JP2013231376A - 作業車両 - Google Patents
作業車両 Download PDFInfo
- Publication number
- JP2013231376A JP2013231376A JP2012103044A JP2012103044A JP2013231376A JP 2013231376 A JP2013231376 A JP 2013231376A JP 2012103044 A JP2012103044 A JP 2012103044A JP 2012103044 A JP2012103044 A JP 2012103044A JP 2013231376 A JP2013231376 A JP 2013231376A
- Authority
- JP
- Japan
- Prior art keywords
- calculated
- altitude
- fuel
- amount
- dpf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Landscapes
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
【課題】高度の高い場所での排気ガスの排出経路に設けているディーゼルパティキュレートフィルタの再生の効率化。
【解決手段】ディーゼルパティキュレートフィルタ(46b)再生時における気圧と高度と吸入空気量の補正係数との関係をECU(100)に予め記憶させておく構成とし、前記気圧センサ(72)で測定した気圧から高度を算出し、算出した高度から補正係数を算出し、算出した補正係数を基準の吸入空気量に乗じて吸入空気量を算出し、ディーゼルパティキュレートフィルタ(46b)再生時には算出した吸入空気量となるように、前記空気量調節バルブ(82)を制御するように構成したことを特徴とする作業車両とする。
【選択図】図5
【解決手段】ディーゼルパティキュレートフィルタ(46b)再生時における気圧と高度と吸入空気量の補正係数との関係をECU(100)に予め記憶させておく構成とし、前記気圧センサ(72)で測定した気圧から高度を算出し、算出した高度から補正係数を算出し、算出した補正係数を基準の吸入空気量に乗じて吸入空気量を算出し、ディーゼルパティキュレートフィルタ(46b)再生時には算出した吸入空気量となるように、前記空気量調節バルブ(82)を制御するように構成したことを特徴とする作業車両とする。
【選択図】図5
Description
この発明は、ディーゼルパティキュレートフィルタ(DPF)備えたディーゼルエンジンを搭載した作業車両に関する。
ディーゼルパティキュレートフィルタ(DPF)を再生させるにあたり、排気ガス温度を測定し、排気ガス温度が低いと吸入空気量を補正する構成である(例えば、特許文献1参照。)。
前述のような技術では、排気ガス温度を測定してから空気量を補正するために、排気温度を測定するまでの間はDPFの再生が効率良くできない。
本発明の課題は、前述のような不具合を解消するディーゼルエンジンを搭載した作業車両を提供することである。
本発明の課題は、前述のような不具合を解消するディーゼルエンジンを搭載した作業車両を提供することである。
本発明の上記課題は次の構成によって達成される。
すなわち、請求項1記載の発明では、排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載した作業車両において、エアクリーナー(35)と過給器(TB)との間の吸気系統に空気量を測定するエアーフローセンサ(71)を設け、該エアーフローセンサ(71)の上流側に空気量調節バルブ(82)を設け、燃料タンク(3)と高圧ポンプ(4)との間に燃料量を調節する燃料バルブ(73)を設け、機体の適宜位置に気圧センサ(72)を設け、前記ディーゼルパティキュレートフィルタ(46b)再生時における気圧と高度と吸入空気量の補正係数との関係をECU(100)に予め記憶させておく構成とし、前記気圧センサ(72)で測定した気圧から高度を算出し、算出した高度から補正係数を算出し、算出した補正係数を基準の吸入空気量に乗じて吸入空気量を算出し、ディーゼルパティキュレートフィルタ(46b)再生時には算出した吸入空気量となるように、前記空気量調節バルブ(82)を制御するように構成したことを特徴とする作業車両としたものである。
すなわち、請求項1記載の発明では、排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載した作業車両において、エアクリーナー(35)と過給器(TB)との間の吸気系統に空気量を測定するエアーフローセンサ(71)を設け、該エアーフローセンサ(71)の上流側に空気量調節バルブ(82)を設け、燃料タンク(3)と高圧ポンプ(4)との間に燃料量を調節する燃料バルブ(73)を設け、機体の適宜位置に気圧センサ(72)を設け、前記ディーゼルパティキュレートフィルタ(46b)再生時における気圧と高度と吸入空気量の補正係数との関係をECU(100)に予め記憶させておく構成とし、前記気圧センサ(72)で測定した気圧から高度を算出し、算出した高度から補正係数を算出し、算出した補正係数を基準の吸入空気量に乗じて吸入空気量を算出し、ディーゼルパティキュレートフィルタ(46b)再生時には算出した吸入空気量となるように、前記空気量調節バルブ(82)を制御するように構成したことを特徴とする作業車両としたものである。
請求項2記載の発明では、気圧と高度と燃料量の補正係数との関係をECU(100)に予め記憶させておく構成とし、前記気圧センサ(72)で測定した気圧から高度を算出し、算出した高度から補正係数を算出し、算出した補正係数を基準の燃料量に乗じて燃料量を算出し、算出した燃料量となるように、前記燃料バルブ(73)を制御するように構成したことを特徴とする請求項1に記載の作業車両としたものである。
請求項3記載の発明では、前記基準の吸入空気量と基準の燃料量は高度(0m)地点とし、この高度(0m)地点の補正係数を(1.00)とすることを特徴とする請求項2に記載の作業車両としたものである。
本発明は上述のごとく構成したので、請求項1記載の発明においては、速やかに適正な燃焼が行われるので、排気温度の上昇も直ぐに上昇し、ディーゼルパティキュレートフィルタ(46b)の再生が適正に行われる。
請求項2記載の発明においては、燃料量も適正に補正できるので、スモークの発生を抑制できる。
請求項3記載の発明においては、補正係数の算出が容易となる。また、エンジンの燃料の基本設計は1気圧での設計としているので、補正係数の算出が適正となる。
請求項3記載の発明においては、補正係数の算出が容易となる。また、エンジンの燃料の基本設計は1気圧での設計としているので、補正係数の算出が適正となる。
本発明を実施するための最良の形態を説明する。
図1は、蓄圧式燃料噴射装置の全体構成図である。蓄圧式燃料噴射装置は、例えば、多気筒ディーゼル機関に適用されるものであるが、ガソリン機関でもよい。そして、蓄圧式燃料噴射装置は、噴射圧力に相当する高圧燃料を蓄圧するコモンレール1と、このコモンレール1に取り付けられる圧力センサ2と、燃料タンク3より汲み上げた燃料を加圧してコモンレール1に圧送する高圧ポンプ4と、コモンレール1に蓄圧された高圧燃料をエンジンEのシリンダー5内に噴射する燃料噴射ノズル6と、前記高圧ポンプ4と燃料噴射ノズル6等の動作を制御する制御装置(ECU)等から構成される。ECUとは、エンジンコントロールユニットの略称である。
図1は、蓄圧式燃料噴射装置の全体構成図である。蓄圧式燃料噴射装置は、例えば、多気筒ディーゼル機関に適用されるものであるが、ガソリン機関でもよい。そして、蓄圧式燃料噴射装置は、噴射圧力に相当する高圧燃料を蓄圧するコモンレール1と、このコモンレール1に取り付けられる圧力センサ2と、燃料タンク3より汲み上げた燃料を加圧してコモンレール1に圧送する高圧ポンプ4と、コモンレール1に蓄圧された高圧燃料をエンジンEのシリンダー5内に噴射する燃料噴射ノズル6と、前記高圧ポンプ4と燃料噴射ノズル6等の動作を制御する制御装置(ECU)等から構成される。ECUとは、エンジンコントロールユニットの略称である。
このように、コモンレール1は、エンジンEの各シリンダー5へ燃料を噴射するものであり、燃料供給を要求された圧力とするものである。
前記燃料タンク3内の燃料は吸入通路により燃料フィルタ7を介してエンジンEで駆動される高圧ポンプ4に吸入され、この高圧ポンプ4によって加圧された高圧燃料は吐出通路8によりコモンレール1に導かれて蓄えられる。
前記燃料タンク3内の燃料は吸入通路により燃料フィルタ7を介してエンジンEで駆動される高圧ポンプ4に吸入され、この高圧ポンプ4によって加圧された高圧燃料は吐出通路8によりコモンレール1に導かれて蓄えられる。
コモンレール1内の高圧燃料は各高圧燃料供給通路9により気筒数分の燃料噴射ノズル6に供給され、ECU100からの指令に基づき、各シリンダーに燃料噴射ノズル6が作動して、高圧燃料がエンジンEの各シルンダー5室内に噴射供給され、各燃料噴射ノズル6での余剰燃料(リターン燃料)は各リターン通路10により共通のリターン通路10へ導かれ、このリターン通路10によって燃料タンク3へ戻される。
また、コモンレール1内の燃料圧力(コモンレール圧)を制御するため高圧ポンプ4に圧力制御弁11が設けられており、この圧力制御弁11はECU100からのデューティ信号によって、高圧ポンプ4から燃料タンク3への余剰燃料のリターン通路10の流路面積を調整するものであり、これによりコモンレール1側への燃料吐出量を調整してコモンレール圧を制御することができる。
具体的には、エンジン運転条件に応じて目標コモンレール圧を設定し、レール圧力センサ2により検出されるコモンレール圧が目標コモンレール圧と一致するよう、圧力制御弁11を介してコモンレール圧をフィードバック制御する構成としている。
作業車(農作業機)におけるコモンレール1を有するディーゼルエンジンEのECU100は、図2に示すように、回転数と出力トルクの関係において走行モードAと通常作業モードB及び重作業モードCの三種類の制御モードを有する構成としている。
走行モードAは、エンジン回転数の変動で出力も変動するドループ制御である。農作業を行わず移動走行する場合に使用するものである。例えば、ブレーキを掛けて走行速度を減速したり停止したりすると、この走行負荷の増大に伴ってエンジン回転数が低下するため走行速度の減速や停止を安全に行うことができるものである。
通常作業モードBは、負荷が変動してもエンジン回転数が一定で出力を負荷に応じて変更するアイソクロナス制御である。通常の農作業を行う場合に使用するものである。例えば、トラクターであれば耕耘作業時に耕地が固く耕耘刃に抵抗が掛かるときであり、コンバインであれば収穫作業時に収穫物が多く負荷が増大したときでも、出力が変動して回転数を維持するときである。
重作業モードCは、通常作業モードBと同様に負荷が変動してもエンジン回転数一定で出力を負荷に応じて変更するアイソクロナス制御に加え、負荷限界近くになると回転数を上昇させて出力を上げる重負荷制御を加えた制御である。特に、負荷限界近くで農作業を行う場合に使用するものである。例えば、トラクターで耕耘作業を行っている際に、特に、固い耕地に遭遇してもエンジン出力が通常の限界を越えて増大するので作業を中断することがなく、効率の良い作業が可能となる。
これらの作業モードA,B,Cは、各作業モードA,B,Cを切り替え可能な作業モード切替スイッチの操作、又は農作業車(トラクター、コンバイン、田植機等)の走行変速レバーの変速操作、又は作業クラッチ(トラクターであればロータリであり、コンバインであれば刈取部、脱穀部である)の入り切り操作等によって切り替わるように構成する。
ディーゼルエンジンEでは、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、着火遅れを短縮してディーゼルエンジンE特有のノック音を低減し、騒音を低減することが可能な構成としている。
このパイロット噴射は、メイン噴射の前に1回又は2回に限定して行われるものであったが、前記コモンレール1の蓄圧式燃料噴射装置を用いることで、エンジンEの状況に応じてパイロット噴射の状態を変化させ、騒音の低減や不完全燃焼による白煙又は黒煙の発生を抑制できるようになる。また、メイン噴射に先立って少量の燃料をパルス的に噴射するパイロット噴射を行うことにより、排ガス中の窒素酸化物の量が減少するようになる。
図3は、前述のようなコモンレール1を有するディーゼルエンジンを搭載したトラクターの側面図を示し、図4はその平面図を示している。平面図においては、図3に示すキャビン14を省いた状態を示している。
トラクターは、機体の前後部に前輪12、12と後輪13、13を備え、機体の前部に搭載したエンジンEの回転動力をトランスミッションケースT内の変速装置によって適宜減速して、これら前輪12、12と後輪13、13に伝えるように構成している。
機体中央であってキャビン14内のハンドルポスト15にはステアリングハンドル16が支持され、その後方にはシート17が設けられている。ステアリングハンドル16の下方には、機体の進行方向を前後方向に切り換える前後進レバー18が設けられている。この前後進レバー18を前側に移動させると機体は前進し、後方へ移動させると後進する構成である。
また、ハンドルポスト15を挟んで前後進レバー18の反対側にはエンジン回転数を調節するアクセルレバー25が設けられ、またステップフロア19の右コーナー部には、同様にエンジン回転数を調節するアクセルペダル23と、左右の後輪13、13にブレーキを作動させる左右のブレーキペダル24L、24Rが設けられている。ステップフロア19の左コーナー部にはクラッチペダル20が設けられている構成である。
また、主変速レバー26はシート17の左前方部にあり、低速、中速、高速及び中立のいずれかの位置を選択できる副変速レバー27はその後方にあり、さらにその右側にPTO変速レバー28を設けている。さらに、シート17の右側には作業機21(ロータリ等)の高さを設定するポジションレバー29と圃場の耕耘深さを自動的に設定する自動耕深レバー30、これらのレバーの後に作業機21の右上げスイッチ31と右下げスイッチ32が配置され、さらにその後に作業機21の自動水平スイッチ33とバックアップスイッチ34が配置されている。バックアップスイッチ34は、機体が後進時において、作業機21を自動的に上昇させるものである。作業機21は、機体の後方にリンク22で連結されている構成である。トラクターは作業機21を駆動させて機体を走行させることで、圃場内の耕耘等の作業を行なうものである。21aは作業機21を昇降する油圧シリンダーである。
図5はエンジンのシリンダー5内への吸気と排気の模式図であり、4サイクルのディーゼルエンジンの実施例である。過給器TBの吸気タービン36により過給された空気は、エアクリーナー35から吸気タービン36、インタークーラー37を通過して吸気マニホールド38からシリンダー5内へ送られる構成である。39は吸気バルブであり、40はピストンである。48はカムでありロッカーアーム49を介して吸排気バルブ39、41を開閉させるものである。
シリンダー5内で燃焼した排ガスは、排気バルブ41から排気マニホールド42を通過した後、過給器TBの排気タービン45で過給器TBを駆動して排出される構成である。
このディーゼルエンジンは、排気ガスの一部を吸気側に混入させるためのEGR(排気再循環装置)回路44を有している。EGR回路で排気ガスの一部を吸気側に混入させることで酸素量(O2)を減らして、窒素酸化物Noxの発生を低減させるように構成している。ただし、EGR率が上昇しすぎると、逆に酸素量が少なくなって不完全燃焼になるので、燃焼状態によりEGR率を調節する必要がある。この調節は、EGRバルブ43にて行う。EGR回路44は、後述する後処理装置46下流側の排気管55と過給器TBの吸気タービン36上流側の吸入管56との間を接続している。また、EGR回路44の途中にはEGRクーラ57を設ける構成としている。このEGRバルブ43の開閉具合でシリンダー5内への排気ガスの還元量が変化する。
このディーゼルエンジンは、排気ガスの一部を吸気側に混入させるためのEGR(排気再循環装置)回路44を有している。EGR回路で排気ガスの一部を吸気側に混入させることで酸素量(O2)を減らして、窒素酸化物Noxの発生を低減させるように構成している。ただし、EGR率が上昇しすぎると、逆に酸素量が少なくなって不完全燃焼になるので、燃焼状態によりEGR率を調節する必要がある。この調節は、EGRバルブ43にて行う。EGR回路44は、後述する後処理装置46下流側の排気管55と過給器TBの吸気タービン36上流側の吸入管56との間を接続している。また、EGR回路44の途中にはEGRクーラ57を設ける構成としている。このEGRバルブ43の開閉具合でシリンダー5内への排気ガスの還元量が変化する。
排気タービン45を通過後の排気ガスは、後処理装置46を通過してマフラー50から大気中に排出される。後処理装置46は、酸化触媒(DOC)46aとディーゼルパティキュレートフィルター(DPF)46bとから構成されている。
酸化触媒(DOC)は不燃物室を燃焼させるものであり、ディーゼルパティキュレートフィルター(DPF)は粒状化物質(PM)を捕集するためのものである。前記EGRバルブ43と絞り弁47については、ECU100により制御される構成である。後処理装置46はディーゼルパティキュレートフィルター(DPF)46bのみで構成してもよい、酸化触媒(DOC)を設けると不燃物質が燃焼するので、よりクリーンな排気ガスとなる。
DPF46bは、排気ガスの温度が低い状態(低負荷)が長時間続くと、PMが溜まってきて能力の低下が懸念される。そこで、後処理装置46の下手側に絞り弁47を設け、この絞り弁47を絞るとDPF46b内の圧力が高く保持されるので温度も高くなる。これにより、高い温度の影響により、DPF46bの再生が可能となる。即ち、高い温度の排気ガスがDPF46bを通過すると、DPF46b内に存在しているPMが焼き飛ばされることでDPF46bが再生される。
DPF46bを再生させるためのDPF再生運転としては、EGRバルブ43と絞り弁47の両方を絞る。そして、燃料噴射タイミングのリタード(遅角)と合わせてDPF46b内のガス温度を上昇させ、DPF46bが再生に入るようにする。これにより、燃料のアフター噴射(排気ガス温度を上昇させるため)が不要となったり、アフター噴射の回数を減らすことができるようになるので、燃料消費量を抑制できて環境にもよい。
このようなDPF再生運転を行うための条件としては、後処理装置46の上手側に圧力センサ52を設け、後処理装置46の下手側にも圧力センサ53を設け、この圧力差が所定値以上になるとDPF46b内にPMが蓄積して抵抗となっている状態なので、DPF再生運転を行うようにする。また、圧力センサ52の替わりにDOC46aとDPF46bとの間に圧力センサ58を設ける構成としてもよい。
また、DPF再生運転に入った状態が長時間続くと、過熱状態となってしまいDPF46bが損傷してしまう。そこで、後処理装置46の下手側に温度センサ59を設け、この温度センサ59の値が所定値を超えるとDPF再生運転を止めて通常運転に戻るようにする。
通常の運転は、EGRバルブ43と絞り弁47を同時に制御してEGR量を適宜コントロールするようにする。特に、絞り弁47を有することで、DPF46b内のガス温度を高く保持することができるようになる。
前述のような構成としたことで、吸気スロットルが不要となる。即ち、過給器付き機関では吸気側圧力が高いので、EGRガス量を確保するために排気絞り弁または吸気スロットルを設け、EGRバルブと連動した制御が必要となるが、このようなシステムが不要となる。
また、DPF46b下流の排気ガスを取り出すために、過給器TBの汚れに伴う性能劣化を生じることを防止できるようになる。そして、EGRガスはEGRクーラ57で冷却されるため、NOx低減に対して効果が大きくなる。
前述したように、DPFの再生運転を行なうDPF強制再生モードにおいては、排気絞り弁47を絞り、ON−OFF制御によってEGRバルブ43を全閉とするように構成する。したがって、排気ガスの還元が行なわれないのでNOが増加し、このNOが酸化触媒(DOC)46aによってNO2に転換され、DPF46bの再生が促進されるようになる。
また、DPF46bの強制再生中において、エンジン回転がローアイドルに移行した場合は、前記EGRバルブ43を全開とする。DPF46bの下流側には温度センサ59を設けているので、この温度センサ59による検出値が所定値以上に上昇したことも条件に加えるようにしてもよい。
前記絞り弁47を絞ってDPF46bの強制再生を行なう場合において、エンジン回転数を低い回転数にして供給酸素量を増加させるとともに、排気ガス流速が減少することで温度を上昇しやすくしていた。ところが、再生中にエンジン回転数がローアイドルまたはその近傍に変更された場合、供給酸素量の増加と流速の減少により、煤が急速に燃焼してしまう。その結果、温度が急速に上昇してDPF46bが損傷してしまう可能性がある。そこで、最高温度が許容温度を超えないようにする煤を管理する必要がある。
このために、温度センサ59が所定値を超えると、エンジン回転数を中速域まで上昇させるように構成する。これにより、排気ガスの流速が速くなるので最高温度が下がり、DPF46bの損傷を防止できるようになる。また、前記温度センサ59の所定値の値を限界値近傍で制御すると、DPF46bの再生を効率よく行なうことができるようになる。
前記エンジン回転数を中速域まで上昇させるにあたり、一旦最高回転数まで上昇させ、その後中速域まで減速させるように構成してもよい、これにより、一旦排気ガスが最高速度で流れるので、予熱などでDPF46bが加熱されてしまって閾値の温度を超えてしまうことを防止できるようになる。
また、DPF46bの強制再生中において、前述のようにエンジン回転数をローアイドルに移行するときにおいて、ポスト噴射を中断し、その後エンジン回転数を最高回転数まで上昇させ、中速域に移行する段階でポスト噴射を再開する構成とする。これにより、排気ガス温度の急激な上昇が抑制できるので、DPF46bの損傷を防止できるようになる。
DPF46b前後の差圧が所定値以上になった場合、作業後に運転者がDPF46bの再生モードを選択スイッチ67で選択することで、自動でDPF46bの再生を行い、DPF46b再生後は自動でエンジンを停止するように構成する。DPF46b前後の差圧を圧力センサ58、53で監視する。エンジン停止直前のDPF46b前後差圧が所定値以上であると、警告ランプやアラームで報知し、運転者は自らDPF46bの再生を行なうスイッチ(図示せず)を操作する。
そして、エンジンキーが切りの位置になっても、前記再生モードを選択していることで、エンジンはアイドリング状態で回転を維持し、DPF46bの再生を実行する。DPF46b前後の差圧が所定値以下になると、エンジンを自動で停止する。
これにより、作業終了後であっても自動でDPF46bの再生、エンジン停止が可能となるために、運転者は本機から離れて他の作業ができるようになる。
DPF46bの再生を行なうときには、図5に示すように、吸気側の空気を管路61からDPF46bの上流側に送るように構成してもよい。即ち、DPF46bの再生を行なうときには、バルブ60を開いて酸素量の多い過給器TB上流側の吸気側の空気をDPF46bの上流側に送るように構成してもよい。これにより、再生効率が向上するようになる。
DPF46bの再生を行なうときには、図5に示すように、吸気側の空気を管路61からDPF46bの上流側に送るように構成してもよい。即ち、DPF46bの再生を行なうときには、バルブ60を開いて酸素量の多い過給器TB上流側の吸気側の空気をDPF46bの上流側に送るように構成してもよい。これにより、再生効率が向上するようになる。
また、DPF46bの温度を温度センサ62、59で監視し、3段階のステップで再生時の昇温を確認するようにしてもよい。まず、吸気の絞り(図示せず)を行い、この吸気の絞り状態での昇温確認を行う。次に、第一ポスト噴射を行って昇温を確認する。この時点で、DPF46bの前後温度が250度に達していなければ第二ポスト噴射を行っても更なる温度上昇は見込めないので、一旦再生を中断するようにする。もちろん、250度以上であれば第二ポスト噴射を行ってDPF46bの再生を行なうようにする。
図5に示しているように、DPF46bの下流側には空燃比センサ63を設けている。ポスト噴射を行なってDPF46bの再生を行なう場合、燃料噴射量が多くなりすぎると燃費が悪化し、少ないと温度が上昇しなくて再生ができなくなる。そこで、空燃比センサ63の値をECU100にフィードバックして噴射量を決める構成とする。これにより、適切な燃費となるとともに、DPF46bの再生の可能となる。また、前記空燃比センサ63の替わりに吸気マニホールド内の圧力値をフィードバックするように構成してもよい。
前述のようなDPF46bの再生を行なうにあたり、複数気筒の場合、一部の気筒の燃焼を停止するように構成してもよい。このように、一部気筒の燃焼を停止することで、エンジンのフリクションは同一でもシリンダーあたりの負荷を増やして排気温度を上昇させるようにしてもよい。
エアクリーナ35と過給器TBとの間には、空気量を測定するエアーフローセンサ71を設ける構成としている。また、機体の任意の位置には、気圧を測定する気圧センサ72を設けている。この測定した気圧から高度を推定し、推定した高度に応じてDPF46b再生時の吸入空気量(重量)の補正を行う構成とする。これは、高度が高くなるほど酸素濃度が薄くなるからである。
気圧が1013hpaのときは高度0mとしてこの高度0m地点を基準とする。高度0mでは、DPF46b再生時の吸入空気量の補正は行わない(補正係数1.00)。以下に、気圧と高度と吸入空気量の補正係数を示す。
気圧956hpaで高度500mとして、補正係数は1.06。
(即ち、高度が500mでは、高度0mのときの1.06倍の空気を送り込む構成とすることで、DPF再生時に適正な燃焼が行われて、排気ガス温度も適正値となって、DPF46bの再生が適正に行われる。以下も同様である。)
気圧899hpaで高度1000mとして、補正係数は1.14。
気圧847hpaで高度1500mとして、補正係数は1.20。
気圧795hpaで高度2000mとして、補正係数は1.28。
気圧748hpaで高度2500mとして、補正係数は1.37。
気圧701hpaで高度3000mとして、補正係数は1.47。
(即ち、高度が500mでは、高度0mのときの1.06倍の空気を送り込む構成とすることで、DPF再生時に適正な燃焼が行われて、排気ガス温度も適正値となって、DPF46bの再生が適正に行われる。以下も同様である。)
気圧899hpaで高度1000mとして、補正係数は1.14。
気圧847hpaで高度1500mとして、補正係数は1.20。
気圧795hpaで高度2000mとして、補正係数は1.28。
気圧748hpaで高度2500mとして、補正係数は1.37。
気圧701hpaで高度3000mとして、補正係数は1.47。
前述した図1には、燃料タンク3と高圧ポンプ4との間に燃料バルブ73を設ける構成としている。気圧が低くて高度が高いときにおいては、燃料バルブ73を絞って高圧ポンプ4に送られる燃料の量を制限する構成とする。これにより、スモーク発生を抑制可能となる。
気圧が1013hpaのときは高度0mとしてこの高度0m地点を基準とする。高度0mでは、燃料量の補正は行わない(補正係数1.00)。以下に、気圧と高度と燃料量の補正係数を示す。
気圧956hpaで高度500mとして、補正係数は0.94。
(高度が500mでは、高度0mのときの0.94倍の燃料量とすることで、スモーク発生を減少できる。)
気圧899hpaで高度1000mとして、補正係数は0.86。
気圧847hpaで高度1500mとして、補正係数は0.80。
気圧795hpaで高度2000mとして、補正係数は0.72。
気圧748hpaで高度2500mとして、補正係数は0.63。
気圧701hpaで高度3000mとして、補正係数は0.53。
(高度が500mでは、高度0mのときの0.94倍の燃料量とすることで、スモーク発生を減少できる。)
気圧899hpaで高度1000mとして、補正係数は0.86。
気圧847hpaで高度1500mとして、補正係数は0.80。
気圧795hpaで高度2000mとして、補正係数は0.72。
気圧748hpaで高度2500mとして、補正係数は0.63。
気圧701hpaで高度3000mとして、補正係数は0.53。
空気量の補正及び燃料量の補正は500m間隔で記憶させているので、それ以外の高度では比例関係で算出する構成とする。
高度の算出については、GPS機能を搭載していれば、このGPSからの情報を用いるように構成してもよい。
高度の算出については、GPS機能を搭載していれば、このGPSからの情報を用いるように構成してもよい。
エンジン始動時においては、前記燃料バルブ73を絞る前の位置の通常位置に戻すことで、エンジン始動時に必要な燃料量が確保されて、エンジン始動性低下を招かない。
燃料バルブ73については、通常では電気的に駆動するが、潤滑油圧や吸気負圧を利用して作動するようにしてもよい。
燃料バルブ73については、通常では電気的に駆動するが、潤滑油圧や吸気負圧を利用して作動するようにしてもよい。
図6(a)に示すように、エンジンルーム79内にDPF46bを配置し、DPF46bに排気管76を接続している。特に、DPF46bの再生時においては、排気管76の出口部76aから温度の高い排気ガスが出てくる。このため、ラジエータ74の冷却ファン75から起風される風が、排気管76の出口部76aに向かう配置構成とする。これにより、排気ガス温度が低下する。農業機械においては、排気管76の出口部76aの近くに藁屑などの燃えやすいものがある場合があるので、排気温度を下げることは重要である。図6(b)は、排気管76の出口部76aにおいて、排気ガスを四方に分散させる分散板78を設ける構成である。また、図6(c)は、排気管76の出口部76aにおいて、排気ファン77を設ける構成である。これら分散板78や排気ファン77を設けることで、排気ガスが分散されることにより、排気ガス温度が低下する。
前述したように、DPF46b内には使用時間が長くなるほどPMが堆積してくるが、この堆積量が所定値以上に蓄積すると、DPF46bを再生する必要がある。自動再生の閾値である「Ag/L」蓄積すると、自動再生を開始する。この自動再生は、走行中や作業中に行うものである。しかしながら、負荷の軽い状態が続くなど、条件によってはメイン噴射等を行っても排気温度が上昇しないため自動再生が行われないことがある。この自動再生が行われない状態が連続すると、PMの堆積量は限界値の「(A+X)g/L」となり、これ以上は走行や作業ができなくなる。こうなると、機体を停車させて手動再生(強制再生)を行う必要がある。
このような状況を避けるために、以下のように構成する。
PMの堆積量が自動再生の閾値である「Ag/L」以上蓄積すると、手動再生の閾値である「(A+X)g/L」にならなくても、手動再生を可能に構成する。この場合、再生ボタンを押すことで、任意に手動再生を行う構成とする。このフロチャートを図7に示している。
PMの堆積量が自動再生の閾値である「Ag/L」以上蓄積すると、手動再生の閾値である「(A+X)g/L」にならなくても、手動再生を可能に構成する。この場合、再生ボタンを押すことで、任意に手動再生を行う構成とする。このフロチャートを図7に示している。
これにより、任意のタイミングで手動再生ができるので、強制的に手動再生を促されることによる作業の中断をしなくてもよくなる。
図8に示すように、スート(PM)堆積量と再生完了残り時間との関係を2次曲線の式に当てはめておき、図9に示すように、手動再生中は現在のスート堆積量から再生完了残り時間を表示させる構成とする。これにより、作業者は完了時間の目安を知ることができるので、先の作業の目安が立てやすくなる。特に、農作業においては重要である。
図8に示すように、スート(PM)堆積量と再生完了残り時間との関係を2次曲線の式に当てはめておき、図9に示すように、手動再生中は現在のスート堆積量から再生完了残り時間を表示させる構成とする。これにより、作業者は完了時間の目安を知ることができるので、先の作業の目安が立てやすくなる。特に、農作業においては重要である。
DPFにおいては、再生をする毎にオイルダイリューション(燃料の一部がオイルパン内に浸入)が発生する。このような状況を放置すると、エンジン破損の原因となる。そこで、DPFの再生回数をECU100でカウントし、再生回数が所定回数(10回)になるまでに要した積算運転時間から、平均再生間隔時間を計算し、平均再生間隔時間がオイルダイリューション限界値に達していた場合、オイルダイリューション警告(警報音、警報表示など)を行うことで、オイル交換を促すようにする。これにより、作業者は正しいオイル交換間隔を知ることができ、エンジンの故障、損傷を防止できる。
図3で説明したように、トラクタには作業機21(ロータリ)が装着されており、耕うん開始時においては、作業機21が下降して圃場表面に当接する時点で急負荷が作用し、スートが多く発正してしまう。DPF内のPM堆量が少ないときにはさほど問題ないが、DPFが自動再生領域にあるときにこのような状況が続くと、手動再生領域に入ってしまう可能性がある。
そこで、DPFが自動再生領域にあるときにおいては、作業機21の降下速度を遅くすることで、作業機21が圃場表面に当接するのを遅くする構成とする。これにより、エンジンに急負荷が作用してスートが多く発正するのを抑制できるようになる。このフローチャートを図10に示している。
そして、自動再生により、DPF内のPM量が減少して自動再生領域の閾値よりも少なくなると、作業機21の降下速度を元の通常の速度に戻す構成とする。これにより、作業能率に与える影響を最小限にとどめることができる。
図10はロータリ21を下げて耕うん作業を行っている状況を示している。このような状況でDPF46b内のPM量が手動再生領域内に入ってしまうと、走行を停止して手動再生(強制再生)を行う必要がある。このような作業を中断した状態では、手動再生の時間をできるだけ短くする必要があるが、このためには、排気温度を速やかに上昇させる必要がある。
そこで、ロータリ21の両側に設けている油圧シリンダ80で、尾輪81を下げて機体後部を少し持ち上げる構成とする。尾輪81が装着されていないロータリ21においては、尾輪81の代わりのものでもよい(抵抗体)。これにより、油圧シリンダ80を動かすためにエンジンに負荷が作用するようになり、排気温度が上昇することで手動再生の時間が短くなる。
DPFの自動再生中において、走行停止などで負荷が抜けて排気温度が低下してしまうと自動再生は中断され、このときDPF内のPM量が自動再生開始の閾値以下になっていると、再び負荷が作用しても自動再生は再開されない。このような場合、DPF内のPM量は比較的多い状況なので、トラクタの運転によっては早い時間で手動再生領域に入ってしまう可能性が高い。
そこで、一旦自動再生に入り、走行停止などで負荷が抜けたときに自動再生を中断し、このときDPF46b内のPM量が閾値以下であっても、再び負荷が作用して排気温度が上昇する状況になると、自動再生を再開する構成とする。これにより、手動再生(強制再生)を領域に入る可能性を低くすることが可能となる。
また、DPF46b内のPM量が自動再生領域の閾値や手動再生領域の閾値を超えた場合においては、単位時間当たりのアクセル変化量に上限を設けて、アクセル(燃料噴射)が急激に変化しないようにする。これにより、スートの発生を少なくできて、PMの過堆積によりDPFが損傷するのを防止できるようになる。
トラクターやコンバイン等の農作業機を始め一般車両にも利用可能である。
PM 粒状化物質
TB 過給器
3 燃料タンク
4 高圧ポンプ
35 エアクリーナー
46b ディーゼルパティキュレートフィルタ(DPF)
71 エアーフローセンサ
72 気圧センサ
73 燃料バルブ
82 空気量調節バルブ
100 ECU
TB 過給器
3 燃料タンク
4 高圧ポンプ
35 エアクリーナー
46b ディーゼルパティキュレートフィルタ(DPF)
71 エアーフローセンサ
72 気圧センサ
73 燃料バルブ
82 空気量調節バルブ
100 ECU
Claims (3)
- 排気ガス中の粒状化物質(PM)を捕集するディーゼルパティキュレートフィルタ(46b)を備えたディーゼルエンジンを搭載した作業車両において、エアクリーナー(35)と過給器(TB)との間の吸気系統に空気量を測定するエアーフローセンサ(71)を設け、該エアーフローセンサ(71)の上流側に空気量調節バルブ(82)を設け、燃料タンク(3)と高圧ポンプ(4)との間に燃料量を調節する燃料バルブ(73)を設け、機体の適宜位置に気圧センサ(72)を設け、前記ディーゼルパティキュレートフィルタ(46b)再生時における気圧と高度と吸入空気量の補正係数との関係をECU(100)に予め記憶させておく構成とし、前記気圧センサ(72)で測定した気圧から高度を算出し、算出した高度から補正係数を算出し、算出した補正係数を基準の吸入空気量に乗じて吸入空気量を算出し、ディーゼルパティキュレートフィルタ(46b)再生時には算出した吸入空気量となるように、前記空気量調節バルブ(82)を制御するように構成したことを特徴とする作業車両。
- 気圧と高度と燃料量の補正係数との関係をECU(100)に予め記憶させておく構成とし、前記気圧センサ(72)で測定した気圧から高度を算出し、算出した高度から補正係数を算出し、算出した補正係数を基準の燃料量に乗じて燃料量を算出し、算出した燃料量となるように、前記燃料バルブ(73)を制御するように構成したことを特徴とする請求項1に記載の作業車両。
- 前記基準の吸入空気量と基準の燃料量は高度(0m)地点とし、この高度(0m)地点の補正係数を(1.00)とすることを特徴とする請求項2に記載の作業車両。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012103044A JP2013231376A (ja) | 2012-04-27 | 2012-04-27 | 作業車両 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012103044A JP2013231376A (ja) | 2012-04-27 | 2012-04-27 | 作業車両 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013231376A true JP2013231376A (ja) | 2013-11-14 |
Family
ID=49678039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012103044A Pending JP2013231376A (ja) | 2012-04-27 | 2012-04-27 | 作業車両 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013231376A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140238003A1 (en) * | 2011-11-16 | 2014-08-28 | Mitsubishi Heavy Industries, Ltd. | Pm accumulation amount estimation device for dpf |
CN104033223A (zh) * | 2014-06-30 | 2014-09-10 | 高玉琴 | 内燃机尾气过滤器再生点的测量装置 |
WO2015029716A1 (ja) * | 2013-08-30 | 2015-03-05 | 日立建機株式会社 | 建設機械 |
KR101795276B1 (ko) | 2016-06-20 | 2017-11-08 | 현대자동차주식회사 | Acv 제어방법 |
WO2022191307A1 (ja) * | 2021-03-11 | 2022-09-15 | いすゞ自動車株式会社 | 監視装置および車両 |
-
2012
- 2012-04-27 JP JP2012103044A patent/JP2013231376A/ja active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140238003A1 (en) * | 2011-11-16 | 2014-08-28 | Mitsubishi Heavy Industries, Ltd. | Pm accumulation amount estimation device for dpf |
US9074505B2 (en) * | 2011-11-16 | 2015-07-07 | Mitsubishi Heavy Industries, Ltd. | PM accumulation amount estimation device for DPF |
WO2015029716A1 (ja) * | 2013-08-30 | 2015-03-05 | 日立建機株式会社 | 建設機械 |
JP2015048763A (ja) * | 2013-08-30 | 2015-03-16 | 日立建機株式会社 | 建設機械 |
US9540983B2 (en) | 2013-08-30 | 2017-01-10 | Hitachi Construction Machinery Co., Ltd. | Construction machine |
CN104033223A (zh) * | 2014-06-30 | 2014-09-10 | 高玉琴 | 内燃机尾气过滤器再生点的测量装置 |
KR101795276B1 (ko) | 2016-06-20 | 2017-11-08 | 현대자동차주식회사 | Acv 제어방법 |
WO2022191307A1 (ja) * | 2021-03-11 | 2022-09-15 | いすゞ自動車株式会社 | 監視装置および車両 |
JP2022138960A (ja) * | 2021-03-11 | 2022-09-26 | いすゞ自動車株式会社 | 監視装置および車両 |
JP7439782B2 (ja) | 2021-03-11 | 2024-02-28 | いすゞ自動車株式会社 | 監視装置および車両 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010229959A (ja) | ディーゼルエンジン | |
JP2013181406A (ja) | 作業車両 | |
JP5176834B2 (ja) | 作業車両 | |
JP2013231376A (ja) | 作業車両 | |
JP2014109213A (ja) | トラクタ | |
JP2014009639A (ja) | 作業車両 | |
JP2012233430A (ja) | 作業車両 | |
JP2014214719A (ja) | トラクタ | |
JP2015045234A (ja) | 排気ガス処理装置付きトラクター | |
JP2016142157A (ja) | トラクタ | |
JP2014088860A (ja) | 作業車両 | |
JP2015143509A (ja) | トラクタ | |
JP2022086869A (ja) | 作業車両 | |
JP2012207636A (ja) | 作業車両 | |
JP2016033354A (ja) | トラクタ | |
JP2021008839A (ja) | 作業車両 | |
JP2019044691A (ja) | トラクタ | |
JP2018141454A (ja) | トラクタ | |
JP2013113263A (ja) | 作業車両 | |
JP2012031765A (ja) | 作業車両 | |
JP2018204466A (ja) | トラクタ | |
JP2011179381A (ja) | 作業車両 | |
JP2012052459A (ja) | 作業車 | |
JP2012072731A (ja) | トラクタ | |
JP2019210828A (ja) | トラクタ |