-layer laminated sheet of layer (II) / layer (I) / layer (II). obtain.

次いで、二軸延伸を行うが、上記で得られた未延伸フィルムを、層(II)に用いる共重合PPS樹脂のガラス転移点以上冷結晶化温度以下の範囲で、逐次二軸延伸機または同時二軸延伸機により二軸延伸した後、熱処理を行い二軸配向フィルムを得る。延伸方法としては、逐次二軸延伸法(長手方向に延伸した後に幅方向に延伸を行う方法などの一方向ずつの延伸を組み合わせた延伸法)、同時二軸延伸法(長手方向と幅方向を同時に延伸する方法)、又はそれらを組み合わせた方法を用いることができるが欠点を抑制する観点から逐次二軸延伸法が最も好ましく採用できる。   Next, biaxial stretching is performed. The unstretched film obtained above is subjected to a sequential biaxial stretching machine or a simultaneous biaxial stretching machine in a range from the glass transition point of the copolymerized PPS resin used for the layer (II) to the cold crystallization temperature. After biaxial stretching with a biaxial stretching machine, heat treatment is performed to obtain a biaxially oriented film. As a stretching method, a sequential biaxial stretching method (a stretching method in which stretching in one direction is combined such as a method of stretching in the width direction after stretching in the longitudinal direction), a simultaneous biaxial stretching method (stretching in the longitudinal direction and the width direction). Simultaneous stretching) or a combination thereof can be used, but the sequential biaxial stretching method is most preferably employed from the viewpoint of suppressing defects.

逐次二軸延伸法では、最初の長手方向の延伸方法としては、未延伸フィルムを加熱ロールを用いて長手方向に3.0〜5.0倍、より好ましくは3.5〜4.5倍の延伸を行うが、欠点を抑制する観点から2段階で延伸する(長手方向多段延伸)が好ましく、1段目と2段目の延伸温度と延伸倍率の関係が次式(c、d)を同時に満たすことが好ましい。ここで延伸温度については、層(II)に用いるPPSのガラス転移温度(Tg)〜(Tg+20)℃、好ましくは(Tg)〜(Tg+15)℃である。
式(c)T1<T2 2℃≦T2−T1≦20℃ 90℃<T1<108℃
92℃<T2<110℃
式(d)R1<R2 1.2≦R1≦2.0 1.5≦R2≦3.3
3.0≦R1+R2≦5.0
ここで1段目延伸温度(T1)、2段目延伸温度(T2)、1段目延伸倍率(R1)、2段目延伸倍率(R2)を示す。
In the sequential biaxial stretching method, as the first stretching method in the longitudinal direction, the unstretched film is stretched 3.0 to 5.0 times, more preferably 3.5 to 4.5 times in the longitudinal direction using a heating roll. Stretching is performed, and it is preferable to perform stretching in two stages (multi-stage stretching in the longitudinal direction) from the viewpoint of suppressing defects, and the relationship between the stretching temperature and the stretching ratio of the first and second stages is expressed by the following formulas (c, d) simultaneously. Preferably, it is satisfied. Here, the stretching temperature is the glass transition temperature (Tg A ) to (Tg A +20) ° C. of the PPS used for the layer (II), and preferably (Tg A ) to (Tg A +15) ° C.
Formula (c) T1 <T2 2 ° C ≦ T2-T1 ≦ 20 ° C 90 ° C <T1 <108 ° C
92 ° C <T2 <110 ° C
Formula (d) R1 <R2 1.2 ≦ R1 ≦ 2.0 1.5 ≦ R2 ≦ 3.3
3.0 ≦ R1 + R2 ≦ 5.0
Here, the first-stage stretching temperature (T1), the second-stage stretching temperature (T2), the first-stage stretching ratio (R1), and the second-stage stretching ratio (R2) are shown.

本発明において長手方向延伸温度は、{層(II)に用いるPPSのガラス転移温度(Tg)−10℃)}〜Tgの範囲で予熱した後、Tg〜(Tg+20)℃、好ましくは(Tg)〜(Tg+15)℃の範囲に加熱された延伸ロールに導き、長手方向(MD方向)の延伸を行う。このとき、予熱の温度は延伸温度以下であることが好ましく、MD延伸温度より2℃以上低いことがより好ましい。上記の予熱温度とすることで、予熱の際に過度の加熱を防ぐことができ、続く長手方向延伸の際に延伸応力を均一に伝播することができるため、長手方向延伸時の配向均一性が向上し、続く工程で2軸延伸フィルムとした際に平面性を向上することができる。その後20〜50℃の冷却ロール群で冷却する。 Longitudinal stretching temperature in the present invention, after preheating in the range of {layers glass transition temperature of the PPS used in (II) (Tg A) -10 ℃)} ~Tg A, Tg A ~ (Tg A +20) ℃, Preferably, it is guided to a stretching roll heated to a range of (Tg A ) to (Tg A +15) ° C. and stretched in the longitudinal direction (MD direction). At this time, the preheating temperature is preferably equal to or lower than the stretching temperature, and more preferably lower than the MD stretching temperature by 2 ° C. or more. By setting the above preheating temperature, excessive heating can be prevented during preheating, and the stretching stress can be uniformly propagated during the subsequent longitudinal stretching, so that the orientation uniformity during the longitudinal stretching is reduced. When the biaxially stretched film is formed in the subsequent step, the planarity can be improved. Thereafter, cooling is performed with a cooling roll group at 20 to 50 ° C.

MD延伸に続く幅方向(TD方向)の延伸方法としては、例えば、テンターを用いる方法が一般的である。このフィルムの両端部をクリップで把持して、テンターに導き、幅方向の延伸を行う(TD延伸)。延伸時に十分に配向させ、製膜安定性・平面性を向上させる観点から延伸温度はTg〜(Tg+15)℃が好ましく、より好ましくは(Tg)〜(Tg+10)℃の範囲で3.5〜5.0倍、好ましくは3.5〜4.5倍に延伸することが好ましい。 As a stretching method in the width direction (TD direction) following the MD stretching, for example, a method using a tenter is generally used. Both ends of the film are gripped with clips, guided to a tenter, and stretched in the width direction (TD stretching). The stretching temperature is preferably from Tg A to (Tg A +15) ° C., more preferably from (Tg A ) to (Tg A +10) ° C., from the viewpoint of sufficiently orienting the film at the time of stretching and improving film forming stability and flatness. It is preferable to stretch 3.5 to 5.0 times, preferably 3.5 to 4.5 times.

次に、この延伸フィルムを緊張下で熱固定する操作(熱固定処理)を行う。熱固定処理の温度は、熱可塑性樹脂フィルム層(II)に用いるPPSの融点(Tm)−10℃〜PPSの融点(Tm)−30℃であり、好ましくはTm−10℃〜Tm−20℃である。熱固定温度を前記範囲とすることで、加工時の寸法安定性などの熱安定性を向上することができる。 Next, an operation (heat setting treatment) of heat setting the stretched film under tension is performed. Temperature of heat-setting is the melting point (Tm A) -10 ℃ ~PPS melting point (Tm A) -30 ℃ of PPS used in the thermoplastic resin film layer (II), preferably Tm A -10 ° C. to Tm A- 20 ° C. By setting the heat setting temperature within the above range, thermal stability such as dimensional stability during processing can be improved.

[特性の測定方法]
(1)フィルム厚みおよび積層比、層構成
熱可塑性樹脂フィルムの全体厚みを測定する際は、ダイヤルゲージを用いて、フィルムから切り出した試料の任意の場所5ヶ所の厚みを測定し、平均値を求めた。
また、熱可塑性樹脂フィルムの各層の層厚みを測定する際は、フィルム断面を、フィルム面内で長さ方向に直角の方向に平行な方向にミクロトームで切り出す。該断面をライカマイクロシステムズ(株)製金属顕微鏡LeicaDMLMを用いて、フィルムの断面を倍率100倍の条件で透過光を写真撮影し、熱可塑性樹脂フィルムの各層の層厚みについて、各層ごとに任意の5ヶ所を測定し、その平均値を各層の層厚みとした。
ここで長さ方向およびフィルム面内で長さ方向と垂直な方向とは、(9)の測定方法で得られた方向を示す。
[Method of measuring characteristics]
(1) When measuring the film thickness, the lamination ratio, and the overall thickness of the layered thermoplastic resin film, use a dial gauge to measure the thickness of any five locations of the sample cut out of the film, and calculate the average value. I asked.
When measuring the layer thickness of each layer of the thermoplastic resin film, the cross section of the film is cut out with a microtome in a direction parallel to a direction perpendicular to the length direction in the film plane. The cross section of the film was photographed using a Leica DMLM manufactured by Leica Microsystems Co., Ltd. with a photograph of transmitted light at a magnification of 100 times, and the thickness of each layer of the thermoplastic resin film was determined arbitrarily for each layer. Five places were measured, and the average value was taken as the layer thickness of each layer.
Here, the length direction and the direction perpendicular to the length direction in the film plane refer to the direction obtained by the measurement method (9).

(2)層(I)および層(II)を構成する熱可塑性樹脂のガラス転移点および融点
JIS K7121−1987に従って示差走査熱量計として、セイコーインスツルメンツ社製DSC(RDC220)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いる。熱可塑性樹脂フィルムから、層(I)および層(II)を(1)で測定した各層の厚みを考慮しながらマイクロプレーンを用いて5mgを削り出し別々に採取して各層のサンプルとし、室温から350℃まで昇温速度20℃/分で昇温する(1st Run)。次に同試料を取り出し急冷したのち、室温から350℃まで昇温速度20℃/分で昇温する(2nd Run)。この2nd RunのDSCチャートで確認されるガラス転移点および融解の吸熱ピークのピーク温度を、各層を構成する熱可塑性樹脂のガラス転移点(Tg)および融点(Tm)とした。
(2) Glass transition point and melting point of thermoplastic resin constituting layers (I) and (II) A DSC (RDC220) manufactured by Seiko Instruments Inc. as a differential scanning calorimeter according to JIS K7121-1987, and a data analyzer manufactured by the company as a differential scanning calorimeter A disk station (SSC / 5200) is used. From the thermoplastic resin film, the layer (I) and the layer (II) were cut out using a microplane to obtain 5 mg, taking into account the thickness of each layer measured in (1), and separately collected to obtain samples for each layer. The temperature is raised to 350 ° C. at a rate of 20 ° C./min (1st Run). Next, the sample is taken out, rapidly cooled, and then heated from room temperature to 350 ° C. at a rate of 20 ° C./min (2nd Run). The glass transition point and the peak temperature of the endothermic peak of melting confirmed in the 2nd Run DSC chart were defined as the glass transition point (Tg) and melting point (Tm) of the thermoplastic resin constituting each layer.

(3) 配向パラメーター
顕微ATR(パーキンエレマー社製Frontier Spotlight400)を使用して、熱可塑性樹脂フィルム層(II)面のフィルム長さ方向に対して、垂直方向、平行方向のスペクトル測定を行う。得られた垂直方向、平行方向の1093cm−1の吸光度と1390cm−1の吸光度を用いて、下記式により配向パラメーターを求めた。
ここで長さ方向およびフィルム面内で長さ方向と垂直な方向とは、(9)の測定方法で得られた方向を示す。
配向パラメーター=(I1093(平行)/I1390(平行))/(I1093(垂直)/I1390(垂直))
積算回数:10回。
(3) Orientation parameter Using a micro ATR (Frontier Spotlight 400 manufactured by Perkin Elemer Co., Ltd.), the spectrum is measured in a direction perpendicular to and parallel to the film length direction of the thermoplastic resin film layer (II). The resulting vertical, with the absorbance of absorbance and 1390 cm -1 in the direction parallel 1093Cm -1, was determined orientation parameters by the following equation.
Here, the length direction and the direction perpendicular to the length direction in the film plane refer to the direction obtained by the measurement method (9).
Orientation parameter = (I 1093 (parallel) / I 1390 (parallel)) / (I 1093 (vertical) / I 1390 (vertical))
Number of integration: 10 times.

(4)空孔率(%)
走査型電子顕微鏡の試料台に固定したサンプルを、厚み方向を法線方向とする断面がみえるようにスパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡を用いて倍率2000倍にて観察した。得られた観察像について画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて、樹脂部を白、空孔部を黒に2値化処理し、観察像の厚み方向の位置に対して濃淡(intensity)を取り、分布をグラフ化する。この濃淡分布について濃淡のintensityが増加に転じる点を界面と判別し、空孔を有する層(I)とその他の層(II)とを区別した。上記の観察像の空孔を有する層(I)について画像解析装置を用いて空孔部分の面積A(μm)と同観察像の内の該層の全面積B(μm)を算出し、下記式に当てはめて層(I)の空孔率C(%)を求めた。評価はフィルムの任意の方向およびそれに直行する方向の2方向についてそれぞれ5か所について行い、合計10点の観察像の撮影および空孔率の算出を行い、10点の平均を、層(I)の空孔率(%)とした。
層Xの空孔率C(%)=層中の空孔部分の面積A(μm)/層の全面積B(μm)×100。
(5)粒子濃度・体積平均粒径
a. 粒子濃度
(1)の方法を用いて熱可塑性樹脂フィルムおよび各層の厚みを確認したのち、マイクロプレーンを用いて熱可塑性樹脂フィルムの表層を表層の厚さを超えない範囲で削り取る。削り取ったサンプルを秤量したるつぼに入れた後再度秤量し、サンプルの加熱前の重量を秤量する。次にサンプルが入ったるつぼをマッフル炉(ヤマト科学社製)にて500℃/6hで加熱しサンプルを灰化させる。るつぼを冷却した後に秤量し、加熱後の重量をはかりとり、加熱前後の重量を下記式に挿入し、フィルムに含まれる無機粒子の含有量(粒子濃度)を算出した。試料量は残存物の質量が100〜200mgの範囲となるように調整した。
粒子濃度(質量%)=加熱後の重量(mg)/加熱前の重量(mg)×100。
b.体積平均粒径
a.で得られた残存物を精製水と混合した分散液を用いて、レーザー光回折散乱粒度分布測定装置(マイクロトラックMT3000、日機装製)をもちいて、レーザー光波長780nm、測定温度25℃の条件にて、測定前に超音波処理を4分間行なったのちJIS Z8825−1:2001に準じて測定し、サンプルの粒度分布を求めた。なお、分散液は測定光源の透過率が90%前後になるように調整した。の得られた粒度分布から下記式を用いて体積平均粒径を算出した。
体積平均粒径(μm)=Σ(vd)/Σv
d:各粒径チャンネルの代表値、v:各粒径チャンネルごとの粒子の含有量(体積%)のパーセント。
(4) Porosity (%)
Using a sputtering apparatus, the sample fixed on the sample stage of the scanning electron microscope was observed under a condition of 10 −3 Torr, a voltage of 0.25 KV, and a current of 12.5 mA using a sputtering apparatus so that a cross section with the thickness direction as a normal direction could be seen. After performing ion etching treatment for 10 minutes to cut the cross section, the surface was subjected to gold sputtering with the same apparatus, and observed at a magnification of 2000 using a scanning electron microscope. Using the image analysis software (MacView ver. 4.0, manufactured by Mountech Co., Ltd.), the obtained observation image is binarized so that the resin portion is white and the holes are black, and the image is positioned at a position in the thickness direction of the observation image. On the other hand, the intensity is taken and the distribution is graphed. The point at which the intensity of the density turned to increase in the density distribution was determined as an interface, and the layer (I) having pores and the other layer (II) were distinguished. Using the image analyzer, the area A (μm 2 ) of the hole portion and the total area B (μm 2 ) of the layer in the observation image were calculated for the layer (I) having the holes in the observation image. The porosity C (%) of the layer (I) was determined by applying the following formula. The evaluation was carried out at five points in each of two directions, that is, an arbitrary direction of the film and a direction perpendicular thereto, taking a total of 10 observation images and calculating the porosity, and averaging the 10 points to the layer (I) Porosity (%).
Porosity C (%) of layer X = area A (μm 2 ) of porosity portion in layer / total area B (μm 2 ) × 100 of layer.
(5) Particle concentration / volume average particle diameter a. After confirming the thickness of the thermoplastic resin film and each layer using the method of particle concentration (1), the surface layer of the thermoplastic resin film is scraped off using a microplane within a range not exceeding the thickness of the surface layer. The shaved sample is placed in a weighed crucible and weighed again, and the weight of the sample before heating is weighed. Next, the crucible containing the sample is heated at 500 ° C./6 h in a muffle furnace (manufactured by Yamato Scientific Co., Ltd.) to incinerate the sample. After the crucible was cooled, it was weighed, the weight after heating was measured, and the weight before and after heating was inserted into the following formula to calculate the content (particle concentration) of the inorganic particles contained in the film. The sample amount was adjusted so that the mass of the residue was in the range of 100 to 200 mg.
Particle concentration (% by mass) = weight after heating (mg) / weight before heating (mg) × 100.
b. Volume average particle size a. Using a dispersion obtained by mixing the residue obtained in the above with purified water, using a laser diffraction / scattering particle size distribution analyzer (Microtrack MT3000, manufactured by Nikkiso Co., Ltd.) under the conditions of a laser beam wavelength of 780 nm and a measurement temperature of 25 ° C. Before the measurement, ultrasonic treatment was performed for 4 minutes, followed by measurement according to JIS Z8825-1: 2001, and the particle size distribution of the sample was determined. The dispersion was adjusted so that the transmittance of the measurement light source was about 90%. From the obtained particle size distribution, the volume average particle size was calculated using the following equation.
Volume average particle size (μm) = Σ (vd) / Σv
d: representative value of each particle size channel, v: percentage of particle content (vol%) for each particle size channel.

(6)誘電率
誘電体材料計測装置(関東電子応用開発(株)製)を用いて周波数10GHzで空洞共振器摂動法により誘電率を測定する。フィルム面内で長さ方向に直角の方向2.7mm×フィルム長さ方向45mmに切り出したサンプルを空洞共振器に挿入し、温度23℃、湿度65%RH環境下にて測定を行った。測定はn=3で行い、得その平均値を求め、下記の基準にて評価した。
ここで長さ方向およびフィルム面内で長さ方向と垂直な方向とは、(9)の測定方法で得られた方向を示す。
A:誘電率が2.5以上
B:誘電率が2.5より大きく3.0以下
C:誘電率が3.0よりも大きい。
(6) Dielectric constant The dielectric constant is measured by a cavity resonator perturbation method at a frequency of 10 GHz using a dielectric material measuring device (manufactured by Kanto Electronics Application Development Co., Ltd.). A sample cut in a direction of 2.7 mm perpendicular to the length direction in the film plane and 45 mm in the film length direction was inserted into the cavity resonator, and the measurement was performed in a 23 ° C. and 65% RH environment. The measurement was performed at n = 3, and the average value was obtained and evaluated according to the following criteria.
Here, the length direction and the direction perpendicular to the length direction in the film plane refer to the direction obtained by the measurement method (9).
A: Dielectric constant is 2.5 or more B: Dielectric constant is more than 2.5 and 3.0 or less C: Dielectric constant is more than 3.0.

(7)クレーター状の欠点の数
熱可塑性樹脂フィルムの任意部分について1mの面積で表面をVertScan2.0(R5300GL−Lite−AC、株式会社菱化システム社製)で下記条件にて撮影した。
測定条件 :OCDカメラ SONY HR−57 1/2インチ
対物レンズ 5x
中間レンズ 0.5x
波長フィルタ 530nm white
測定モード Focus
次に付属の解析ソフト((株)マウンテック製、MacView ver4.0)を用いて、撮影画面を多項式4次近似にて面補正し、凹型の形状となっている欠点を抽出し、その欠点部分の顕微鏡画像を撮影した。得られた欠点部分の画像について画像解析ソフトを用いて、欠点部分の面積と周囲長を導き出して、下記式により円形度を求めた。
円形度=4Π×(面積)÷(周囲長)2
前記測定を実施し、円形度が0.8〜1.0の範囲内であって、直径が50μm以上の欠点をクレーター状欠点としてカウントした。
(7) Number of Crater-like Defects An arbitrary portion of the thermoplastic resin film was photographed with an area of 1 m 2 using VertScan 2.0 (R5300GL-Lite-AC, manufactured by Ryoka Systems Inc.) under the following conditions.
Measurement conditions: OCD camera SONY HR-57 1/2 inch
Objective lens 5x
Intermediate lens 0.5x
Wavelength filter 530nm white
Measurement mode Focus
Next, using the attached analysis software (MacView ver. 4.0, manufactured by Mountech Co., Ltd.), the photographed screen is surface-corrected by a polynomial fourth-order approximation, and a defect having a concave shape is extracted. Microscopic images were taken. Using the image analysis software, the area and perimeter of the defect portion were derived from the obtained image of the defect portion, and the circularity was determined by the following equation.
Circularity = 4 x (area) / (perimeter) 2
The measurement was performed, and defects having a circularity in the range of 0.8 to 1.0 and a diameter of 50 μm or more were counted as crater-like defects.

(8)耐熱性
熱可塑性樹脂フィルムのいずれかの方向を0°とし、フィルム面内に−90°から90°まで10°毎に方向を変えながら幅10mm、長さ250mmに切削して試験片とし、JIS−C2151に規定された方法に従って、テンシロン引張試験機を用いて、幅10mmのサンプル片をチャック間長さ100mmとなるようセットし、引張速度300mm/minで引張試験を行った。ここで、方向をかえて破断強度を測定した際に、破断強度が最も小さくなった方向をフィルムの長さ方向として定めた。
次に、長さ方向とフィルム面内で長さ方向に垂直な方向について、幅10mm、長さ250mmに切削した試験片を、200℃の温度に設定した熱風オーブン中で1000時間の加熱処理を行い、加熱処理前後での破断強度を測定した。得られた値をもとに、下記の式から強度保持率を算出し、下記の判定基準にて評価した。
なお測定は、長さ方向およびフィルム面内で長さ方向に垂直な方向にそれぞれ10回測定し、その平均値を求め、下記の基準にて評価した。
(8) A test piece cut to a width of 10 mm and a length of 250 mm while changing any direction of the heat-resistant thermoplastic resin film to 0 ° and changing the direction from −90 ° to 90 ° in steps of 10 ° in the film plane. According to the method specified in JIS-C2151, a 10 mm wide sample piece was set to have a chuck-to-chuck length of 100 mm using a Tensilon tensile tester, and a tensile test was performed at a tensile speed of 300 mm / min. Here, when the breaking strength was measured while changing the direction, the direction in which the breaking strength became the smallest was determined as the length direction of the film.
Next, in a length direction and a direction perpendicular to the length direction in the film plane, a test piece cut to a width of 10 mm and a length of 250 mm was subjected to heat treatment in a hot air oven set at a temperature of 200 ° C. for 1000 hours. Then, the breaking strength before and after the heat treatment was measured. Based on the obtained value, the strength retention was calculated from the following equation, and evaluated according to the following criteria.
The measurement was performed 10 times each in the length direction and in the direction perpendicular to the length direction in the film plane, and the average value was obtained and evaluated according to the following criteria.

強度保持率(%)=Y/Y0×100
Y0:加熱処理前の破断強度(MPa)
Y:加熱処理後の破断強度(MPa)
AA:80%以上
A:強度保持率が60%以上、80%未満
B:強度保持率が50%以上、60%未満
C:強度保持率が50%未満。
Strength retention (%) = Y / Y0 × 100
Y0: breaking strength before heat treatment (MPa)
Y: breaking strength after heat treatment (MPa)
AA: 80% or more A: Strength retention of 60% or more and less than 80% B: Strength retention of 50% or more, less than 60% C: Strength retention of less than 50%.

(9)加工性
熱可塑性樹脂フィルムを任意の箇所から10cm×10cmにサンプリングし、アルバック機工株式会社製真空蒸着装置(VPC−260F)を使用して真空度1.0Torr以下、抵抗加熱電流値:25〜30で50nm厚みのアルミ蒸着を施した後、サンプルを平らな金属板の上に蒸着面が上になるように平行に置き、10秒間放置後にサンプルの表面状態を目視観察し下記の基準にて評価した。また、目視で凹凸がみられなかったものは光学顕微鏡(ライカ製、DM2500、倍率10倍)で観察し凹凸の有無を確認した。
AA:目視でも光学顕微鏡でも凹凸を確認できない。
AA:目視で凹凸は確認できないが、光学顕微鏡でできる凹凸が5個未満。
B:目視で凹凸は確認できないが、光学顕微鏡でできる凹凸が6個以上。
C:目視で確認できる凹凸がある。
(9) Processability A thermoplastic resin film is sampled from an arbitrary position to a size of 10 cm × 10 cm, and the degree of vacuum is 1.0 Torr or less, using a vacuum evaporation device (VPC-260F) manufactured by ULVAC KIKO CO., LTD. After depositing aluminum having a thickness of 25 to 30 nm and a thickness of 50 nm, the sample is placed in parallel on a flat metal plate so that the deposition surface is facing upward, and after standing for 10 seconds, the surface state of the sample is visually observed and the following criteria are applied. Was evaluated. In addition, those having no visible irregularities were observed with an optical microscope (manufactured by Leica, DM2500, magnification 10 times) to confirm the presence or absence of irregularities.
AA: No irregularities can be confirmed visually or with an optical microscope.
AA: No irregularities can be visually confirmed, but less than 5 irregularities can be formed with an optical microscope.
B: No irregularities can be visually observed, but six or more irregularities can be formed with an optical microscope.
C: There are irregularities that can be visually confirmed.

(10)伝送損失
熱可塑性樹脂フィルムの両表面に回路基板用接着剤AW−32(共同薬品(株)製)を固化厚み2μmで塗布した後、12μmの銅箔(3EC−HTE、三井金属工業(株)製)を170℃に加熱された真空熱プレス装置で、圧力4MPaにて10分間プレスすることで両表面にラミネートし、銅箔/熱可塑性樹脂フィルム/銅箔の構成の積層体を作製した。得られた積層体の銅箔面に回路パターンとして配線幅140μm、長さ100mmのマイクロストリップラインを化学エッチング法により形成し、評価用のサンプルとした。上記のサンプルを温度23℃、湿度65%RH環境下で24時間放置した直後にネットワークアナライザー(Agilent Technology社製「8722ES」)とカスケードマイクロテック製プローブ(ACP40−250)を用いて10〜40GHzの伝送損失(dB/100mm)を測定し、その絶対値(dB/100mm)について下記基準で評価した。
A:伝送損失の絶対値が15dB/100mm未満
B:伝送損失の絶対値が15dB/100mm以上25dB/100mm未満
C:伝送損失の絶対値が25dB/100mm以上
(11)品位(電気特性のバラつき)
熱可塑性樹脂フィルムの任意の箇所から一辺50mmの正方形のテストピースを切り出し、23℃65%RHの雰囲気下で電子マイクロメータ(アンリツ(株)製、K−312A型、針圧30g)にて サンプルの任意の3箇所の厚みを測定し、その平均値をサンプルの厚み(μm)とした。次に、三菱電線工業社製の部分放電測定器(型名「QM−50」を用いて、部分放電開始電圧の測定を行う。前記テストピースをステンレス板と真鍮電極との間に挟み込み、該ステンレス板と該真鍮電極とに200Vrms/秒の昇圧速度で交流電圧を印加し、部分放電測定器によって測定される放電電荷量が100pCとなったときの電圧値を測定した。測定値および厚みを下記式に挿入し、そのサンプルの200μm換算の部分放電開始電圧を求める。
200μm換算の部分放電開始電圧(V)=測定値(V)/厚み(μm)×200(μm)
測定はn=50で実施し、得られた測定値の最大/最小値から数値の幅(範囲)を求め、下記基準にて評価した。
AA:範囲が100V未満
A:範囲が100V以上500V未満
B:範囲が500V以上
(12)層(I)の累積分布の50、90%数値の粒子径
(1)の方法を用いて熱可塑性樹脂フィルムの各層の厚みを確認したのち、マイクロプレーンを用いて熱可塑性樹脂フィルム中の所望の層をその厚さを超えない範囲で削り取る。削り取ったサンプルを秤量したるつぼに入れた後、マッフル炉(ヤマト科学社製)にて500℃/6hで加熱しサンプルを灰化させる。るつぼを冷却した後、得られた残存物を精製水と混合し、透過率が90%前後になるように調整した。この分散液をレーザー光回折散乱粒度分布測定装置(マイクロトラックMT3000、日機装製)をもちいて、レーザー光波長780nm、測定温度25℃の条件にて、測定前に超音波処理を4分間行なったのちJIS Z8825−1:2001に準じて測定し、サンプルの粒度分布より、累積分布の50%、90%数値の粒子径(D50、D90)を求めた。
(10) Transmission loss
After applying a circuit board adhesive AW-32 (manufactured by Kyodo Yakuhin Co., Ltd.) to both surfaces of the thermoplastic resin film at a solidified thickness of 2 μm, a 12 μm copper foil (3EC-HTE, manufactured by Mitsui Kinzoku Kogyo Co., Ltd.) Was laminated on both surfaces by pressing at a pressure of 4 MPa for 10 minutes using a vacuum heat press apparatus heated to 170 ° C. to produce a laminate having a configuration of copper foil / thermoplastic resin film / copper foil. A microstrip line having a wiring width of 140 μm and a length of 100 mm was formed as a circuit pattern on the copper foil surface of the obtained laminate by a chemical etching method, and used as a sample for evaluation. Immediately after the above sample was left for 24 hours in an environment of a temperature of 23 ° C. and a humidity of 65% RH, a 10-40 GHz frequency was measured using a network analyzer (“8722ES” manufactured by Agilent Technology) and a cascade microtech probe (ACP40-250). The transmission loss (dB / 100 mm) was measured, and the absolute value (dB / 100 mm) was evaluated according to the following criteria.
A: Absolute value of transmission loss is less than 15 dB / 100 mm B: Absolute value of transmission loss is 15 dB / 100 mm or more and less than 25 dB / 100 mm C: Absolute value of transmission loss is 25 dB / 100 mm or more
(11) Quality (variation in electrical characteristics)
A test piece of a square having a side of 50 mm is cut out from an arbitrary part of the thermoplastic resin film, and is sampled with an electronic micrometer (K-312A type, a needle pressure of 30 g, manufactured by Anritsu Corporation) in an atmosphere of 23 ° C. and 65% RH. Were measured at any three locations, and the average value was taken as the sample thickness (μm). Next, the partial discharge starting voltage is measured using a partial discharge measuring device (model name “QM-50” manufactured by Mitsubishi Cable Industries, Ltd.). The test piece is sandwiched between a stainless steel plate and a brass electrode. An AC voltage was applied to the stainless steel plate and the brass electrode at a step-up rate of 200 Vrms / sec, and the voltage value when the amount of discharge charge measured by the partial discharge measuring device reached 100 pC was measured. This is inserted into the following equation, and the partial discharge starting voltage of the sample in terms of 200 μm is obtained.
Partial discharge starting voltage (V) in terms of 200 μm = measured value (V) / thickness (μm) × 200 (μm)
The measurement was carried out at n = 50, and the width (range) of the numerical value was determined from the maximum / minimum value of the obtained measured values, and evaluated according to the following criteria.
AA: The range is less than 100 V A: The range is 100 V or more and less than 500 V B: The range is 500 V or more (12) Thermoplastic resin using the method of particle diameter (1) of 50, 90% of the cumulative distribution of layer (I) After confirming the thickness of each layer of the film, a desired layer in the thermoplastic resin film is cut off using a microplane within a range not exceeding the thickness. After placing the shaved sample in a weighed crucible, the sample is heated at 500 ° C./6 h in a muffle furnace (manufactured by Yamato Scientific Co., Ltd.) to incinerate the sample. After cooling the crucible, the obtained residue was mixed with purified water and adjusted so that the transmittance was about 90%. This dispersion was subjected to ultrasonic treatment for 4 minutes before measurement using a laser light diffraction scattering particle size distribution analyzer (Microtrack MT3000, manufactured by Nikkiso Co., Ltd.) at a laser light wavelength of 780 nm and a measurement temperature of 25 ° C. Measurement was performed according to JIS Z8825-1: 2001, and the particle diameters (D50, D90) of 50% and 90% of the cumulative distribution were determined from the particle size distribution of the sample.

(13)延伸の有無(収縮性)
熱可塑性樹脂フィルムの任意の箇所から任意の方向に10cm×10cmのサンプルを切り出し、4辺の長さをノギスで測定する。その後、ポリイミドフィルム(東レデュポン(株)製、25μm)にはさみ、オーブンで250℃/1h加熱し、取り出し冷却した後再度サンプルの4辺の長さをノギスで測定し、4辺それぞれの収縮率を下記式にあてはめ求めた。
収縮率(%)=(加熱前の辺の長さ−加熱後の辺の長さ)/加熱前の辺の長さ×100
測定はn=5で行い、切り出したサンプルの縦および横方向の収縮率の平均を求め、下記基準で評価した。
未延伸:収縮率が縦・横方向ともに1%未満
一軸延伸:収縮率が縦・横方向のどちらか一方が1%以上
二軸延伸:収縮率が縦・横方向のいずれも1%以上
(13) Presence or absence of stretching (shrinkage)
A sample of 10 cm × 10 cm is cut out from an arbitrary portion of the thermoplastic resin film in an arbitrary direction, and the length of four sides is measured with a caliper. Thereafter, the sample was sandwiched between polyimide films (manufactured by Toray DuPont Co., Ltd., 25 μm), heated in an oven at 250 ° C. for 1 hour, taken out and cooled, and then the length of the four sides of the sample was measured again with a caliper. Was determined by the following equation.
Shrinkage (%) = (length of side before heating−length of side after heating) / length of side before heating × 100
The measurement was performed at n = 5, and the average of the shrinkage rates in the vertical and horizontal directions of the cut sample was determined and evaluated according to the following criteria.
Unstretched: Shrinkage rate is less than 1% in both longitudinal and transverse directions Uniaxial stretching: Shrinkage rate is 1% or more in either longitudinal or transverse direction Biaxial stretching: Shrinkage rate is 1% or more in both longitudinal and transverse directions

(参考例1)PPS樹脂1の製造方法
オートクレ−ブに100モルの硫化ナトリウム9水塩、45モルの酢酸ナトリウムおよび25リットルのN−メチル−2−ピロリドン(以下、NMPと略称する。)を仕込み、撹拌しながら徐々に220℃の温度まで昇温して、含有されている水分を蒸留により除去した。脱水の終了した系内に、主成分モノマとして95モルのp−ジクロロベンゼン、副成分モノマとして5モルのm−ジクロロベンゼンを5リットルのNMPとともに添加し、170℃の温度で窒素を3kg/cmで加圧封入後、昇温し、260℃の温度にて4時間重合した。重合終了後冷却し、蒸留水中にポリマーを沈殿させ、150メッシュ目開きを有する金網によって、小塊状ポリマーを採取した。このようにして得られた小塊状ポリマーを90℃の蒸留水により2回洗浄した後、酢酸ナトリウム水溶液で3回洗浄した後、蒸留水により1回洗浄し、減圧下120℃の温度にて乾燥して融点が265℃のPPS樹脂1を得た。
(Reference Example 1) Production method of PPS resin 1 In an autoclave, 100 mol of sodium sulfide nonahydrate, 45 mol of sodium acetate and 25 l of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) were used. While charging and stirring, the temperature was gradually raised to a temperature of 220 ° C., and the contained water was removed by distillation. 95 mol of p-dichlorobenzene as a main component monomer and 5 mol of m-dichlorobenzene as a subcomponent monomer are added to the dehydrated system together with 5 liters of NMP, and nitrogen is added at a temperature of 170 ° C. at 3 kg / cm 3. After pressurizing and sealing in 2 , the temperature was raised and polymerization was carried out at 260 ° C. for 4 hours. After completion of the polymerization, the mixture was cooled, the polymer was precipitated in distilled water, and a small block polymer was collected by a wire mesh having a 150 mesh opening. The thus obtained small lumpy polymer is washed twice with distilled water at 90 ° C., then three times with an aqueous sodium acetate solution, washed once with distilled water, and dried at a temperature of 120 ° C. under reduced pressure. Thus, PPS resin 1 having a melting point of 265 ° C. was obtained.

(参考例2)PPS樹脂2の製造方法
主成分モノマとして90モルのp−ジクロロベンゼン、副成分モノマとして10モルのm−ジクロロベンゼンを5リットルのNMPとともに添加した以外は参考例1と同様にして、融点が250℃のPPS樹脂2を得た。
(Reference Example 2) Production method of PPS resin 2 Same as Reference Example 1, except that 90 mol of p-dichlorobenzene was added as a main component monomer and 10 mol of m-dichlorobenzene was added as a subcomponent monomer together with 5 L of NMP. Thus, PPS resin 2 having a melting point of 250 ° C. was obtained.

(参考例3)PPS樹脂3の製造方法
主成分モノマとして85モルのp−ジクロロベンゼン、副成分モノマとして15モルのm−ジクロロベンゼンを5リットルのNMPとともに添加した以外は参考例1と同様にして、融点が240℃のPPS樹脂3を得た。
(Reference Example 3) Production method of PPS resin 3 Same as Reference Example 1 except that 85 mol of p-dichlorobenzene was added as a main component monomer and 15 mol of m-dichlorobenzene was added as a subcomponent monomer together with 5 L of NMP. Thus, a PPS resin 3 having a melting point of 240 ° C. was obtained.

(参考例4)PPS樹脂4の製造方法
オートクレ−ブに100モルの硫化ナトリウム9水塩、45モルの酢酸ナトリウムおよび25リットルのN−メチル−2−ピロリドン(以下、NMPと略称する。)を仕込み、撹拌しながら徐々に220℃の温度まで昇温して、含有されている水分を蒸留により除去した。脱水の終了した系内に、主成分モノマとして100モルのp−ジクロロベンゼンを5リットルのNMPとともに添加し、170℃の温度で窒素を3kg/cmで加圧封入後、昇温し、260℃の温度にて4時間重合した。重合終了後冷却し、蒸留水中にポリマーを沈殿させ、150メッシュ目開きを有する金網によって、小塊状ポリマーを採取した。このようにして得られた小塊状ポリマーを90℃の蒸留水により2回洗浄した後、酢酸ナトリウム水溶液で3回洗浄した後、蒸留水により1回洗浄し、減圧下120℃の温度にて乾燥して融点が280℃のPPS樹脂4を得た。
(Reference Example 4) Method for producing PPS resin 4 In an autoclave, 100 mol of sodium sulfide nonahydrate, 45 mol of sodium acetate, and 25 l of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) were used. While charging and stirring, the temperature was gradually raised to a temperature of 220 ° C., and the contained water was removed by distillation. Into the dehydrated system, 100 mol of p-dichlorobenzene as a main component monomer was added together with 5 liters of NMP, nitrogen was pressurized at a temperature of 170 ° C. at 3 kg / cm 2 , and the temperature was raised. Polymerization was conducted at a temperature of 4 ° C. for 4 hours. After completion of the polymerization, the mixture was cooled, the polymer was precipitated in distilled water, and a small block polymer was collected by a wire mesh having a 150 mesh opening. The thus obtained small lumpy polymer is washed twice with distilled water at 90 ° C., then three times with an aqueous sodium acetate solution, washed once with distilled water, and dried at a temperature of 120 ° C. under reduced pressure. As a result, a PPS resin 4 having a melting point of 280 ° C. was obtained.

(参考例6)PPS樹脂5の製造方法
PPS樹脂2の顆粒75質量%とシリカ粒子としてアドマテックス社製 FE9(D50=6μm、D90=11μm)25質量%を配合し、300℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS樹脂5)とした。
(Reference Example 6) Method for producing PPS resin 5 75% by mass of granules of PPS resin 2 and 25% by mass of FE9 (D50 = 6 μm, D90 = 11 μm) manufactured by Admatechs as silica particles were mixed and heated to 300 ° C. It is fed into a vented co-rotating twin-screw kneading extruder (manufactured by Nippon Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5), and melts at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute. It was extruded and discharged in a strand shape, cooled with water at a temperature of 25 ° C., and immediately cut to produce a chip, which was used as a film raw material (PPS resin 5).

(実施例1)
参考例4で作製したPPS樹脂を、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングして参考例4のPPS樹脂からなるチップを作製し、180℃で3時間減圧乾燥した。
(Example 1)
The PPS resin produced in Reference Example 4 was charged into a vented co-rotating twin-screw kneading extruder (manufactured by Nippon Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5) heated to 320 ° C. Then, the mixture was melt-extruded at a retention time of 90 seconds and a screw rotation speed of 150 revolutions / minute, discharged in a strand shape, cooled with water at a temperature of 25 ° C., and immediately cut to produce a chip made of the PPS resin of Reference Example 4. And dried under reduced pressure at 180 ° C. for 3 hours.

また参考例1〜3で作製したPPS樹脂を、表1に示す無機粒子と配合し、300℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングして無機粒子添加PPS樹脂からなるチップを作製し、180℃で3時間減圧乾燥した。   Further, the PPS resin prepared in Reference Examples 1 to 3 was blended with the inorganic particles shown in Table 1, and a co-rotating twin-screw kneading extruder equipped with a vent heated to 300 ° C. (manufactured by Nippon Steel Works, screw diameter 30 mm, Screw length / screw diameter = 45.5), melt extruded at a retention time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in a strand form, cooled with water at a temperature of 25 ° C., and immediately cut. In this way, a chip made of a PPS resin containing inorganic particles was prepared and dried under reduced pressure at 180 ° C. for 3 hours.

参考例4のPPS樹脂ペレット(II原料)を押出温度320℃に設定した一軸押出機(L/D=28)に、また、参考例1〜3それぞれを用いて作製した表1に示す処方の無機粒子含有PPS樹脂ペレット(I原料)を押出温度300℃に設定した一軸押出機(L/D=28)に、それぞれ投入し、II原料からなる層(II)/I原料からなる層(I)/II原料からなる層(II)で表1に示す厚みの3層構成となるようにフィードブロック積層装置を通し、Tダイに導きシート状に押出し、押し出されたシートの全幅に対してワイヤー式静電印加装置を用いて電圧を印加し、20℃に冷却されたキャスティングドラムに密着させて冷却固化し、積層シートを得た。得られた積層シートを、ロール群からなる縦延伸機に導き表1の条件および倍率で長手方向(MD方向)に延伸した。次いでテンターを用いて長手方向と垂直方向(TD方向)に予熱温度95℃、延伸温度100℃で3.8倍に延伸し、続いて280℃で熱処理を行った。引き続き、280℃の弛緩処理ゾーンで4秒間横手方向(TD方向)に5%弛緩処理を行った後、室温まで冷却した後、フィルムエッジを除去し、表1に示す厚みの二軸延伸フィルムを得た。
得られたフィルムの特性を表1に示す。誘電率、耐熱性、加工性に優れ、伝送損失の少ないものであった。
The PPS resin pellets (II raw material) of Reference Example 4 were extruded in a single-screw extruder (L / D = 28) set at an extrusion temperature of 320 ° C., and the formulations shown in Table 1 were prepared using Reference Examples 1 to 3, respectively. The inorganic particle-containing PPS resin pellets (raw material I) were respectively charged into a single screw extruder (L / D = 28) set at an extrusion temperature of 300 ° C., and a layer (II) composed of raw material II and a layer (I) composed of raw material I ) / II The raw material layer (II) is passed through a feed block laminating apparatus so as to have a three-layer structure having the thickness shown in Table 1 and guided to a T-die, extruded into a sheet shape, and a wire with respect to the entire width of the extruded sheet. A voltage was applied using a static electricity applying device, and the layer was brought into close contact with a casting drum cooled to 20 ° C. to be cooled and solidified to obtain a laminated sheet. The obtained laminated sheet was guided to a longitudinal stretching machine composed of rolls and stretched in the longitudinal direction (MD direction) under the conditions and magnifications shown in Table 1. Next, the film was stretched 3.8 times at a preheating temperature of 95 ° C. and a stretching temperature of 100 ° C. 3.8 times in a longitudinal direction (TD direction) using a tenter, and then heat-treated at 280 ° C. Subsequently, after performing 5% relaxation treatment in the transverse direction (TD direction) for 4 seconds in the relaxation treatment zone at 280 ° C., cooling to room temperature, removing the film edge, and applying a biaxially stretched film having a thickness shown in Table 1 Obtained.
Table 1 shows the properties of the obtained film. It was excellent in dielectric constant, heat resistance and workability, and had little transmission loss.

(実施例2〜7)
層(I)および層(II)の原料、各層の厚み、製造方法を表1の通りとした以外は実施例1と同様にして表1に示す厚みの二軸延伸フィルムを得た。
得られたフィルムの特性を表1に示す。実施例1と比べて誘電率、加工性に優れ、より伝送損失の少ないものであった。
(Examples 2 to 7)
A biaxially stretched film having the thickness shown in Table 1 was obtained in the same manner as in Example 1 except that the raw materials of the layer (I) and the layer (II), the thickness of each layer, and the production method were as shown in Table 1.
Table 1 shows the properties of the obtained film. Compared with Example 1, the dielectric constant and the workability were excellent, and the transmission loss was smaller.

(実施例8)
層(I)に用いる樹脂をPPS樹脂5とした以外は実施例1と同様にして表1に示す厚みの2軸延伸フィルムを得た。
(Example 8)
A biaxially stretched film having the thickness shown in Table 1 was obtained in the same manner as in Example 1 except that the resin used for the layer (I) was PPS resin 5.

(比較例1)
参考例4のPPS樹脂ペレット(II原料)を押出温度320℃に設定した一軸押出機(L/D=28)に投入し、溶融させてTダイに導きシート状に押出し、押し出されたシートの全幅に対してワイヤー式静電印加装置を用いて電圧を印加し、20℃に冷却されたキャスティングドラムに密着させて冷却固化し、積層シートを得た。得られた積層シートを、ロール群からなる縦延伸機に導き、実施例1と同様にして、PPS樹脂4からなる、無機粒子を含まない二軸延伸フィルムを得た。
得られたフィルムの特性を表1に示す。実施例と比べて、誘電率が劣り、伝送損失が大きい結果であった。
(Comparative Example 1)
The PPS resin pellets (II raw material) of Reference Example 4 were charged into a single screw extruder (L / D = 28) set at an extrusion temperature of 320 ° C., melted, guided to a T-die, extruded into a sheet shape, and extruded. A voltage was applied to the entire width by using a wire-type electrostatic application device, and was closely adhered to a casting drum cooled to 20 ° C. to be cooled and solidified to obtain a laminated sheet. The obtained laminated sheet was guided to a vertical stretching machine composed of rolls, and a biaxially stretched film made of PPS resin 4 and containing no inorganic particles was obtained in the same manner as in Example 1.
Table 1 shows the properties of the obtained film. As a result, the dielectric constant was inferior and the transmission loss was large as compared with the example.

(比較例2)
また参考例4で作製したPPS樹脂に表1に示す無機粒子と配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングして無機粒子添加したPPS樹脂チップを作製し、180℃で3時間減圧乾燥した。この樹脂チップを層(II)の原料として押出温度320℃に設定した一軸押出機(L/D=28)に、参考例4のPPS樹脂ペレット(II原料)を押出温度320℃に設定した一軸押出機(L/D=28)に、投入した以外した以外は実施例1と同様にして表1に示す厚みの二軸延伸フィルムを得た。
得られたフィルムの特性を表1に示す。実施例と比べて欠点が多く、耐熱性、加工性が劣り、かつ伝送損失が大きい結果であった。
実施例および比較例に使用した無機粒子の詳細は下記の通りである。
・CaCO:白石工業(株)製、炭酸カルシウムP―50をふるい振とう器(ヴァーダー・サイエンティフィック社製、AS200)にかけて、体積平均粒径8μm、D50=8μm、D90=28μmになるように調整して用いた。
・BaSO:堺化学(株)、BMH−60(体積平均粒径7μm、D50=7μm、D90=17μm)をそのまま用いた。
(Comparative Example 2)
In addition, the PPS resin produced in Reference Example 4 was mixed with the inorganic particles shown in Table 1, and a vented co-rotating twin-screw kneading extruder (manufactured by Nippon Steel Works, screw diameter 30 mm, screw length heated to 320 ° C.) / Screw diameter = 45.5), melt extruded at a retention time of 90 seconds, screw rotation speed of 150 revolutions / minute, discharged in strand form, cooled with water at a temperature of 25 ° C., and immediately cut to obtain inorganic particles. The added PPS resin chip was produced, and dried under reduced pressure at 180 ° C. for 3 hours. This resin chip was used as a raw material for the layer (II) in a single screw extruder (L / D = 28) set at an extrusion temperature of 320 ° C., and a single screw extruded PPS resin pellets of Reference Example 4 (II raw material) set at an extrusion temperature of 320 ° C. A biaxially stretched film having a thickness shown in Table 1 was obtained in the same manner as in Example 1 except that the extruder was not charged into an extruder (L / D = 28).
Table 1 shows the properties of the obtained film. As compared with the examples, there were many defects, heat resistance and workability were poor, and transmission loss was large.
The details of the inorganic particles used in Examples and Comparative Examples are as follows.
CaCO 3 : Calcium carbonate P-50 manufactured by Shiraishi Kogyo Co., Ltd. is passed through a sieve shaker (AS200 manufactured by Verder Scientific Co., Ltd.) so that the volume average particle diameter is 8 μm, D50 = 8 μm, D90 = 28 μm. It adjusted and used.
BaSO 4 : Sakai Chemical Co., Ltd., BMH-60 (volume average particle diameter 7 μm, D50 = 7 μm, D90 = 17 μm) was used as it was.

Figure 2020044839
Figure 2020044839

本発明の熱可塑性樹脂フィルムは、耐熱性、電気絶縁性および/または断熱性および製膜安定性に優れるだけでなく欠点の少ないことから、電気・電子部品、電池用部材、機械部品および自動車部品の絶縁材や断熱材として好適に用いることができる。   INDUSTRIAL APPLICABILITY The thermoplastic resin film of the present invention is not only excellent in heat resistance, electric insulation and / or heat insulation and film formation stability, but also has few defects, so that it can be used for electric / electronic parts, battery members, machine parts and automobile parts. Can be suitably used as an insulating material or a heat insulating material.

Claims (6)

ポリアリーレンスルフィド樹脂を主成分としてなる熱可塑性樹脂フィルムであって、2層以上の積層構成を有し、構成する層の少なくとも1層は空孔を有し、かつ融点が275℃以下の層(I)であることを特徴とする熱可塑性樹脂フィルム。 A thermoplastic resin film containing a polyarylene sulfide resin as a main component, having a laminated structure of two or more layers, wherein at least one of the constituent layers has pores and a melting point of 275 ° C. or less ( (I) a thermoplastic resin film; 前記熱可塑性樹脂フィルムに直径50μm以上のクレーター状の欠点が20個/m以下であることを特徴とする請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the thermoplastic resin film to at least the diameter 50μm crater-like defect is characterized in that 20 or / m 2 or less. 前記熱可塑性樹脂フィルムの層(I)以外の層(II)の配向パラメーターが0.8〜1.4であることを特徴とする請求項1又は2に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1 or 2, wherein the orientation parameter of the layer (II) other than the layer (I) of the thermoplastic resin film is 0.8 to 1.4. 請求項1〜3のいずれかに記載の熱可塑性樹脂フィルムを用いた電気・電子部品。 An electric / electronic part using the thermoplastic resin film according to claim 1. 請求項1〜3のいずれかに記載の熱可塑性樹脂フィルムを用いた絶縁材。 An insulating material using the thermoplastic resin film according to claim 1. フィルムが二軸延伸されていることを特徴とする、請求項1に記載の熱可塑性樹脂フィルム。
The thermoplastic resin film according to claim 1, wherein the film is biaxially stretched.
JP2019166024A 2018-09-18 2019-09-12 Thermoplastic resin film and electric/electronic component including the same, and insulation material Pending JP2020044839A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018173421 2018-09-18
JP2018173421 2018-09-18

Publications (1)

Publication Number Publication Date
JP2020044839A true JP2020044839A (en) 2020-03-26

Family

ID=69900467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166024A Pending JP2020044839A (en) 2018-09-18 2019-09-12 Thermoplastic resin film and electric/electronic component including the same, and insulation material

Country Status (1)

Country Link
JP (1) JP2020044839A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332834B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332832B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332833B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332834B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332832B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332833B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets

Similar Documents

Publication Publication Date Title
JP2020044839A (en) Thermoplastic resin film and electric/electronic component including the same, and insulation material
JP5088322B2 (en) Biaxially oriented polyarylene sulfide film and method for producing the same
JP2020044840A (en) Thermoplastic resin film and electric/electronic component including the same
JP2018083415A (en) Laminate film, and production method thereof
JP2020075481A (en) Thermoplastic resin film and manufacturing method therefor
JP6090314B2 (en) Biaxially stretched polyarylene sulfide film for metal bonding
JP6907536B2 (en) Laminated film and its manufacturing method
JP2013163806A (en) Porous film and separator for power storage device
JP2001261959A (en) Biaxially oriented film, metallized film and film capacitor
JP7187914B2 (en) polyarylene sulfide film
JP2009292902A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
JP4946022B2 (en) Polyphenylene sulfide composite film
JP2006199734A (en) Polyarylene sulfide film
JP4802500B2 (en) Polyarylene sulfide laminate sheet
JP2014189718A (en) Biaxially stretched polyarylene sulfide film
JP7298218B2 (en) LAMINATED BOARD AND CIRCUIT BOARD USING THE SAME
JP5732934B2 (en) PPS laminated film
JP2019165004A (en) Insulation tube
JP2019127033A (en) Laminate and production method
JP7363485B2 (en) polyarylene sulfide film
JP2020139151A (en) Thermoplastic resin film and method for producing the same
JP2015147413A (en) Laminated polyarylene sulfide film
JP2020090613A (en) Polyarylene sulfide film
JP4259086B2 (en) Biaxially oriented polyphenylene sulfide film
JP2023050160A (en) Biaxially-oriented polyarylene sulfide film