JP2020037873A - トラクタ - Google Patents

トラクタ Download PDF

Info

Publication number
JP2020037873A
JP2020037873A JP2018163986A JP2018163986A JP2020037873A JP 2020037873 A JP2020037873 A JP 2020037873A JP 2018163986 A JP2018163986 A JP 2018163986A JP 2018163986 A JP2018163986 A JP 2018163986A JP 2020037873 A JP2020037873 A JP 2020037873A
Authority
JP
Japan
Prior art keywords
dpf
temperature
regeneration
engine
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018163986A
Other languages
English (en)
Inventor
真司 大久保
Shinji Okubo
真司 大久保
直人 竹崎
Naoto Takezaki
直人 竹崎
足立 憲司
Kenji Adachi
憲司 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Original Assignee
Iseki and Co Ltd
Iseki Agricultural Machinery Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd, Iseki Agricultural Machinery Mfg Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2018163986A priority Critical patent/JP2020037873A/ja
Publication of JP2020037873A publication Critical patent/JP2020037873A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】廉価で簡素な構成でDPFの異常を検出することを課題とする。【解決手段】排気ガス中の粒状化物質PM)を除去するDPF(46b)と、DPF(46b)の入口側に設置した温度センサ(62)と、ディーゼルエンジン(E)を搭載したトラクタにおいて、DPF(46b)の再生中における所定時間(S)の間に噴射されたポスト噴射量の積算値(J0)に対応する理論排気ガス温度(T0)に対して、前記所定時間(S)の間における前記温度センサ(62)で測定した温度平均値(T2)の温度が低い場合、異常として報知する構成としたことを特徴とするトラクタの構成とする。【選択図】図6

Description

この発明は、農業機械であるトラクタに関し、特に排気ガス中の粒状化物質PMを除去するDPFの異常を検出する構成を備えたトラクタに関する。
2つの電極からなる静電容量型センサでPMを測定し、理論値と実測値の乖離状態で異常を判定する技術が開示されている(例えば、特許文献1参照。)。
特開2011−185213号公報
前述のような技術では、構成が複雑でコスト高となる。
本発明の課題は、前述のような不具合を解消するDPFとエンジンを搭載したトラクタを提供することである。
本発明の上記課題は次の構成によって達成される。
すなわち、請求項1記載の発明では、排気ガス中の粒状化物質(PM)を除去するDPF(46b)と、DPF(46b)の入口側に設置した温度センサ(62)と、ディーゼルエンジン(E)を搭載したトラクタにおいて、DPF(46b)の再生中における所定時間(S)の間に噴射されたポスト噴射量の積算値(J0)に対応する理論排気ガス温度(T0)に対して、前記所定時間(S)の間における前記温度センサ(62)で測定した温度平均値(T2)の温度が低い場合、異常として報知する構成としたことを特徴とするトラクタとしたものである。
請求項2記載の発明では、前記温度センサ(62)で測定する温度が限界温度(T3)を超えると、ポスト噴射量を減少させる構成としたことを特徴とする請求項1に記載のトラクタとしたものである。
請求項3記載の発明では、前記温度センサ(62)で測定する温度が所定時間(S1)にわたり限界温度(T3)を超えると、DPF(46b)の再生を中止する構成としたことを特徴とする請求項1に記載のトラクタとしたものである。
本発明は上述のごとく構成したので、廉価な構成でDPFの異常を発見できて、オイルの希釈化を抑制できる。
蓄圧式燃料噴射装置の全体構成図 制御モードによるエンジン回転数と出力トルクの関係を示す線図 トラクタの左側面図 トラクタの平面図 吸気系と排気系の模式図 経過時間とDPF入り口温度の変化を示す図 運転時間とポスト噴射量の関係を示す図 運転時間とポスト噴射量の関係を示す図 運転時間と再生の関係を示す図 吸気スロットルバルブの動きを示す図 運転時間とオイル希釈量の関係を示す図
本発明を実施するための最良の形態を説明する。
図1は、蓄圧式燃料噴射装置の全体構成図である。蓄圧式燃料噴射装置は、例えば、多気筒ディーゼル機関に適用されるものであるが、ガソリン機関でもよい。そして、蓄圧式燃料噴射装置は、噴射圧力に相当する高圧燃料を蓄圧するコモンレール1と、このコモンレール1に取り付けられる圧力センサ2と、燃料タンク3より汲み上げた燃料を加圧してコモンレール1に圧送する高圧ポンプ4と、コモンレール1に蓄圧された高圧燃料をエンジンEのシリンダー5内に噴射する燃料噴射ノズル6と、前記高圧ポンプ4と燃料噴射ノズル6等の動作を制御する制御装置(ECU)等から構成される。ECUとは、エンジンコントロールユニットの略称である。
このように、コモンレール1は、エンジンEの各シリンダー5へ燃料を噴射するものであり、燃料供給を要求された圧力とするものである。
前記燃料タンク3内の燃料は吸入通路により燃料フィルタ7を介してエンジンEで駆動される高圧ポンプ4に吸入され、この高圧ポンプ4によって加圧された高圧燃料は吐出通路8によりコモンレール1に導かれて蓄えられる。
コモンレール1内の高圧燃料は各高圧燃料供給通路9により気筒数分の燃料噴射ノズル6に供給され、ECU100からの指令に基づき、各シリンダーに燃料噴射ノズル6が作動して、高圧燃料がエンジンEの各シルンダー5室内に噴射供給され、各燃料噴射ノズル6での余剰燃料(リターン燃料)は各リターン通路10により共通のリターン通路10へ導かれ、このリターン通路10によって燃料タンク3へ戻される。
また、コモンレール1内の燃料圧力(コモンレール圧)を制御するため高圧ポンプ4に圧力制御弁11が設けられており、この圧力制御弁11はECU100からのデューティ信号によって、高圧ポンプ4から燃料タンク3への余剰燃料のリターン通路10の流路面積を調整するものであり、これによりコモンレール1側への燃料吐出量を調整してコモンレール圧を制御することができる。
具体的には、エンジン運転条件に応じて目標コモンレール圧を設定し、レール圧力センサ2により検出されるコモンレール圧が目標コモンレール圧と一致するよう、圧力制御弁11を介してコモンレール圧をフィードバック制御する構成としている。
作業車(農作業機)におけるコモンレール1を有するディーゼルエンジンEのECU100は、図2に示すように、回転数と出力トルクの関係において走行モードAと通常作業モードB及び重作業モードCの三種類の制御モードを有する構成としている。
走行モードAは、エンジン回転数の変動で出力も変動するドループ制御である。農作業を行わず移動走行する場合に使用するものである。例えば、ブレーキを掛けて走行速度を減速したり停止したりすると、この走行負荷の増大に伴ってエンジン回転数が低下するため走行速度の減速や停止を安全に行うことができるものである。
通常作業モードBは、負荷が変動してもエンジン回転数が一定で出力を負荷に応じて変更するアイソクロナス制御である。通常の農作業を行う場合に使用するものである。例えば、トラクターであれば耕耘作業時に耕地が固く耕耘刃に抵抗が掛かるときであり、コンバインであれば収穫作業時に収穫物が多く負荷が増大したときでも、出力が変動して回転数を維持するときである。
重作業モードCは、通常作業モードBと同様に負荷が変動してもエンジン回転数一定で出力を負荷に応じて変更するアイソクロナス制御に加え、負荷限界近くになると回転数を上昇させて出力を上げる重負荷制御を加えた制御である。特に、負荷限界近くで農作業を行う場合に使用するものである。例えば、トラクターで耕耘作業を行っている際に、特に、固い耕地に遭遇してもエンジン出力が通常の限界を越えて増大するので作業を中断することがなく、効率の良い作業が可能となる。
これらの作業モードA,B,Cは、各作業モードA,B,Cを切り替え可能な作業モード切替スイッチの操作、又は農作業車(トラクター、コンバイン、田植機等)の走行変速レバーの変速操作、又は作業クラッチ(トラクターであればロータリであり、コンバインであれば刈取部、脱穀部である)の入り切り操作等によって切り替わるように構成する。
ディーゼルエンジンEでは、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、着火遅れを短縮してディーゼルエンジンE特有のノック音を低減し、騒音を低減することが可能な構成としている。
このパイロット噴射は、メイン噴射の前に1回又は2回に限定して行われるものであったが、前記コモンレール1の蓄圧式燃料噴射装置を用いることで、エンジンEの状況に応じてパイロット噴射の状態を変化させ、騒音の低減や不完全燃焼による白煙又は黒煙の発生を抑制できるようになる。また、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、排ガス中の窒素酸化物の量が減少するようになる。
図3は、前述のようなコモンレール1を有するディーゼルエンジンを搭載したトラクターの側面図を示し、図4はその平面図を示している。平面図においては、図3に示すキャビン14を省いた状態を示している。
トラクターは、機体の前後部に前輪12、12と後輪13、13を備え、機体の前部に搭載したエンジンEの回転動力をトランスミッションケースT内の変速装置によって適宜減速して、これら前輪12、12と後輪13、13に伝えるように構成している。
機体中央であってキャビン14内のハンドルポスト15にはステアリングハンドル16が支持され、その後方にはシート17が設けられている。ステアリングハンドル16の下方には、機体の進行方向を前後方向に切り換える前後進レバー18が設けられている。この前後進レバー18を前側に移動させると機体は前進し、後方へ移動させると後進する構成である。
また、ハンドルポスト15を挟んで前後進レバー18の反対側にはエンジン回転数を調節するアクセルレバー25が設けられ、またステップフロア19の右コーナー部には、同様にエンジン回転数を調節するアクセルペダル23と、左右の後輪13、13にブレーキを作動させる左右のブレーキペダル24L、24Rが設けられている。ステップフロア19の左コーナー部にはクラッチペダル20が設けられている構成である。
また、主変速レバー26はシート17の左前方部にあり、低速、中速、高速及び中立のいずれかの位置を選択できる副変速レバー27はその後方にあり、さらにその右側にPTO変速レバー28を設けている。さらに、シート17の右側には作業機21(ロータリ等)の高さを設定するポジションレバー29と圃場の耕耘深さを自動的に設定する自動耕深レバー30、これらのレバーの後に作業機21の右上げスイッチ31と右下げスイッチ32が配置され、さらにその後に作業機21の自動水平スイッチ33とバックアップスイッチ34が配置されている。バックアップスイッチ34は、機体が後進時において、作業機21を自動的に上昇させるものである。作業機21は、機体の後方にリンク22で連結されている構成である。トラクターは作業機21を駆動させて機体を走行させることで、圃場内の耕耘等の作業を行なうものである。21aは作業機21を昇降する油圧シリンダーである。
図5はエンジンのシリンダー5内への吸気と排気の模式図であり、4サイクルのディーゼルエンジンの実施例である。過給器TBの吸気タービン36により過給された空気は、エアクリーナー35から吸気タービン36、インタークーラー37を通過して吸気マニホールド38からシリンダー5内へ送られる構成である。39は吸気バルブであり、40はピストンである。48はカムでありロッカーアーム49を介して吸排気バルブ39、41を開閉させるものである。
シリンダー5内で燃焼した排ガスは、排気バルブ41から排気マニホールド42を通過した後、過給器TBの排気タービン45で過給器TBを駆動して排出される構成である。
このディーゼルエンジンは、排気ガスの一部を吸気側に混入させるためのEGR(排気再循環装置)回路44を有している。EGR回路で排気ガスの一部を吸気側に混入させることで酸素量(O2)を減らして、窒素酸化物Noxの発生を低減させるように構成している。ただし、EGR率が上昇しすぎると、逆に酸素量が少なくなって不完全燃焼になるので、燃焼状態によりEGR率を調節する必要がある。この調節は、EGRバルブ43にて行う。EGR回路44は、後述する後処理装置46下流側の排気管55と過給器TBの吸気タービン36上流側の吸入管56との間を接続している。また、EGR回路44の途中にはEGRクーラ57を設ける構成としている。このEGRバルブ43の開閉具合でシリンダー5内への排気ガスの還元量が変化する。
排気タービン45を通過後の排気ガスは、後処理装置46を通過してマフラー50から大気中に排出される。後処理装置46は、酸化触媒(DOC)46aとディーゼルパティキュレートフィルター(DPF)46bとから構成されている。
酸化触媒(DOC)は不燃物室を燃焼させるものであり、ディーゼルパティキュレートフィルター(DPF)は粒状化物質(PM)を捕集するためのものである。前記EGRバルブ43と絞り弁47については、ECU100により制御される構成である。後処理装置46はディーゼルパティキュレートフィルター(DPF)46bのみで構成してもよい、酸化触媒(DOC)を設けると不燃物質が燃焼するので、よりクリーンな排気ガスとなる。
DPF46bは、排気ガスの温度が低い状態(低負荷)が長時間続くと、PMが溜まってきて能力の低下が懸念される。そこで、後処理装置46の下手側に絞り弁47を設け、この絞り弁47を絞るとDPF46b内の圧力が高く保持されるので温度も高くなる。これにより、高い温度の影響により、DPF46bの再生が可能となる。即ち、高い温度の排気ガスがDPF46bを通過すると、DPF46b内に存在しているPMが焼き飛ばされることでDPF46bが再生される。
DPF46bを再生させるためのDPF再生運転としては、EGRバルブ43と絞り弁47の両方を絞る。そして、燃料噴射タイミングのリタード(遅角)と合わせてDPF46b内のガス温度を上昇させ、DPF46bが再生に入るようにする。これにより、燃料のアフター噴射(排気ガス温度を上昇させるため)が不要となったり、アフター噴射の回数を減らすことができるようになるので、燃料消費量を抑制できて環境にもよい。
このようなDPF再生運転を行うための条件としては、後処理装置46の上手側に圧力センサ52を設け、後処理装置46の下手側にも圧力センサ53を設け、この圧力差が所定値以上になるとDPF46b内にPMが蓄積して抵抗となっている状態なので、DPF再生運転を行うようにする。また、圧力センサ52の替わりにDOC46aとDPF46bとの間に圧力センサ58を設ける構成としてもよい。
また、DPF再生運転に入った状態が長時間続くと、過熱状態となってしまいDPF46bが損傷してしまう。そこで、後処理装置46の下手側に温度センサ59を設け、この温度センサ59の値が所定値を超えるとDPF再生運転を止めて通常運転に戻るようにする。
通常の運転は、EGRバルブ43と絞り弁47を同時に制御してEGR量を適宜コントロールするようにする。特に、絞り弁47を有することで、DPF46b内のガス温度を高く保持することができるようになる。
前述のような構成としたことで、吸気スロットルが不要となる。即ち、過給器付き機関では吸気側圧力が高いので、EGRガス量を確保するために排気絞り弁または吸気スロットルを設け、EGRバルブと連動した制御が必要となるが、このようなシステムが不要となる。
また、DPF46b下流の排気ガスを取り出すために、過給器TBの汚れに伴う性能劣化を生じることを防止できるようになる。そして、EGRガスはEGRクーラ57で冷却されるため、NOx低減に対して効果が大きくなる。
前述したように、DPFの再生運転を行なうDPF強制再生モードにおいては、排気絞り弁47を絞り、ON−OFF制御によってEGRバルブ43を全閉とするように構成する。したがって、排気ガスの還元が行なわれないのでNOが増加し、このNOが酸化触媒(DOC)46aによってNO2に転換され、DPF46bの再生が促進されるようになる。
また、DPF46bの強制再生中において、エンジン回転がローアイドルに移行した場合は、前記EGRバルブ43を全開とする。DPF46bの下流側には温度センサ59を設けているので、この温度センサ59による検出値が所定値以上に上昇したことも条件に加えるようにしてもよい。
前記絞り弁47を絞ってDPF46bの強制再生を行なう場合において、エンジン回転数を低い回転数にして供給酸素量を増加させるとともに、排気ガス流速が減少することで温度を上昇しやすくしていた。ところが、再生中にエンジン回転数がローアイドルまたはその近傍に変更された場合、供給酸素量の増加と流速の減少により、煤が急速に燃焼してしまう。その結果、温度が急速に上昇してDPF46bが損傷してしまう可能性がある。そこで、最高温度が許容温度を超えないようにする煤を管理する必要がある。
このために、温度センサ59が所定値を超えると、エンジン回転数を中速域まで上昇させるように構成する。これにより、排気ガスの流速が速くなるので最高温度が下がり、DPF46bの損傷を防止できるようになる。また、前記温度センサ59の所定値の値を限界値近傍で制御すると、DPF46bの再生を効率よく行なうことができるようになる。
前記エンジン回転数を中速域まで上昇させるにあたり、一旦最高回転数まで上昇させ、その後中速域まで減速させるように構成してもよい、これにより、一旦排気ガスが最高速度で流れるので、予熱などでDPF46bが加熱されてしまって閾値の温度を超えてしまうことを防止できるようになる。
また、DPF46bの強制再生中において、前述のようにエンジン回転数をローアイドルに移行するときにおいて、ポスト噴射を中断し、その後エンジン回転数を最高回転数まで上昇させ、中速域に移行する段階でポスト噴射を再開する構成とする。これにより、排気ガス温度の急激な上昇が抑制できるので、DPF46bの損傷を防止できるようになる。
DPF46b前後の差圧が所定値以上になった場合、作業後に運転者がDPF46bの再生モードを選択スイッチ67で選択することで、自動でDPF46bの再生を行い、DPF46b再生後は自動でエンジンを停止するように構成する。DPF46b前後の差圧を圧力センサ58、53で監視する。エンジン停止直前のDPF46b前後差圧が所定値以上であると、警告ランプやアラームで報知し、運転者は自らDPF46bの再生を行なうスイッチ(図示せず)を操作する。
そして、エンジンキーが切りの位置になっても、前記再生モードを選択していることで、エンジンはアイドリング状態で回転を維持し、DPF46bの再生を実行する。DPF46b前後の差圧が所定値以下になると、エンジンを自動で停止する。
これにより、作業終了後であっても自動でDPF46bの再生、エンジン停止が可能となるために、運転者は本機から離れて他の作業ができるようになる。
DPF46bの再生を行なうときには、図5に示すように、吸気側の空気を管路61からDPF46bの上流側に送るように構成してもよい。即ち、DPF46bの再生を行なうときには、バルブ60を開いて酸素量の多い過給器TB上流側の吸気側の空気をDPF46bの上流側に送るように構成してもよい。これにより、再生効率が向上するようになる。
また、DPF46bの温度を温度センサ62、59で監視し、3段階のステップで再生時の昇温を確認するようにしてもよい。まず、吸気の絞り(図示せず)を行い、この吸気の絞り状態での昇温確認を行う。次に、第一ポスト噴射を行って昇温を確認する。この時点で、DPF46bの前後温度が250度に達していなければ第二ポスト噴射を行っても更なる温度上昇は見込めないので、一旦再生を中断するようにする。もちろん、250度以上であれば第二ポスト噴射を行ってDPF46bの再生を行なうようにする。
図5に示しているように、DPF46bの下流側には空燃比センサ63を設けている。ポスト噴射を行なってDPF46bの再生を行なう場合、燃料噴射量が多くなりすぎると燃費が悪化し、少ないと温度が上昇しなくて再生ができなくなる。そこで、空燃比センサ63の値をECU100にフィードバックして噴射量を決める構成とする。これにより、適切な燃費となるとともに、DPF46bの再生の可能となる。また、前記空燃比センサ63の替わりに吸気マニホールド内の圧力値をフィードバックするように構成してもよい。
前述のようなDPF46bの再生を行なうにあたり、複数気筒の場合、一部の気筒の燃焼を停止するように構成してもよい。このように、一部気筒の燃焼を停止することで、エンジンのフリクションは同一でもシリンダーあたりの負荷を増やして排気温度を上昇させるようにしてもよい。
前記EGRバルブ43においては、煤、HCが付着するとともに結露などの水分と一体化して粘性状の液体となる。このような状態ではEGRバルブ43は作動するが、エンジンを停止させてエンジンが冷えると前記粘性状の液体が固着してしまい、エンジンを再始動させるとEGRバルブ43が動かなくなることがある。このような問題を解決するためにEGRバルブ43にクリーニング機能を設けている。即ち、エンジン停止後のアフターラン中にEGRバルブ43を強制作動させて粘性状の液体を除去することで、エンジンが冷えてもEGRバルブ43は固着しなくなる。
DPF46bの入口側の温度センサ62に排気ガス温度を監視しており、手動再生時においても監視している。手動再生時におけるDPF46bの入口温度の変化を図6に示している。手動再生の開始と共にポスト噴射を行うため、通常の温度変化はラインL1となる。昇温に失敗した場合の温度変化はラインL1よりも低いラインL2となる。ポスト噴射開示時間Pから所定時間S経過後の時間Qの間において、前記ラインL1の温度平均値T1と前記ラインL2の温度平均値T2を算出する。また、前記所定時間Sの間に噴射してポスト噴射量の積算値J0を算出する。
前記ポスト噴射量の積算値J0に対応する理論排気ガス温度T0に対して前記温度平均値T2の温度が低い場合(T0>T2)、異常として報知する構成とする。具体的には、メータパネル上に異常表示して点検修理を促す表示も実施する構成とする。DPF46b自体やインジェクタ等のメンテナンスを実施することで適正なポスト噴射量となるので、ポスト噴射による燃料噴き過ぎを防止できてエンジンオイルの希薄化を抑制できる。
また、再生運転中において、DPF46bの入口温度が限界温度T3を超えるようにことがあれば、ポスト噴射量を減少させる構成とする。また、所定時間S1以上DPF46bの入口温度が限界温度T3を超えると、再生運転を中止するように構成する。これにより、無駄な燃料消費を抑えることができ、排気ガス温度
図7は横軸が経過時間、縦軸がポスト噴射量を示している。ラインL3はポスト燃料噴射量、ラインL4は異常判定の閾値値、ラインL5は油温を示している。R地点のように、ポスト噴射量が異常判定の閾値を超えると異常と判定し、ポスト噴射量を少なくする。これにより、オイルの希釈化を抑制できる。また、R地点のように、1度でもポスト噴射量が閾値を超えると、ポスト噴射量を少なくする構成としている。また、閾値ラインL4は、油温の変化に応じて変える構成としている。基本的には、油温の変化に比例して閾値ラインL4も変える構成としている。油温が高いとエンジンオイル中の燃料が揮発し易くなるためである。これにより、ポスト噴射量の抑制を正確に行うことができる。
図8に示すように、閾値ラインL4は、燃料噴射量移動平均値ラインL6に応じて変える構成としている。燃料噴射量が多いということは、エンジン内の温度が高く、エンジンオイル中の燃料が揮発し易くなるためである。
図9に示すように、DPF再生のためのポスト噴射量の移動平均値が、規定値A以上になると、自動再生を一時禁止する構成とする。そして、再生を禁止することで、異常判定をするための規定値B以下になると、自動再生を再開する構成とする。これにより、自動再生が頻繁に行われることによるポスト噴射量過多を抑制できる。
図10は吸気スロットルバルブを閉じるにあたり、閉じる速度を変える構成を示している。吸気温度と連続運転時間から、吸気スロットルバルブの閉じる速度を変化させる。吸気温度が低く、連続運転時間が短いときには、吸気スロットルバルブをゆっくり閉じる構成(移行時間長い)とする。また、吸気温度が高く、連続運転時間が長いときには、吸気スロットルバルブを速く閉じる構成(移行時間短い)とする。これにより、例えば、気温が低く朝一番での手動再生には不利な条件であっても、吸気スロットル開度を目標開度に対して遅い速度で閉じるように制御することで、失火などをせずに昇温をスムーズに行うことができるようになる。
図11はエンジンオイルの希釈の推定を示している。DPF再生時にポスト噴射を行う場合、ポスト噴射量、噴射タイミング、エンジン回転数等からオイル希釈量を推定する。オイル希釈推定量の積算値が一定以上になると、オイル交換を促す報知をする。DPF再生時のポスト噴射によるオイル希釈推定量が一定量以下である場合、算出した値は用いずに、定数を希釈量として積算値に加算する。積算オイル希釈量が一定以上になるとオイル交換を促す報知を行う。
手動再生中のポスト噴射によるオイル希釈量をECUで推定するにあたり、手動再生Xの間のオイル希釈推定量を前回までの積算値に加算する。手動再生Yはオイル希釈推定量が閾値よりも低いため、算出値は使用せずに定数を前回までの積算値に加算する。実際のオイル希釈量よりも少なく見積もってしまうことが無いよう、閾値以下の場合は定数を積算値に加算する。
DPF再生時のポスト噴射量、運転状態から希釈量を算出した結果が小さい場合、算出(計測)誤差の影響により、実際の希釈量よりも少なく見積もりしてしまわないよう、閾値以下の場合は、一定の量を希釈量として積算値に加算することで、安全側の推定を行う。
オイル希釈量が多い状態の時間を累積し、一定時間以上になるとオイル交換を促す報知を行う。
トラクターやコンバイン等の農作業機を始め一般車両にも利用可能である。
PM 粒状化物質
E ディーゼルエンジン
S 所定時間
S1 所定時間
T0 理論排気ガス温度
T2 所定時間の間における温度センサで測定した温度平均値
T3 限界温度
J0 所定時間の間に噴射されたポスト噴射量の積算値
46b DPF
62 温度センサ

Claims (3)

  1. 排気ガス中の粒状化物質(PM)を除去するDPF(46b)と、DPF(46b)の入口側に設置した温度センサ(62)と、ディーゼルエンジン(E)を搭載したトラクタにおいて、DPF(46b)の再生中における所定時間(S)の間に噴射されたポスト噴射量の積算値(J0)に対応する理論排気ガス温度(T0)に対して、前記所定時間(S)の間における前記温度センサ(62)で測定した温度平均値(T2)の温度が低い場合、異常として報知する構成としたことを特徴とするトラクタ。
  2. 前記温度センサ(62)で測定する温度が限界温度(T3)を超えると、ポスト噴射量を減少させる構成としたことを特徴とする請求項1に記載のトラクタ。
  3. 前記温度センサ(62)で測定する温度が所定時間(S1)にわたり限界温度(T3)を超えると、DPF(46b)の再生を中止する構成としたことを特徴とする請求項1に記載のトラクタ。
JP2018163986A 2018-08-31 2018-08-31 トラクタ Pending JP2020037873A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018163986A JP2020037873A (ja) 2018-08-31 2018-08-31 トラクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018163986A JP2020037873A (ja) 2018-08-31 2018-08-31 トラクタ

Publications (1)

Publication Number Publication Date
JP2020037873A true JP2020037873A (ja) 2020-03-12

Family

ID=69737666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018163986A Pending JP2020037873A (ja) 2018-08-31 2018-08-31 トラクタ

Country Status (1)

Country Link
JP (1) JP2020037873A (ja)

Similar Documents

Publication Publication Date Title
JP2010229959A (ja) ディーゼルエンジン
JP2013181406A (ja) 作業車両
JP5176834B2 (ja) 作業車両
JP2010156208A (ja) ディーゼルエンジン
JP2014009639A (ja) 作業車両
JP2013231376A (ja) 作業車両
JP2012233430A (ja) 作業車両
JP2014214719A (ja) トラクタ
JP2016142157A (ja) トラクタ
JP2014088860A (ja) 作業車両
JP7234830B2 (ja) 作業車両
JP2012207636A (ja) 作業車両
JP2019044691A (ja) トラクタ
JP2018141454A (ja) トラクタ
JP2020037873A (ja) トラクタ
JP2016033354A (ja) トラクタ
JP2020002910A (ja) 農作業車
JP2022073330A (ja) 作業車両
JP2021188557A (ja) 作業車両
JP2018204466A (ja) トラクタ
JP2018173030A (ja) トラクタ
JP2013096294A (ja) トラクタ
JP2019100244A (ja) トラクタ
JP2019011729A (ja) トラクタ
JP2011179381A (ja) 作業車両