JP2020139151A - Thermoplastic resin film and method for producing the same - Google Patents

Thermoplastic resin film and method for producing the same Download PDF

Info

Publication number
JP2020139151A
JP2020139151A JP2020027902A JP2020027902A JP2020139151A JP 2020139151 A JP2020139151 A JP 2020139151A JP 2020027902 A JP2020027902 A JP 2020027902A JP 2020027902 A JP2020027902 A JP 2020027902A JP 2020139151 A JP2020139151 A JP 2020139151A
Authority
JP
Japan
Prior art keywords
thermoplastic resin
film
resin film
resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020027902A
Other languages
Japanese (ja)
Inventor
葉子 若原
Yoko Wakahara
葉子 若原
山内 英幸
Hideyuki Yamauchi
英幸 山内
高橋 健太
Kenta Takahashi
健太 高橋
東大路 卓司
Takuji Higashioji
卓司 東大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2020139151A publication Critical patent/JP2020139151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

To provide a thermoplastic resin film that is excellent in heat resistance, electric characteristics and workability.SOLUTION: A thermoplastic resin film has a thermoplastic resin A having polyarylene sulfide as the main component, and a resin B different from the resin A; holes are included in a film; when a melting point or softening point of the resin A is Tma(°C) and a melting point or softening point of the resin B is Tmb(°C), the relationship Tmb>Tma is met; and an average dispersion diameter of the resin B in the film is 0.5-10.0 μm or less.SELECTED DRAWING: None

Description

本発明は、耐熱性・電気特性・加工性に優れる熱可塑性樹脂フィルムに関する。 The present invention relates to a thermoplastic resin film having excellent heat resistance, electrical properties, and processability.

ポリアリーレンスルフィド、ポリエーテルイミド、ポリエチレンナフタレート、ポリアミド、ポリエーテルエーテルケトン、液晶ポリマー、フッ素樹脂などに代表される熱可塑性樹脂からなるフィルムや不織布は耐熱性・電気特性・低吸湿性、高温下での寸法安定性および耐薬品性に優れることから、電気・電子部品、電池用部材、機械部品および自動車部品の絶縁材や断熱材として好適に使用されている。
これらの熱可塑性樹脂フィルムを適用した部材は近年小型化が進んでおり、それに合わせて使用されている熱可塑性樹脂フィルムも従来の厚みと同等の特性を保持しかつ薄膜化することが要求されている。
熱可塑性樹脂フィルムを同様の組成で薄膜化すると、厚みの減少に従い機械特性・電気特性の低下が起こるといった課題があった(例えば特許文献1および2)。
そこで熱可塑性樹脂フィルムの特性、とくに電気特性の保持と薄膜化を両立するために、熱可塑性樹脂フィルムを多孔化する手法が提案されている(例えば特許文献4および5)。
Films and non-woven fabrics made of thermoplastic resins such as polyarylene sulfide, polyetherimide, polyethylene naphthalate, polyamide, polyetheretherketone, liquid crystal polymer, and fluororesin have heat resistance, electrical properties, low moisture absorption, and high temperature. Because of its excellent dimensional stability and chemical resistance, it is suitably used as an insulating material and a heat insulating material for electrical / electronic parts, battery parts, mechanical parts and automobile parts.
In recent years, the members to which these thermoplastic resin films have been applied have been miniaturized, and the thermoplastic resin films used in accordance therewith are required to maintain the same characteristics as the conventional thickness and to be thinned. There is.
When the thermoplastic resin film is thinned with the same composition, there is a problem that the mechanical properties and the electrical properties decrease as the thickness decreases (for example, Patent Documents 1 and 2).
Therefore, in order to maintain both the characteristics of the thermoplastic resin film, particularly the electrical characteristics and the thinning, a method of making the thermoplastic resin film porous has been proposed (for example, Patent Documents 4 and 5).

特開2008−266593号公報Japanese Unexamined Patent Publication No. 2008-266593 特開2011−127244号公報Japanese Unexamined Patent Publication No. 2011-127244 特開2013−206818号公報Japanese Unexamined Patent Publication No. 2013-206818 特開2014−102946号公報Japanese Unexamined Patent Publication No. 2014-102946

しかしながら、上記の手法を適用したフィルムは樹脂の密度が低い部分を含むことから、機械特性が大幅に低下し、加工性が低下するといった課題があった。 However, since the film to which the above method is applied contains a portion having a low resin density, there is a problem that the mechanical properties are significantly lowered and the workability is lowered.

本発明の課題は、上記した問題を解決することにある。すなわち、耐熱性・電気特性・加工性(機械特性)に優れる熱可塑性樹脂フィルムを提供することである。 An object of the present invention is to solve the above-mentioned problems. That is, it is to provide a thermoplastic resin film having excellent heat resistance, electrical characteristics, and processability (mechanical characteristics).

本発明の熱可塑性樹脂フィルムは、上記課題を解決するために次の構成を有する。すなわち、
ポリアリーレンスルフィドを主成分とする熱可塑性樹脂A、および、該樹脂とは異なる樹脂Bを含み、フィルム中に空孔を有し、樹脂Aの融点または軟化点をTma(℃)、樹脂Bの融点または軟化点をTmb(℃)とした場合にTmb>Tmaの関係を有し、且つ、フィルム中における樹脂Bの平均分散径が0.5〜10.0μm以下であることを特徴とする、熱可塑性樹脂フィルムである。
The thermoplastic resin film of the present invention has the following configuration in order to solve the above problems. That is,
It contains a thermoplastic resin A containing polyarylene sulfide as a main component and a resin B different from the resin, has pores in the film, and has a melting point or softening point of the resin A of Tma (° C.), which is a resin B. When the melting point or the softening point is Tmb (° C.), the relationship is Tmb> Tma, and the average dispersion diameter of the resin B in the film is 0.5 to 10.0 μm or less. It is a thermoplastic resin film.

本発明の熱可塑性樹脂フィルムは耐熱性・電気特性および加工性に優れ、電気・電子機器、電池用部材、機械部品および自動車部品や絶縁材、印刷機器用部材、耐熱テープ、回路基板、離型フィルムとして好適に用いることができる。 The thermoplastic resin film of the present invention has excellent heat resistance, electrical properties, and workability, and is excellent in heat resistance, electrical characteristics, and workability, and is used for electrical / electronic equipment, battery parts, mechanical parts, automobile parts, insulating materials, printing equipment parts, heat-resistant tape, circuit boards, and mold release. It can be suitably used as a film.

本発明の熱可塑性樹脂フィルムは、ポリアリーレンスルフィドを主成分とする熱可塑性樹脂Aを含む。ここで主成分とはフィルムを構成する樹脂組成のうち60質量%以上を占める成分をさす。ポリアリーレンスルフィドを主成分とする熱可塑性樹脂Aを含むことで、優れた耐久性を発現することができる。熱可塑性樹脂フィルム中の熱可塑性樹脂Aの濃度は好ましくは60〜95質量%、より好ましくは60〜85質量%である。 The thermoplastic resin film of the present invention contains a thermoplastic resin A containing polyarylene sulfide as a main component. Here, the main component refers to a component that accounts for 60% by mass or more of the resin composition constituting the film. By containing the thermoplastic resin A containing polyarylene sulfide as a main component, excellent durability can be exhibited. The concentration of the thermoplastic resin A in the thermoplastic resin film is preferably 60 to 95% by mass, more preferably 60 to 85% by mass.

本発明の熱可塑性樹脂Aとして好ましく用いられるポリアリーレンスルフィド樹脂は、−(Ar−S)−の繰り返し単位を有するコポリマーを指す(Arはアリール基を表す)。Arとしては下記の式(A)〜式(K)などで表される単位があげられる。 The polyarylene sulfide resin preferably used as the thermoplastic resin A of the present invention refers to a copolymer having a repeating unit of − (Ar—S) − (Ar represents an aryl group). Examples of Ar include units represented by the following formulas (A) to (K).

Figure 2020139151
Figure 2020139151

(式(A)〜式(I)において、R1,R2は、水素、アルキル基、アルコキシ基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい)
繰り返し単位としては、上記の式(A)で表されるp−アリーレンスルフィド単位が好ましく、これらの代表的なものとして、ポリフェニレンスルフィド、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルフィドスルホンポリフェニレンスルフィドケトンなどが挙げられ、特に好ましいp−アリーレンスルフィド単位としては、フィルム物性と経済性の観点から、p−フェニレンスルフィド単位が好ましく例示される。
(In formulas (A) to (I), R1 and R2 are substituents selected from hydrogen, alkyl groups, alkoxy groups, and halogen groups, and R1 and R2 may be the same or different).
As the repeating unit, the p-allylen sulfide unit represented by the above formula (A) is preferable, and typical examples thereof include polyphenylene sulfide, polysulfone, polyether sulfone, polyphenylene sulfide sulfone, polyphenylene sulfide ketone and the like. As a particularly preferable p-allylen sulfide unit, a p-phenylene sulfide unit is preferably exemplified from the viewpoint of film physical properties and economic efficiency.

本発明の熱可塑性樹脂Aとして用いるポリアリーレンスルフィド樹脂は、主要構成単位として下記構造式(1)で示されるp−フェニレンスルフィド単位を全繰り返し単位の80モル%以上99.9モル%以下で構成されていることが好ましい。上記の組成とすることで、優れた耐熱性、耐薬品性を発現せしめることができる。 The polyarylene sulfide resin used as the thermoplastic resin A of the present invention comprises a p-phenylene sulfide unit represented by the following structural formula (1) as a main constituent unit in an amount of 80 mol% or more and 99.9 mol% or less of all repeating units. It is preferable that it is. With the above composition, excellent heat resistance and chemical resistance can be exhibited.

Figure 2020139151
Figure 2020139151

また、繰り返し単位の0.01モル%以上20モル%以下の範囲で共重合単位と共重合することもできる。 Further, it can be copolymerized with the copolymerization unit in the range of 0.01 mol% or more and 20 mol% or less of the repeating unit.

好ましい共重合単位は、下記構造式(2)〜(6)が挙げられ、特に好ましい共重合単位は、m−フェニレンスルフィド単位である。主要構成単位に共重合成分との共重合の態様は特に限定はないが、ランダムコポリマーであることが好ましい。 Preferred copolymerization units include the following structural formulas (2) to (6), and particularly preferable copolymerization units are m-phenylene sulfide units. The mode of copolymerization with the copolymerization component is not particularly limited as the main constituent unit, but a random copolymer is preferable.

Figure 2020139151
Figure 2020139151

Figure 2020139151
Figure 2020139151

Figure 2020139151
Figure 2020139151

(ここでXは、アルキレン、CO、SO単位を示す。) (Here, X indicates alkylene, CO, SO 2 units.)

Figure 2020139151
Figure 2020139151

Figure 2020139151
Figure 2020139151

(式(6)において、Rはアルキル基、ニトロ基、フェニレン基、アルコキシ基を示す。)
本発明の熱可塑性樹脂フィルムは、熱可塑性樹脂Aとは異なる熱可塑性樹脂Bを含む。熱可塑性樹脂Bとしては結晶性、非晶性のいずれでも良く、結晶性の樹脂としては例えば、熱可塑性ポリイミド樹脂、芳香族ポリエーテルケトン、芳香族アリールケトン、液晶ポリマー(LCP)などが、また、非晶性の樹脂としてはポリエーテルイミド(PEI)、熱可塑性ポリアミドイミド樹脂などから選択された少なくとも1種を含むことが好ましい。中でも液晶ポリマー、ポリエーテルイミド、熱可塑性ポリイミド樹脂、ポリエーテルエーテルケトンのいずれかより選択された少なくとも1種を含むことが好ましく、結晶性の熱可塑性ポリイミド樹脂、ポリエーテルエーテルケトンのいずれかより選択された少なくとも1種を含むことが耐熱性・電気特性・加工性の観点から特に好ましい。
(In formula (6), R represents an alkyl group, a nitro group, a phenylene group, and an alkoxy group.)
The thermoplastic resin film of the present invention contains a thermoplastic resin B different from the thermoplastic resin A. The thermoplastic resin B may be either crystalline or amorphous, and examples of the crystalline resin include a thermoplastic polyimide resin, an aromatic polyether ketone, an aromatic aryl ketone, and a liquid crystal polymer (LCP). As the amorphous resin, it is preferable to contain at least one selected from polyetherimide (PEI), thermoplastic polyamideimide resin and the like. Among them, it is preferable to contain at least one selected from any of liquid crystal polymer, polyetherimide, thermoplastic polyimide resin, and polyetheretherketone, and it is selected from any of crystalline thermoplastic polyimide resin and polyetheretherketone. It is particularly preferable to include at least one of the above-mentioned materials from the viewpoint of heat resistance, electrical characteristics, and processability.

本発明の熱可塑性樹脂フィルムに用いる熱可塑性樹脂Aの融点または軟化点をTma(℃)、熱可塑性樹脂Bの融点または軟化点をTmb(℃)とした場合、Tmb>Tmaの関係を有する。ここで融点とはその樹脂の固体・液体の転移温度を指し、軟化点とはその熱可塑性樹脂が加熱によって実質的に変形し始める温度のことをさす。上記の熱特性の関係を有することで、熱可塑性樹脂フィルムとした際に、熱可塑性樹脂Bの平均分散径を後述する範囲に制御することができ、優れた寸法安定性を発現することができる。 When the melting point or softening point of the thermoplastic resin A used in the thermoplastic resin film of the present invention is Tma (° C.) and the melting point or softening point of the thermoplastic resin B is Tmb (° C.), there is a relationship of Tmb> Tma. Here, the melting point refers to the transition temperature of the solid / liquid of the resin, and the softening point refers to the temperature at which the thermoplastic resin begins to be substantially deformed by heating. By having the above-mentioned relationship of thermal characteristics, the average dispersion diameter of the thermoplastic resin B can be controlled within the range described later when the thermoplastic resin film is formed, and excellent dimensional stability can be exhibited. ..

本発明の熱可塑性樹脂フィルムにおいて熱可塑性樹脂Bの融点または軟化点(Tmb)と熱可塑性樹脂Aの融点または軟化点(Tma)の差(Tmb−Tma)は20℃以上であることが好ましく50℃以上であることがより好ましい。上記の熱特性の関係を有することで、熱可塑性樹脂フィルムとした際に、熱可塑性樹脂Bの平均分散径を後述する範囲に制御する際にその平均分散径の幅を小さくすることやフィルムとしての寸法安定性を高めることができる。 In the thermoplastic resin film of the present invention, the difference (Tmb-Tma) between the melting point or softening point (Tmb) of the thermoplastic resin B and the melting point or softening point (Tma) of the thermoplastic resin A is preferably 20 ° C. or higher. More preferably, it is above ° C. By having the above-mentioned relationship of thermal characteristics, when a thermoplastic resin film is formed, the width of the average dispersion diameter can be reduced when controlling the average dispersion diameter of the thermoplastic resin B to the range described later, or as a film. Dimensional stability can be improved.

本発明に用いる熱可塑性樹脂の融点は示差走査熱量計で、軟化点は熱機械分析装置を用いて後述の手法にて評価できる。 The melting point of the thermoplastic resin used in the present invention can be evaluated by a differential scanning calorimeter, and the softening point can be evaluated by a method described later using a thermomechanical analyzer.

本発明の熱可塑性樹脂フィルムに含まれる熱可塑性樹脂Bの濃度は、40質量%以下であることが好ましく、5〜40質量%であることがより好ましく、15〜40質量%であることがさらに好ましい。上記の濃度とすることで、熱可塑性樹脂フィルム中に効率よく空孔を形成することができる。熱可塑性樹脂Bの濃度が5質量%を下回ると、空孔の起点となる熱可塑性樹脂Bと熱可塑性樹脂Aの界面が少なくなるため空孔が形成されにくく、熱可塑性樹脂フィルムの電気特性が低下する場合がある。また、熱可塑性樹脂Bの濃度が40質量%を上回ると、と熱可塑性樹脂フィルムの製造時に延伸が困難となり、生産性が低下する場合がある。熱可塑性樹脂Bの濃度は後述する手法にて評価することができる。 The concentration of the thermoplastic resin B contained in the thermoplastic resin film of the present invention is preferably 40% by mass or less, more preferably 5 to 40% by mass, and further preferably 15 to 40% by mass. preferable. By setting the above concentration, pores can be efficiently formed in the thermoplastic resin film. When the concentration of the thermoplastic resin B is less than 5% by mass, the interface between the thermoplastic resin B and the thermoplastic resin A, which is the starting point of the pores, is reduced, so that the pores are hard to be formed and the electrical characteristics of the thermoplastic resin film are deteriorated. May decrease. Further, if the concentration of the thermoplastic resin B exceeds 40% by mass, it becomes difficult to stretch the thermoplastic resin film during production, and the productivity may decrease. The concentration of the thermoplastic resin B can be evaluated by the method described later.

本発明の熱可塑性樹脂フィルムは、熱可塑性樹脂Bを核として空孔を形成していることが好ましい。また、熱可塑性樹脂Bとマトリックスである熱可塑性樹脂Aの界面が明確であることがより好ましい。上記の構造を有することで熱可塑性樹Bのドメイン周囲への過度な応力集中を抑制するとともに、比誘電率を低下させるために必要なフィルム中の空孔を効率よく形成させることができる。熱可塑剤樹脂Bを中心核として空孔を形成するためには熱可塑性樹脂AおよびBの熱特性を前述する範囲にすることで達成できる。空孔の核の有無は走査型電子顕微鏡SEMでその断面を観察することで評価できる。熱可塑性樹脂Bを核として空孔を形成させるための方法は特に限られるものでは無いが、Tma、Tmbを前述した範囲とした熱可塑性樹脂Aと熱可塑性樹脂Bを用いて、後述の製造方法で製膜することなどが挙げられる。 The thermoplastic resin film of the present invention preferably has pores formed around the thermoplastic resin B as a core. Further, it is more preferable that the interface between the thermoplastic resin B and the matrix thermoplastic resin A is clear. By having the above structure, it is possible to suppress excessive stress concentration around the domain of the thermoplastic tree B and efficiently form pores in the film necessary for lowering the relative permittivity. In order to form pores with the thermoplastic resin B as the central core, it can be achieved by setting the thermal characteristics of the thermoplastic resins A and B within the above-mentioned range. The presence or absence of nuclei of pores can be evaluated by observing the cross section with a scanning electron microscope SEM. The method for forming the pores with the thermoplastic resin B as the core is not particularly limited, but the manufacturing method described later is used using the thermoplastic resin A and the thermoplastic resin B having Tma and Tmb in the above-mentioned range. For example, forming a film with.

本発明の熱可塑性樹脂フィルムに含まれる熱可塑性樹脂Bの平均分散径は0.5〜10.0μmであることが必要であり、0.5〜5.0μmであることがより好ましい。平均分散径を上記の範囲とすることで、熱可塑性樹脂フィルムを製造する際の延伸工程で、熱可塑性樹脂A中に分散した熱可塑性樹Bのドメイン周囲への過度な応力集中を抑制するとともに、比誘電率を低下させるために必要なフィルム中の空孔を効率よく形成させることができる。平均分散径が0.5μmより小さいと、延伸時に空孔が形成されにくくなるため、比誘電率低下の効果を十分に得ることが出来ない場合がある。また平均分散径が10.0μm以上となると、フィルムを製造する際に分散した熱可塑性樹Bの周囲へ応力集中が起きやすくなるため破れによる生産性低下や、フィルムとしての機械特性の低下が起こり、フィルムを最終使用の形態に加工した際に加工性が悪化する場合がある。熱可塑性樹脂フィルムに含まれる熱可塑性樹脂Bの平均分散径の評価方法は後述する手法で確認することができる。熱可塑性樹脂Bの平均分散径は後述する原料の製造方法と製膜条件で制御できる。 The average dispersion diameter of the thermoplastic resin B contained in the thermoplastic resin film of the present invention needs to be 0.5 to 10.0 μm, more preferably 0.5 to 5.0 μm. By setting the average dispersion diameter in the above range, excessive stress concentration of the thermoplastic tree B dispersed in the thermoplastic resin A around the domain is suppressed in the stretching step when the thermoplastic resin film is produced. , Pore in the film necessary for lowering the relative permittivity can be efficiently formed. If the average dispersion diameter is smaller than 0.5 μm, it becomes difficult for pores to be formed during stretching, so that the effect of reducing the relative permittivity may not be sufficiently obtained. Further, when the average dispersion diameter is 10.0 μm or more, stress concentration tends to occur around the thermoplastic tree B dispersed during the production of the film, which causes a decrease in productivity due to tearing and a decrease in mechanical properties as a film. , The processability may deteriorate when the film is processed into the final use form. The method for evaluating the average dispersion diameter of the thermoplastic resin B contained in the thermoplastic resin film can be confirmed by a method described later. The average dispersion diameter of the thermoplastic resin B can be controlled by the raw material manufacturing method and film forming conditions described later.

本発明の熱可塑性樹脂フィルムに空孔を形成する手法としては、工程を簡略化でき生産性に優れることから乾式法(樹脂を溶融し、シート状に押出したものを延伸することにより多孔化する方法)を用いることが好ましい。 As a method for forming pores in the thermoplastic resin film of the present invention, since the process can be simplified and the productivity is excellent, the dry method (the resin is melted and extruded into a sheet is stretched to make it porous. Method) is preferably used.

本発明の熱可塑性樹脂フィルムは、そのフィルム中に空孔を有する。フィルム中の空孔の割合(空孔率)は20%以上であることが好ましい。上記の空孔率を有することで、熱可塑性樹脂フィルムとしての電気特性を向上せしめることができる。ここで空孔率とは、熱可塑性樹脂フィルムの任意のサイズの断面積を100とした際に、その画像中に含まれる空孔の面積の割合を指し、任意サイズの断面画像に空孔が観察されない場合が空孔率0%となる。空孔率が20%より小さくなると、熱可塑性樹脂フィルム中に含まれる空孔が少なくなり、フィルム中に占める比誘電率の小さい空気の割合が減るため、電気特性が低下する場合がある。また空孔率は高ければ高いほど好ましいが生産性保持の観点から70%以下が好ましい。空孔率は好ましくは20〜60%、30〜50%である。空孔率を上記の範囲とするには熱可塑性樹脂フィルムに含まれる熱可塑性樹Bの濃度や分散径の制御と後述する製膜条件を適用することで達成できる。空孔率は熱可塑性樹脂フィルムの断面について後述する手法で評価することで確認できる。 The thermoplastic resin film of the present invention has pores in the film. The ratio of pores in the film (porosity) is preferably 20% or more. By having the above porosity, it is possible to improve the electrical characteristics of the thermoplastic resin film. Here, the porosity refers to the ratio of the area of the pores contained in the image when the cross-sectional area of the thermoplastic resin film of any size is 100, and the pores are formed in the cross-sectional image of the arbitrary size. If it is not observed, the porosity is 0%. When the porosity is smaller than 20%, the pores contained in the thermoplastic resin film are reduced, and the proportion of air having a small relative permittivity in the film is reduced, so that the electrical characteristics may be deteriorated. The higher the porosity, the more preferable, but from the viewpoint of maintaining productivity, 70% or less is preferable. The porosity is preferably 20-60% and 30-50%. The porosity can be set within the above range by controlling the concentration and dispersion diameter of the thermoplastic tree B contained in the thermoplastic resin film and applying the film forming conditions described later. The porosity can be confirmed by evaluating the cross section of the thermoplastic resin film by the method described later.

本発明の熱可塑性樹脂フィルムに含まれる熱可塑性樹脂Bのドメインのアスペクト比は1.1〜4.0であることが好ましく、1.5〜3.0であることがより好ましい。熱可塑性樹脂Bのドメインのアスペクト比はフィルムの延伸時の温度を適正な範囲に制御することで調整可能である。熱可塑性樹脂Bのアスペクト比を制御することでドメインの表面への延伸時の応力集中を抑制し、機械強度と空孔率を一定の範囲に維持することができる。アスペクト比が1.5よりも小さいと延伸時に熱可塑性樹脂Bのドメインが変形せずにマトリクスである熱可塑性樹脂Aの界面にひずみがのこり、熱可塑性樹脂フィルムの機械特性が低下する場合がある。また、アスペクト比が4よりも大きいと、熱可塑性樹脂Bのドメインの延伸時の変形が著しく、延伸時に十分な空孔が形成できず空孔率が低下する場合がある。本発明の熱可塑性樹脂フィルムに含まれる熱可塑性樹脂Bのドメインのアスペクト比は後述する手法で評価することができる。 The aspect ratio of the domain of the thermoplastic resin B contained in the thermoplastic resin film of the present invention is preferably 1.1 to 4.0, more preferably 1.5 to 3.0. The aspect ratio of the domain of the thermoplastic resin B can be adjusted by controlling the temperature at the time of stretching the film within an appropriate range. By controlling the aspect ratio of the thermoplastic resin B, stress concentration during stretching on the surface of the domain can be suppressed, and the mechanical strength and porosity can be maintained within a certain range. If the aspect ratio is smaller than 1.5, the domain of the thermoplastic resin B is not deformed during stretching, and strain remains at the interface of the thermoplastic resin A, which is a matrix, and the mechanical properties of the thermoplastic resin film may deteriorate. .. Further, when the aspect ratio is larger than 4, the domain of the thermoplastic resin B is significantly deformed at the time of stretching, and sufficient porosity may not be formed at the time of stretching, and the porosity may decrease. The aspect ratio of the domain of the thermoplastic resin B contained in the thermoplastic resin film of the present invention can be evaluated by the method described later.

本発明の熱可塑性樹脂フィルムはフィルムを構成する組成物として無機粒子を含んでもよい。無機粒子を用いる場合、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックスや窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸アルミニウム、硫酸バリウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維等のなどの無機化合物を配合することができる。また用いる無機粒子は、熱可塑性樹脂フィルムの物性を損なわない範囲で表面処理を施すことができる。用いる無機粒子は1種でもよく、複数種を混合して用いてもかまわない。上記の中でも分散性の観点から炭酸カルシウム、硫酸バリウム、酸化亜鉛、シリカが好ましく、低コストの観点から炭酸カルシウム、シリカが最も好ましい。 The thermoplastic resin film of the present invention may contain inorganic particles as a composition constituting the film. When using inorganic particles, oxide-based ceramics such as alumina, silica, titania, zirconia, magnesia, ceria, itria, zinc oxide, and iron oxide, nitride-based ceramics such as silicon nitride, titanium nitride, and boron nitride, silicon carbide, etc. Calcium carbonate, aluminum sulfate, barium sulfate, potassium titanate, talc, kaolin clay, kaolinite, halloysite, pyrophyllite, montmorillonite, cericite, mica, amesite, bentonite, asbestos, zeolite, calcium silicate, magnesium silicate , Ceramics such as kaolin, kaolin, and inorganic compounds such as glass fiber can be blended. Further, the inorganic particles used can be surface-treated within a range that does not impair the physical properties of the thermoplastic resin film. The inorganic particles used may be one kind, or a plurality of kinds may be mixed and used. Among the above, calcium carbonate, barium sulfate, zinc oxide and silica are preferable from the viewpoint of dispersibility, and calcium carbonate and silica are most preferable from the viewpoint of low cost.

本発明の熱可塑性樹脂フィルムを構成する組成物として無機粒子を用いる場合、その無機粒子の体積平均粒径は、0.3〜10μmであることが好ましく、0.5〜5μmであることがより好ましい。上記の体積平均粒径の粒子を用いることで、粒子同士の凝集を抑制し、延伸した際の無機粒子の周囲への応力を抑制することができる。無機粒子の体積平均粒径が0.3μm未満であると、粒子同士の凝集が発生しやすくなり延伸性が低下する場合がある。また、体積平均粒径が10μmより大きいとフィルムに含まれる熱可塑性樹脂Bの分散径との差が大きくなり、熱可塑性樹脂Aと無機粒子の界面に応力が集中しやすくなりフィルムの機械強度が低下する場合がある。 When inorganic particles are used as the composition constituting the thermoplastic resin film of the present invention, the volume average particle diameter of the inorganic particles is preferably 0.3 to 10 μm, more preferably 0.5 to 5 μm. preferable. By using the particles having the above-mentioned volume average particle diameter, it is possible to suppress the aggregation of the particles and suppress the stress around the inorganic particles when they are stretched. If the volume average particle size of the inorganic particles is less than 0.3 μm, agglomeration of the particles is likely to occur and the stretchability may be lowered. Further, when the volume average particle diameter is larger than 10 μm, the difference from the dispersion diameter of the thermoplastic resin B contained in the film becomes large, stress tends to concentrate at the interface between the thermoplastic resin A and the inorganic particles, and the mechanical strength of the film increases. May decrease.

本発明の熱可塑性樹脂フィルムを構成する組成物として無機粒子を用いる場合、その配合濃度は0.1〜20質量%であることが好ましく、0.1〜10質量%であることがより好ましい。無機粒子の濃度を上記の範囲とすることで効率よくフィルム中に空孔を形成することができる。 When inorganic particles are used as the composition constituting the thermoplastic resin film of the present invention, the blending concentration thereof is preferably 0.1 to 20% by mass, more preferably 0.1 to 10% by mass. By setting the concentration of the inorganic particles in the above range, pores can be efficiently formed in the film.

本発明の熱可塑性樹脂フィルムは、2層以上の積層構成とすることもできる。選択可能な積層構成としては、任意の処方の層(I)、(II)で構成される(I)/(II)の2層、(I)/(II)/(I)、(II)/(I)/(II)、(II)/(I)/(II)/(I)、(II)/(I)/(II)/(I)/(II)などの多層構成が挙げられるが、これに限定されない。また、(I)〜(II)とは異なる組成からなる層をさらに追加した層構成にすることもできる。 The thermoplastic resin film of the present invention may have a laminated structure of two or more layers. Selectable laminated configurations include two layers (I) / (II) composed of layers (I) and (II) of any formulation, (I) / (II) / (I), (II). Multi-layered configurations such as / (I) / (II), (II) / (I) / (II) / (I), (II) / (I) / (II) / (I) / (II) are listed. However, it is not limited to this. Further, a layer structure having a layer having a composition different from that of (I) to (II) can be further added.

本発明の熱可塑性樹脂フィルムの厚みは、生産性の観点から5〜350μmが好ましく、10〜300μmがより好ましい。フィルム厚みおよび層厚みは未延伸シートを得る際に原料の供給量を調整することで制御できる。またフィルム厚みおよび層厚みは後述する手法にて評価できる。 The thickness of the thermoplastic resin film of the present invention is preferably 5 to 350 μm, more preferably 10 to 300 μm from the viewpoint of productivity. The film thickness and the layer thickness can be controlled by adjusting the supply amount of the raw material when obtaining the unstretched sheet. The film thickness and layer thickness can be evaluated by the method described later.

本発明の熱可塑性樹脂フィルムは、温度23℃、65%RH下で周波数10GHzにおける比誘電率が3.0以下であることが好ましく、2.8以下であることがより好ましい。上記の特性を有することで、高周波領域における回路基板材料として使用した際に、絶縁材の奇生容量を減らすことができるため伝送損失を効果的に抑制することができる。比誘電率が3.0より大きいと、基板材料として用いた場合、伝送損失が大きくなる場合がある。比誘電率は低いほど好ましいが、実現可能な範囲は1.8以上である。比誘電率を上記の範囲とするには、熱可塑性樹脂フィルムの組成および特性を前述の構成とすることで達成できる。比誘電率は後述する手法にて評価できる。 The thermoplastic resin film of the present invention preferably has a relative permittivity of 3.0 or less at a frequency of 10 GHz at a temperature of 23 ° C. and 65% RH, and more preferably 2.8 or less. By having the above characteristics, when used as a circuit board material in a high frequency region, the parasitic capacity of the insulating material can be reduced, so that transmission loss can be effectively suppressed. If the relative permittivity is larger than 3.0, the transmission loss may increase when used as a substrate material. The lower the relative permittivity, the more preferable, but the feasible range is 1.8 or more. The relative permittivity can be within the above range by setting the composition and properties of the thermoplastic resin film to the above-mentioned constitution. The relative permittivity can be evaluated by the method described later.

本発明の熱可塑性樹脂フィルムは、23℃、65%RHでの10〜40GHzにおける伝送損失の絶対値が30dB/100mm未満であることが好ましく、25dB/100mm未満であることがより好ましい。伝送損失とは通信線路上を流れる信号の劣化度合いを表す。伝送損失が30dB/100mmより大きいと、回路線上の入力信号の劣化が大きく、大容量通信時の機器の部材としての適用が困難となる。伝送損失の絶対値は低ければ低いほど好ましい。伝送損失を上記の範囲とするには熱可塑性樹脂フィルムを前述の比誘電率とすることで達成できる。伝送損失は後述の手法にて評価できる。 In the thermoplastic resin film of the present invention, the absolute value of the transmission loss at 10 to 40 GHz at 23 ° C. and 65% RH is preferably less than 30 dB / 100 mm, and more preferably less than 25 dB / 100 mm. The transmission loss represents the degree of deterioration of the signal flowing on the communication line. If the transmission loss is larger than 30 dB / 100 mm, the deterioration of the input signal on the circuit line is large, and it becomes difficult to apply it as a member of a device during large-capacity communication. The lower the absolute value of the transmission loss, the more preferable. The transmission loss can be within the above range by setting the thermoplastic resin film to the above-mentioned relative permittivity. The transmission loss can be evaluated by the method described later.

本発明の熱可塑性樹脂フィルムは、熱可塑性樹脂フィルムの任意の方向およびそれに直行する方向の200μm換算の端裂抵抗の平均値が120N/20mm以上であることが好ましい。上記の特性を有することで、熱可塑性樹脂フィルムを実用した際に、熱可塑性樹脂フィルムの厚み方向にかかる応力に対して耐久性を発現することができる。端裂抵抗が120N/20mmより小さいと、厚み方向に応力がかかった場合に破れが生じやすく、実用に耐えない場合がある。端裂抵抗の上限は高ければ高いほど好ましいが、実現可能な範囲としては1500N/20mm以下である。任意の方向およびそれに直行する方向の200μm換算の端裂抵抗の平均値は130N/20mm以上であることがより好ましく、150N/20mm以上であることがさらに好ましい。端裂抵抗を上記の範囲とするには前述する組成および特性・製膜条件とすることで達成できる。端裂抵抗は後述する手法により評価することができる。 In the thermoplastic resin film of the present invention, it is preferable that the average value of the end crack resistance in an arbitrary direction and the direction perpendicular to the thermoplastic resin film in terms of 200 μm is 120 N / 20 mm or more. By having the above-mentioned characteristics, when the thermoplastic resin film is put into practical use, it is possible to exhibit durability against stress applied in the thickness direction of the thermoplastic resin film. If the end crack resistance is smaller than 120 N / 20 mm, tearing is likely to occur when stress is applied in the thickness direction, and it may not be practical. The higher the upper limit of the end crack resistance is, the more preferable it is, but the feasible range is 1500 N / 20 mm or less. The average value of the end crack resistance in an arbitrary direction and the direction orthogonal to it in terms of 200 μm is more preferably 130 N / 20 mm or more, and further preferably 150 N / 20 mm or more. The end crack resistance can be achieved in the above range by setting the composition, characteristics, and film forming conditions described above. The end crack resistance can be evaluated by the method described later.

本発明の熱可塑性樹脂フィルムの製造法を、ポリアリーレンスルフィド樹脂を用いた場合を例に説明する。 The method for producing a thermoplastic resin film of the present invention will be described by taking as an example a case where a polyarylene sulfide resin is used.

本発明の熱可塑性樹脂フィルムに好ましく用いるポリアリーレンスルフィド樹脂の製造方法を説明する。硫化ナトリウムとp−ジクロロベンゼンを配合し、N−メチル−2−ピロリドン(NMP)などのアミド系極性溶媒中で、高温高圧下で反応させる。必要に応じて、m−ジクロロベンゼンやトリハロベンゼンなどの共重合成分を含ませることも可能である。重合度調整剤として苛性カリやカルボン酸アルカリ金属塩などを添加し230〜290℃で重合反応させる。重合後にポリマーを冷却し、ポリマーを水スラリーとしてフィルターで濾過後、湿潤状態の粒状ポリマーを得る。この粒状ポリマーにアミド系極性溶媒を加えて30〜100℃の温度で攪拌処理して洗浄し、イオン交換水にて30〜80℃で数回洗浄し、酢酸カルシウムなどの金属塩水溶液で数回洗浄した後、乾燥して熱可塑性樹脂Aであるポリアリーレンスルフィド樹脂の粒状ポリマーを得る。この熱可塑性樹脂Aと、これとは異なる熱可塑性樹脂Bとを前述する任意の割合で配合し、300〜350℃に設定したベント付き押出機に投入してストランド状に溶融押出し、温度25℃の水で冷却した後、カッティングしてチップを作製し、フィルム用の原料とする。このとき押出時の溶融樹脂そのものの温度(実温)は熱可塑性樹脂Bの融点または軟化点Tmb〜(Tmb+20)℃とすることで、平均分散径を前述の範囲とすることができる。上記の樹脂温を下回ると、熱可塑性樹脂Bの分散時に十分に溶融できておらず、分散径が大きくなり制御ができなくなる場合がある。また、上記の温度以上となると、熱可塑性樹脂Bの溶融粘度が小さくなり分散径が小さくなる場合や押出時の熱可塑性樹脂Bの熱劣化が起こり、フィルムとした際に機械特性が低下する場合がある。溶融樹脂の実温は押出時にダイヘッドから吐出した直後の溶融樹脂の温度を赤外放射温度計(AD−5614、(株)エー・アンド・デイ製)を用いて測定することができる。熱可塑性樹脂AおよびBを溶融押出する際には無機粒子や添加剤などを任意の割合で配合することができる。このフィルム用原料を180℃で3時間減圧乾燥した後、溶融部が熱可塑性樹脂Aの融点または軟化点Tma〜熱可塑性樹脂Bの融点または軟化点Tmbの間に設定されたフルフライトの単軸押出機に供給し、フィルターに通過させた後、Tダイ型口金から吐出させ、表面温度20〜70℃の冷却ドラム上に静電荷を印加させながら密着させて急冷固化し、実質的に無配向状態の未延伸フィルムを得る。 A method for producing a polyarylene sulfide resin preferably used for the thermoplastic resin film of the present invention will be described. Sodium sulfide and p-dichlorobenzene are mixed and reacted in an amide-based polar solvent such as N-methyl-2-pyrrolidone (NMP) under high temperature and high pressure. If necessary, it is also possible to include a copolymerization component such as m-dichlorobenzene or trihalobenzene. Potassium hydroxide, an alkali metal carboxylic acid salt, or the like is added as a degree of polymerization adjusting agent, and the polymerization reaction is carried out at 230 to 290 ° C. After the polymerization, the polymer is cooled, and the polymer is filtered through a filter as an aqueous slurry to obtain a wet granular polymer. An amide-based polar solvent is added to this granular polymer, and the mixture is stirred and washed at a temperature of 30 to 100 ° C., washed several times with ion-exchanged water at 30 to 80 ° C., and several times with an aqueous metal salt solution such as calcium acetate. After washing, it is dried to obtain a granular polymer of a polyarylene sulfide resin which is a thermoplastic resin A. The thermoplastic resin A and a different thermoplastic resin B are blended at an arbitrary ratio as described above, put into an extruder with a vent set at 300 to 350 ° C., melt-extruded into a strand shape, and heated to a temperature of 25 ° C. After cooling with the water of the above, cutting is made to prepare a chip, which is used as a raw material for a film. At this time, the temperature (actual temperature) of the molten resin itself at the time of extrusion is set to the melting point or softening point Tmb to (Tmb + 20) ° C. of the thermoplastic resin B, so that the average dispersion diameter can be within the above range. If it is lower than the above resin temperature, the thermoplastic resin B may not be sufficiently melted at the time of dispersion, and the dispersion diameter may become large and control may not be possible. Further, when the temperature exceeds the above temperature, the melt viscosity of the thermoplastic resin B becomes small and the dispersion diameter becomes small, or the thermoplastic resin B undergoes thermal deterioration during extrusion and the mechanical properties deteriorate when the film is formed. There is. The actual temperature of the molten resin can be measured by using an infrared radiation thermometer (AD-5614, manufactured by A & D Co., Ltd.) immediately after being discharged from the die head at the time of extrusion. When the thermoplastic resins A and B are melt-extruded, inorganic particles, additives and the like can be blended in an arbitrary ratio. After the raw material for a film is dried under reduced pressure at 180 ° C. for 3 hours, a full-flight single shaft whose molten portion is set between the melting point or softening point Tma of the thermoplastic resin A and the melting point or softening point Tmb of the thermoplastic resin B. After being supplied to an extruder and passed through a filter, it is discharged from a T-die type base, and is brought into close contact with a cooling drum having a surface temperature of 20 to 70 ° C. while applying an electrostatic charge to quench and solidify, and is substantially non-oriented. An unstretched film in the state is obtained.

次いで、二軸延伸する場合は、延伸方法としては、逐次二軸延伸法(長手方向に延伸した後に幅方向に延伸を行う方法などの一方向ずつの延伸を組み合わせた延伸法)、同時二軸延伸法(長手方向と幅方向を同時に延伸する方法)、またはそれらを組み合わせた方法を用いることができる。ここでは、最初に長手方向、次に幅方向の延伸を行う逐次二軸延伸法を例示する。 Next, in the case of biaxial stretching, the stretching method includes a sequential biaxial stretching method (a stretching method that combines stretching in each direction such as a method of stretching in the longitudinal direction and then stretching in the width direction), and simultaneous biaxial stretching. A stretching method (a method of stretching in the longitudinal direction and the width direction at the same time) or a method in which they are combined can be used. Here, a sequential biaxial stretching method in which stretching is performed first in the longitudinal direction and then in the width direction will be illustrated.

上記で得られた未延伸フィルムを、未延伸フィルムを加熱ロール群で加熱し、長手方向(MD方向)に2.8〜5.0倍、より好ましくは2.8〜4.5倍に1段もしくは2段以上の多段で延伸する(MD延伸)。延伸温度は、熱可塑性樹脂Aのガラス転移温度(Tg)〜冷結晶化温度(Tcc)、好ましくは(Tg+5)〜(Tcc−10)℃の範囲である。その後20〜50℃の冷却ロール群で冷却する。 The unstretched film obtained above is heated with a heating roll group, and the unstretched film is heated 2.8 to 5.0 times in the longitudinal direction (MD direction), more preferably 2.8 to 4.5 times. Stretching in stages or in multiple stages of two or more stages (MD stretching). The stretching temperature is in the range of the glass transition temperature (Tg) to the cold crystallization temperature (Tcc) of the thermoplastic resin A, preferably (Tg + 5) to (Tcc-10) ° C. Then, it is cooled by a cooling roll group of 20 to 50 ° C.

MD延伸に続く幅方向(TD方向)の延伸方法としては、例えば、テンターを用いる方法が一般的である。このフィルムの両端部をクリップで把持して、テンターに導き、幅方向の延伸を行う(TD延伸)。延伸温度は熱可塑性樹脂AのTg〜Tccが好ましく、より好ましくは(Tg+5)〜(Tcc−10)℃の範囲である。延伸倍率はフィルムの平面性の観点から2.8〜5.0倍、好ましくは2.8〜4.5倍が好ましい。 As a stretching method in the width direction (TD direction) following MD stretching, for example, a method using a tenter is common. Both ends of this film are gripped with clips, guided to a tenter, and stretched in the width direction (TD stretching). The stretching temperature is preferably Tg to Tcc of the thermoplastic resin A, more preferably in the range of (Tg + 5) to (Tcc-10) ° C. The draw ratio is preferably 2.8 to 5.0 times, preferably 2.8 to 4.5 times, from the viewpoint of the flatness of the film.

このとき、フィルムの延伸倍率についてTD倍率に対するMD倍率の比(延伸倍率比=MD倍率/TD倍率)は1.05以下が好ましく、1.00以下がより好ましく、0.95以下であることがさらに好ましい。層(I)に含まれる空孔は、初めの延伸方向であるMD方向に延伸される際に、粒子との樹脂の界面に応力集中し剥離が生じる。その後この剥離点を起点としてMD方向に伸びる空孔が形成される。このとき粒子/樹脂界面では応力集中により熱が発生し、フィルムの樹脂組成として結晶性の熱可塑性樹脂を用いた際は局所的な結晶化の進行がすすみ、延伸時の加熱による樹脂部の塑性変形を妨害し、空孔を形成する微小な空孔を形成し脆化を引き起こすと考えられる。また、非晶樹脂では樹脂の軟化が進みすぎ、空孔の形成不良を引き起こすと考えられる。そのため、MD方向への過度な延伸を行うと、次いで行われるTD方向への延伸により、結晶性の熱可塑性樹脂では延伸破れが起こりやすくなったり、フィルムの機械的強度の低下が顕在化したりする。また、非晶性樹脂では二軸に延伸したにもかかわらず低空孔率となる場合がある。そのためMD方向の延伸倍率は平面性を損なわない範囲で低いことが好ましく、TD方向の延伸倍率はフィルム破れを起こさない範囲で高くすることが、二軸延伸後の機械特性とくに端裂抵抗と、電気特性のバランスを維持するために重要となる。 At this time, regarding the stretch ratio of the film, the ratio of the MD ratio to the TD ratio (stretch ratio = MD ratio / TD ratio) is preferably 1.05 or less, more preferably 1.00 or less, and 0.95 or less. More preferred. When the pores contained in the layer (I) are stretched in the MD direction, which is the initial stretching direction, stress is concentrated at the interface between the resin and the particles, and peeling occurs. After that, a hole extending in the MD direction is formed starting from this peeling point. At this time, heat is generated at the particle / resin interface due to stress concentration, and when a crystalline thermoplastic resin is used as the resin composition of the film, local crystallization progresses, and the plasticity of the resin part due to heating during stretching progresses. It is thought that it interferes with deformation and forms minute pores that form pores, causing brittleness. Further, it is considered that the amorphous resin softens the resin too much, causing poor formation of pores. Therefore, if excessive stretching in the MD direction is performed, the crystalline thermoplastic resin is likely to be stretched and broken due to the subsequent stretching in the TD direction, and a decrease in the mechanical strength of the film becomes apparent. .. Further, in the case of amorphous resin, the porosity may be low even though it is stretched biaxially. Therefore, the draw ratio in the MD direction is preferably low as long as the flatness is not impaired, and the draw ratio in the TD direction should be high as long as the film does not tear, which is the mechanical characteristics after biaxial stretching, especially the end crack resistance. It is important to maintain the balance of electrical characteristics.

次に、この延伸フィルムを緊張下で熱固定する操作(熱固定処理)を行う。熱固定処理の温度は熱処理ゾーンの始終で、同一温度で加熱処理を行うか、1段熱固定または熱処理ゾーンの前半と後半で異なる温度で加熱処理を行う多段熱固定のいずれかで処理を行う。熱固定温度は160℃〜熱可塑性樹脂Aの融点または軟化点(Tma)が好ましく、180〜(Tma−10)℃であることが、フィルムとしての熱収縮を抑制する観点から好ましい。熱固定処理後は、フィルムを室温まで、必要ならば、長手および幅方向に1〜20%の弛緩処理を施しながら、フィルムを冷やして巻き取り、二軸延伸された熱可塑性樹脂フィルムを得る。 Next, an operation (heat fixing process) of heat-fixing the stretched film under tension is performed. The temperature of the heat treatment zone is the whole of the heat treatment zone, and either the heat treatment is performed at the same temperature, or the heat treatment is performed at different temperatures in the first half and the second half of the heat treatment zone. .. The heat fixing temperature is preferably 160 ° C. to the melting point or softening point (Tma) of the thermoplastic resin A, and preferably 180 to (Tma-10) ° C. from the viewpoint of suppressing heat shrinkage as a film. After the heat-fixing treatment, the film is cooled to a room temperature, and if necessary, relaxed by 1 to 20% in the longitudinal and width directions, and then wound to obtain a biaxially stretched thermoplastic resin film.

本発明の熱可塑性樹脂フィルムは耐熱性・電気特性および加工性に優れ、電気・電子機器、電池用部材、機械部品および自動車部品や絶縁材、印刷機器用部材、耐熱テープ、回路基板、離型フィルムとして好適に用いることができる。 The thermoplastic resin film of the present invention has excellent heat resistance, electrical properties, and workability, and is excellent in heat resistance, electrical characteristics, and workability, and is used for electrical / electronic equipment, battery parts, mechanical parts, automobile parts, insulating materials, printing equipment parts, heat-resistant tape, circuit boards, and mold release. It can be suitably used as a film.

[特性の測定方法]
(1)熱可塑性樹脂フィルムの融点または軟化点
a.融点(℃)
熱可塑性樹脂フィルムの樹脂A、樹脂Bとして結晶性の樹脂を用いる場合は、JIS K7121−1987に準じ、示差走査熱量計としてセイコーインスツルメンツ社製DSC(RDC220)、データ解析装置として同社製ディスクステーション(SSC/5200)を用いて、秤量した3mgの試料をアルミニウム製受皿上で室温から340℃まで昇温速度20℃/分で昇温し、そのとき、観測される融解の吸熱ピークのピーク温度を測定する。測定は1サンプルにつき3回実施し、得られた値の平均値をそのサンプルの融点(℃)とした。
[Measurement method of characteristics]
(1) Melting point or softening point of the thermoplastic resin film a. Melting point (℃)
When using crystalline resin as resin A and resin B of the thermoplastic resin film, according to JIS K7121-1987, DSC (RDC220) manufactured by Seiko Instruments Co., Ltd. is used as the differential scanning calorimeter, and disk station manufactured by Seiko Instruments Co., Ltd. is used as the data analysis device. Using SSC / 5200), the weighed 3 mg sample was heated from room temperature to 340 ° C. at a heating rate of 20 ° C./min on an aluminum saucer, and the peak temperature of the endothermic peak of melting observed at that time was measured. Measure. The measurement was carried out three times per sample, and the average value of the obtained values was taken as the melting point (° C.) of the sample.

b.軟化点(℃)
熱可塑樹脂フィルムの樹脂A、樹脂Bとして非晶性の樹脂を用いる場合は直径5mmの円形に切り出して試料とする。この試料を、熱機械分析装置(日立ハイテクサイエンス社製、SS6100)に先端径0.5mmの円錐型の針入プローブを用いて、荷重49mNにて10℃/分の昇温条件で加熱し、プローブの針入量と加熱温度のプロットより軟化点を測定する。測定は1サンプルにつき3回実施し、得られた値の平均値をそのサンプルの軟化点(℃)とした。
b. Softening point (℃)
When an amorphous resin is used as the resin A and the resin B of the thermoplastic resin film, it is cut into a circle having a diameter of 5 mm and used as a sample. This sample was heated in a thermomechanical analyzer (SS6100, manufactured by Hitachi High-Tech Science Co., Ltd.) using a conical needle-inserted probe with a tip diameter of 0.5 mm under a load of 49 mN under a heating condition of 10 ° C./min. The softening point is measured from the plot of the needle insertion amount of the probe and the heating temperature. The measurement was carried out three times per sample, and the average value of the obtained values was taken as the softening point (° C.) of the sample.

(2)熱可塑性樹脂フィルムの厚みおよび熱可塑性樹脂Bの平均分散径・アスペクト比、熱可塑性樹脂Bの濃度
走査型電子顕微鏡の試料台に固定した試料を、厚み方向を法線方向とする断面がみえるようにスパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡SEM(日本電子(株)製、JSM6700F)を用い、上記のサンプルの2,000倍の断面写真を撮影する。
(2) Thickness of thermoplastic resin film, average dispersion diameter / aspect ratio of thermoplastic resin B, concentration of thermoplastic resin B Cross section of a sample fixed on a sample table of a scanning electron microscope with the thickness direction as the normal direction. After cutting the cross section by ion etching for 10 minutes under the conditions of decompression degree 10 -3 Torr, voltage 0.25 KV, current 12.5 mA using a sputtering device, the surface is cut with the same device. Is sputtered with gold, and a scanning electron microscope SEM (JSM6700F manufactured by JEOL Ltd.) is used to take a cross-sectional photograph of 2,000 times the above sample.

a.厚み
観察により得られた画像より熱可塑性樹脂フィルムの厚みを計測した。上記の倍率で熱可塑性樹脂フィルムの厚み方向が全体を確認できない場合は厚み方向に数点の画像を撮影し、画像をつなぎ合わせることで全体像を確認する。厚みの測定に用いるサンプルは任意の場所の合計10箇所を選定し、10サンプルの計測値の平均をそのサンプルのフィルム厚みとした。
a. The thickness of the thermoplastic resin film was measured from the image obtained by the thickness observation. If the entire thickness direction of the thermoplastic resin film cannot be confirmed at the above magnification, several images are taken in the thickness direction, and the entire image is confirmed by stitching the images together. A total of 10 samples were selected at arbitrary locations for measuring the thickness, and the average of the measured values of the 10 samples was taken as the film thickness of the sample.

b.熱可塑性樹脂Bの平均分散径
得られた断面写真について、画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて断面投影像を作成した。断面投影像に含まれる熱可塑性樹脂Bのドメインすべてについて最小外接円の直径を計測した後その平均値(R)を算出した。評価はフィルムの任意の方向およびそれに直行する方向の2方向についてそれぞれ5か所について行い、合計10点の評価から得られた(R)の平均値をそのサンプルに含まれる熱可塑性樹脂Bの平均分散径とした。
b. An image analysis software (MacView ver4.0, manufactured by Mountech Co., Ltd.) was used to create a cross-sectional projection image of the obtained cross-sectional photograph of the average dispersion diameter of the thermoplastic resin B. After measuring the diameter of the minimum circumscribed circle for all the domains of the thermoplastic resin B included in the cross-sectional projected image, the average value (R) was calculated. The evaluation was performed at 5 locations in each of the arbitrary direction of the film and the direction perpendicular to it, and the average value of (R) obtained from the evaluation of a total of 10 points was the average of the thermoplastic resin B contained in the sample. The dispersion diameter was used.

c.熱可塑性樹脂Bのアスペクト比
得られた断面写真について、画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて断面投影像を作成し、同ソフトを用いて断面投影像に含まれる熱可塑性樹脂Bのドメインすべてについてアスペクト比を算出し、その平均値をそのサンプル中に含まれる熱可塑性樹脂Bのドメインのアスペクト比とした。
c. For the cross-sectional photograph obtained with the aspect ratio of the thermoplastic resin B, a cross-sectional projection image is created using image analysis software (MacView ver4.0, manufactured by Mountech Co., Ltd.), and is included in the cross-sectional projection image using the same software. The aspect ratios were calculated for all the domains of the thermoplastic resin B, and the average value was used as the aspect ratio of the domains of the thermoplastic resin B contained in the sample.

(3)フィルム中の熱可塑性樹脂AおよびBの濃度
熱可塑性樹脂フィルムを0.1g計量し、SUS板にはさみ、ホットステージ上で(1)で測定した熱可塑性樹脂A以上の融点まで加熱したのち急冷し、フィルム中に含まれる空孔を消失させる。次に、急冷したフィルム状のサンプルを走査型電子顕微鏡の試料台に固定し、厚み方向を法線方向とする断面がみえるようにスパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡SEMを用い、上記のサンプルの2,000倍の断面写真を撮影する。
得られた断面写真について、画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて断面投影像を作成し、同ソフトを用いて断面投影像に含まれる熱可塑性樹脂Bのドメインすべての面積および断面投影像中のフィルム部分の全面積を算出し、下記式を用いて熱可塑性樹脂Bおよび熱可塑性樹脂Aの濃度(質量%)とした。
熱可塑性樹脂Bの濃度(質量%)=[熱可塑性樹脂Bの面積/断面投影像中のフィルム部分の全面積]×100
熱可塑性樹脂Aの濃度(質量%)=100−熱可塑性樹脂Bの濃度(質量%)。
(3) Concentration of thermoplastic resins A and B in the film 0.1 g of the thermoplastic resin film was weighed, sandwiched between SUS plates, and heated to a melting point equal to or higher than the thermoplastic resin A measured in (1) on a hot stage. After that, it is rapidly cooled to eliminate the pores contained in the film. Next, the rapidly cooled film-like sample was fixed on the sample table of the scanning electron microscope, and the degree of decompression was 10-3 Torr and the voltage was 0.25 KV using a sputtering device so that the cross section with the thickness direction as the normal direction could be seen. After cutting the cross section by ion etching for 10 minutes under the condition of a current of 12.5 mA, the surface was subjected to gold sputtering by the same apparatus, and using a scanning electron microscope SEM, the above sample 2, Take a 000x cross-sectional photograph.
For the obtained cross-sectional photograph, a cross-sectional projection image was created using image analysis software (MacView ver4.0, manufactured by Mountech Co., Ltd.), and all the domains of the thermoplastic resin B contained in the cross-sectional projection image were created using the software. And the total area of the film portion in the cross-sectional projected image were calculated and used as the concentrations (% by mass) of the thermoplastic resin B and the thermoplastic resin A using the following formula.
Concentration of thermoplastic resin B (mass%) = [Area of thermoplastic resin B / total area of film portion in cross-sectional projected image] × 100
Concentration of thermoplastic resin A (% by mass) = 100-Concentration of thermoplastic resin B (% by mass).

(4)空孔率(%)
走査型電子顕微鏡の試料台に固定したサンプルを、フィルムの面に対して垂直な断面がみえるようにスパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡を用いて倍率2000倍にて観察した。得られた観察像について画像解析ソフトウェア((株)マウンテック製、MacView ver4.0)を用いて、空孔部分の面積A(μm)と同観察像の内の全面積B(μm)を算出し、下記式に当てはめて空孔率C(%)を求めた。評価はフィルムの任意の方向およびそれに直行する方向の2方向についてそれぞれ5か所について行い、合計10点の観察像の撮影および空孔率の算出を行い、10点の平均をの空孔率(%)とした。
空孔率C(%)=空孔部分の面積A(μm)/全面積B(μm)×100。
(4) Porosity (%)
The sample fixed on the sample table of the scanning electron microscope was subjected to the conditions of decompression degree 10 -3 Torr, voltage 0.25 KV, current 12.5 mA using a sputtering device so that the cross section perpendicular to the surface of the film could be seen. After 10 minutes of ion etching treatment to cut the cross section, the surface was subjected to gold sputtering by the same apparatus and observed at a magnification of 2000 times using a scanning electron microscope. For the obtained observation image, image analysis software (MacView ver4.0, manufactured by Mountech Co., Ltd.) was used to determine the area A (μm 2 ) of the pores and the total area B (μm 2 ) of the observation image. The porosity C (%) was calculated and applied to the following formula. Evaluation was performed at 5 locations in each of the two directions of the film in any direction and in the direction perpendicular to it, a total of 10 observation images were taken and the porosity was calculated, and the average of the 10 points was the porosity (the porosity). %).
Porosity C (%) = area A (μm 2 ) of the hole portion / total area B (μm 2 ) × 100.

(5)比誘電率
誘電体材料計測装置(関東電子応用開発(株)製)を用いて周波数10GHzで空洞共振器摂動法により比誘電率を測定する。空洞共振器に任意の方向について2.7mm×45mmに切り出したサンプルを挿入し、温度23℃、湿度65%RH環境下にて測定を行った。測定はn=3で行い、得られた値の平均値を求めた。
(5) Relative Permittivity The relative permittivity is measured by the cavity resonator perturbation method at a frequency of 10 GHz using a dielectric material measuring device (manufactured by Kanto Denshi Applied Development Co., Ltd.). A sample cut out to 2.7 mm × 45 mm in an arbitrary direction was inserted into the cavity resonator, and measurement was performed in a temperature of 23 ° C. and a humidity of 65% RH. The measurement was performed with n = 3, and the average value of the obtained values was obtained.

(6)200μm換算の端裂抵抗(N/20mm)
JISC2151(1990)に準じて評価を行う。試料は幅20mm×長さ300mmにサンプリングした後、23℃65%RHの雰囲気下で電子マイクロメータ(アンリツ(株)製、K−312A型、針圧30g)にて サンプルの任意の3箇所の厚みを測定し、その平均値をサンプルの厚み(μm)とした。次に試験金具B(V字切り込みタイプ)を用いて、引張り速度200mm/分、23℃の条件で測定を行った。端裂抵抗は厚みに比例することから、測定値および厚みを下記式に挿入し、200μm換算の端裂抵抗を求めた。
200μm換算の端裂抵抗(N/20mm)=各サンプルの測定値(N/20mm)/厚み(μm)×200(μm)
測定はフィルムの任意の方向およびそれに直行する方向についてそれぞれ10枚について実施し、算術平均にて求めた数値をそのサンプルの200μm換算の端裂抵抗(N/20mm)とした。
(6) 200 μm equivalent end crack resistance (N / 20 mm)
Evaluation is performed according to JISC2151 (1990). After sampling the sample to a width of 20 mm and a length of 300 mm, use an electronic micrometer (manufactured by Anritsu Co., Ltd., K-312A type, stylus pressure 30 g) in an atmosphere of 23 ° C. and 65% RH at any three locations of the sample. The thickness was measured, and the average value was taken as the sample thickness (μm). Next, the measurement was carried out using the test fitting B (V-shaped notch type) under the conditions of a tensile speed of 200 mm / min and 23 ° C. Since the end crack resistance is proportional to the thickness, the measured value and the thickness were inserted into the following formula to obtain the end crack resistance in terms of 200 μm.
End crack resistance (N / 20 mm) converted to 200 μm = measured value of each sample (N / 20 mm) / thickness (μm) x 200 (μm)
The measurement was carried out for 10 films each in an arbitrary direction of the film and in a direction perpendicular to the film, and the numerical value obtained by the arithmetic mean was taken as the end crack resistance (N / 20 mm) of the sample in terms of 200 μm.

(7)伝送特性(電気特性)
熱可塑性樹脂フィルムの両表面に回路基板用接着剤AW−32(共同薬品(株)製)を固化厚み2μmで塗布した後、12μmの銅箔(3EC−HTE、三井金属工業(株)製)を170℃に加熱された真空熱プレス装置で、圧力4MPaにて10分間プレスすることで両表面にラミネートし、銅箔/熱可塑性樹脂フィルム/銅箔の構成の積層体を作製した。得られた積層体の銅箔面に回路パターンとして配線幅140μm、長さ100mmのマイクロストリップラインを化学エッチング法により形成し、評価用のサンプルとした。上記のサンプルを温度23℃、湿度65%RH環境下で24時間放置した直後にネットワークアナライザー(Agilent Technology社製「8722ES」)とカスケードマイクロテック製プローブ(ACP40−250)を用いて10〜40GHzの伝送損失(dB/100mm)を測定し、その絶対値(dB/100mm)について下記基準で評価した。
A:伝送損失の絶対値が25dB/100mm未満
B:伝送損失の絶対値が25dB/100mm以上30dB/100mm未満
C:伝送損失の絶対値が30dB/100mm以上。
(7) Transmission characteristics (electrical characteristics)
After applying the circuit board adhesive AW-32 (manufactured by Kyodo Yakuhin Co., Ltd.) to both surfaces of the thermoplastic resin film with a solidified thickness of 2 μm, a 12 μm copper foil (3EC-HTE, manufactured by Mitsui Metal Industry Co., Ltd.) Was pressed on both surfaces by pressing at a pressure of 4 MPa for 10 minutes with a vacuum heat press device heated to 170 ° C. to prepare a laminate having a structure of copper foil / thermoplastic resin film / copper foil. A microstrip line having a wiring width of 140 μm and a length of 100 mm was formed as a circuit pattern on the copper foil surface of the obtained laminate by a chemical etching method, and used as a sample for evaluation. Immediately after leaving the above sample in a temperature of 23 ° C. and a humidity of 65% RH for 24 hours, a network analyzer (“8722ES” manufactured by Agilent Technologies) and a probe (ACP40-250) manufactured by Cascade Microtech were used at 10-40 GHz. The transmission loss (dB / 100 mm) was measured, and the absolute value (dB / 100 mm) was evaluated according to the following criteria.
A: Absolute value of transmission loss is less than 25 dB / 100 mm B: Absolute value of transmission loss is 25 dB / 100 mm or more and less than 30 dB / 100 mm C: Absolute value of transmission loss is 30 dB / 100 mm or more.

(8)加工性
モータースロット加工機(小田原エンジニアリング社製)を用い、試料を、幅20mm、長さ40mmのスロット形状に加工速度2ヶ/秒で加工し、加工後のサンプルを目視で確認し、試料の変形および破れが発生したものを不良品とし、不良品発生率を次の基準で評価した。なお、加工個数は各試料100個ずつとする。
AA:不良率の発生が15%未満
A:不良率の発生が15%以上25%未満
B:不良率の発生が25%以上40%未満
C:不良率の発生が40%以上。
(8) Workability Using a motor slot processing machine (manufactured by Odawara Engineering Co., Ltd.), the sample is processed into a slot shape with a width of 20 mm and a length of 40 mm at a processing speed of 2 months / sec, and the processed sample is visually confirmed. , Samples that were deformed or torn were regarded as defective products, and the defective product occurrence rate was evaluated according to the following criteria. The number of processed samples is 100 for each sample.
AA: Defect rate is less than 15% A: Defect rate is 15% or more and less than 25% B: Defect rate is 25% or more and less than 40% C: Defect rate is 40% or more.

(9)耐熱性
熱可塑性樹脂フィルムをフィルムの任意の方向およびそれに直行する方向それぞれについて幅10mm、長さ250mmに切削して試験片とし、200℃の温度に設定した熱風オーブン中で1000時間の加熱処理を行い、加熱処理前後での破断伸度を測定し、下記の式から伸度保持率を算出し、下記の判定基準にて評価した。破断伸度は、JIS−C2151に規定された方法に従って、テンシロン引張試験機を用いて、幅10mmのサンプル片をチャック間長さ100mmとなるようセットし、引張速度300mm/minで引張試験を行う。評価は各方向にそれぞれ10回測定し、その平均値を求め、下記の基準にて評価した。
(9) A heat-resistant thermoplastic resin film was cut into a test piece having a width of 10 mm and a length of 250 mm in an arbitrary direction of the film and in a direction perpendicular to the film, and in a hot air oven set at a temperature of 200 ° C. for 1000 hours. The heat treatment was performed, the elongation at break before and after the heat treatment was measured, the elongation retention rate was calculated from the following formula, and evaluated according to the following criteria. For the elongation at break, a sample piece having a width of 10 mm is set to have a chuck-to-chuck length of 100 mm using a Tensilon tensile tester according to the method specified in JIS-C2151, and a tensile test is performed at a tensile speed of 300 mm / min. .. The evaluation was performed 10 times in each direction, the average value was calculated, and the evaluation was performed according to the following criteria.

伸度保持率(%)=Y/Y0×100
Y0:加熱処理前の破断伸度(%)
Y:加熱処理後の破断伸度(%)
A:伸度保持率が80%以上
B:伸度保持率が50%以上80%未満
C:伸度保持率が50%未満。
Elongation retention rate (%) = Y / Y0 × 100
Y0: Elongation at break (%) before heat treatment
Y: Elongation at break (%) after heat treatment
A: Elongation retention rate is 80% or more B: Elongation retention rate is 50% or more and less than 80% C: Elongation retention rate is less than 50%.

(10)空孔の核の有無
熱可塑性樹脂フィルムの任意の箇所から任意の方向に厚み方向を法線方向とする断面について、スパッタリング装置を用いて減圧度10−3Torr、電圧0.25KV、電流12.5mAの条件にて10分間、イオンエッチング処理を施して断面を切削した後、同装置にて該表面に金スパッタを施し、走査型電子顕微鏡SEM(日本電子(株)製、JSM6700F)を用い、上記のサンプルの3,000倍の断面写真を撮影し、空孔の内部またはマトリックスを形成する熱可塑性樹脂Aと空孔との境界の一部への熱可塑性樹脂Bドメインの有無を確認し、下記基準にて評価した。
A:空孔の内部または熱可塑性樹脂Aと空孔との境界の一部に熱可塑性樹脂Bのドメインが確認できかつ熱可塑性樹脂Aと熱可塑性樹脂Bの界面が明確に観察できる。
B:空孔の内部または熱可塑性樹脂Aと空孔との境界の一部に熱可塑性樹脂Bのドメインが確認できる。
C:空孔の内部または熱可塑性樹脂Aと空孔との境界の一部に熱可塑性樹脂Bのドメインが確認できない。
(10) Presence or absence of nuclei of pores For a cross section of the thermoplastic resin film whose thickness direction is the normal direction in any direction from any place, a decompression degree 10 -3 Torr, voltage 0.25 KV, using a sputtering device. After performing ion etching treatment for 10 minutes under the condition of a current of 12.5 mA to cut a cross section, the surface is subjected to gold sputtering by the same apparatus, and a scanning electron microscope SEM (manufactured by JEOL Ltd., JSM6700F) A 3,000-fold cross-sectional photograph of the above sample was taken using the above sample to determine the presence or absence of the thermoplastic resin B domain inside the pores or at a part of the boundary between the thermoplastic resin A forming the matrix and the pores. It was confirmed and evaluated according to the following criteria.
A: The domain of the thermoplastic resin B can be confirmed inside the pores or a part of the boundary between the thermoplastic resin A and the pores, and the interface between the thermoplastic resin A and the thermoplastic resin B can be clearly observed.
B: The domain of the thermoplastic resin B can be confirmed inside the pores or in a part of the boundary between the thermoplastic resin A and the pores.
C: The domain of the thermoplastic resin B cannot be confirmed inside the pores or in a part of the boundary between the thermoplastic resin A and the pores.

(11)寸法安定性
熱可塑性樹脂フィルムの任意の箇所から任意の方向に長さ40mm×幅4mmの短冊片を採取する。またこれとフィルム面方向に直交する方向についても同サイズのサンプルを採取する。これらのサンプルを試長15mm、荷重0.5g、10℃/minの条件で熱機械分析装置(島津製作所製、TMA−50)にて25〜250℃まで加熱した時の熱収縮曲線を得た。この熱収縮曲線から求まる変位量が初期値に対して10%収縮する温度を求めた。評価は任意の方向およびそれに直行する方向についてそれぞれn=5で行い、10点の平均値をそのサンプルの寸法安定性として下記基準で評価した。
A:10%収縮する温度が200℃以上
B:10%収縮する温度が150℃以上200℃未満
C:10%収縮する温度が150℃未満。
(11) Dimensional stability A strip piece having a length of 40 mm and a width of 4 mm is collected from an arbitrary portion of the thermoplastic resin film in an arbitrary direction. In addition, samples of the same size are taken in the direction orthogonal to the film plane direction. A heat shrinkage curve was obtained when these samples were heated to 25 to 250 ° C. with a thermomechanical analyzer (TMA-50, manufactured by Shimadzu Corporation) under the conditions of a trial length of 15 mm, a load of 0.5 g, and 10 ° C./min. .. The temperature at which the displacement amount obtained from this heat shrinkage curve shrinks by 10% with respect to the initial value was obtained. The evaluation was performed at n = 5 in each of the arbitrary direction and the direction orthogonal to it, and the average value of 10 points was evaluated as the dimensional stability of the sample according to the following criteria.
A: 10% shrinkage temperature is 200 ° C or higher B: 10% shrinkage temperature is 150 ° C or higher and less than 200 ° C C: 10% shrinkage temperature is less than 150 ° C.

(参考例1)ポリフェニレンスルフィド樹脂(顆粒)の製造方法
オートクレ−ブ(最高使用圧力:14MPa)に100モルの硫化ナトリウム9水塩、45モルの酢酸ナトリウムおよび25リットルのN−メチル−2−ピロリドン(以下、NMPと略称する。)を仕込み、撹拌しながら徐々に220℃の温度まで昇温して、含有されている水分を蒸留により除去した。脱水の終了した系内に、主成分モノマとして100モルのp−ジクロロベンゼンを5リットルのNMPとともに添加し、170℃の温度で窒素を3kg/cmで加圧封入後、昇温し、270℃の温度にて4時間重合した。重合終了後冷却し、蒸留水中にポリマーを沈殿させ、150メッシュ目開きを有する金網によって、小塊状ポリマーを採取した。このようにして得られた小塊状ポリマーを90℃の蒸留水により2回洗浄した後、酢酸ナトリウム水溶液で3回洗浄した後、蒸留水により1回洗浄し、減圧下120℃の温度にて乾燥して融点が280℃のポリフェニレンスルフィド樹脂の顆粒(PPS)を得た。
(Reference Example 1) Method for producing polyphenylene sulfide resin (granule) 100 mol of sodium sulfide 9 hydroxide, 45 mol of sodium acetate and 25 liters of N-methyl-2-pyrrolidone in an autoclave (maximum working pressure: 14 MPa). (Hereinafter, abbreviated as NMP) was charged, and the temperature was gradually raised to 220 ° C. with stirring, and the contained water was removed by distillation. In the dehydrated system, 100 mol of p-dichlorobenzene as the main component monomer was added together with 5 liters of NMP, nitrogen was pressurized and sealed at a temperature of 170 ° C. at 3 kg / cm 2 , and then the temperature was raised to 270. Polymerization was carried out at a temperature of ° C. for 4 hours. After completion of the polymerization, the polymer was cooled, the polymer was precipitated in distilled water, and a small mass polymer was collected by a wire mesh having a 150 mesh mesh. The small lump polymer thus obtained was washed twice with distilled water at 90 ° C., washed three times with an aqueous sodium acetate solution, washed once with distilled water, and dried at a temperature of 120 ° C. under reduced pressure. Then, granules (PPS) of polyphenylene sulfide resin having a melting point of 280 ° C. were obtained.

(実施例1〜3)
参考例1のPPSおよび融点345℃のPEEK樹脂(キータスパイア820NT、Solay社製)を表1に記載の割合で計量し、350℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、樹脂温が360℃になるように回転数・フィード量を調整しながらストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料とした。この原料を180℃で3時間、真空乾燥した後、320℃に加熱された押出機に供給し、55μmカットの焼結フィルターを溶融状態で通過させた後、Tダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、350μmの未延伸シートを得た。次いで、得られた未延伸シートを、表面温度90℃に加熱された複数の加熱ロールで予熱した後、表面温度100℃に加熱された加熱ロールと、加熱ロールの次に設けられた周速の異なる30℃の冷却ロールとの間で長手方向(MD方向)に3.5倍延伸した。このようにして得られた1軸延伸シートを、テンターを用いて長手方向と垂直方向(TD方向)に95℃の温度で3.5倍に延伸し、続いて260℃で熱処理し引き続き260℃の弛緩処理ゾーンでTD方向に5%の弛緩処理を行った後室温まで冷却し、厚み20μmの熱可塑性樹脂フィルムを得た。
(Examples 1 to 3)
The PPS of Reference Example 1 and the PEEK resin having a melting point of 345 ° C. (Kitaspire 820NT, manufactured by Solay) were weighed at the ratios shown in Table 1, and were heated to 350 ° C. in the same direction rotary twin-screw kneading extruder with a vent. Made by Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5), and discharged in a strand shape while adjusting the rotation speed and feed amount so that the resin temperature becomes 360 ° C, and the temperature is 25. After cooling with water at ℃, it was immediately cut to prepare a chip, which was used as a raw material for a film. This raw material is vacuum-dried at 180 ° C. for 3 hours, then supplied to an extruder heated to 320 ° C., passed through a 55 μm-cut sintered filter in a molten state, and then discharged from a T-die type base to surface. An unstretched sheet having a temperature of 250 μm was obtained by close contact and quenching and solidification while applying a static charge to a cast drum having a temperature of 25 ° C. Next, the obtained unstretched sheet was preheated with a plurality of heating rolls heated to a surface temperature of 90 ° C., and then the heating roll heated to a surface temperature of 100 ° C. and the peripheral speed provided next to the heating rolls. It was stretched 3.5 times in the longitudinal direction (MD direction) with different cooling rolls at 30 ° C. The uniaxially stretched sheet thus obtained was stretched 3.5 times at a temperature of 95 ° C. in the longitudinal direction and the vertical direction (TD direction) using a tenter, and then heat-treated at 260 ° C. and continued at 260 ° C. After performing a relaxation treatment of 5% in the TD direction in the relaxation treatment zone of No. 1, the film was cooled to room temperature to obtain a thermoplastic resin film having a thickness of 20 μm.

(実施例4)
参考例1のPPSおよび軟化点340℃のポリエーテルイミド(PEI)樹脂(ULTEM1010、SAVICイノベーティブプラスチックス社製)を表1に記載の割合で計量し、350℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、樹脂温が350℃になるように回転数・フィード量を調整しながらストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料とした。上記の原料を用いた以外は実施例2と同様にしてフィルムを作製し、厚み20μmの熱可塑性樹脂フィルムを得た。
(Example 4)
The PPS of Reference Example 1 and the polyetherimide (PEI) resin (ULTEM1010, manufactured by SAVIC Innovative Plastics) having a softening point of 340 ° C. were weighed at the ratios shown in Table 1, and rotated in the same direction with a vent heated to 350 ° C. It is put into a type twin-screw kneading extruder (manufactured by Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5), and strands are adjusted while adjusting the rotation speed and feed amount so that the resin temperature becomes 350 ° C. After being discharged into a shape and cooled with water having a temperature of 25 ° C., it was immediately cut to prepare a chip, which was used as a raw material for a film. A film was produced in the same manner as in Example 2 except that the above raw materials were used, to obtain a thermoplastic resin film having a thickness of 20 μm.

(実施例5)
参考例1のPPSおよび融点320℃の熱可塑性ポリイミド(PI)樹脂(サープリム、三菱ガス社製)を表1に記載の割合で計量し、330℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、樹脂温が335℃になるように回転数・フィード量を調整しながらストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料とした。上記の原料を用いた以外は実施例2と同様にしてフィルムを作製し、厚み20μmの熱可塑性樹脂フィルムを得た。
(Example 5)
The PPS of Reference Example 1 and the thermoplastic polyimide (PI) resin (Surprim, manufactured by Mitsubishi Gas Co., Ltd.) having a melting point of 320 ° C. are weighed at the ratios shown in Table 1, and are heated to 330 ° C. It is put into a kneading extruder (manufactured by Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5) and discharged in a strand shape while adjusting the rotation speed and feed amount so that the resin temperature becomes 335 ° C. Then, after cooling with water at a temperature of 25 ° C., cutting was performed immediately to prepare a chip, which was used as a raw material for a film. A film was produced in the same manner as in Example 2 except that the above raw materials were used, to obtain a thermoplastic resin film having a thickness of 20 μm.

(実施例6)
参考例1のPPSおよび融点315℃の熱可塑性液晶ポリマー(LCP)樹脂(シベラスLX70、東レ(株)製)を表1に記載の割合で計量し、325℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、樹脂温が330℃になるように回転数・フィード量を調整しながらストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料とした。上記の原料を用いた以外は実施例2と同様にしてフィルムを作製し、厚み20μmの熱可塑性樹脂フィルムを得た。
(Example 6)
The PPS of Reference Example 1 and the thermoplastic liquid crystal polymer (LCP) resin (Ciberus LX70, manufactured by Toray Industries, Inc.) having a melting point of 315 ° C. were weighed at the ratios shown in Table 1, and rotated in the same direction with a vent heated to 325 ° C. It is put into a type twin-screw kneading extruder (manufactured by Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5), and strands are adjusted while adjusting the rotation speed and feed amount so that the resin temperature becomes 330 ° C. After being discharged into a shape and cooled with water having a temperature of 25 ° C., it was immediately cut to prepare a chip, which was used as a raw material for a film. A film was produced in the same manner as in Example 2 except that the above raw materials were used, to obtain a thermoplastic resin film having a thickness of 20 μm.

(比較例1)
2,6−ナフタレンジカルボン酸ジメチル100質量部とエチレングリコール60質量部の混合物に、酢酸マンガン・4水和物塩0.03質量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024質量部を添加した。また、反応温度が220℃に達した時点で3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042質量部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、エステル交換反応終了後、リン酸トリメチル0.023質量部を添加した。次いで、反応生成物を重合反応器に移し、290℃の温度まで昇温し、0.2mmHg以下の高減圧下にて重縮合反応を行い、固有粘度0.65dl/g、融点265℃のポリエチレン−2,6−ナフタレート(PEN)チップを得た。このチップとおよび融点345℃のPEEK樹脂(キータスパイア820NT、Solay社製)を表1に記載の割合で計量し、350℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、樹脂温が360℃になるように回転数・フィード量を調整しながらストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料とした。この原料を160℃で3時間、真空乾燥した後、290℃に加熱された押出機に供給し、55μmカットの焼結フィルターを溶融状態で通過させた後、Tダイ型口金から吐出させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着急冷固化させて、上記の原料を用いた以外は実施例2と同様にして350μmの未延伸シートを得た。次いで、得られた未延伸シートを、100mm×100mmの大きさにカットして、フィルムストレッチャー(ブルックナー社製、KARO−IV)を用いて 予熱・延伸温度いずれも130℃で予熱時間1分、延伸速度5%/secにてシートの長手(MD)方向に延伸倍率3.5倍、次いでシートの横手(TD)方向に3.5倍の逐次延伸を行い、続いて230℃で熱処理を行った後に室温まで冷却し、厚み20μmの熱可塑性樹脂フィルムを得た。
(Comparative Example 1)
0.03 parts by mass of manganese acetate tetrahydrate salt was added to a mixture of 100 parts by mass of dimethyl 2,6-naphthalenedicarboxylic acid and 60 parts by mass of ethylene glycol, and gradually increased from a temperature of 150 ° C to a temperature of 240 ° C. The transesterification reaction was carried out while raising the temperature. On the way, when the reaction temperature reached 170 ° C., 0.024 parts by mass of antimony trioxide was added. Further, when the reaction temperature reached 220 ° C., 0.042 parts by mass (corresponding to 2 mmol%) of tetrabutylphosphonium salt of 3,5-dicarboxybenzenesulfonic acid was added. Then, the transesterification reaction was subsequently carried out, and after the transesterification reaction was completed, 0.023 parts by mass of trimethyl phosphate was added. Next, the reaction product was transferred to a polymerization reactor, heated to a temperature of 290 ° C., and subjected to a polycondensation reaction under a high reduced pressure of 0.2 mmHg or less. Polyethylene having an intrinsic viscosity of 0.65 dl / g and a melting point of 265 ° C. -2,6-Naphthalate (PEN) chips were obtained. This chip and PEEK resin with a melting point of 345 ° C (Kitaspire 820NT, manufactured by Solay) were weighed at the ratios shown in Table 1, and were heated to 350 ° C. Manufactured by Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5), and discharged in a strand shape while adjusting the rotation speed and feed amount so that the resin temperature becomes 360 ° C. Immediately after cooling with water, cutting was performed to prepare a chip, which was used as a raw material for a film. This raw material is vacuum-dried at 160 ° C. for 3 hours, then supplied to an extruder heated to 290 ° C., passed through a 55 μm-cut sintered filter in a molten state, and then discharged from a T-die type base to surface. An unstretched sheet of 350 μm was obtained in the same manner as in Example 2 except that the above raw materials were used by close contact and quenching and solidification while applying a static charge to a cast drum having a temperature of 25 ° C. Next, the obtained unstretched sheet was cut into a size of 100 mm × 100 mm, and preheated and stretched at 130 ° C. for 1 minute using a film stretcher (KARO-IV manufactured by Brookner). At a stretching speed of 5% / sec, the sheet was sequentially stretched at a stretching ratio of 3.5 times in the longitudinal (MD) direction and then 3.5 times in the lateral (TD) direction of the sheet, followed by heat treatment at 230 ° C. After that, it was cooled to room temperature to obtain a thermoplastic resin film having a thickness of 20 μm.

(比較例2)
参考例1のPPSおよび次に融点345℃のPEEK樹脂(キータスパイア820NT、Solay社製)を、表1に記載の割合で計量し、370℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、樹脂温が380℃になるように回転数・フィード量を調整しながらストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料とした。上記の原料を用いた以外は実施例2と同様にしてフィルムを作製し、厚み20μmの熱可塑性樹脂フィルムを得た。
(Comparative Example 2)
The PPS of Reference Example 1 and then the PEEK resin having a melting point of 345 ° C. (Kitaspire 820NT, manufactured by Solay) were weighed at the ratios shown in Table 1 and heated to 370 ° C. in the same direction rotary biaxial kneading with a vent. It is put into an extruder (manufactured by Japan Steel Works, screw diameter 30 mm, screw length / screw diameter = 45.5) and discharged in a strand shape while adjusting the rotation speed and feed amount so that the resin temperature becomes 380 ° C. After cooling with water at a temperature of 25 ° C., cutting was immediately performed to prepare a chip, which was used as a raw material for a film. A film was produced in the same manner as in Example 2 except that the above raw materials were used, to obtain a thermoplastic resin film having a thickness of 20 μm.

(比較例3)
参考例1のPPSおよび比較例1のPENを表1に記載の割合で計量し、290℃に加熱されたベント付き同方向回転式二軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に投入し、樹脂温が300℃になるように回転数・フィード量を調整しながらストランド状に吐出し、温度25℃の水で冷却した後、直ちにカッティングしてチップを作製し、フィルム用原料とした。上記の原料を用いた以外は実施例2と同様にしてフィルムを作製し、厚み20μmの熱可塑性樹脂フィルムを得た。
(Comparative Example 3)
The PPS of Reference Example 1 and the PEN of Comparative Example 1 were weighed at the ratios shown in Table 1, and the same-direction rotary twin-screw kneading extruder with a vent heated to 290 ° C. (manufactured by Japan Steel Works, screw diameter 30 mm, screw) Put it in the length / screw diameter = 45.5), discharge it in a strand shape while adjusting the rotation speed and feed amount so that the resin temperature becomes 300 ° C, cool it with water at a temperature of 25 ° C, and then immediately cut it. A chip was produced and used as a raw material for a film. A film was produced in the same manner as in Example 2 except that the above raw materials were used, to obtain a thermoplastic resin film having a thickness of 20 μm.

Figure 2020139151
Figure 2020139151

本発明の熱可塑性樹脂フィルムは、耐熱性・電気特性および加工性に優れ、電気・電子機器、電池用部材、機械部品および自動車部品や絶縁材、印刷機器用部材、耐熱テープ、回路基板、離型フィルムとして好適に用いることができる。 The thermoplastic resin film of the present invention has excellent heat resistance, electrical properties, and workability, and is used for electrical / electronic equipment, battery parts, mechanical parts, automobile parts, insulating materials, printing equipment parts, heat-resistant tapes, circuit boards, and release materials. It can be suitably used as a mold film.

Claims (7)

ポリアリーレンスルフィドを主成分とする熱可塑性樹脂A、および、該熱可塑性樹脂A(樹脂A)とは異なる熱可塑性樹脂B(樹脂B)を含み、フィルム中に空孔を有し、樹脂A、樹脂Bの融点または軟化点をTma(℃)およびTmb(℃)とした場合にTmb>Tmaの関係を有し、且つ、フィルム中における樹脂Bの平均分散径が0.5〜10.0μm以下であることを特徴とする、熱可塑性樹脂フィルム。 The resin A contains a thermoplastic resin A containing polyarylene sulfide as a main component and a thermoplastic resin B (resin B) different from the thermoplastic resin A (resin A), and has pores in the film. When the melting point or softening point of the resin B is Tma (° C.) and Tmb (° C.), there is a relationship of Tmb> Tma, and the average dispersion diameter of the resin B in the film is 0.5 to 10.0 μm or less. A thermoplastic resin film characterized by being. 熱可塑性樹脂フィルム中の熱可塑性樹脂Aの濃度が60〜95質量%、熱可塑性樹脂Bの濃度が5〜40質量%であることを特徴とする、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the concentration of the thermoplastic resin A in the thermoplastic resin film is 60 to 95% by mass, and the concentration of the thermoplastic resin B is 5 to 40% by mass. 熱可塑性樹脂Bが芳香族アリールケトン、熱可塑性ポリイミドのいずれか1種以上を含むことを特徴とする、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the thermoplastic resin B contains at least one of an aromatic aryl ketone and a thermoplastic polyimide. Tmb−Tma≧20℃であることを特徴とする、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein Tmb-Tma ≥ 20 ° C. フィルムの面に対して垂直な断面中の熱可塑性樹脂Bのドメインのアスペクト比が1.1〜4.0であることを特徴とする、請求項1に記載の熱可塑性樹脂フィルム。 The thermoplastic resin film according to claim 1, wherein the aspect ratio of the domain of the thermoplastic resin B in the cross section perpendicular to the surface of the film is 1.1 to 4.0. シート化またはフィルム化の際の溶融加熱温度が熱可塑性樹脂Bの融点または軟化点より低いことを特徴とする、請求項1に記載の熱可塑性樹脂フィルムの製造方法。 The method for producing a thermoplastic resin film according to claim 1, wherein the melting and heating temperature at the time of sheeting or filming is lower than the melting point or softening point of the thermoplastic resin B. 請求項1〜5のいずれかに記載の熱可塑性樹脂フィルムを用いた絶縁材。 An insulating material using the thermoplastic resin film according to any one of claims 1 to 5.
JP2020027902A 2019-02-25 2020-02-21 Thermoplastic resin film and method for producing the same Pending JP2020139151A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019031524 2019-02-25
JP2019031524 2019-02-25

Publications (1)

Publication Number Publication Date
JP2020139151A true JP2020139151A (en) 2020-09-03

Family

ID=72280028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020027902A Pending JP2020139151A (en) 2019-02-25 2020-02-21 Thermoplastic resin film and method for producing the same

Country Status (1)

Country Link
JP (1) JP2020139151A (en)

Similar Documents

Publication Publication Date Title
JP2020075481A (en) Thermoplastic resin film and manufacturing method therefor
JP2018083415A (en) Laminate film, and production method thereof
JP2020044840A (en) Thermoplastic resin film and electric/electronic component including the same
JP2020044839A (en) Thermoplastic resin film and electric/electronic component including the same, and insulation material
JP6090314B2 (en) Biaxially stretched polyarylene sulfide film for metal bonding
CN107614256B (en) Laminated film and method for producing same
JP7272263B2 (en) polyarylene sulfide film
JP2020139151A (en) Thermoplastic resin film and method for producing the same
JP7298218B2 (en) LAMINATED BOARD AND CIRCUIT BOARD USING THE SAME
JP5732934B2 (en) PPS laminated film
JP2014189718A (en) Biaxially stretched polyarylene sulfide film
JP4802500B2 (en) Polyarylene sulfide laminate sheet
JP2019165004A (en) Insulation tube
JP2019127033A (en) Laminate and production method
JP2022151663A (en) Polyarylene sulfide film, and composite body and electric/electronic member using the same
KR20220054745A (en) Biaxially oriented polyarylene sulfide film
JP2016097518A (en) Polyphenylene sulfide film
JP4259086B2 (en) Biaxially oriented polyphenylene sulfide film
JP2023172002A (en) Biaxially-oriented polyarylene sulfide film, method for producing biaxially-oriented polyarylene sulfide film, complex, and circuit member
JP3070797B2 (en) Laminated polyphenylene sulfide film
JP2023050160A (en) Biaxially-oriented polyarylene sulfide film
JP2020090613A (en) Polyarylene sulfide film
JP2023061534A (en) polyphenylene sulfide film
JP2024070340A (en) Polyphenylene Sulfide Film
JP2021109308A (en) Polyarylene sulfide film