JP2020075481A - Thermoplastic resin film and manufacturing method therefor - Google Patents

Thermoplastic resin film and manufacturing method therefor Download PDF

Info

Publication number
JP2020075481A
JP2020075481A JP2019161775A JP2019161775A JP2020075481A JP 2020075481 A JP2020075481 A JP 2020075481A JP 2019161775 A JP2019161775 A JP 2019161775A JP 2019161775 A JP2019161775 A JP 2019161775A JP 2020075481 A JP2020075481 A JP 2020075481A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
resin film
film
layer
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019161775A
Other languages
Japanese (ja)
Inventor
葉子 若原
Yoko Wakahara
葉子 若原
高橋 健太
Kenta Takahashi
健太 高橋
山内 英幸
Hideyuki Yamauchi
英幸 山内
青山 滋
Shigeru Aoyama
滋 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2020075481A publication Critical patent/JP2020075481A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

To provide a thermoplastic resin film excellent in heat resistance, electric property and processability.SOLUTION: There is provided a thermoplastic resin film consisting of a thermoplastic resin having melting point or softening point of 270°C or higher, having a laminate structure with 2 or more layers, in which at least one layer of the constituted layer is a layer (I) having porosity of 20% or more, and the number of pore with a diameter R of a maximum circumcircle of 2 μm or less in pores contained in 2500 μmof a cross section perpendicular to a surface of the thermoplastic resin film in the layer (I) is 20 or less.SELECTED DRAWING: None

Description

本発明は、耐熱性・電気特性・加工性に優れる熱可塑性樹脂フィルムに関する。   The present invention relates to a thermoplastic resin film having excellent heat resistance, electrical characteristics, and processability.

ポリアリーレンスルフィド、ポリエーテルイミド、ポリエチレンナフタレート、ポリアミド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂などに代表される熱可塑性樹脂からなるフィルムや不織布は耐熱性・電気特性・低吸湿性、高温下での寸法安定性および耐薬品性に優れることから、電気・電子部品、電池用部材、機械部品および自動車部品の絶縁材や断熱材として好適に使用されている。
これらの熱可塑性樹脂フィルムを適用した部材は近年小型化が進んでおり、それに合わせて使用されている熱可塑性樹脂フィルムも従来の厚みと同等の特性を保持しかつ薄膜化することが要求されている。
熱可塑性樹脂フィルムを同様の組成で薄膜化すると、厚みの減少に従い機械特性・電気特性の低下が起こるといった課題があった(例えば特許文献1および2)。
そこで熱可塑性樹脂フィルムの特性、とくに電気特性の保持と薄膜化を両立するために、熱可塑性樹脂フィルムを多孔化する手法が提案されている(例えば特許文献4および5)。しかし上記の手法を適用したフィルムは樹脂の密度が低い部分を含むことから、機械特性が大幅に低下し、加工性が低下するといった課題があった。
Films and non-woven fabrics made of thermoplastic resins such as polyarylene sulfide, polyether imide, polyethylene naphthalate, polyamide, polyether ether ketone, liquid crystal polymer, and fluororesin have heat resistance, electrical characteristics, low hygroscopicity, and high temperature. Since it has excellent dimensional stability and chemical resistance at room temperature, it is preferably used as an insulating material or heat insulating material for electric / electronic parts, battery members, machine parts and automobile parts.
The members to which these thermoplastic resin films are applied have been miniaturized in recent years, and the thermoplastic resin films used in accordance with them are required to retain the same characteristics as the conventional thickness and be thin. There is.
When the thermoplastic resin film is thinned with the same composition, there is a problem that mechanical properties and electrical properties are deteriorated as the thickness is reduced (for example, Patent Documents 1 and 2).
Therefore, a method of making the thermoplastic resin film porous has been proposed in order to maintain both the characteristics of the thermoplastic resin film, particularly the electrical characteristics, and to make the film thinner (for example, Patent Documents 4 and 5). However, since the film to which the above method is applied includes a portion having a low resin density, there is a problem that mechanical properties are significantly reduced and processability is reduced.

特開2008−266593号公報JP, 2008-266593, A 特開2011−127244号公報JP, 2011-127244, A 特開2013−206818号公報JP, 2013-206818, A 特開2014−102946号公報JP, 2014-102946, A

本発明の課題は、上記した問題を解決することにある。すなわち、耐熱性・電気特性・加工性に優れる熱可塑性樹脂フィルムを提供することである。   An object of the present invention is to solve the above problems. That is, it is to provide a thermoplastic resin film having excellent heat resistance, electrical characteristics, and processability.

本発明の熱可塑性樹脂フィルムは、上記課題を解決するために次の構成を有する。すなわち、
融点または軟化点が270℃以上の熱可塑性樹脂からなる熱可塑性樹脂フィルムで、2層以上の積層構成を有し、構成する層の少なくとも1層は空孔率が20%以上の層(I)であり、層(I)について熱可塑性樹脂フィルムの面に垂直な断面2500μmあたりに含まれる空孔のうち最小外接円の直径Rが2μm以下である空孔の個数が20個以下である熱可塑性樹脂フィルム。
The thermoplastic resin film of the present invention has the following constitution in order to solve the above problems. That is,
A thermoplastic resin film made of a thermoplastic resin having a melting point or a softening point of 270 ° C. or higher, having a laminated structure of two or more layers, and at least one of the constituent layers has a porosity of 20% or more (I). In the layer (I), a heat having 20 or less number of holes having a minimum circumscribed circle diameter R of 2 μm or less among the holes included in a cross section 2500 μm 2 perpendicular to the surface of the thermoplastic resin film. Plastic resin film.

本発明の熱可塑性樹脂フィルムは耐熱性・電気特性および加工性に優れ、電気・電子機器、電池用部材、機械部品および自動車部品や絶縁材、印刷機器用部材、耐熱テープ、回路基板、離型フィルムとして好適に用いることができる。 INDUSTRIAL APPLICABILITY The thermoplastic resin film of the present invention has excellent heat resistance / electrical properties and processability, and is used for electric / electronic devices, battery members, mechanical parts and automobile parts and insulating materials, printing device members, heat-resistant tapes, circuit boards, mold release. It can be suitably used as a film.

本発明の熱可塑性樹脂フィルムは融点または軟化点が270℃以上の熱可塑性樹脂を主成分とする。ここで融点とはその樹脂の固体・液体の転移温度を指し、軟化点とはその熱可塑性樹脂が加熱によって実質的に変形し始める温度のことをさす。また主成分とはフィルムを構成する樹脂組成のうち60質量%以上を占める成分をさす。上記の熱特性を有することで、優れた耐熱性を発現せしめることができる。融点または軟化点が270℃より低いと、180℃以上の高温環境下で使用した際にフィルムが劣化しやすくなり、機械特性・電気特性などが低下する場合がある。融点または軟化点は高ければ高いほど耐熱性が向上するが、生産性の観点から350℃以下であることが好ましい。熱可塑性樹脂フィルムの融点または軟化点はより好ましくは280℃以上、さらに好ましくは300℃以上である。樹脂の融点は示差走査熱量計で、樹脂の軟化点は熱機械分析装置を用いて後述の手法にて評価できる。 The thermoplastic resin film of the present invention is mainly composed of a thermoplastic resin having a melting point or a softening point of 270 ° C. or higher. Here, the melting point refers to the solid-liquid transition temperature of the resin, and the softening point refers to the temperature at which the thermoplastic resin begins to substantially deform due to heating. In addition, the main component refers to a component that accounts for 60% by mass or more of the resin composition forming the film. By having the above-mentioned thermal characteristics, excellent heat resistance can be exhibited. When the melting point or softening point is lower than 270 ° C., the film tends to deteriorate when used in a high temperature environment of 180 ° C. or higher, and mechanical properties and electrical properties may deteriorate. The higher the melting point or softening point, the higher the heat resistance, but from the viewpoint of productivity, it is preferably 350 ° C or lower. The melting point or softening point of the thermoplastic resin film is more preferably 280 ° C or higher, still more preferably 300 ° C or higher. The melting point of the resin can be evaluated by a differential scanning calorimeter, and the softening point of the resin can be evaluated by a method described later using a thermomechanical analyzer.

上記の熱可塑性樹脂としては、結晶性、非晶性のいずれでも良く、結晶性の樹脂としては例えば、熱可塑性ポリイミド樹脂、ポリアミド樹脂、ポリエーテルエーテルケトン、ポリアリーレンスルフィド樹脂(ポリスルホン、ポリエーテルスルホン、ポリフェニレンサルファイドなど)などが、また、非晶性の樹脂としてはポリエーテルイミド(PEI)、熱可塑性ポリアミドイミド樹脂、液晶ポリマー(LCP)などから選択された少なくとも1種であることが好ましい。中でもポリアリーレンスルフィド樹脂、ポリアミド樹脂、熱可塑性ポリイミド樹脂、ポリエーテルイミド、ポリエーテルエーテルケトンのいずれかより選択された少なくとも1種であることが耐熱性・絶縁性の観点から好ましく、ポリエーテルイミド樹脂、ポリアリーレンスルフィド樹脂、ポリエーテルエーテルケトンであることが加工性・生産性の観点から特に好ましい。   The above-mentioned thermoplastic resin may be either crystalline or amorphous, and examples of the crystalline resin include thermoplastic polyimide resin, polyamide resin, polyether ether ketone, polyarylene sulfide resin (polysulfone, polyether sulfone). , Polyphenylene sulfide, etc.) and the amorphous resin is preferably at least one selected from polyetherimide (PEI), thermoplastic polyamideimide resin, liquid crystal polymer (LCP), and the like. Among them, at least one selected from the group consisting of polyarylene sulfide resin, polyamide resin, thermoplastic polyimide resin, polyetherimide, and polyetheretherketone is preferable from the viewpoint of heat resistance and insulating property, and polyetherimide resin From the viewpoint of processability and productivity, polyarylene sulfide resin and polyether ether ketone are particularly preferable.

本発明の熱可塑性樹脂フィルムを構成する樹脂組成物には、本発明の効果を損なわない範囲で添加剤を配合して使用することも可能である。かかる添加剤の具体例としては有機化合物、熱分解防止剤、熱安定剤、光安定剤および酸化防止剤などが挙げられる。   The resin composition constituting the thermoplastic resin film of the present invention can be used by adding an additive within a range that does not impair the effects of the present invention. Specific examples of such additives include organic compounds, thermal decomposition inhibitors, thermal stabilizers, light stabilizers and antioxidants.

本発明の熱可塑性樹脂フィルムを構成する樹脂組成物には、本発明の効果を損なわない範囲で上記以外の熱可塑性樹脂以外の樹脂を配合して使用することも可能である。かかる樹脂の具体例としては、ポリエチレンやポリプロピレンなどのポリオレフィン樹脂や、ポリスチレン、ポリカーボネート、アクリル樹脂、ウレタン樹脂、フッ素樹脂、ポリエチレンテレフタレートやポリエチレンナフタレートなどのポリエステル樹脂、ポリケトン、エポキシ樹脂などが挙げられるがこれに限定されない。   It is also possible to mix and use a resin other than the above-mentioned thermoplastic resins in the resin composition constituting the thermoplastic resin film of the present invention within a range not impairing the effects of the present invention. Specific examples of such resins include polyolefin resins such as polyethylene and polypropylene, polystyrene, polycarbonate, acrylic resins, urethane resins, fluororesins, polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyketones, and epoxy resins. It is not limited to this.

本発明の熱可塑性樹脂フィルムに好ましく用いられるポリアリーレンスルフィド樹脂は、−(Ar−S)−の繰り返し単位を有するコポリマーを指す。Arとしては下記の式(A)〜式(K)などで表される単位があげられる。   The polyarylene sulfide resin preferably used for the thermoplastic resin film of the present invention refers to a copolymer having a repeating unit of-(Ar-S)-. Examples of Ar include units represented by the following formulas (A) to (K).

Figure 2020075481
Figure 2020075481

(R1,R2は、水素、アルキル基、アルコキシ基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい)
繰り返し単位としては、上記の式(1)で表されるp−アリーレンスルフィド単位が好ましく、これらの代表的なものとして、ポリフェニレンスルフィド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンなどが挙げられ、特に好ましいp−アリーレンスルフィド単位としては、フィルム物性と経済性の観点から、p−フェニレンスルフィド単位が好ましく例示される。
(R1 and R2 are substituents selected from hydrogen, an alkyl group, an alkoxy group and a halogen group, and R1 and R2 may be the same or different)
The repeating unit is preferably a p-arylene sulfide unit represented by the above formula (1), and typical examples thereof include polyphenylene sulfide, polysulfone, polyether sulfone, polyphenylene sulfide sulfone and polyphenylene sulfide ketone. As a particularly preferable p-arylene sulfide unit, a p-phenylene sulfide unit is preferably exemplified from the viewpoint of film physical properties and economy.

本発明に用いるポリアリーレンスルフィド樹脂は、主要構成単位として下記構造式で示されるp−フェニレンスルフィド単位を全繰り返し単位の80モル%以上99.9モル%以下で構成されていることが好ましい。上記の組成とすることで、優れた耐熱性、耐薬品性を発現せしめることができる。   The polyarylene sulfide resin used in the present invention preferably comprises, as a main constituent unit, a p-phenylene sulfide unit represented by the following structural formula in an amount of 80 mol% or more and 99.9 mol% or less of all repeating units. With the above composition, excellent heat resistance and chemical resistance can be exhibited.

Figure 2020075481
Figure 2020075481

また、繰り返し単位の0.01モル%以上20モル%以下の範囲で共重合単位と共重合することもできる。   It is also possible to copolymerize with the copolymerized unit in the range of 0.01 mol% to 20 mol% of the repeating unit.

好ましい共重合単位は、   Preferred copolymerized units are

Figure 2020075481
Figure 2020075481

Figure 2020075481
Figure 2020075481

Figure 2020075481
Figure 2020075481

(ここでXは、アルキレン、CO、SO単位を示す。) (Here, X represents an alkylene, CO or SO 2 unit.)

Figure 2020075481
Figure 2020075481

Figure 2020075481
Figure 2020075481

(ここでRはアルキル、ニトロ、フェニレン、アルコキシ基を示す。)が挙げられ、特に好ましい共重合単位は、m−フェニレンスルフィド単位である。 (Wherein R represents an alkyl, nitro, phenylene or alkoxy group), and a particularly preferred copolymerized unit is an m-phenylene sulfide unit.

主要構成単位に共重合成分との共重合の態様は特に限定はないが、ランダムコポリマーであることが好ましい。   The copolymerization mode of the main constituent unit with the copolymerization component is not particularly limited, but a random copolymer is preferable.

本発明の熱可塑性樹脂フィルムは、フィルムを構成する層のうち、少なくとも1層は無機粒子を含有し、かつ空孔率が20%以上の層(I)からなる。上記の構成を有することで、熱可塑性樹脂フィルムとしての電気特性を向上せしめることができる。空孔率は好ましくは20〜70%、より好ましくは25〜70%、さらに好ましくは25〜60%である。ここで空孔率とは、層(I)の任意のサイズの断面積を100とした際に、その画像中に含まれる空孔の面積の割合を指し、層(I)の任意サイズの断面画像に空孔が観察されない場合が空孔率0%となる。空孔率が20%より小さくなると、熱可塑性樹脂フィルム中に含まれる空孔が少なくなり、フィルム中に占める誘電率の小さい空気の割合が減るため、電気特性が低下する場合がある。また空孔率は高ければ高いほど好ましいが生産性保持の観点から70%以下が好ましい。空孔率を上記の範囲とするには後述する粒子濃度や製膜条件を適用することで達成できる。空孔率は熱可塑性樹脂フィルムの断面について後述する手法で評価することで確認できる。   In the thermoplastic resin film of the present invention, at least one layer of the layers constituting the film contains inorganic particles and has a porosity of 20% or more (I). By having the above-mentioned composition, the electric characteristic as a thermoplastic resin film can be improved. The porosity is preferably 20 to 70%, more preferably 25 to 70%, further preferably 25 to 60%. Here, the porosity refers to the ratio of the area of the voids included in the image when the cross-sectional area of any size of the layer (I) is 100, and the cross section of any size of the layer (I). When no holes are observed in the image, the porosity is 0%. When the porosity is less than 20%, the number of pores contained in the thermoplastic resin film decreases, and the proportion of air having a low dielectric constant in the film decreases, so that the electrical characteristics may deteriorate. Further, the higher the porosity, the more preferable, but 70% or less is preferable from the viewpoint of maintaining productivity. The porosity can be set within the above range by applying the particle concentration and film forming conditions described later. The porosity can be confirmed by evaluating the cross section of the thermoplastic resin film by the method described below.

本発明の熱可塑性樹脂フィルムを構成する層(I)に空孔を形成する手法としては、工程を簡略化でき生産性に優れることから乾式法(樹脂を溶融し、シート状に押出したものを延伸することにより多孔化する方法)を用いることが好ましい。また、乾式法の中でも滞留安定性と生産性を考慮して、空孔を形成させる層に無機粒子を添加して延伸することで、粒子の周囲に空孔を形成させる手法が好適に用いられる。   As a method for forming pores in the layer (I) constituting the thermoplastic resin film of the present invention, a dry method (melting the resin and extruding it into a sheet shape is preferable because it is easy to process and excellent in productivity. It is preferable to use a method in which the material is made porous by stretching. Further, among dry methods, in consideration of retention stability and productivity, a method of forming pores around particles by adding inorganic particles to a layer for forming pores and stretching is preferably used. ..

本発明の熱可塑性樹脂フィルムを構成する層(I)に含まれる好ましい粒子の濃度は、熱可塑性樹脂フィルムを構成する樹脂やその他の添加物からなる当該層の原料組成を100質量%とした際に、10質量%以上であることが好ましく、10〜60質量%がより好ましく20〜40質量%であることが特に好ましい。粒子濃度を上記の範囲とすることで効率よく空孔を形成することができる。粒子濃度が10質量%未満であると、後述するフィルム製造時に粒子濃度が低いため空孔が形成されにくく、熱可塑性樹脂フィルムを熱可塑性樹脂フィルムの構成部材として用いた際に電気特性が低下する場合がある。また粒子濃度が60質量%を上回ると熱可塑性樹脂フィルムの製造時に延伸が困難となり、生産性が低下する場合がある。   The preferred concentration of particles contained in the layer (I) constituting the thermoplastic resin film of the present invention is when the raw material composition of the layer comprising the resin constituting the thermoplastic resin film and other additives is 100% by mass. Further, it is preferably 10% by mass or more, more preferably 10 to 60% by mass, and particularly preferably 20 to 40% by mass. Voids can be formed efficiently by setting the particle concentration within the above range. When the particle concentration is less than 10% by mass, pores are less likely to be formed because the particle concentration is low at the time of producing the film described later, and the electrical characteristics are deteriorated when the thermoplastic resin film is used as a constituent member of the thermoplastic resin film. There are cases. On the other hand, if the particle concentration exceeds 60% by mass, it may be difficult to stretch during production of the thermoplastic resin film, and productivity may decrease.

本発明の熱可塑性樹脂フィルムを構成する層(I)について、熱可塑性樹脂フィルムの面に垂直な断面2500μmあたりに含まれる空孔のうち最小外接円の直径Rが2μm以下である空孔の個数は20個以下である。上記の特徴を有することで、熱可塑性樹脂フィルムの任意の方向およびそれに直行する方向の端裂抵抗の平均値を向上せしめることができる。本発明の熱可塑性樹脂フィルムのように多孔構造を有する熱可塑性樹脂フィルムは、同厚みの空孔を有さない熱可塑性樹脂フィルムに比べて機械特性が低下の傾向にある。この低下の要因は厚みあたりの樹脂量が多孔構造を有することで減少することが一つの原因と考えられる。ただし、空孔の形成は電気特性の改良に必須であることから、電気特性と端裂抵抗の両立について鋭意検討の結果、多孔構造を有する層の空孔の径を上記の範囲に制御し、フィルムの破壊の起点となる2μm以下の微小な空孔を低減することで端裂抵抗を向上するできることを見出した。最小外接円の直径Rが2μm以下である空孔の個数が20個より多くなると、フィルムの破壊の起点となる微小な空孔が増加するため、端裂抵抗が低下する場合がある。最小外接円の直径Rが2μm以下の空孔の個数の上限は15個以下がより好ましく、10個以下がさらに好ましい。空孔の個数の下限は少なければ少ないほど好ましい。上記の特性は層(I)に含まれる粒子径を後述の範囲に制御することで達成できる。空孔の径および個数は後述する手法で評価できる。 Regarding the layer (I) that constitutes the thermoplastic resin film of the present invention, of the pores included in about 2500 μm 2 in the cross section perpendicular to the surface of the thermoplastic resin film, the diameter R of the smallest circumscribed circle is 2 μm or less. The number is 20 or less. By having the above-mentioned characteristics, it is possible to improve the average value of the end tear resistance of the thermoplastic resin film in an arbitrary direction and a direction orthogonal thereto. A thermoplastic resin film having a porous structure like the thermoplastic resin film of the present invention tends to have lower mechanical properties than a thermoplastic resin film having no pores of the same thickness. It is considered that one of the causes of this decrease is that the amount of resin per thickness is reduced by having a porous structure. However, since the formation of pores is indispensable for improving the electrical characteristics, as a result of diligent studies on compatibility of the electrical characteristics and the end-cleave resistance, the pore diameter of the layer having a porous structure is controlled within the above range, It has been found that the edge tear resistance can be improved by reducing the minute pores of 2 μm or less, which are the starting points of film breakage. If the number of holes having a minimum circumscribed circle diameter R of 2 μm or less exceeds 20, the number of minute holes that are the starting points of film breakage increases, and the edge tear resistance may decrease. The upper limit of the number of holes having a diameter R of the minimum circumscribed circle of 2 μm or less is more preferably 15 or less, and further preferably 10 or less. The lower the lower limit of the number of holes, the better. The above characteristics can be achieved by controlling the particle size contained in the layer (I) within the range described below. The diameter and number of pores can be evaluated by the method described later.

本発明の熱可塑性樹脂フィルムを構成する層(I)および後述する層(II)に好ましく用いられる粒子としてはアルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックスや窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、硫酸バリウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維等のなどの無機化合物があげられる。用いる粒子は1種でもよく、複数種を混合して用いてもかまわない。上記の中でも分散性の観点から炭酸カルシウム、硫酸バリウム、酸化亜鉛、シリカが好ましく、低コストの観点から炭酸カルシウム、シリカが特に好ましい。   As the particles preferably used in the layer (I) and the layer (II) described below that form the thermoplastic resin film of the present invention, alumina, silica, titania, zirconia, magnesia, ceria, yttria, zinc oxide, iron oxide, etc. Ceramics and nitride ceramics such as silicon nitride, titanium nitride, and boron nitride, silicon carbide, calcium carbonate, aluminum sulfate, barium sulfate, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite , Ceramics such as sericite, mica, amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate, diatomaceous earth and silica sand, and inorganic compounds such as glass fiber. The particles to be used may be one kind or a mixture of plural kinds. Among the above, calcium carbonate, barium sulfate, zinc oxide and silica are preferable from the viewpoint of dispersibility, and calcium carbonate and silica are particularly preferable from the viewpoint of low cost.

本発明の熱可塑性樹脂フィルムを構成する層(I)に好ましく用いられる粒子は、熱可塑性樹脂フィルムの物性を損なわない範囲で表面処理を施すことができる。   The particles preferably used in the layer (I) constituting the thermoplastic resin film of the present invention can be surface-treated within a range that does not impair the physical properties of the thermoplastic resin film.

本発明の熱可塑性樹脂フィルムを構成する層(I)に好ましく用いられる粒子は、レーザー回折法(粒子にレーザービームを照射することで得られる回折光の強度分布を解析して粒子径を求める手法)によって得られる粒度分布(累積分布)の中央値に対応する50%数値の粒子径(D50:メジアン径)が1〜10μmであることが好ましく、1〜8μmであることがより好ましく、1〜3μmであることがさらに好ましい。上記のD50の粒子を用いることで、粒子を高濃度で配合した際に発生しやすくなる粒子同士の凝集を抑制し、延伸した際に粒子の周囲に応力が集中するため、層(I)中に効率よく空孔を形成させることができる。粒子のD50が1μm未満であると、粒子の表面積増加により凝集が起こりやすく生産性が低下したり、延伸時に空孔が形成されにくくなるため空孔率が低下する場合がある。また、D50が10μmより大きいと粒子の突き抜けにより延伸の際にフィルム破れが発生しやすくなり、熱可塑性樹脂フィルムの生産性が低下する場合がある。   The particles preferably used in the layer (I) constituting the thermoplastic resin film of the present invention are a laser diffraction method (a method of obtaining the particle size by analyzing the intensity distribution of the diffracted light obtained by irradiating the particles with a laser beam. The particle diameter of 50% numerical value (D50: median diameter) corresponding to the median value of the particle size distribution (cumulative distribution) obtained by 1) is preferably 1 to 10 μm, more preferably 1 to 8 μm, and 1 to More preferably, it is 3 μm. By using the above D50 particles, the aggregation of the particles, which tends to occur when the particles are blended at a high concentration, is suppressed, and the stress concentrates around the particles when stretched, so that in the layer (I) It is possible to efficiently form pores. When the D50 of the particles is less than 1 μm, the surface area of the particles increases, aggregation easily occurs, and the productivity decreases, or voids are less likely to be formed during stretching, and the porosity may decrease. Further, when D50 is larger than 10 μm, film breakage easily occurs during stretching due to particle penetration, and the productivity of the thermoplastic resin film may decrease.

本発明の熱可塑性樹脂フィルムを構成する層(I)に用いる粒子は、粒度分布測定で得られる累積分布の5%数値の粒子径(D5)が0.5μm以上であることが好ましく、0.8μm以上であることがより好ましい。D5を上記の範囲とすることで、断面2500μmあたりに含まれる空孔のうち最小外接円の直径Rが2μm以下である空孔の個数を後述の範囲とすることができ、端裂抵抗を向上することができる。D5が0.5μm以下であると、層(I)に含まれる微細な粒子が増加することを示しており、この微小粒子の増加によってフィルムに物理的に力がかかった際に破壊の起点となりやすい微小なボイドが増加し、機械特性、特に端裂抵抗が低下する場合がある。D5の上限は粒子径の均一化の観点からD50に近ければ近いほど好ましい。 The particles used in the layer (I) constituting the thermoplastic resin film of the present invention preferably have a particle diameter (D5) of 5% of the cumulative distribution obtained by particle size distribution measurement of 0.5 μm or more, It is more preferably 8 μm or more. By setting D5 in the above range, the number of holes having a minimum circumscribing circle diameter R of 2 μm or less among the holes included in a cross section 2500 μm 2 can be set in the range described below, and the end tear resistance can be reduced. Can be improved. When D5 is 0.5 μm or less, the fine particles contained in the layer (I) increase, and the increase in the fine particles serves as a starting point of the destruction when the film is physically subjected to a force. There is a case where easy-to-use minute voids increase and mechanical properties, particularly edge crack resistance, decrease. The upper limit of D5 is preferably as close to D50 as possible from the viewpoint of making the particle diameter uniform.

本発明の熱可塑性樹脂フィルムを構成する層(I)に用いる粒子は、粒度分布測定で得られる累積分布の90%数値の粒子径(D90)が20μm以下であることが好ましく、16μm以下であることがより好ましい。D90が上記の範囲を満たすことで、粒度分布の幅を狭くでき、延伸時の応力分散を均一化できることから微小な空孔の発生を抑制することができる。D90が20μmよりも大きくなると、延伸時に応力集中しやすい大径粒子の含有率が増加することから、延伸の不均一化が起こり、延伸応力が伝達されにくい小径粒子の近傍に微小な空孔が増加し、機械特性が低下する場合がある。D90の下限は粒子径の均一化の観点からD50に近ければ近いほど好ましい。   The particles used for the layer (I) constituting the thermoplastic resin film of the present invention have a particle size (D90) of 90% of the cumulative distribution obtained by particle size distribution measurement, which is preferably 20 μm or less, and 16 μm or less. Is more preferable. When D90 satisfies the above range, the width of the particle size distribution can be narrowed and the stress distribution during stretching can be made uniform, so that the generation of minute pores can be suppressed. When D90 is larger than 20 μm, the content ratio of large-diameter particles in which stress is likely to be concentrated at the time of stretching increases, so that non-uniform stretching occurs, and minute pores are formed in the vicinity of small-diameter particles in which stretching stress is difficult to be transmitted. May increase and mechanical properties may deteriorate. The lower limit of D90 is preferably as close as possible to D50 from the viewpoint of making the particle diameter uniform.

本発明の熱可塑性樹脂フィルムを構成する層(I)に用いる粒子は、粒度分布測定で得られるD90とD50との比(D90/D50)が3.0以下であることが好ましく、D2.0以下であることがより好ましい。D90/D50を上記の範囲とすることで粒度分布の幅を狭くでき、延伸時の応力分散を均一化できることから、微小な空孔の発生を抑制することができる。D90/D50が3.0よりも大きくなると、含まれるD90以上の粒子の周辺に延伸時の応力が集中し、D50よりも小径側の粒子への応力の均一伝搬が困難となり、微小な空孔が増加する場合がある。D90/D50の下限は粒子径の均一化の観点から1に近ければ近いほど好ましい。熱可塑性樹脂フィルムに含まれる粒子の粒度分布は後述する手法で確認できる。   The particles used in the layer (I) constituting the thermoplastic resin film of the present invention preferably have a ratio of D90 and D50 (D90 / D50) obtained by particle size distribution measurement of 3.0 or less, and D2.0. The following is more preferable. By setting D90 / D50 within the above range, the width of the particle size distribution can be narrowed and the stress distribution during stretching can be made uniform, so that the generation of minute voids can be suppressed. When D90 / D50 is larger than 3.0, stress at the time of stretching is concentrated around the contained particles of D90 or more, and it becomes difficult to uniformly propagate the stress to the particles on the smaller diameter side than D50, resulting in minute pores. May increase. The lower limit of D90 / D50 is preferably as close to 1 as possible from the viewpoint of making the particle diameter uniform. The particle size distribution of the particles contained in the thermoplastic resin film can be confirmed by the method described later.

本発明の熱可塑性樹脂フィルムを構成する層(I)に好ましく用いられる粒子の粒度分布測定で得られる累積分布の5、50、90%数値の粒子径および粒子濃度は、後述する手法を用いて確認することができる。   The particle diameter and particle concentration of 5, 50 and 90% of the cumulative distribution obtained by the particle size distribution measurement of the particles preferably used in the layer (I) constituting the thermoplastic resin film of the present invention are determined by the method described below. You can check.

本発明の熱可塑性樹脂フィルムを構成する層(I)以外の層を層(II)とした場合、この層は無機粒子を含んでもよいし、含まなくてもよい。
本発明の熱可塑性樹脂フィルムを構成する層(II)に粒子が含まれる場合、その粒子の濃度は層(II)に対して0.01〜10質量%であることが好ましく、0.01〜5質量%がより好ましい。上記の濃度とすることで、フィルムを延伸する際に層(II)の支持体としての機能が発現できる。層(II)に含まれる粒子の濃度が10質量%を上回ると、延伸時にフィルムにかかる応力に対してフィルムが耐えることができず破断しやすくなり、製膜安定性が損なわれる場合がある。
When the layer (II) is a layer other than the layer (I) constituting the thermoplastic resin film of the present invention, this layer may or may not contain inorganic particles.
When the layer (II) constituting the thermoplastic resin film of the present invention contains particles, the concentration of the particles is preferably 0.01 to 10 mass% with respect to the layer (II), and 0.01 to 5 mass% is more preferable. With the above concentration, the function of the layer (II) as a support can be exhibited when the film is stretched. When the concentration of the particles contained in the layer (II) exceeds 10% by mass, the film cannot withstand the stress applied to the film during stretching and is easily broken, which may impair the film-forming stability.

本発明の熱可塑性樹脂フィルムを構成する層(II)に粒子が含まれる場合、その粒子の体積平均粒径は0.5〜20μmであることが好ましく、0.5〜18μmであることが製膜安定性の観点からより好ましい。   When particles are contained in the layer (II) constituting the thermoplastic resin film of the present invention, the volume average particle diameter of the particles is preferably 0.5 to 20 μm, and preferably 0.5 to 18 μm. It is more preferable from the viewpoint of membrane stability.

本発明の熱可塑性樹脂フィルムは未延伸フィルム、一軸延伸フィルム(任意の一方向に延伸されたフィル)、二軸延伸フィルム(任意の方向およびその直角方向の二軸に延伸されたフィルム)のいずれの形態でもよいが、特性および生産性の観点から二軸延伸フィルムであることが好ましい。二軸延伸フィルムを得る方法としては、逐次二軸延伸法(長手方向に延伸した後に幅方向に延伸を行う方法などの一方向ずつの延伸を組み合わせた延伸法)、同時二軸延伸法(長手方向と幅方向を同時に延伸する方法)、又はそれらを組み合わせた方法が挙げられる。中でも逐次二軸延伸法が生産性の観点から特に好ましい。延伸の有無および軸方向についてはフィルムの250℃における収縮率を後述の手法で測定することで確認できる。   The thermoplastic resin film of the present invention is either an unstretched film, a uniaxially stretched film (fill stretched in any unidirectional direction), or a biaxially stretched film (film stretched biaxially in any direction and its orthogonal direction). However, a biaxially stretched film is preferable from the viewpoint of characteristics and productivity. As a method for obtaining a biaxially stretched film, a sequential biaxial stretching method (a stretching method in which stretching is performed in each direction such as a method of stretching in the longitudinal direction and then in the width direction) is combined, and a simultaneous biaxial stretching method (longitudinal stretching) Direction) and a width direction), or a combination thereof. Among them, the sequential biaxial stretching method is particularly preferable from the viewpoint of productivity. The presence or absence of stretching and the axial direction can be confirmed by measuring the shrinkage rate of the film at 250 ° C. by the method described below.

本発明の熱可塑性樹脂フィルムは、2層以上の積層構成を有する。2層以上の層構成を有することで、熱可塑性樹脂フィルム自体の延伸性が向上し破れが抑制され生産性を向上することができる。積層構成としては、層(I)、層(II)で構成される(I)/(II)の2層、(I)/(II)/(I)、(II)/(I)/(II)、(II)/(I)/(II)/(I)、(II)/(I)/(II)/(I)/(II)などの多層構成が挙げられるが、これに限定されない。また、(I)〜(II)とは異なる組成からなる層をさらに追加した層構成にすることもできる。   The thermoplastic resin film of the present invention has a laminated structure of two or more layers. By having a layer structure of two or more layers, the stretchability of the thermoplastic resin film itself is improved, breakage is suppressed, and productivity can be improved. The laminated structure includes two layers of (I) / (II) composed of layer (I) and layer (II), (I) / (II) / (I), (II) / (I) / ( II), (II) / (I) / (II) / (I), (II) / (I) / (II) / (I) / (II) and the like, but are not limited thereto. Not done. It is also possible to have a layer structure in which a layer having a composition different from (I) to (II) is further added.

本発明の熱可塑性樹脂フィルムの厚みは、生産性の観点から10〜350μmが好ましく、25〜300μmがより好ましい。フィルム厚みおよび層厚みは未延伸シートを得る際に原料の供給量を調整することで制御できる。またフィルム厚みおよび層厚みは後述する手法にて評価できる。   From the viewpoint of productivity, the thickness of the thermoplastic resin film of the present invention is preferably 10 to 350 μm, more preferably 25 to 300 μm. The film thickness and layer thickness can be controlled by adjusting the supply amount of the raw material when obtaining the unstretched sheet. The film thickness and layer thickness can be evaluated by the method described below.

本発明の熱可塑性樹脂フィルムは、熱可塑性樹脂フィルムの任意の方向およびそれに直行する方向の200μm換算の端裂抵抗の平均値が100N/20mm以上であることが好ましい。上記の特性を有することで、熱可塑性樹脂フィルムを実用した際に、熱可塑性樹脂フィルムの厚み方向にかかる応力に対して耐久性を発現することができる。端裂抵抗が100N/20mmより小さいと、厚み方向に応力がかかった場合に破れが生じやすく、実用に耐えない場合がある。端裂抵抗の上限は高ければ高いほど好ましいが、実現可能な範囲としては1500N/20mm以下である。任意の方向およびそれに直行する方向の200μm換算の端裂抵抗の平均値は100N/20mm以上であることがより好ましく、180N/20mm以上であることがさらに好ましい。端裂抵抗を上記の範囲とするには層(I)のフィルムの面に垂直な断面2500μmあたりに含まれる空孔の径前述の範囲とすることで達成できる。端裂抵抗は後述する手法により評価することができる。 In the thermoplastic resin film of the present invention, it is preferable that the average value of the end tear resistance in terms of 200 μm in an arbitrary direction of the thermoplastic resin film and a direction orthogonal thereto is 100 N / 20 mm or more. By having the above-mentioned characteristics, when the thermoplastic resin film is put into practical use, it is possible to exhibit durability against the stress applied in the thickness direction of the thermoplastic resin film. If the edge tear resistance is less than 100 N / 20 mm, it may easily break when stress is applied in the thickness direction, and it may not be practical. The higher the upper limit of the edge tear resistance, the more preferable. However, the feasible range is 1500 N / 20 mm or less. The average value of edge crack resistance in terms of 200 μm in an arbitrary direction and a direction orthogonal thereto is more preferably 100 N / 20 mm or more, further preferably 180 N / 20 mm or more. The edge tear resistance can be set within the above range by setting the diameter of the pores contained in a cross section of 2500 μm 2 perpendicular to the film surface of the layer (I) within the above range. The edge tear resistance can be evaluated by the method described below.

本発明の熱可塑性樹脂フィルムは200℃/1000時間処理後のフィルムの任意の方向およびそれに直行する方向の伸度保持率の平均値が50〜100%であることが好ましく、80〜100%であることがより好ましい。伸度保持率を上記の範囲とすることで、高温下で長時間使用した際の熱可塑性樹脂フィルムの機械特性、電気特性を維持することができる。伸度保持率が50%未満であると長期耐熱性に劣り、高温化で長時間使用した際に劣化によりクラックが入ったり、電気特性が低下したりする場合がある。伸度保持率を上記の範囲とするためには、前述の熱可塑性樹脂フィルムを用いることで達成できる。伸度保持率は後述する手法にて評価することができる。   The thermoplastic resin film of the present invention preferably has an average elongation retention rate of 50 to 100% after treatment at 200 ° C./1000 hours in an arbitrary direction and a direction orthogonal thereto, and is 80 to 100%. More preferably. By setting the elongation retention rate within the above range, it is possible to maintain the mechanical properties and electrical properties of the thermoplastic resin film when used at high temperature for a long time. If the elongation retention rate is less than 50%, long-term heat resistance is poor, and cracks may occur due to deterioration when used at high temperatures for a long time, or electrical characteristics may deteriorate. It is possible to achieve the elongation retention within the above range by using the above-mentioned thermoplastic resin film. The elongation retention rate can be evaluated by the method described below.

本発明の熱可塑性樹脂フィルムは温度23℃、65%RH下で周波数10GHzにおける誘電率が2.8以下であることが好ましく、2.5以下であることがより好ましい。上記の特性を有することで、高周波領域における回路基板材料として使用した際に、絶縁材の奇生容量を減らすことができるため伝送損失を効果的に抑制することができる。誘電率が2.8より大きいと、基板材料として用いた場合、伝送損失が大きくなる場合がある。誘電率は低いほど好ましいが、実現可能な範囲は1.8以上である。誘電率を上記の範囲とするには、積層フィルムの組成および特性を前述の構成とすることで達成できる。誘電率は後述する手法にて評価できる。
本発明の積層フィルムの23℃、65%RHでの10〜40GHzにおける伝送損失の絶対値が25dB/100mm未満であることが好ましく15dB/100mm未満であることがより好ましい。伝送損失とは通信線路上を流れる信号の劣化度合いを表す。伝送損失が25dB/100mmより大きいと、回路線上の入力信号の劣化が大きく、大容量通信時の機器の部材としての適用が困難となる。伝送損失の絶対値は低ければ低いほど好ましい。伝送損失を上記の範囲とするには積層フィルムを前述の誘電率とすることで達成できる。伝送損失は後述の手法にて評価できる。
The thermoplastic resin film of the present invention preferably has a dielectric constant of 2.8 or less at a frequency of 10 GHz under a temperature of 23 ° C. and 65% RH, and more preferably 2.5 or less. By having the above characteristics, when used as a circuit board material in a high frequency region, it is possible to reduce the odd capacity of the insulating material, so that transmission loss can be effectively suppressed. When the dielectric constant is larger than 2.8, the transmission loss may increase when used as a substrate material. The lower the dielectric constant, the more preferable, but the feasible range is 1.8 or more. The dielectric constant within the above range can be achieved by setting the composition and characteristics of the laminated film to the above-mentioned constitution. The dielectric constant can be evaluated by the method described below.
The absolute value of the transmission loss of the laminated film of the present invention at 23 ° C. and 65% RH at 10 to 40 GHz is preferably less than 25 dB / 100 mm, more preferably less than 15 dB / 100 mm. The transmission loss represents the degree of deterioration of the signal flowing on the communication line. If the transmission loss is larger than 25 dB / 100 mm, the input signal on the circuit line is greatly deteriorated, and it becomes difficult to apply it as a component of equipment during large capacity communication. The lower the absolute value of the transmission loss, the more preferable. The transmission loss within the above range can be achieved by making the laminated film have the above-mentioned dielectric constant. The transmission loss can be evaluated by the method described below.

本発明の熱可塑性樹脂フィルムの製造法を、ポリアリーレンスルフィド樹脂を用いた場合を例に説明する。   The method for producing the thermoplastic resin film of the present invention will be described by taking the case of using a polyarylene sulfide resin as an example.

本発明の熱可塑性樹脂フィルムに好ましく用いるポリアリーレンスルフィド樹脂の製造方法を説明する。硫化ナトリウムとp−ジクロロベンゼンを配合し、N−メチル−2−ピロリドン(NMP)などのアミド系極性溶媒中で、高温高圧下で反応させる。必要に応じて、m−ジクロロベンゼンやトリハロベンゼンなどの共重合成分を含ませることも可能である。重合度調整剤として苛性カリやカルボン酸アルカリ金属塩などを添加し230〜290℃で重合反応させる。重合後にポリマーを冷却し、ポリマーを水スラリーとしてフィルターで濾過後、湿潤状態の粒状ポリマーを得る。この粒状ポリマーにアミド系極性溶媒を加えて30〜100℃の温度で攪拌処理して洗浄し、イオン交換水にて30〜80℃で数回洗浄し、酢酸カルシウムなどの金属塩水溶液で数回洗浄した後、乾燥してポリアリーレンスルフィド樹脂の粒状ポリマーを得る。この粒状ポリマーと無機粒子を任意の割合で混合し300〜350℃に設定したベント付き押出機に投入してストランド状に溶融押出し、温度25℃の水で冷却した後、カッティングしてチップを作製し、層(I)の原料とする。このとき無機粒子の添加濃度は粒状ポリマー100質量部に対して1〜65質量部が好ましく、5〜65質量部がより好ましい。   The method for producing the polyarylene sulfide resin preferably used for the thermoplastic resin film of the present invention will be described. Sodium sulfide and p-dichlorobenzene are mixed and reacted in an amide polar solvent such as N-methyl-2-pyrrolidone (NMP) at high temperature and high pressure. If necessary, a copolymerization component such as m-dichlorobenzene or trihalobenzene can be included. A caustic potash, an alkali metal salt of a carboxylic acid, or the like is added as a polymerization degree adjusting agent, and a polymerization reaction is performed at 230 to 290 ° C. After the polymerization, the polymer is cooled, and the polymer is made into a water slurry and filtered with a filter to obtain a wet granular polymer. An amide-based polar solvent is added to this granular polymer, and the mixture is washed by stirring at a temperature of 30 to 100 ° C, washed several times with ion-exchanged water at 30 to 80 ° C, and washed several times with an aqueous metal salt solution such as calcium acetate. After washing, it is dried to obtain a granular polymer of polyarylene sulfide resin. The granular polymer and the inorganic particles are mixed at an arbitrary ratio, charged into an extruder with a vent set to 300 to 350 ° C., melt-extruded in a strand shape, cooled with water at a temperature of 25 ° C., and then cut to produce a chip. And used as a raw material for the layer (I). At this time, the addition concentration of the inorganic particles is preferably 1 to 65 parts by mass, and more preferably 5 to 65 parts by mass with respect to 100 parts by mass of the granular polymer.

また、上記の粒状ポリマーのみ、または粒状ポリマーと無機粒子や添加剤などを任意の割合で混合し、300〜350℃に設定したベント付き押出機に投入してストランド状に溶融押出し、温度25℃の水で冷却した後、カッティングしてチップを作製して層(I)とは異なる組成からなるその他の層(II)の原料とする。この2種のチップを、それぞれ別々に180℃で3時間減圧乾燥した後、溶融部が300〜350℃に設定されたフルフライトの単軸押出機2台にそれぞれ供給し、フィルターに通過させた後、溶融状態で口金上部にある積層装置で3層(積層構成は、(I)/(II)/(I)、積層比は(I):(II):(I)=1:1:1〜1:10:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度20〜70℃の冷却ドラム上に静電荷を印加させながら密着させて急冷固化し、実質的に無配向状態の未延伸フィルムを得る。   In addition, the above-mentioned granular polymer alone, or the granular polymer and inorganic particles and additives are mixed at an arbitrary ratio and charged into an extruder with a vent set to 300 to 350 ° C. to melt-extrude in a strand shape at a temperature of 25 ° C. After cooling with water, a chip is produced by cutting and used as a raw material for another layer (II) having a composition different from that of the layer (I). These two types of chips were separately dried under reduced pressure at 180 ° C. for 3 hours, then supplied to two full flight single-screw extruders each having a melting part set to 300 to 350 ° C., and passed through a filter. Then, in a molten state, three layers were formed in the laminating device on the upper part of the die (the laminating constitution was (I) / (II) / (I), and the laminating ratio was (I) :( II) :( I) = 1: 1: 1). 1 to 1: 10: 1), and then ejected from the T-die type die, and adhered to the cooling drum having a surface temperature of 20 to 70 ° C. while applying an electrostatic charge to rapidly cool and solidify. A non-oriented film in a non-oriented state is obtained.

次いで、二軸延伸する場合は、上記で得られた未延伸フィルムを、ポリアリーレンスルフィド樹脂のガラス転移点(Tg)以上冷結晶化温度(Tcc)以下の範囲で、逐次二軸延伸機または同時二軸延伸機により二軸延伸した後、150〜280℃の範囲の温度で1段もしくは多段熱処理を行い、二軸配向フィルムを得る。延伸方法としては、逐次二軸延伸法(長手方向に延伸した後に幅方向に延伸を行う方法などの一方向ずつの延伸を組み合わせた延伸法)、同時二軸延伸法(長手方向と幅方向を同時に延伸する方法)、又はそれらを組み合わせた方法を用いることができる。ここでは、最初に長手方向、次に幅方向の延伸を行う逐次二軸延伸法を例示する。   Then, in the case of biaxial stretching, the unstretched film obtained above is successively biaxially stretched or simultaneously with the glass transition point (Tg) or higher of the polyarylene sulfide resin in the range of cold crystallization temperature (Tcc) or lower. After being biaxially stretched by a biaxial stretching machine, a single-stage or multi-stage heat treatment is performed at a temperature in the range of 150 to 280 ° C. to obtain a biaxially oriented film. As a stretching method, a sequential biaxial stretching method (a stretching method in which stretching is performed in each direction such as a method of stretching in the longitudinal direction and then in the width direction) is combined, and a simultaneous biaxial stretching method (the longitudinal direction and the width direction are A method of simultaneously stretching) or a method of combining them can be used. Here, a sequential biaxial stretching method in which stretching is first performed in the longitudinal direction and then in the width direction is illustrated.

未延伸フィルムを加熱ロール群で加熱し、長手方向(MD方向)に2.8〜4.5倍、より好ましくは2.8〜4.0倍に1段もしくは2段以上の多段で延伸する(MD延伸)。延伸温度は、Tg〜Tcc、好ましくは(Tg+5)〜(Tcc−10)℃の範囲である。その後20〜50℃の冷却ロール群で冷却する。   The unstretched film is heated by a heating roll group and stretched in the longitudinal direction (MD direction) by 2.8 to 4.5 times, more preferably 2.8 to 4.0 times in a single stage or in multiple stages of two or more stages. (MD stretching). The stretching temperature is in the range of Tg to Tcc, preferably (Tg + 5) to (Tcc-10) ° C. Then, it cools with a 20-50 degreeC cooling roll group.

MD延伸に続く幅方向(TD方向)の延伸方法としては、例えば、テンターを用いる方法が一般的である。このフィルムの両端部をクリップで把持して、テンターに導き、幅方向の延伸を行う(TD延伸)。延伸温度はTg〜Tccが好ましく、より好ましくは(Tg+5)〜(Tcc−10)℃の範囲である。延伸倍率はフィルムの平面性の観点から3.0〜5.0倍、好ましくは3.0〜4.5倍が好ましい。   As a stretching method in the width direction (TD direction) following MD stretching, for example, a method using a tenter is generally used. Both ends of this film are gripped by clips, guided to a tenter, and stretched in the width direction (TD stretching). The stretching temperature is preferably Tg to Tcc, more preferably (Tg + 5) to (Tcc-10) ° C. The stretching ratio is preferably 3.0 to 5.0 times, and more preferably 3.0 to 4.5 times from the viewpoint of the flatness of the film.

このとき、フィルムの延伸倍率についてTD倍率に対するMD倍率の比(延伸倍率比=MD倍率/TD倍率)は1.05以下が好ましく、1.00以下がより好ましく、0.95以下であることがさらに好ましい。層(I)に含まれる空孔は、初めの延伸方向であるMD方向に延伸される際に、粒子との樹脂の界面に応力集中し剥離が生じる。その後この剥離点を起点としてMD方向に伸びる空孔が形成される。このとき粒子/樹脂界面では応力集中により熱が発生し、フィルムの樹脂組成として結晶性の熱可塑性樹脂を用いた際は局所的な結晶化の進行がすすみ、延伸時の加熱による樹脂部の塑性変形を妨害し、空孔を形成する微小な空孔を形成し脆化を引き起こすと考えられる。また、非晶樹脂では樹脂の軟化が進みすぎ、空孔の形成不良を引き起こすと考えられる。そのため、MD方向への過度な延伸を行うと、次いで行われるTD方向への延伸により、結晶性の熱可塑性樹脂では延伸破れが起こりやすくなったり、フィルムの機械的強度の低下が顕在化したりする。また、非晶性樹脂では二軸に延伸したにもかかわらず低空孔率となる場合がある。そのためMD方向の延伸倍率は平面性を損なわない範囲で低いことが好ましく、TD方向の延伸倍率はフィルム破れを起こさない範囲で高くすることが、二軸延伸後の機械特性とくに端裂抵抗と、電気特性のバランスを維持するために重要となる。   At this time, with respect to the stretching ratio of the film, the ratio of the MD ratio to the TD ratio (stretching ratio = MD ratio / TD ratio) is preferably 1.05 or less, more preferably 1.00 or less, and 0.95 or less. More preferable. When the pores contained in the layer (I) are stretched in the MD direction, which is the initial stretching direction, stress concentrates on the interface between the resin and the particles, and peeling occurs. After that, holes that extend in the MD direction starting from this peeling point are formed. At this time, heat is generated due to stress concentration at the particle / resin interface, and when a crystalline thermoplastic resin is used as the resin composition of the film, local crystallization progresses and the plasticity of the resin part due to heating during stretching is increased. It is considered that it interferes with the deformation and forms micropores that form pores, causing embrittlement. Further, it is considered that the amorphous resin causes excessive softening of the resin and causes defective formation of voids. For this reason, if the film is excessively stretched in the MD direction, the crystalline thermoplastic resin is likely to be stretch-ruptured due to the subsequent stretching in the TD direction, or the mechanical strength of the film may be deteriorated. .. Further, the amorphous resin may have a low porosity even though it is biaxially stretched. Therefore, it is preferable that the stretching ratio in the MD direction is as low as possible without impairing the flatness, and the stretching ratio in the TD direction as high as possible in the range not causing film breakage is that the mechanical properties after biaxial stretching, especially edge tear resistance, It is important to maintain the balance of electrical characteristics.

次に、この延伸フィルムを緊張下で熱固定する操作(熱固定処理)を行う。熱固定処理の温度は熱処理ゾーンの始終で、同一温度で加熱処理を行うか、1段熱固定または熱処理ゾーンの前半と後半で異なる温度で加熱処理を行う多段熱固定の何れかで処理を行う。熱固定温度は160℃〜融点(Tm)が好ましく、180〜(Tm−10)℃であることが、フィルムとしての熱収縮を抑制する観点から好ましい。熱固定処理後は、フィルムを室温まで、必要ならば、長手および幅方向に1〜20%の弛緩処理を施しながら、フィルムを冷やして巻き取り、二軸延伸された熱可塑性樹脂フィルムを得る。   Next, an operation (heat setting treatment) of heat setting the stretched film under tension is performed. The heat setting temperature is the same throughout the heat treatment zone, either at the same temperature, or in one stage heat setting or in multi-stage heat setting at different temperatures in the first half and the second half of the heat treatment zone. .. The heat setting temperature is preferably 160 ° C. to the melting point (Tm), and is preferably 180 to (Tm-10) ° C. from the viewpoint of suppressing heat shrinkage of the film. After the heat setting treatment, the film is cooled to room temperature and, if necessary, subjected to a relaxation treatment of 1 to 20% in the longitudinal and width directions, the film is cooled and wound to obtain a biaxially stretched thermoplastic resin film.

本発明の熱可塑性樹脂フィルムは電気特性および機械特性に優れることから、自動車用、電気・電子材料の各種部品、とくに各種モーター用の絶縁紙や断熱材、回路基盤用基材、耐熱テープ基材、印刷用トナー攪拌子用フィルム、離形用フィルムとして好適に用いることができる。   Since the thermoplastic resin film of the present invention is excellent in electrical properties and mechanical properties, it is used for various parts of automobiles and electric / electronic materials, particularly insulating papers and heat insulating materials for various motors, circuit board substrates, heat-resistant tape substrates. , A toner stirrer film for printing, and a release film.

[特性の測定方法]
(1)熱可塑性樹脂フィルムの融点または軟化点
a.融点(℃)
熱可塑性樹脂フィルムの主成分に結晶性の樹脂を用いる場合は、JIS K7121−1987に準じ、示差走査熱量計としてセイコーインスツルメンツ社製DSC(RDC220)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いて、秤量した3mgの試料をアルミニウム製受皿上で室温から340℃まで昇温速度20℃/分で昇温し、そのとき、観測される融解の吸熱ピークのピーク温度を測定する。測定は1サンプルにつき3回実施し、得られた値の平均値をそのサンプルの融点(℃)とした。
[Characteristics measurement method]
(1) Melting point or softening point of thermoplastic resin film a. Melting point (℃)
When a crystalline resin is used as the main component of the thermoplastic resin film, according to JIS K7121-1987, Seiko Instruments' DSC (RDC220) as a differential scanning calorimeter and its disk station (SSC / 5200) as a data analyzer. ) Is used to heat a weighed 3 mg sample from room temperature to 340 ° C. at a heating rate of 20 ° C./min on an aluminum pan, and at that time, the peak temperature of the endothermic peak of melting observed is measured. The measurement was carried out three times for one sample, and the average value of the obtained values was taken as the melting point (° C) of the sample.

b.軟化点(℃)
熱可塑樹脂フィルムの主成分に非晶性の樹脂を用いる場合は直径5mmの円形に切り出して試料とする。この試料を、熱機械分析装置(日立ハイテクサイエンス社製、SS6100)に先端径0.5mmの円錐型の針入プローブを用いて、荷重49mNにて10℃/分の昇温条件で加熱し、プローブの針入量と加熱温度のプロットより軟化点を測定する。測定は1サンプルにつき3回実施し、得られた値の平均値をそのサンプルの軟化点(℃)とした。
b. Softening point (℃)
When an amorphous resin is used as the main component of the thermoplastic resin film, it is cut into a circle having a diameter of 5 mm to obtain a sample. This sample was heated in a thermomechanical analyzer (Hitachi High-Tech Science Co., Ltd., SS6100) using a cone-shaped needle probe with a tip diameter of 0.5 mm under a temperature rising condition of 10 ° C./min under a load of 49 mN, The softening point is measured from the plot of the probe penetration and the heating temperature. The measurement was performed three times for one sample, and the average value of the obtained values was used as the softening point (° C) of the sample.

(2)熱可塑性樹脂フィルム構成する各層の層厚みと層構成
走査型電子顕微鏡の試料台に固定した熱可塑性樹脂フィルムを、スパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡を用いて倍率1000倍にて観察し、熱可塑性樹脂フィルムの厚み方向全体が観察できる画像を採取する。観察により得られた画像より熱可塑性樹脂フィルムの厚みを計測した。
上記の倍率で熱可塑性樹脂フィルムの厚み方向が全体を確認できない場合は厚み方向に数点の画像を撮影し、画像をつなぎ合わせることで全体像を確認する。厚みの測定に用いるサンプルは任意の場所の合計10箇所を選定し、10サンプルの計測値の平均をそのサンプルのフィルム厚みおよびフィルムを構成する層の厚みとした。
(2) Layer Thickness and Layer Structure of Each Layer Constituting Thermoplastic Resin Film A thermoplastic resin film fixed on a sample stage of a scanning electron microscope was used for a decompression degree of 10 −3 Torr, voltage 0.25 KV, current using a sputtering device. After ion etching treatment was performed for 10 minutes under the condition of 12.5 mA to cut a cross section, gold sputtering was performed on the surface with the same device, and the surface was observed with a scanning electron microscope at a magnification of 1000 times, and heat was applied. An image is taken so that the entire thickness direction of the plastic resin film can be observed. The thickness of the thermoplastic resin film was measured from the image obtained by observation.
When the entire thickness direction of the thermoplastic resin film cannot be confirmed at the above magnification, several images are taken in the thickness direction, and the images are stitched together to confirm the whole image. Samples used for measuring the thickness were selected at a total of 10 places, and the average of the measured values of the 10 samples was used as the film thickness of the sample and the thickness of the layers constituting the film.

(3)層(I)の粒子濃度および累積分布の5、50、90%数値の粒子径
a.粒子濃度
(2)の方法を用いて熱可塑性樹脂フィルムの各層の厚みを確認したのち、マイクロプレーンを用いて熱可塑性樹脂フィルム中の所望の層をその厚さを超えない範囲で削り取る。削り取ったサンプルを秤量したるつぼに入れた後、再度秤量し、サンプルの加熱前の重量を秤量する。次にサンプルが入ったるつぼをマッフル炉(ヤマト科学社製)にて500℃/6hで加熱しサンプルを灰化させる。るつぼを冷却した後に秤量し、加熱後の重量をはかりとり、加熱前後の重量を下記式に挿入し、フィルムに含まれる粒子濃度を算出した。測定はn=3で実施し、その平均値をそのサンプルの粒子濃度とした。また、試料量は残存物の質量が100〜200mgの範囲となるように調整した。
粒子濃度(質量%)=加熱後の重量(mg)/加熱前の重量(mg)×100。
(3) Particle diameter of 5, 50, 90% of particle concentration and cumulative distribution of layer (I) a. After confirming the thickness of each layer of the thermoplastic resin film using the method of particle concentration (2), a desired layer in the thermoplastic resin film is scraped off using a microplane within a range not exceeding the thickness. The scraped sample is put into a weighed crucible and then weighed again to weigh the sample before heating. Next, the crucible containing the sample is heated at 500 ° C./6 h in a muffle furnace (manufactured by Yamato Scientific Co., Ltd.) to incinerate the sample. After the crucible was cooled, it was weighed, the weight after heating was measured, and the weight before and after heating was inserted into the following formula to calculate the concentration of particles contained in the film. The measurement was performed at n = 3, and the average value was used as the particle concentration of the sample. Further, the sample amount was adjusted so that the mass of the residual material was in the range of 100 to 200 mg.
Particle concentration (mass%) = weight after heating (mg) / weight before heating (mg) × 100.

b.累積分布の5、50、90%数値の粒子径
a.で得られた残存物を精製水と混合し、透過率が90%前後になるように調整した。この分散液をレーザー光回折散乱粒度分布測定装置(マイクロトラックMT3000、日機装製)をもちいて、レーザー光波長780nm、測定温度25℃の条件にて、測定前に超音波処理を4分間行なったのちJIS Z8825−1:2001に準じて測定し、サンプルの粒度分布より、累積分布の5%、50%、90%数値の粒子径(D5、D50、D90)を求めた。
b. Particle size of 5, 50, 90% of cumulative distribution a. The residue obtained in step 1 was mixed with purified water, and the transmittance was adjusted to about 90%. This dispersion was subjected to ultrasonic treatment for 4 minutes before measurement under the conditions of a laser light wavelength of 780 nm and a measurement temperature of 25 ° C. using a laser light diffraction / scattering particle size distribution analyzer (Microtrac MT3000, manufactured by Nikkiso Co., Ltd.). The particle diameter (D5, D50, D90) of 5%, 50%, and 90% of the cumulative distribution was determined from the particle size distribution of the sample, which was measured according to JIS Z8825-1: 2001.

(4)層(I)の空孔率(%)
走査型電子顕微鏡の試料台に固定したサンプルを、フィルムの面に対して垂直な断面がみえるようにスパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡を用いて倍率2000倍にて観察した。得られた観察像について画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて、樹脂部を白、空孔部を黒に2値化処理し、観察像の厚み方向の位置に対して濃淡(intensity)を取り、分布をグラフ化する。この濃淡分布について濃淡のintensityが増加に転じる点を界面と判別し、空孔を有する層(I)とその他の層(II)とを区別した。上記の観察像の空孔を有する層(I)について画像解析装置を用いて空孔部分の面積A(μm)と同観察像の内の該層の全面積B(μm)を算出し、下記式に当てはめて層(I)の空孔率C(%)を求めた。評価はフィルムの任意の方向およびそれに直行する方向の2方向についてそれぞれ5か所について行い、合計10点の観察像の撮影および空孔率の算出を行い、10点の平均を、層(I)の空孔率(%)とした。
層Xの空孔率C(%)=層中の空孔部分の面積A(μm)/層の全面積B(μm)×100。
(4) Porosity (%) of layer (I)
A sample fixed on a sample stage of a scanning electron microscope was used under the conditions of a decompression degree of 10 −3 Torr, a voltage of 0.25 KV, and a current of 12.5 mA by using a sputtering device so that a cross section perpendicular to the surface of the film can be seen. After 10 minutes of ion etching treatment to cut the cross section, gold sputtering was applied to the surface with the same apparatus, and the surface was observed at a magnification of 2000 using a scanning electron microscope. The obtained observation image was binarized by using image analysis software (MacView ver4.0, manufactured by Mountech Co., Ltd.) so that the resin portion was white and the void portions were black. On the other hand, the intensity is taken and the distribution is graphed. Regarding this density distribution, the point where the intensity of the density turned to increase was discriminated as the interface, and the layer (I) having pores and the other layer (II) were distinguished. The area A (μm 2 ) of the hole portion and the total area B (μm 2 ) of the layer in the observation image of the layer (I) having holes in the observation image were calculated using an image analyzer. Then, the porosity C (%) of the layer (I) was determined by applying the following formula. The evaluation was carried out at 5 points in each of two directions, that is, the arbitrary direction of the film and the direction perpendicular thereto, and a total of 10 observation images were taken and the porosity was calculated, and the average of 10 points was taken as the layer (I). Porosity (%).
Porosity C (%) of layer X = area A (μm 2 ) of the void portion in the layer / total area B (μm 2 ) of the layer × 100.

(5)層(I)についてフィルムの面に対して垂直な断面2500μmあたりに含まれる最小外接円の直径(R)が2μm以下である空孔の個数
走査型電子顕微鏡の試料台に固定したサンプルを、厚み方向を法線方向とする断面がみえるようにスパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡SEMを用い、上記のサンプルの2,000倍の断面写真を撮影する。上記の写真から層(I)のみを含む画像となるようトリミングを施し、その画像中に含まれる空孔について、画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて断面投影像を作成した。断面投影像に含まれる空孔すべてについて最小外接円の直径(R)を求め、2μm以下の空孔の個数を抽出し、その個数を求めた。評価はフィルムの任意の方向およびそれに直行する方向の2方向についてそれぞれ5か所について行い、合計10点の評価から得られた空孔の個数の平均値をそのサンプルの上述の空孔の個数とした。
(5) Number of holes having a minimum circumscribed circle diameter (R) of 2 μm or less contained in a cross section 2500 μm 2 perpendicular to the surface of the layer (I) The sample was fixed on a sample stage of a scanning electron microscope. The sample was subjected to ion etching treatment for 10 minutes under the conditions of a pressure reduction degree of 10 −3 Torr, a voltage of 0.25 KV, and a current of 12.5 mA using a sputtering device so that a cross section with the thickness direction as a normal direction can be seen. After cutting the cross section, the surface is subjected to gold sputtering with the same apparatus, and a cross-sectional photograph of 2,000 times the cross section of the above sample is taken using a scanning electron microscope SEM. Trimming is performed from the above photograph so that it becomes an image containing only layer (I), and the cavities contained in the image are cross-sectional projection images using image analysis software (MacView ver4.0 manufactured by Mountech Co., Ltd.) It was created. The diameter (R) of the minimum circumscribed circle was calculated for all the holes included in the projected image of the cross section, and the number of holes having a diameter of 2 μm or less was extracted and the number was calculated. The evaluation was carried out at 5 points in each of two directions, that is, the arbitrary direction of the film and the direction orthogonal thereto, and the average value of the number of holes obtained from the evaluation of a total of 10 points was taken as the number of the above-mentioned holes of the sample. did.

(6)200μm換算の端裂抵抗(N/20mm)
JISC2151(1990)に準じて評価を行う。試料は幅20mm×長さ300mmにサンプリングした後、23℃65%RHの雰囲気下で電子マイクロメータ(アンリツ(株)製、K−312A型、針圧30g)にて サンプルの任意の3箇所の厚みを測定し、その平均値をサンプルの厚み(μm)とした。次に試験金具B(V字切り込みタイプ)を用いて、引張り速度200mm/分、23℃の条件で測定を行った。端裂抵抗は厚みに比例することから、測定値および厚みを下記式に挿入し、100μm換算の端裂抵抗を求めた。
100μm換算の端裂抵抗(N/20mm)=各サンプルの測定値(N/20mm)/厚み(μm)×200(μm)
測定はフィルムの任意の方向およびそれに直行する方向についてそれぞれ10枚について実施し、算術平均にて求めた数値をそのサンプルの200μm換算の端裂抵抗(N/20mm)とした。
(6) 200 μm equivalent edge tear resistance (N / 20 mm)
Evaluation is performed according to JIS C2151 (1990). The sample is sampled in a width of 20 mm and a length of 300 mm, and then, in an atmosphere of 23 ° C. and 65% RH, an electronic micrometer (manufactured by Anritsu Co., Ltd., K-312A type, needle pressure 30 g) is used to sample three arbitrary positions. The thickness was measured, and the average value was used as the thickness (μm) of the sample. Next, using the test fitting B (V-shaped notch type), the measurement was performed under the conditions of a pulling rate of 200 mm / min and 23 ° C. Since the edge tear resistance is proportional to the thickness, the measured value and the thickness were inserted into the following formula to obtain the edge tear resistance in terms of 100 μm.
Edge tear resistance in terms of 100 μm (N / 20 mm) = measured value of each sample (N / 20 mm) / thickness (μm) × 200 (μm)
The measurement was carried out on 10 sheets each in an arbitrary direction of the film and a direction orthogonal thereto, and the numerical value obtained by the arithmetic mean was taken as a 200 μm-converted end tear resistance (N / 20 mm) of the sample.

(7)耐熱性
熱可塑性樹脂フィルムをフィルムの任意の方向およびそれに直行する方向それぞれについて幅10mm、長さ250mmに切削して試験片とし、200℃の温度に設定した熱風オーブン中で1000時間の加熱処理を行い、加熱処理前後での破断伸度を測定し、下記の式から伸度保持率を算出し、下記の判定基準にて評価した。破断伸度は、JIS−C2151に規定された方法に従って、テンシロン引張試験機を用いて、幅10mmのサンプル片をチャック間長さ100mmとなるようセットし、引張速度300mm/minで引張試験を行う。評価は各方向にそれぞれ10回測定し、その平均値を求め、下記の基準にて評価した。
(7) A heat-resistant thermoplastic resin film was cut into a test piece having a width of 10 mm and a length of 250 mm in each direction of the film and in a direction perpendicular to the film, to obtain a test piece, and the test piece was heated in a hot air oven set to a temperature of 200 ° C. for 1000 hours. A heat treatment was performed, the elongation at break before and after the heat treatment was measured, the elongation retention rate was calculated from the following formula, and evaluated according to the following criteria. The breaking elongation is set in accordance with the method specified in JIS-C2151 using a Tensilon tensile tester so that a sample piece having a width of 10 mm is set to have a chuck length of 100 mm, and a tensile test is performed at a tensile speed of 300 mm / min. .. The evaluation was performed 10 times in each direction, the average value was obtained, and the evaluation was performed according to the following criteria.

伸度保持率(%)=Y/Y0×100
Y0:加熱処理前の破断伸度(%)
Y:加熱処理後の破断伸度(%)
A:伸度保持率が80%以上
B:伸度保持率が50%以上80%未満
C:伸度保持率が50%未満。
Elongation retention rate (%) = Y / Y0 × 100
Y0: Elongation at break before heat treatment (%)
Y: Elongation at break after heat treatment (%)
A: Elongation retention rate is 80% or more B: Elongation retention rate is 50% or more and less than 80% C: Elongation retention rate is less than 50%.

(8)誘電率
誘電体材料計測装置(関東電子応用開発(株)製)を用いて周波数10GHzで空洞共振器摂動法により誘電率を測定する。空洞共振器にフィルム横手方向2.7mm×フィルム長手方向45mmに切り出したサンプルを挿入し、温度23℃、湿度65%RH環境下にて測定を行った。測定はn=3で行い、得られた値の平均値を求め、下記の基準にて評価した。
A:誘電率が2.5以下
B:誘電率が2.5より大きく2.8以下
C:誘電率が2.8よりも大きい。
(8) Dielectric constant The dielectric constant is measured by a cavity resonator perturbation method at a frequency of 10 GHz using a dielectric material measuring device (manufactured by Kanto Electronics Application Development Co., Ltd.). A sample cut out in the lateral direction of the film of 2.7 mm × the longitudinal direction of the film of 45 mm was inserted into the cavity resonator, and the measurement was performed under the environment of the temperature of 23 ° C. and the humidity of 65% RH. The measurement was performed at n = 3, the average value of the obtained values was calculated, and evaluated according to the following criteria.
A: Dielectric constant is 2.5 or less B: Dielectric constant is greater than 2.5 and 2.8 or less C: Dielectric constant is greater than 2.8.

(9)電気特性(伝送損失)
熱可塑性樹脂フィルムの両表面に回路基板用接着剤AW−32(共同薬品(株)製)を固化厚み2μmで塗布した後、12μmの銅箔(3EC−HTE、三井金属工業(株)製)を170℃に加熱された真空熱プレス装置で、圧力4MPaにて10分間プレスすることで両表面にラミネートし、銅箔/熱可塑性樹脂フィルム/銅箔の構成の積層体を作製した。得られた積層体の銅箔面に回路パターンとして配線幅140μm、長さ100mmのマイクロストリップラインを化学エッチング法により形成し、評価用のサンプルとした。上記のサンプルを温度23℃、湿度65%RH環境下で24時間放置した直後にネットワークアナライザー(Agilent Technology社製「8722ES」)とカスケードマイクロテック製プローブ(ACP40−250)を用いて10〜40GHzの伝送損失(dB/100mm)を測定し、その絶対値(dB/100mm)について下記基準で評価した。
A:伝送損失の絶対値が15dB/100mm未満
B:伝送損失の絶対値が15dB/100mm以上25dB/100mm未満
C:伝送損失の絶対値が25dB/100mm以上 。
(10)加工性
モータースロット加工機(小田原エンジニアリング社製)を用い、試料を、幅20mm、長さ40mmのスロット形状に加工速度2ヶ/秒で加工し、加工後のサンプルを目視で確認し、試料の変形および破れが発生したものを不良品とし、不良品発生率を次の基準で評価した。なお、加工個数は各試料100個ずつとする。
AA:不良率の発生が15%未満
A:不良率の発生が15%以上25%未満
B:不良率の発生が25%以上40%未満
C:不良率の発生が40%以上。
(9) Electrical characteristics (transmission loss)
A circuit board adhesive AW-32 (manufactured by Kyodo Chemical Co., Ltd.) was applied to both surfaces of the thermoplastic resin film in a solidified thickness of 2 μm, and then 12 μm copper foil (3EC-HTE, manufactured by Mitsui Metal Industry Co., Ltd.) Was laminated on both surfaces by pressing at a pressure of 4 MPa for 10 minutes with a vacuum hot press machine heated to 170 ° C. to produce a laminate having a structure of copper foil / thermoplastic resin film / copper foil. A microstrip line having a wiring width of 140 μm and a length of 100 mm was formed as a circuit pattern on the copper foil surface of the obtained laminate by a chemical etching method to obtain a sample for evaluation. Immediately after leaving the above sample at a temperature of 23 ° C. and a humidity of 65% RH for 24 hours, immediately after using a network analyzer (Agilent Technology “8722ES”) and Cascade Microtech probe (ACP40-250), a 10-40 GHz The transmission loss (dB / 100 mm) was measured, and its absolute value (dB / 100 mm) was evaluated according to the following criteria.
A: Absolute value of transmission loss is less than 15 dB / 100 mm B: Absolute value of transmission loss is 15 dB / 100 mm or more and less than 25 dB / 100 mm C: Absolute value of transmission loss is 25 dB / 100 mm or more.
(10) Workability Using a motor slot processing machine (Odawara Engineering Co., Ltd.), the sample was processed into a slot shape with a width of 20 mm and a length of 40 mm at a processing speed of 2 pieces / second, and the processed sample was visually confirmed. The sample with deformation and tear was regarded as a defective product, and the defective product occurrence rate was evaluated according to the following criteria. The number of processed samples is 100 for each sample.
AA: Occurrence of defective rate is less than 15% A: Occurrence of defective rate is 15% or more and less than 25% B: Occurrence of defective rate is 25% or more and less than 40% C: Occurrence of defective rate is 40% or more.

(11)生産性
実施例および比較例に記載の製膜を10時間連続して行い、フィルム破れ(縦延伸時の破断および横延伸、熱固定処理時のいずれも含む)の発生回数を以下の基準で判定し生産性を確認した。
A:破れなし
B:破れの発生頻度が1〜5回
C:破れの発生頻度が6回以上
(12)延伸の有無(収縮性)
熱可塑性樹脂フィルムの任意の箇所から任意の方向に10cm×10cmのサンプルを切り出し、4辺の長さをノギスで測定する。その後、ポリイミドフィルム(東レデュポン(株)製、25μm)にはさみ、オーブンで250℃/1h加熱し、取り出し冷却した後再度サンプルの4辺の長さをノギスで測定し、4辺それぞれの収縮率を下記式にあてはめ求めた。
収縮率(%)=(加熱前の辺の長さ−加熱後の辺の長さ)/加熱前の辺の長さ×100
測定はn=5で行い、切り出したサンプルの縦および横方向の収縮率の平均を求め、下記基準で評価した。
未延伸:収縮率が縦・横方向ともに1%未満
一軸延伸:収縮率が縦・横方向のどちらか一方が1%以上
二軸延伸:収縮率が縦・横方向のいずれも1%以上
(11) Productivity The film formation described in Examples and Comparative Examples was continuously performed for 10 hours, and the number of occurrences of film breakage (including breakage during longitudinal stretching and transverse stretching, heat setting treatment) was as follows. The productivity was confirmed by judging according to the standard.
A: No tear
B: Breakage frequency is 1 to 5 times C: Breakage frequency is 6 times or more
(12) Presence or absence of stretching (contractibility)
A 10 cm × 10 cm sample is cut out from an arbitrary portion of the thermoplastic resin film in an arbitrary direction, and the lengths of four sides are measured with a caliper. After that, it is sandwiched between polyimide films (manufactured by Toray DuPont Co., Ltd., 25 μm), heated in an oven at 250 ° C./1 h, taken out and cooled, and then the lengths of the four sides of the sample are measured again with a caliper, and the shrinkage rate of each of the four sides is measured. Was applied to the following formula.
Shrinkage (%) = (length of side before heating−length of side after heating) / length of side before heating × 100
The measurement was performed at n = 5, and the average of the shrinkage rates in the longitudinal and lateral directions of the cut out sample was obtained and evaluated according to the following criteria.
Unstretched: Shrinkage is less than 1% in both longitudinal and transverse directions Uniaxial stretching: Shrinkage is 1% or more in either longitudinal or transverse direction Biaxial stretching: Shrinkage is 1% or more in both longitudinal and transverse directions

(参考例1)ポリフェニレンスルフィド樹脂(顆粒)の製造方法
オートクレ−ブ(最高使用圧力:14MPa)に100モルの硫化ナトリウム9水塩、45モルの酢酸ナトリウムおよび25リットルのN−メチル−2−ピロリドン(以下、NMPと略称する。)を仕込み、撹拌しながら徐々に220℃の温度まで昇温して、含有されている水分を蒸留により除去した。脱水の終了した系内に、主成分モノマとして100モルのp−ジクロロベンゼンを5リットルのNMPとともに添加し、170℃の温度で窒素を3kg/cmで加圧封入後、昇温し、270℃の温度にて4時間重合した。重合終了後冷却し、蒸留水中にポリマーを沈殿させ、150メッシュ目開きを有する金網によって、小塊状ポリマーを採取した。このようにして得られた小塊状ポリマーを90℃の蒸留水により2回洗浄した後、酢酸ナトリウム水溶液で3回洗浄した後、蒸留水により1回洗浄し、減圧下120℃の温度にて乾燥して融点が280℃のポリフェニレンスルフィド(PPS)樹脂の顆粒を得た。
(Reference Example 1) Method for producing polyphenylene sulfide resin (granule) 100 mol of sodium sulfide nonahydrate, 45 mol of sodium acetate and 25 liter of N-methyl-2-pyrrolidone were added to an autoclave (maximum working pressure: 14 MPa). (Hereinafter, abbreviated as NMP.) Was charged, the temperature was gradually raised to 220 ° C. with stirring, and the contained water was removed by distillation. 100 mol of p-dichlorobenzene was added as a main component monomer together with 5 liters of NMP into the system after the dehydration, and nitrogen was pressurized at 3 kg / cm 2 at a temperature of 170 ° C. and then heated to 270. Polymerization was carried out at a temperature of ° C for 4 hours. After the completion of the polymerization, the mixture was cooled, the polymer was precipitated in distilled water, and a small block polymer was collected by a wire net having a 150 mesh opening. The small block polymer thus obtained was washed twice with distilled water at 90 ° C., then washed three times with an aqueous solution of sodium acetate, then once with distilled water, and dried at a temperature of 120 ° C. under reduced pressure. Thus, polyphenylene sulfide (PPS) resin granules having a melting point of 280 ° C. were obtained.

(参考例2)フィルム用原料(PPS1)の製造方法
参考例1で作製したPPS樹脂の顆粒を、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS1)とした。
(Reference Example 2) Method for producing raw material for film (PPS1) The granules of the PPS resin produced in Reference Example 1 were mixed with a vented co-rotating twin-screw kneading extruder (manufactured by Japan Steel Works, screw). Diameter 30 mm, screw length / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged into strands, and cooled with water at a temperature of 25 ° C., Immediately cutting was carried out to produce a chip, which was used as a film raw material (PPS1).

(参考例3)フィルム用原料(PPS2)の製造方法
シリカ粒子としてアドマテックス社製 FE9(D50=6.1μm、D5=0.7μm、D90=11.0μm)とアドマテックス社製 SOC2(D50=0.5μm、D5=0.1μm、D90=1.1μm)とアドマテックス社製 FED(D50=22μm、D5=8.3μm、D90=80.2μm)とをD50=6.1μm、D5=0.6μm、D90=23.0μmとなるようにブレンドした。次にPPS樹脂の顆粒85質量%、無機粒子として上記のシリカ粒子のブレンドサンプル15質量%を、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS2)とした。
(Reference Example 3) Method for producing film raw material (PPS2) As silica particles, FE9 (D50 = 6.1 μm, D5 = 0.7 μm, D90 = 11.0 μm) manufactured by Admatechs Co., Ltd. and SOC2 (D50 = D50 = manufactured by Admatechs Co., Ltd.) 0.5 μm, D5 = 0.1 μm, D90 = 1.1 μm) and FED (D50 = 22 μm, D5 = 8.3 μm, D90 = 80.2 μm) manufactured by Admatechs Co., Ltd., D50 = 6.1 μm, D5 = 0 It was blended so that Dμ was 0.6 μm and D90 was 23.0 μm. Next, 85% by mass of PPS resin granules and 15% by mass of a blend sample of the above silica particles as inorganic particles were used in a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter). 30 mm, screw length / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged into strands, cooled with water at a temperature of 25 ° C., and immediately thereafter. A chip was produced by cutting and used as a film raw material (PPS2).

(参考例4)フィルム用原料(PPS3)の製造方法
PPS樹脂の顆粒70質量%、参考例3で調整したシリカ粒子のブレンドサンプル30質量%を配合した以外は参考例3と同様にして、フィルム用原料(PPS3)を得た。
(Reference Example 4) Method for producing raw material for film (PPS3) A film was prepared in the same manner as in Reference Example 3 except that 70% by mass of PPS resin granules and 30% by mass of a blend sample of silica particles prepared in Reference Example 3 were blended. A raw material (PPS3) was obtained.

(参考例5)フィルム用原料(PPS4)の製造方法
PPS樹脂の顆粒55質量%、参考例3で調整したシリカ粒子のブレンドサンプル45質量%を配合した以外は参考例3と同様にして、フィルム用原料(PPS4)を得た。
(Reference Example 5) Method for producing raw material for film (PPS4) A film was prepared in the same manner as in Reference Example 3 except that 55% by mass of PPS resin granules and 45% by mass of a blend sample of silica particles prepared in Reference Example 3 were blended. A raw material (PPS4) was obtained.

(参考例6)フィルム用原料(PPS5)の製造方法
シリカ粒子としてアドマテックス社製 FE9(D50=6.1μm、D5=0.7μm、D90=11.0μm)とアドマテックス社製 SOC2(D50=0.5μm、D5=0.1μm、D90=1.1μm)とアドマテックス社製 FED(D50=22μm、D5=8.3μm、D90=80.2μm)とをD50=6.1μm、D5=0.6μm、D90=23μmとなるようにブレンドした。次に上記のブレンドサンプルと水を1:7の割合で混合しマグネチックスターラーを用いて10分撹拌した。その後、攪拌を止めて30分静置したのち、浮遊する微粒子を含む上澄み液を初期の重量の10wt%分除去する。その後再度スターラーを用いて攪拌した分散液の粒度分布を測定する。この作業をD5=0.8μmとなるまで繰り返したのち、24時間静置して完全に粒子を沈降させたのち、上澄みの水をできるだけ除去し、残ったスラリー状の粒子をバットに広げ、110℃で24時間乾燥させ、水を除去し、粒度分布を調整したシリカ粒子を得た。得られた粒子の粒径はD50=6.2μm、D5=0.8μm、D90=22.9μmであった。
次にPPS樹脂の顆粒70質量%と上記のシリカ粒子30質量%を配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS5)とした。
(Reference Example 6) Method for producing raw material for film (PPS5) FE9 (D50 = 6.1 μm, D5 = 0.7 μm, D90 = 11.0 μm) manufactured by Admatechs Co., Ltd. as silica particles and SOC2 (D50 = D50 = manufactured by Admatechs Co., Ltd.) 0.5 μm, D5 = 0.1 μm, D90 = 1.1 μm) and FED (D50 = 22 μm, D5 = 8.3 μm, D90 = 80.2 μm) manufactured by Admatechs Co., Ltd., D50 = 6.1 μm, D5 = 0 It was blended so that D6 = 0.6 μm and D90 = 23 μm. Next, the above blended sample and water were mixed at a ratio of 1: 7, and stirred for 10 minutes using a magnetic stirrer. Then, the stirring is stopped and the mixture is allowed to stand for 30 minutes, and then 10 wt% of the initial weight of the supernatant containing fine particles is removed. Then, the particle size distribution of the stirred dispersion is measured again using a stirrer. After repeating this operation until D5 = 0.8 μm, the solution was left standing for 24 hours to completely settle the particles, and the supernatant water was removed as much as possible. After drying at 24 ° C. for 24 hours, water was removed to obtain silica particles having a controlled particle size distribution. The particle size of the obtained particles was D50 = 6.2 μm, D5 = 0.8 μm, and D90 = 22.9 μm.
Next, 70% by mass of PPS resin granules and 30% by mass of the above silica particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw length) S / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut into chips. Was prepared as a raw material for film (PPS5).

(参考例7)フィルム用原料(PPS6)の製造方法
シリカ粒子としてアドマテックス社製 FE9(D50=6.1μm、D5=0.7μm、D90=11.0μm)とアドマテックス社製 SOC2(D50=0.5μm、D5=0.1μm、D90=1.1μm)とアドマテックス社製 FEB(D50=12.3μm、D5=2.5μm、D90=20.1μm)とをD50=6.0μm、D5=0.6μm、D90=14.0μmとなるようにブレンドした。次に上記のブレンドサンプルと水を1:7の割合で混合しマグネチックスターラーを用いて10分撹拌した。その後、攪拌を止めて30分静置したのち、浮遊する微粒子を含む上澄み液を初期の重量の10wt%分除去する。その後再度スターラーを用いて攪拌した分散液の粒度分布を測定する。この作業をD5=0.8μmとなるまで繰り返したのち、24時間静置して完全に粒子を沈降させたのち、上澄みの水をできるだけ除去し、残ったスラリー状の粒子をバットに広げ、110℃で24時間乾燥させ、水を除去し、粒度分布を調整したシリカ粒子を得た。得られた粒子の粒径はD50=6.1μm、D5=0.8μm、D90=14.2μmであった。
(Reference Example 7) Method for producing raw material for film (PPS6) As silica particles, FE9 (D50 = 6.1 μm, D5 = 0.7 μm, D90 = 11.0 μm) manufactured by Admatechs Co., Ltd. and SOC2 (D50 = D50 = manufactured by Admatechs Co., Ltd.) 0.5 μm, D5 = 0.1 μm, D90 = 1.1 μm) and FEB manufactured by Admatechs (D50 = 12.3 μm, D5 = 2.5 μm, D90 = 20.1 μm) were D50 = 6.0 μm, D5. = 0.6 μm and D90 = 14.0 μm. Next, the above blended sample and water were mixed at a ratio of 1: 7, and stirred for 10 minutes using a magnetic stirrer. Then, the stirring is stopped and the mixture is allowed to stand for 30 minutes, and then 10 wt% of the initial weight of the supernatant containing fine particles is removed. Then, the particle size distribution of the stirred dispersion is measured again using a stirrer. After repeating this operation until D5 = 0.8 μm, the solution was left standing for 24 hours to completely settle the particles, and the supernatant water was removed as much as possible. After drying at 24 ° C. for 24 hours, water was removed to obtain silica particles having a controlled particle size distribution. The particle size of the obtained particles was D50 = 6.1 μm, D5 = 0.8 μm, and D90 = 14.2 μm.

次にPPS樹脂の顆粒70質量%と上記のシリカ粒子30質量%を配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS6)とした。   Next, 70% by mass of PPS resin granules and 30% by mass of the above silica particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw length) S / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut into chips. Was prepared as a raw material for film (PPS6).

(参考例8)フィルム用原料(PPS7)の製造方法
シリカ粒子としてアドマテックス社製 FE9(D50=6.1μm、D5=0.7μm、D90=11.0μm)と水を1:7の割合で混合しマグネチックスターラーを用いて10分撹拌した。その後、攪拌を止めて30分静置したのち、浮遊する微粒子を含む上澄み液を初期の重量の10wt%分除去する。その後再度スターラーを用いて攪拌した分散液の粒度分布を測定する。この作業をD5=0.8μmとなるまで繰り返したのち、24時間静置して完全に粒子を沈降させたのち、上澄みの水をできるだけ除去し、残ったスラリー状の粒子をバットに広げ、110℃で24時間乾燥させ、水を除去し、粒度分布を調整したシリカ粒子を得た。得られた粒子の粒径はD50=6.1μm、D5=0.8μm、D90=11.3μmであった。
(Reference Example 8) Production method of raw material for film (PPS7) FE9 (D50 = 6.1 μm, D5 = 0.7 μm, D90 = 11.0 μm) manufactured by Admatechs Co., Ltd. as silica particles and water in a ratio of 1: 7. It mixed and stirred for 10 minutes using the magnetic stirrer. Then, the stirring is stopped and the mixture is allowed to stand for 30 minutes, and then 10 wt% of the initial weight of the supernatant containing fine particles is removed. Then, the particle size distribution of the stirred dispersion is measured again using a stirrer. After repeating this operation until D5 = 0.8 μm, the solution was left standing for 24 hours to completely settle the particles, and the supernatant water was removed as much as possible. After drying at 24 ° C. for 24 hours, water was removed to obtain silica particles having a controlled particle size distribution. The particle size of the obtained particles was D50 = 6.1 μm, D5 = 0.8 μm, and D90 = 11.3 μm.

次にPPS樹脂の顆粒70質量%と上記のシリカ粒子30質量%を配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS7)とした。   Next, 70% by mass of PPS resin granules and 30% by mass of the above silica particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw length) S / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut into chips. Was prepared as a raw material for film (PPS7).

(参考例9)フィルム用原料(PPS8)の製造方法
シリカ粒子としてアドマテックス社製 SOC2(D50=0.5μm、D5=0.1μm、D90=1.1μm)とアドマテックス社製 FED(D50=22μm、D5=8.3μm、D90=80.2μm)とをD50=13.0μm、D5=0.6μm、D90=31.0μmとなるようにブレンドした。次にPPS樹脂の顆粒70質量%と上記のシリカ粒子30質量%を配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS8)とした。
(Reference Example 9) Method for producing raw material for film (PPS8) As silica particles, SOC2 (D50 = 0.5 μm, D5 = 0.1 μm, D90 = 1.1 μm) manufactured by Admatechs and FED (D50 = D50 = manufactured by Admatechs) 22 μm, D5 = 8.3 μm, D90 = 80.2 μm) were blended so that D50 = 13.0 μm, D5 = 0.6 μm, D90 = 31.0 μm. Next, 70% by mass of PPS resin granules and 30% by mass of the above silica particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw length) S / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut into chips. Was prepared as a raw material for film (PPS8).

(参考例10)フィルム用原料(PPS9)の製造方法
シリカ粒子としてアドマテックス社製 SC5500(D50=1.5μm、D5=0.3μm、D90=3.0μm)と水を1:7の割合で混合しマグネチックスターラーを用いて10分撹拌した。その後、攪拌を止めて30分静置したのち、浮遊する微粒子を含む上澄み液を初期の重量の10wt%分除去する。その後再度スターラーを用いて攪拌した分散液の粒度分布を測定する。この作業をD5=0.6μmとなるまで繰り返したのち、24時間静置して完全に粒子を沈降させたのち、上澄みの水をできるだけ除去し、残ったスラリー状の粒子をバットに広げ、110℃で24時間乾燥させ、水を除去し、粒度分布を調整したシリカ粒子を得た。得られた粒子の粒径はD50=1.6μm、D5=0.6μm、D90=3.1μmであった。
(Reference Example 10) Production method of raw material for film (PPS9) SC5500 (D50 = 1.5 μm, D5 = 0.3 μm, D90 = 3.0 μm) manufactured by Admatechs Co., Ltd. as silica particles and water at a ratio of 1: 7. It mixed and stirred for 10 minutes using the magnetic stirrer. Then, the stirring is stopped and the mixture is allowed to stand for 30 minutes, and then 10 wt% of the initial weight of the supernatant containing fine particles is removed. Then, the particle size distribution of the stirred dispersion is measured again using a stirrer. After repeating this operation until D5 = 0.6 μm, the solution was left standing for 24 hours to completely settle the particles, and then the supernatant water was removed as much as possible, and the remaining slurry-like particles were spread on a vat. After drying at 24 ° C. for 24 hours, water was removed to obtain silica particles having a controlled particle size distribution. The particle size of the obtained particles was D50 = 1.6 μm, D5 = 0.6 μm, and D90 = 3.1 μm.

次にPPS樹脂の顆粒70質量%と上記のシリカ粒子30質量%を配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS9)とした。   Next, 70% by mass of PPS resin granules and 30% by mass of the above silica particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw length) S / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut into chips. Was prepared as a raw material for film (PPS9).

(参考例11)フィルム用原料(PPS10)の製造方法
炭酸カルシウムとして白石工業社製 P―10(D50=3.4μm、D5=0.5μm、D90=12.0μm)と水を1:7の割合で混合しマグネチックスターラーを用いて10分撹拌した。その後、攪拌を止めて30分静置したのち、浮遊する微粒子を含む上澄み液を初期の重量の10wt%分除去する。その後再度スターラーを用いて攪拌した分散液の粒度分布を測定する。この作業をD5=0.8μmとなるまで繰り返したのち、24時間静置して完全に粒子を沈降させたのち、上澄みの水をできるだけ除去し、残ったスラリー状の粒子をバットに広げ、110℃で24時間乾燥させ、水を除去し、粒度分布を調整した炭酸カルシウム粒子を得た。得られた粒子の粒径はD50=3.5μm、D5=0.8μm、D90=12.5.1μmであった。
(Reference Example 11) Production method of raw material for film (PPS10) P-10 (D50 = 3.4 μm, D5 = 0.5 μm, D90 = 12.0 μm) manufactured by Shiraishi Industry Co., Ltd. as calcium carbonate and water 1: 7. The mixture was mixed at a ratio and stirred for 10 minutes using a magnetic stirrer. Then, the stirring is stopped and the mixture is allowed to stand for 30 minutes, and then 10 wt% of the initial weight of the supernatant containing fine particles is removed. Then, the particle size distribution of the stirred dispersion is measured again using a stirrer. After repeating this operation until D5 = 0.8 μm, the solution was left standing for 24 hours to completely settle the particles, and the supernatant water was removed as much as possible. Water was removed by drying at 24 ° C. for 24 hours to obtain calcium carbonate particles having a controlled particle size distribution. The particle size of the obtained particles was D50 = 3.5 μm, D5 = 0.8 μm, and D90 = 12.5.1 μm.

次にPPS樹脂の顆粒70質量%と上記の炭酸カルシウム粒子30質量%を配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS10)とした。   Next, 70% by mass of PPS resin granules and 30% by mass of the above calcium carbonate particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw) (Length / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut. Chips were produced and used as a film raw material (PPS10).

(参考例12)フィルム用原料(PEEK1)の製造方法
シリカ粒子としてアドマテックス社製 FE9を参考例8と同様にして粒度分布をD50=6.1μm、D5=0.8μm、D90=11.3μmになるように調整した。次に融点340℃のPEEK樹脂(90G、ビクトレックス社製)と上記のシリカ粒子30質量%を配合し、360℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PEEK1)とした。
(Reference Example 12) Manufacturing method of raw material for film (PEEK1) FE9 manufactured by Admatechs Co., Ltd. as silica particles was analyzed in the same manner as in Reference Example 8 to obtain a particle size distribution of D50 = 6.1 μm, D5 = 0.8 μm, D90 = 11.3 μm. I adjusted it to be. Next, a PEEK resin having a melting point of 340 ° C. (90 G, manufactured by Victorex Co.) and 30% by mass of the above silica particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 360 ° C. (manufactured by Japan Steel Works) , Screw diameter 30 mm, screw length / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged into strands, and cooled with water at a temperature of 25 ° C. After that, cutting was immediately performed to produce a chip, which was used as a film raw material (PEEK1).

(参考例13)フィルム用原料(PEI1)の製造方法
シリカ粒子としてアドマテックス社製 FE9を参考例8と同様にして粒度分布をD50=6.1μm、D5=0.8μm、D90=11.3μmになるように調整した。次に軟化点340℃のPEI樹脂(ULTEM1010、SAVICイノベーティブプラスチックス社製)と上記のシリカ粒子30質量%を配合し、350℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PEI1)とした。
(Reference Example 13) Production method of raw material for film (PEI1) FE9 manufactured by Admatechs Co., Ltd. was used as silica particles in the same manner as in Reference Example 8 to obtain a particle size distribution of D50 = 6.1 μm, D5 = 0.8 μm, D90 = 11.3 μm. I adjusted it to be. Next, a PEI resin having a softening point of 340 ° C. (ULTEM1010, manufactured by SAVIC Innovative Plastics Co., Ltd.) and 30% by mass of the above silica particles were blended, and the twin-screw kneading extruder of the same direction with a vent heated to 350 ° C. (Japan Steel mill, screw diameter 30 mm, screw length / screw diameter = 45.5), and melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute and discharged in strands, and water at a temperature of 25 ° C. After cooling with, the chip was immediately cut to prepare a chip, which was used as a film raw material (PEI1).

(参考例14)フィルム用原料(PPS11)の製造方法
PPS樹脂の顆粒95質量%、参考例3で調整したシリカ粒子のブレンドサンプル5質量%を配合した以外は参考例3と同様にして、フィルム用原料(PPS11)を得た。
(参考例15)フィルム用原料(PPS12)の製造方法
シリカ粒子として大阪化成株式会社製 SS03を参考例8と同様にして粒度分布をD50=0.3μm、D5=0.1μm、D90=1.0μmになるように調整した。次にPPS樹脂の顆粒70質量%と上記のシリカ粒子30質量%を配合し、320℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PPS12)を得た。
(Reference Example 14) Production method of raw material for film (PPS11) A film was prepared in the same manner as in Reference Example 3 except that 95% by mass of PPS resin granules and 5% by mass of a blend sample of silica particles prepared in Reference Example 3 were blended. A raw material (PPS11) was obtained.
Reference Example 15 Production Method of Raw Material for Film (PPS12) As a silica particle, SS03 manufactured by Osaka Kasei Co., Ltd. was used, and the particle size distribution was D50 = 0.3 μm, D5 = 0.1 μm, D90 = 1. It was adjusted to be 0 μm. Next, 70% by mass of PPS resin granules and 30% by mass of the above silica particles were blended, and a co-rotating twin-screw kneading extruder with a vent heated to 320 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw length) S / screw diameter = 45.5), melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut into chips. Was prepared to obtain a film raw material (PPS12).

(参考例16)フィルム用原料(PEN1)の製造方法
シリカ粒子としてアドマテックス社製 FE9を参考例8と同様にして粒度分布をD50=6.1μm、D5=0.8μm、D90=11.3μmになるように調整した。2,6−ナフタレンジカルボン酸ジメチル100重量部とエチレングリコール60重量部の混合物に、酢酸マンガン・4水和物塩0.03重量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024重量部を添加した。また、反応温度が220℃に達した時点で3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042重量部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、エステル交換反応終了後、リン酸トリメチル0.023重量部を添加した。次いで、反応生成物を重合反応器に移し、290℃の温度まで昇温し、0.2mmHg以下の高減圧下にて重縮合反応を行い、固有粘度0.65dl/g、融点265℃のポリエチレン−2,6−ナフタレート(PEN)チップを得た。また、シリカ粒子としてアドマテックス社製 FE9を参考例8と同様にして粒度分布をD50=6.1μm、D5=0.8μm、D90=11.3μmになるように調整した。上記のPENチップ70質量%と上記のシリカ粒子30質量%を290℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、滞留時間90秒、スクリュー回転数150回転/分で溶融押出してストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料(PEN1)とした。
Reference Example 16 Production Method of Raw Material for Film (PEN1) FE9 manufactured by Admatechs Co., Ltd. was used as silica particles in the same manner as in Reference Example 8 to obtain a particle size distribution of D50 = 6.1 μm, D5 = 0.8 μm, D90 = 11.3 μm. I adjusted it to be. To a mixture of 100 parts by weight of dimethyl 2,6-naphthalenedicarboxylate and 60 parts by weight of ethylene glycol, 0.03 parts by weight of manganese acetate tetrahydrate salt was added, and the temperature was gradually increased from 150 ° C to 240 ° C. The transesterification reaction was performed while raising the temperature. On the way, when the reaction temperature reached 170 ° C., 0.024 part by weight of antimony trioxide was added. Further, when the reaction temperature reached 220 ° C., 0.042 parts by weight of tetrabutylphosphonium 3,5-dicarboxybenzenesulfonate (corresponding to 2 mmol%) was added. Then, a transesterification reaction was subsequently carried out, and after completion of the transesterification reaction, 0.023 part by weight of trimethyl phosphate was added. Then, the reaction product is transferred to a polymerization reactor, heated to a temperature of 290 ° C., and subjected to a polycondensation reaction under a high reduced pressure of 0.2 mmHg or less, a polyethylene having an intrinsic viscosity of 0.65 dl / g and a melting point of 265 ° C. A 2,6-naphthalate (PEN) chip was obtained. Further, FE9 manufactured by Admatechs Co., Ltd. as silica particles was adjusted in the same manner as in Reference Example 8 so that the particle size distribution was D50 = 6.1 μm, D5 = 0.8 μm, and D90 = 11.3 μm. 70% by mass of the above PEN chips and 30% by mass of the above silica particles were heated at 290 ° C. in a co-rotating twin-screw kneading extruder with a vent (manufactured by Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5), and melt-extruded at a residence time of 90 seconds and a screw rotation speed of 150 rotations / minute, discharged in strands, cooled with water at a temperature of 25 ° C., and immediately cut into chips to form a film. It was used as a raw material (PEN1).

(参考例17)
層(I)および(II)を構成する樹脂として何れも参考例2に示すPPS1を準備し、それぞれの原料を別々に180℃で3時間、真空乾燥した後、320℃に加熱された2台の押出機に別々に供給し、溶融状態で口金上部にある積層装置で3層(積層構成は、(I)/(II)/(I)、積層比は(I):(II):(I)=1:8:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、100μmの未延伸フィルムを得た。 (実施例1〜9、比較例1および2)
層(I)および(II)を構成する樹脂として表2に示す処方の原料を準備し、それぞれの原料を別々に180℃で3時間、真空乾燥した後、320℃に加熱された2台の押出機に別々に供給し、溶融状態で口金上部にある積層装置で3層(積層構成は、(I)/(II)/(I)、積層比は(I):(II):(I)=1:8:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、550μmの未延伸の積層シートを得た。次いで、得られた未延伸の積層シートを、表面温度90℃に加熱された複数の加熱ロールで予熱した後、表面温度100℃に加熱された加熱ロールと、加熱ロールの次に設けられた周速の異なる30℃の冷却ロールとの間で長手方向(MD方向)に3.2倍延伸した。このようにして得られた1軸延伸シートを、テンターを用いて長手方向と垂直方向(TD方向)に95℃の温度で3.0倍に延伸し、続いて255℃で熱処理し引き続き255℃の弛緩処理ゾーンでTD方向に7%の弛緩処理を行った後室温まで冷却し、厚み100μmのPPSフィルムを得た。
(Reference Example 17)
PPS1 shown in Reference Example 2 was prepared as the resin constituting the layers (I) and (II), and the respective raw materials were separately vacuum dried at 180 ° C. for 3 hours, and then two units heated to 320 ° C. Separately supplied to the extruder of the above, and in a molten state, three layers are formed by the laminating device on the upper part of the die (the laminating constitution is (I) / (II) / (I), the laminating ratio is (I) :( II) :( I) = 1: 8: 1), then ejected from a T-die type die, and then rapidly cooled and solidified while applying an electrostatic charge to a cast drum having a surface temperature of 25 ° C. to obtain a 100 μm unstretched film. Got (Examples 1 to 9, Comparative Examples 1 and 2)
Raw materials having the formulations shown in Table 2 were prepared as the resins constituting the layers (I) and (II), and each of the raw materials was vacuum dried at 180 ° C. for 3 hours, and then two units heated to 320 ° C. were used. Separately supplied to the extruder and in a molten state, three layers were formed by a laminating device on the upper part of the die (the laminating constitution is (I) / (II) / (I), the laminating ratio is (I) :( II) :( I ) = 1: 8: 1), and then ejected from a T-die type die, and subjected to rapid cooling and solidification while applying an electrostatic charge to a cast drum having a surface temperature of 25 ° C. to form an unstretched laminate of 550 μm. Got the sheet. Next, the obtained unstretched laminated sheet is preheated with a plurality of heating rolls heated to a surface temperature of 90 ° C., and then a heating roll heated to a surface temperature of 100 ° C. and a circumference provided next to the heating roll. The film was stretched 3.2 times in the longitudinal direction (MD direction) with a cooling roll of 30 ° C. having a different speed. The uniaxially stretched sheet thus obtained was stretched 3.0 times at a temperature of 95 ° C. in a longitudinal direction and a vertical direction (TD direction) using a tenter, followed by heat treatment at 255 ° C. and subsequently at 255 ° C. In the relaxation treatment zone, a 7% relaxation treatment was performed in the TD direction and then cooled to room temperature to obtain a PPS film having a thickness of 100 μm.

(実施例10)
融点340℃のPEEK樹脂(90G、ビクトレックス社製)のチップを層(II)用、参考例12で得られたPEEK1のチップを層(I)用として、それぞれ180℃で3時間、真空乾燥した後、360℃に加熱された2台の押出機に別々に供給し、溶融状態で口金上部にある積層装置で3層(積層構成は、(I)/(II)/(I)、積層比は(I):(II):(I)=1:8:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、550μmの未延伸の積層シートを得た。次いで、得られた未延伸シートを、100mm×100mmの大きさにカットして、フィルムストレッチャー(ブルックナー社製、KARO−IV)を用いて 予熱・延伸温度いずれも160℃で予熱時間1分、延伸速度5%/secにてシートの長手(MD)方向に延伸倍率3.0倍、次いでシートの横手(TD)方向に3.0倍の逐次延伸を行った後に室温まで冷却し、厚み100μmのPEEKフィルムを得た。ま
(実施例11)
軟化点340℃のPEI樹脂(ULTEM1010、SAVICイノベーティブプラスチックス社製)のチップを層(II)用、参考例13で得られたPEI1のチップを層(I)用として、それぞれ180℃で3時間、真空乾燥した後、350℃に加熱された2台の押出機に別々に供給し、溶融状態で口金上部にある積層装置で3層(積層構成は、(I)/(II)/(I)、積層比は(I):(II):(I)=1:8:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、550μmの未延伸の積層シートを得た。
次いで、得られた未延伸シートを、100mm×100mmの大きさにカットして、フィルムストレッチャー(ブルックナー社製、KARO−IV)を用いて 予熱・延伸温度いずれも230℃で予熱時間1分、延伸速度5%/secにてシートの長手(MD)方向に延伸倍率3.0倍、次いでシートの横手(TD)方向に3.0倍の逐次延伸を行い、続いて280℃で熱処理を行った後に室温まで冷却し、厚み1000μmのPEIフィルムを得た。
(Example 10)
A PEEK resin chip (90 G, manufactured by Victrex) having a melting point of 340 ° C. is used as a layer (II), and a PEEK1 chip obtained in Reference Example 12 is used as a layer (I) at 180 ° C. for 3 hours under vacuum drying. After that, they were separately supplied to two extruders heated to 360 ° C., and in a molten state, three layers were formed by a laminating device on the upper part of the die (the laminating constitution was (I) / (II) / (I), laminating The ratio is (I) :( II) :( I) = 1: 8: 1), and then discharged from the T-die type die, while applying an electrostatic charge to the cast drum with a surface temperature of 25 ° C. Adhesion was rapidly cooled and solidified to obtain an unstretched laminated sheet of 550 μm. Then, the obtained unstretched sheet was cut into a size of 100 mm × 100 mm, and a film stretcher (manufactured by Bruckner, KARO-IV) was used to preheat and stretch at 160 ° C. for a preheating time of 1 minute. At a stretching rate of 5% / sec, the sheet was sequentially stretched at a draw ratio of 3.0 times in the longitudinal (MD) direction and then 3.0 times in the transverse (TD) direction of the sheet, and then cooled to room temperature to have a thickness of 100 μm. Of PEEK film was obtained. (Example 11)
Chips of PEI resin (ULTEM1010, SAVIC Innovative Plastics Co., Ltd.) having a softening point of 340 ° C. are used for the layer (II), and chips of PEI1 obtained in Reference Example 13 are used for the layer (I) at 180 ° C. for 3 hours. After vacuum drying, they were separately fed to two extruders heated to 350 ° C., and in a molten state, three layers were formed by a laminating device on the upper part of the die (the laminating constitution is (I) / (II) / (I ), The stacking ratio is (I) :( II) :( I) = 1: 8: 1), then discharge from the T-die type die, and electrostatic charge is applied to the cast drum with a surface temperature of 25 ° C. While applying, it was contacted and rapidly solidified to obtain a 550 μm unstretched laminated sheet.
Then, the obtained unstretched sheet was cut into a size of 100 mm × 100 mm, and using a film stretcher (manufactured by Bruckner, KARO-IV), both preheating and stretching temperatures were 230 ° C. and a preheating time was 1 minute, Sequential stretching was performed at a stretching rate of 5% / sec in the longitudinal direction (MD) of the sheet at a stretching ratio of 3.0 times, and then in the transverse direction (TD) of the sheet at a sequential stretching ratio of 3.0 times, followed by heat treatment at 280 ° C. After that, it was cooled to room temperature to obtain a PEI film having a thickness of 1000 μm.

(比較例3)
参考例16で得たPENチップを層(II)用、参考例16で得られたPEN1のチップを層(I)用として、それぞれ160℃で3時間、真空乾燥した後、290℃に加熱された2台の押出機に別々に供給し、溶融状態で口金上部にある積層装置で3層(積層構成は、(I)/(II)/(I)、積層比は(I):(II):(I)=1:8:1)になるように導き、続いてTダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、550μmの未延伸の積層シートを得た。次いで、得られた未延伸の積層シートを、表面温度130℃に加熱された複数の加熱ロールで予熱した後、表面温度100℃に加熱された加熱ロールと、加熱ロールの次に設けられた周速の異なる30℃の冷却ロールとの間で長手方向(MD方向)に3.0倍延伸した。このようにして得られた1軸延伸シートを、テンターを用いて長手方向と垂直方向(TD方向)に130℃の温度で3.0倍に延伸し、続いて230℃で熱処理し引き続き230℃の弛緩処理ゾーンでTD方向に7%の弛緩処理を行った後室温まで冷却し、厚み100μmのPENフィルムを得た。
(Comparative example 3)
The PEN chip obtained in Reference Example 16 was used for the layer (II), and the PEN1 chip obtained in Reference Example 16 was used for the layer (I). After vacuum drying at 160 ° C. for 3 hours, each was heated to 290 ° C. Separately supplied to two extruders, and in a molten state, three layers were formed by the laminating device on the upper part of the die (the laminating constitution is (I) / (II) / (I), the laminating ratio is (I) :( II ) :( I) = 1: 8: 1), and then ejected from the T-die type die, and rapidly solidified by applying electrostatic charge to a cast drum having a surface temperature of 25 ° C. to rapidly solidify it at 550 μm. An unstretched laminated sheet was obtained. Then, the obtained unstretched laminated sheet is preheated by a plurality of heating rolls heated to a surface temperature of 130 ° C., and then a heating roll heated to a surface temperature of 100 ° C. and a circumference provided next to the heating roll. The film was stretched 3.0 times in the longitudinal direction (MD direction) with a cooling roll of 30 ° C. having a different speed. The uniaxially stretched sheet thus obtained was stretched 3.0 times at a temperature of 130 ° C. in a longitudinal direction and a vertical direction (TD direction) using a tenter, followed by heat treatment at 230 ° C. and then at 230 ° C. In the relaxation treatment zone, a relaxation treatment of 7% was performed in the TD direction, followed by cooling to room temperature to obtain a PEN film having a thickness of 100 μm.

Figure 2020075481
Figure 2020075481

Figure 2020075481
Figure 2020075481

Claims (8)

融点または軟化点が270℃以上の熱可塑性樹脂からなる熱可塑性樹脂フィルムで、2層以上の積層構成を有し、構成する層の少なくとも1層は空孔率が20%以上の層(I)であり、層(I)について熱可塑性樹脂フィルムの面に対して垂直な断面2500μmあたりに含まれる空孔のうち最小外接円の直径Rが2μm以下である空孔の個数が20個以下である熱可塑性樹脂フィルム。 A thermoplastic resin film made of a thermoplastic resin having a melting point or a softening point of 270 ° C. or higher, having a laminated structure of two or more layers, and at least one of the constituent layers has a porosity of 20% or more (I). In the layer (I), the number of holes having a minimum circumscribed circle diameter R of 2 μm or less is 20 or less among the holes included in a cross section 2500 μm 2 perpendicular to the surface of the thermoplastic resin film. A thermoplastic film. フィルムの任意の方向およびそれに直行する方向の200μm換算の端裂抵抗の平均値が100N/20mm以上であることを特徴とする、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein an average value of edge resistance in terms of 200 μm in an arbitrary direction of the film and a direction orthogonal thereto is 100 N / 20 mm or more. 周波数10GHzにおける誘電率が2.8以下である、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, which has a dielectric constant of 2.8 or less at a frequency of 10 GHz. 熱可塑性樹脂フィルムの厚みが10〜350μmである、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the thickness of the thermoplastic resin film is 10 to 350 μm. 熱可塑性樹脂フィルムを構成する層(I)に用いる粒子が、粒度分布測定で得られる累積分布の90%数値の粒子径(D90)と50%数値の粒子径(D50)との比(D90/D50)が3.0以下である、請求項1に記載の熱可塑性樹脂フィルム。 The particles used in the layer (I) constituting the thermoplastic resin film have a ratio (D90 / D90) of 90% numerical value particle diameter (D90) and 50% numerical value particle diameter (D50) of the cumulative distribution obtained by particle size distribution measurement. The thermoplastic resin film according to claim 1, wherein D50) is 3.0 or less. フィルムを構成する各層が、共押出により積層されたことを特徴とする、請求項1に記載の熱可塑性樹脂フィルムの製造方法。 The method for producing a thermoplastic resin film according to claim 1, wherein the respective layers forming the film are laminated by coextrusion. 請求項1〜5のいずれかに記載の熱可塑性樹脂フィルムを用いた回路用部材。 A circuit member using the thermoplastic resin film according to claim 1. フィルムが二軸延伸されていることを特徴とする、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the film is biaxially stretched.
JP2019161775A 2018-09-25 2019-09-05 Thermoplastic resin film and manufacturing method therefor Pending JP2020075481A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018178704 2018-09-25
JP2018178704 2018-09-25

Publications (1)

Publication Number Publication Date
JP2020075481A true JP2020075481A (en) 2020-05-21

Family

ID=70724801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019161775A Pending JP2020075481A (en) 2018-09-25 2019-09-05 Thermoplastic resin film and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2020075481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332834B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332832B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332833B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7332834B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332832B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets
JP7332833B1 (en) 2023-03-09 2023-08-23 株式会社Tbm Sheets and laminated sheets

Similar Documents

Publication Publication Date Title
KR101227325B1 (en) Multilayer porous membrane and method for producing the same
JP2020075481A (en) Thermoplastic resin film and manufacturing method therefor
KR101487043B1 (en) Biaxially oriented polyarylene sulfide film and process for producing the same
JP2011137159A (en) Microporous film and method for producing the same
JP2018083415A (en) Laminate film, and production method thereof
JP2020044839A (en) Thermoplastic resin film and electric/electronic component including the same, and insulation material
JP2020044840A (en) Thermoplastic resin film and electric/electronic component including the same
JP2014001363A (en) Metal bonding biaxially oriented polyarylene sulfide film
JP2013163806A (en) Porous film and separator for power storage device
CN107614256B (en) Laminated film and method for producing same
JP2010070630A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
JP7272263B2 (en) polyarylene sulfide film
JP2009292902A (en) Biaxially oriented polyarylene sulfide film and adhesive material using the same
JP7298218B2 (en) LAMINATED BOARD AND CIRCUIT BOARD USING THE SAME
JP2014189718A (en) Biaxially stretched polyarylene sulfide film
JP4802500B2 (en) Polyarylene sulfide laminate sheet
JP6572703B2 (en) Polyarylene sulfide film, battery member, automobile member, electric / electronic member comprising a composite of at least one of metal, resin and film using the same
JP2019127033A (en) Laminate and production method
JP2020139151A (en) Thermoplastic resin film and method for producing the same
JP2002047360A (en) Polyphenylene sulfide film and method of preparing the same and circuit board produced from the same
JP2019165004A (en) Insulation tube
JP2015147413A (en) Laminated polyarylene sulfide film
JP2020050870A (en) Film and circuit, cable, electric insulation sheet, and rotary machine including the same
JP2022151663A (en) Polyarylene sulfide film, and composite body and electric/electronic member using the same
KR20220054745A (en) Biaxially oriented polyarylene sulfide film