JP2020029894A - 車両用自動変速機の制御装置 - Google Patents

車両用自動変速機の制御装置 Download PDF

Info

Publication number
JP2020029894A
JP2020029894A JP2018155021A JP2018155021A JP2020029894A JP 2020029894 A JP2020029894 A JP 2020029894A JP 2018155021 A JP2018155021 A JP 2018155021A JP 2018155021 A JP2018155021 A JP 2018155021A JP 2020029894 A JP2020029894 A JP 2020029894A
Authority
JP
Japan
Prior art keywords
shift
hydraulic
pressure
control
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018155021A
Other languages
English (en)
Inventor
高橋 信明
Nobuaki Takahashi
信明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018155021A priority Critical patent/JP2020029894A/ja
Publication of JP2020029894A publication Critical patent/JP2020029894A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

【課題】シフト操作子によるシフトレンジの切換えを複数の接点からの電気的信号によって検出し、マニュアルバルブによって切換えられた油圧を元圧とし、リニアソレノイドバルブからの油圧により油圧式係合装置を係合させシフトレンジの切換を行う車両において、前記シフト操作子のシフト切換操作が遅い場合においても、油路における作動油の不足による、切換時のショックが生じにくい車両の制御装置を提供する。【解決手段】シフトレバー94のシフトポジション切換操作が遅い場合に、前進クラッチC1もしくは後進ブレーキB1までを接続する油路L5、L6への作動油の充填が増加するようにリニアソレノイドバルブSL1、SL2を制御することによって、シフト切換時のショックを抑制する【選択図】図2

Description

本発明は、シフトレンジの切換を行うシフト操作子を備えた車両用自動変速機の制御装置に関するものである。
シフト操作子の操作によって非走行レンジから走行レンジへ切換えられた場合に、シフト操作子と連動するマニュアルバルブによって、走行レンジの変速段を成立させる油圧式係合装置への元圧である走行レンジ圧が出力されるとともに、リニアソレノイドバルブを用いて、前記油圧式係合装置へ供給する係合油圧の制御がおこなわれることが開示されている。例えば特許文献1においては、走行レンジが選択されたことに対応して、リニアソレノイドバルブから前記油圧式係合装置へ供給される場合、ファーストフィル油圧指令値により速やかに係合油圧の立上げを開始させた後、走行レンジへの切換時に生じるショックを軽減するために係合油圧を緩やかに上昇させる油圧制御が行われている。
特開2016−130553号公報
上記の構成において、リニアソレノイドバルブからの係合油圧の出力開始と、マニュアルバルブによる走行レンジ圧への切換との時間的なずれが生じた場合、変速ショックを生じる虞があった。例えば、シフト操作子の操作位置を走行レンジに対応するポジションで作動するスイッチで検出する場合に、前記スイッチが作動した後にマニュアルバルブからの走行レンジ圧が生じるという時間的なずれがある場合には、特に、シフト操作子の操作がゆっくりと行われると、リニアソレノイドバルブへの油圧指令信号が生じているが、マニュアルバルブからの油圧の供給が開始されていない状態が生じることから、たとえば、リニアソレノイドバルブへのファーストフィルの制御が完了した後、もしくはファーストフィルの制御中にマニュアルバルブから走行レンジ圧が遅れて出力されるので、前記油圧式係合装置の急速な係合が生じ、これに起因するショックが生じる虞があった。
本発明は以上の事情を背景として為されたもので、その目的とするところは、シフト操作子の操作がゆっくりと行われることで非走行レンジから走行レンジが選択された場合においても、シフトレンジの切換え時に生じるショックを軽減することが可能な車両用自動変速機の制御装置を提供することに有る。
第1発明の要旨とするところは、(a)シフト操作子の操作による非走行レンジから走行レンジへの切換えを電気的に検出し、前記シフト操作子に連動するマニュアルバルブから出力される走行レンジ圧を元圧として、前記走行レンジのギヤ段を成立させる油圧係合装置の係合圧を制御するリニアソレノイドバルブを備え、前記リニアソレノイドバルブによって前記非走行レンジから走行レンジへの切換に応答して前記油圧式係合装置の作動油充填制御およびショック抑制制御を実行する車両用自動変速機の制御装置において、(b)前記シフト操作子の操作速度が遅いほど、前記リニアソレノイドバルブによる前記作動油充填制御の時間が増加するように前記リニアソレノイドバルブを制御することを特徴とする。
第1発明によれば、前記シフト操作子の操作速度が遅いほど、前記リニアソレノイドバルブによる作動油充填制御の時間が増加するように前記リニアソレノイドバルブを制御されるので、前記リニアソレノイドバルブから前記油圧式係合装置の作動油の充填が十分に行われた後に、ショックを抑制制御が実行されて前記油圧式係合装置が係合されるので、シフトレンジの切換時に生じるショックが軽減される。
本発明が適用される車両の概略構成を説明する図であると共に、車両における各種制御の為の制御機能及び制御系統の要部を説明する図である。 図1の車両に備えられた油圧制御回路のうちで前進用クラッチ及び後進用ブレーキの作動切換制御などに関連する油圧回路図である。 図2のシフト操作子の操作位置を示す接点からの電気的な出力信号およびマニュアルバルブからの出力油圧との関係を模式的に示した図である。 図2のシフト操作子の操作が速く行われ、シフト操作子の位置を示す接点からの電気的な出力信号とマニュアルバルブからの出力油圧とのズレがほとんど生じていない通常の場合を示したタイムチャートである。 図2のシフト操作子の操作がゆっくり行われ、シフト操作子の位置を示す接点からの電気的な出力信号がマニュアルバルブからの出力油圧より早い場合の一例を示したタイムチャートである。 図2のシフト操作子の操作速度に基づいて、リニアソレノイドバルブの油圧制御を切換えるフローチャートである。 図2のシフト操作子をPレンジからRレンジに切換える場合に、シフト操作子の操作速度に基づいて、リニアソレノイドバルブの油圧制御を切換えるフローチャートである。 図2のシフト操作子の位置を検出できる構成とした一例を示す油圧回路図である。
以下、本発明の実施例を図面を参照しつつ詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比および形状等は必ずしも正確に描かれていない。
図1は、本発明が適用される車両10の概略構成を説明する図であると共に、車両10における各種制御の為の制御機能及び制御系統の要部を説明する図である。図1において、車両10は、走行用の駆動力源としてのエンジン12と、駆動輪14と、エンジン12と駆動輪14との間に設けられた動力伝達装置16とを備えている。動力伝達装置16は、非回転部材としてのハウジング17内において、エンジン12に連結された流体式伝動装置としての公知のトルクコンバータ18、トルクコンバータ18に連結されたタービン軸20、タービン軸20に連結された前後進切替装置22、前後進切替装置22に連結された入力軸24、入力軸24に連結された無段変速機26、無段変速機26に連結された出力軸28、減速歯車装置30、差動歯車装置32等を備えている。このように構成された動力伝達装置16において、エンジン12の動力(特に区別しない場合にはトルクや力も同義)は、トルクコンバータ18、前後進切替装置22、無段変速機26、減速歯車装置30、差動歯車装置32等を順次介して、左右の駆動輪14へ伝達される。
トルクコンバータ18は、エンジン12に連結されたポンプ翼車18p、及びタービン軸20に連結されたタービン翼車18tを備えている。ポンプ翼車18pには、無段変速機26を変速制御したり、無段変速機26におけるベルト挟圧力を発生させたり、後述する前進用クラッチC1及び後進用ブレーキB1(本発明の油圧式係合装置に対応する。以降、前進用クラッチもしくは後進用ブレーキとする)の各々の作動を切り替えたり、動力伝達装置16の各部に潤滑油を供給したりする為の作動油圧をエンジン12により回転駆動されることにより発生する機械式のオイルポンプ34が連結されている。
前後進切替装置22は、ダブルピニオン型の遊星歯車装置22p、前進用クラッチC1、及び後進用ブレーキB1を備えている。遊星歯車装置22pのサンギヤ22sはタービン軸20に連結され、遊星歯車装置22pのキャリア22cは入力軸24に連結され、遊星歯車装置22pのリングギヤ22rは後進用ブレーキB1を介してハウジング17に選択的に連結されている。又、キャリア22cとサンギヤ22sとは前進用クラッチC1を介して選択的に連結される。このように構成された前後進切替装置22では、前進用クラッチC1が係合されると共に後進用ブレーキB1が解放されると、前進用の動力伝達経路が成立(形成)させられる。又、後進用ブレーキB1が係合されると共に前進用クラッチC1が解放されると、後進用の動力伝達経路が成立させられる。又、前進用クラッチC1及び後進用ブレーキB1が共に解放されると、前後進切替装置22は動力伝達を遮断するニュートラル状態(動力伝達遮断状態)とされる。このように、前後進切換装置22および無段変速機26は、自動変速機27を構成しており、前進用クラッチC1及び後進用ブレーキB1は、エンジン12と無段変速機26との間の動力伝達経路を断接して、前進ギヤ段および後進ギヤ段を成立させる油圧式係合装置である。
無段変速機26は、入力軸24に設けられた有効径が可変のプライマリプーリ36と、出力軸28に設けられた有効径が可変のセカンダリプーリ38と、それら各プーリ36,38の間に巻き掛けられた伝達要素としての伝動ベルト40とを備え、それら各プーリ36,38と伝動ベルト40との間の摩擦力を介してエンジン12の動力を駆動輪14側へ伝達する。
プライマリプーリ36は、入力軸24に固定された固定シーブ36aと、入力軸24に対して軸回りの相対回転不能且つ軸方向の移動可能に設けられた可動シーブ36bと、それら各シーブ36a,36bの間のV溝幅を変更する為のプライマリプーリ36におけるプライマリ推力Win(=プライマリ圧Pin×受圧面積Ain)を付与する油圧アクチュエータとしての油圧シリンダ36cとを備えている。又、セカンダリプーリ38は、出力軸28に固定された固定シーブ38aと、出力軸28に対して軸回りの相対回転不能且つ軸方向の移動可能に設けられた可動シーブ38bと、それら各シーブ38a,38bの間のV溝幅を変更する為のセカンダリプーリ38におけるセカンダリ推力Wout(=セカンダリ圧Pout×受圧面積Aout)を付与する油圧アクチュエータとしての油圧シリンダ38cとを備えている。プライマリ圧Pinは油圧シリンダ36cへ供給される油圧であり、セカンダリ圧Poutは油圧シリンダ38cへ供給される油圧である。各油圧Pin,Poutは、各々、可動シーブ36b,38bを固定シーブ側36a,38aへ押圧する推力Win,Woutを付与するプーリ油圧である。
無段変速機26では、プライマリ圧Pin及びセカンダリ圧Poutが油圧制御回路50(図2参照)によって各々調圧制御されることにより、プライマリ推力Win及びセカンダリ推力Woutが各々制御される。これにより、各プーリ36,38のV溝幅が変化して伝動ベルト40の掛かり径(有効径)が変更され、変速比(ギヤ比)γ(=入力軸回転速度Nin/出力軸回転速度Nout)が変化させられると共に、伝動ベルト40が滑りを生じないように各プーリ36,38と伝動ベルト40との間の摩擦力(すなわち挟圧力;以下ベルト挟圧力という)が制御される。つまり、プライマリ圧Pin(プライマリ推力Winも同意)及びセカンダリ圧Pout(セカンダリ推力Woutも同意)が各々制御されることで、伝動ベルト40の滑りが防止されつつ実変速比γが目標変速比γtgtとされる。
車両10には、例えば無段変速機26の変速制御を行う車両10の制御装置を含む電子制御装置70が備えられている。電子制御装置70は、例えばCPU、RAM、ROM、入出力インターフェース等を備えた所謂マイクロコンピュータを含んで構成されており、CPUはRAMの一時記憶機能を利用しつつ予めROMに記憶されたプログラムに従って信号処理を行うことにより車両10の各種制御を実行する。例えば、電子制御装置70は、エンジン12の出力制御、無段変速機26のベルト挟圧力制御を含む変速制御等を実行するようになっており、必要に応じてエンジン制御用、油圧制御用等に分けて構成される。
電子制御装置70には、車両10が備える各種センサ(例えば各種回転速度センサ80,82,84,86、アクセル開度センサ88、各油圧センサ90,92など)による検出信号に基づく各種実際値(例えばエンジン回転速度Ne、タービン回転速度Nt、入力軸回転速度Nin、車速Vに対応する出力軸回転速度Nout、アクセル開度θacc、前進用クラッチC1へ供給される油圧(すなわち前進用クラッチC1の係合圧)Pc1、後進用ブレーキB1へ供給される油圧(すなわち後進用ブレーキB1の係合圧)Pb1、シフトスイッチ装置96からシフトレバー94(本発明のシフト操作子に対応する。以降シフトレバーとする)の位置情報に対応するシフト操作位置信号(シフト位置又はレバー位置ともいう)Pshが、それぞれ供給される。又、電子制御装置70からは、車両10に設けられた各装置(例えばエンジン12、油圧制御回路50など)に各種出力信号(例えばエンジン12の出力制御の為のエンジン出力制御指令信号Se、無段変速機26の変速等に関する油圧制御の為の油圧制御指令信号Scvt、前進用クラッチC1や後進用ブレーキB1の係合作動に関する油圧制御の為の油圧制御指令信号Scltなど)が供給される。
シフトレバー94は、例えば「P」、「R」、「N」、及び「D」のシフト操作位置へ択一的に手動操作される。シフトスイッチ装置96は、シフトレバー94の下部に配設され、シフトレバー94の操作に対応してシフトレバー94の電気接点とシフトスイッチ96内の電気接点との接触が切換えられ、それぞれのシフト操作位置に対応するシフト操作位置信号Psh、すなわち接点信号を電子制御装置に出力する。なお、シフトレンジは、「P」、「R」、「N」、及び「D」のシフト操作位置との判定に基づいてそれぞれ選択される制御モードとして用いられ、実質的には、「P」、「R」、「N」、及び「D」のシフト操作位置を指す。これ以降、特に区別する必要がなければ、シフト操作位置およびシフトレンジを、Pポジション、Rポジション、Nポジション、およびDポジションに統一して用いることとする。
「P」は、動力伝達装置16のパーキングポジション(Pポジション)を選択し、前進用クラッチC1及び後進用ブレーキB1を共に解放して動力伝達装置16を動力伝達経路が遮断されたニュートラル状態(中立状態)とし且つ機械的に出力軸28の回転を阻止する為のパーキング操作位置Pである。又、シフト操作位置「R」は、動力伝達装置16の後進走行ポジション(Rポジション)を選択し、後進用ブレーキB1を係合して動力伝達装置16を後進走行用の動力伝達経路が確立された後進走行可能状態とする為の後進走行操作位置Rである。又、シフト操作位置「N」は、動力伝達装置16のニュートラルポジション(Nポジション)を選択し、動力伝達装置16をニュートラル状態とする為のニュートラル操作位置(中立操作位置)Nである。又、シフト操作位置「D」は、動力伝達装置16の前進走行ポジション(Dポジション)を選択し、前進用クラッチC1を係合して動力伝達装置16を前進走行用の動力伝達経路が確立された前進走行可能状態とする為の前進走行操作位置Dである。パーキング操作位置P及びニュートラル操作位置Nは、車両10の走行を不能とする非走行操作位置である。後進走行操作位置R及び前進走行操作位置Dは、車両10の走行を可能とする走行操作位置である。
図2は、車両10に備えられた油圧制御回路50の一部であり、前進用クラッチC1及び後進用ブレーキB1の作動切換制御などに関連するクラッチ油圧制御回路52が点線で囲われて示されている。図2において、クラッチ油圧制御回路52は、シフトレバー94と機械的に連結されているマニュアルバルブ98、前進用クラッチC1に油圧を供給するリニアソレノイドバルブSL1、後進用ブレーキB1に油圧を供給するリニアソレノイドバルブSL2を備えている。機械式のオイルポンプ34が発生した油圧は、調圧バルブCVで調圧され油路L1を経由してマニュアルバルブ98に元圧Pmたとえばライン圧として供給される。シフトレバー94と連動するマニュアルバルブ98では、シフトレバー94の操作にともなって油路の切換が行われる。シフトレバー94が前進走行操作位置Dに有るときは、マニュアルバルブ98の弁位置が油路L4に油圧を供給する位置とされ、マニュアルバルブ98から供給される走行レンジ圧Po(以降、出力油圧とする)すなわち元圧Pmが油路L4に供給される。また、シフトレバー94が後進走行操作位置Rにあるときは、マニュアルバルブ98の弁位置が油路L3に油圧を供給する位置とされ、マニュアルバルブ98から供給される出力油圧Poすなわち元圧Pmが油路L3に供給される。また、シフトレバー94がパーキング操作位置P或いはニュートラル操作位置Nにあるときは、油路L3と油路L4とが排出油路L2に接続される。
電子制御装置70は、シフトスイッチ装置96から前進走行操作位置Dを示すシフト操作位置信号Pshである接点信号を受けると、前進用クラッチC1の係合作動に関する油圧制御の為の油圧制御指令信号ScltをリニアソレノイドバルブSL1に出力する。リニアソレノイドバルブSL1は、油圧制御指令信号Scltに基づいて前進用クラッチC1に油路L6を介して係合圧Pc1を供給し、車両10の前進が開始される。また、電子制御装置70は、シフトスイッチ装置96から後進走行操作位置Rを示すシフト操作位置信号Pshである接点信号を受けると、後進用クラッチB1の係合作動に関する油圧制御の為の油圧制御指令信号ScltをリニアソレノイドバルブSL2に出力する。リニアソレノイドバルブSL2は、油圧制御指令信号Scltに基づいて後進用クラッチB1に油路L5を介して係合圧Pb1を供給し、車両10の後進が開始される。図2において、シフトレバー94とマニュアルバルブ98とを結ぶ実線は、機械的な動きである機械信号を示し、シフトスイッチ装置96と電子制御装置70とを結ぶ一点鎖線は、接点信号であるシフト操作位置信号Pshを示し、電子制御装置70とリニアソレノイドバルブSL1、SL2とを結ぶ一点鎖線は、電気信号Scltを示している。
図3は、シフトレバー94の操作位置に対応して、シフトレバー94の電気接点とシフトスイッチ96内の電気接点との接続が切換えられることでシフトスイッチ装置96から出力される接点信号Pshと、マニュアルバルブ98から出力されるマニュアルバルブ98からの出力油圧Poとが示されている。前述のように、マニュアルバルブ98の出力油圧Poは、シフトレバー94の操作位置が前進操作位置Dにあるとき、および後進操作位置Rにあるときは元圧Pmとなる。また、シフトレバー操作位置がパーキング操作位置P或いはニュートラル操作位置Nにあるときは、マニュアルバルブ98から油路L3、L4への出力油圧Poは、ドレイン油圧Exとなる。なお、前進操作位置Dにおける出力油圧Poと後進操作位置Rにおける出力油圧Poとを、調圧バルブCVを調圧することによって異なった油圧とすることもできる。図3に示すように、シフトレバー94の操作位置に対応してシフトスイッチ装置96から接点信号Pshが出力される範囲と、マニュアルバルブから元圧Pmが出力される範囲との間にはずれがある。
シフトレバー94の可動範囲、すなわち操作が可能である範囲は、S1からS12である。シフトレバー94の操作にともなってシフトスイッチ装置96から出力される接点信号Pshは、S1からS2において非走行ポジションであるPポジションを示す信号が出力される。S3からS6において走行ポジションであるRポジション、S7からS8において非走行ポジションであるNポジション、S9からS12において走行ポジションであるDポジションを示す信号がそれぞれ出力される。また、S2からS3、S6からS7、およびS8からS9は同一の距離に設定されている。たとえば、シフトレバー94をPポジションからRポジションに切換えた場合の操作速度vは、Pポジションを示す信号がオンからオフに切換わるシフトレバー94の位置S1からRポジションを示す信号がオフからオンに切換わるシフトレバー94の位置S3の移動距離を移動時間すなわち切換時間tで除した値となる。一方、マニュアルバルブ98からの出力油圧Poすなわち元圧Pmは、S4からS5およびS10からS11において出力される。したがって、シフトレバー94の操作にともなってRポジションを示す接点信号Pshの出力されるシフトレバーの操作範囲は、マニュアルバルブ98から元圧Pmが出力される範囲より広く設定されている。また、Dポジションを示す接点信号Pshの出力されるシフトレバー94の操作範囲は、マニュアルバルブ98から元圧Pmが出力される範囲より広く設定されている。すなわち、電気的な接点信号が生じない接点間にシフトレバー94の操作位置が有る場合に、前記接点間においてマニュアルバルブ98の出力油圧Poすなわち元圧Pmが生じないことをより確実にするために、安全性を高めた設定が行われている。
図1に戻り、電子制御装置70は、シフト切換操作判定手段すなわちシフト切換操作判定部74、昇圧パターン選択手段すなわち昇圧パターン選択部76、およびクラッチ制御手段すなわちクラッチ制御部78を備えている。
シフト切換操作判定部74は、シフトスイッチ装置96からの接点信号Pshに基づいてシフトレバー94の非走行ポジションから走行ポジションへのシフト切換操作を判定する。たとえば、PポジションからRポジションへの切換えにおいては、Pポジションを示す接点信号PshがオフとされRポジションを示す接点信号Pshがオンされることによって、シフト切換を判定する。シフト切換操作判定部74は、接点信号Psのオンからオフへの切換わりに要する時間である切換時間tが予め定められた所定時間ta以上か否かをに基づいてシフトレバー94の操作速度を判定する。所定時間taはたとえば2秒程度に設定されている。
昇圧パターン選択部76は、シフト切換操作判定部74からのシフト切換時間tが所定時間ta以上である場合、たとえば図4および図5の実線に示す通常の制御とは異なる、予め定められ記憶されている前進用クラッチC1もしくは後進用ブレーキB1への制御油圧Pcltの昇圧パターン(図5の破線)を、シフト切換時間tに基づいて選択する。なお、シフト切換時間tを関数とする数式から油圧の制御値、たとえば油圧指令値、油圧の維持時間等を導くこととしても良い。
クラッチ制御部78は、昇圧パターン選択部76によって選択された油圧の昇圧パターンに基づいて、作動油充填制御およびショック抑制制御を順次実行するために、前進用クラッチC1を駆動する油圧制御指令信号Scltを油圧制御回路50、すなわちその一部であるクラッチ油圧制御回路52のリニヤソレノイドSL1またはSL2に出力する。
図4には、シフトレバー94が非走行操作位置であるNポジションもしくはPポジションから走行操作位置であるDポジションもしくはRポジションへ操作されるガレージシフト操作時に行われる油圧制御の一例が示されている。t01時点において、シフトレバー94の非走行ポジションから走行ポジションへの切換え、すなわち非走行操作位置を示すシフトスイッチ装置96からの接点信号がオフした後に走行操作位置を示すシフトスイッチ装置96からの接点信号がオンする、シフトレバー94の切換操作が行なわれている。シフトレバー94の切換操作が素早く行われているため、t01時点において、マニュアルバルブ98の出力油圧Poすなわち元圧Pmに上昇を開始し、これ以降も維持されている。また、前進用クラッチC1もしくは後進用ブレーキB1の制御油圧Pcltは、t01時点において、Pcl3とされ一時的に油圧を高め、油路L5もしくは油路L6への作動油の充填を図るファーストフィルが行われている。t02時点においてファーストフィルが完了し、制御油圧Pcltは、Pcl1に減少され低圧に維持されている。t01時点からt02時点は、作動油充填制御区間である。t03時点において、制御油圧Pcltは、緩やかに上昇され、t04時点においてPcl2に達している。t04時点から、制御油圧Pcltの上昇が増加され、t05時点において、クラッチ係合時に設定されているPcl3に達している。t03時点からt05時点までの制御油圧Pcltの緩やかな上昇率は、非走行ポジションから走行ポジションへの切換え時の前進用クラッチC1もしくは後進用ブレーキB1の係合時のショックを軽減するために設定されている。なお、t02時点からt03時点までは低圧待機区間と呼ばれ、t03時点からt05時点はショック抑制制御区間と呼ばれる。
図5には、シフトレバー94の操作がゆっくり行われた場合、例えば非走行ポジションであるPポジションから走行ポジションであるたとえばRポジションへシフトレバー94の切換操作が所定時間ta以上で行われた場合においても制御油圧Pcltの制御が変更されない昇圧パターンが実線で示されている。t1時点においてファーストフィルすなわち制御油圧Pcl3の油圧指示が行なわれ、t2時点においてファーストフィルの油圧指示が完了している。t4時点において、マニュアルバルブ98の出力油圧Poすなわち元圧Pmが出力している。ファーストフィルの制御区間、すなわちt1時点からt2時点の間において、マニュアルバルブ98の出力油圧Poが出力されていないため、油路L5への作動油の充填が十分でなく、それによって後進用ブレーキB1の作動油充填が遅延する。このため、t4時点においてマニュアルバルブ98の出力圧PoがリニアソレノイドバルブSL2を通して作動油が充填されない後進用ブレーキB1に供給されると、係合ショックが生じる可能性があった。なお、PポジションからRポジションのシフトレバー94の切換操作のみ説明したが、例えば、Nポジションである他の非走行ポジションからDポジションである隣接する走行ポジションへのシフトレバー94の切換操作においても同様の状態が生じる。
図5において、制御油圧Pcltを変更する本発明の制御の昇圧パターンの一例が破線で示されている。t1時点において、シフト切換操作判定部74が非走行ポジションであるたとえばPポジションがオフされた信号をシフトスイッチ装置96から受けると、その時間から走行ポジションであるたとえばRポジションがオンされるまでの経過時間tが算出される。シフトレバー94の切換操作が所定時間ta以上、例えば2秒以上の遅い速度で行われた場合、昇圧パターン選択部76は、ファーストフィルの油圧Pcl3の維持を判定し、それに基づいてクラッチ制御部78は油圧Pcl3をt5時点まで維持する。たとえばt3時点において、Rポジションのオン信号Pshが入力すると、シフト切換操作判定部74は、PポジションからRポジションへのシフト切換の経過時間tとRポジションへの切換であることとを昇圧パターン選択部76に伝達し、昇圧パターン選択部76は、経過時間tに基づいて後進用ブレーキB1への油圧の昇圧パターンを予め記憶されたマップ等を用いて選択する。これ以降は、昇圧パターン選択部76の指示に基づいて、クラッチ制御部78が油圧回路50を油圧制御指令信号Scltによって制御し、後進用ブレーキB1への油圧の制御が行われる。昇圧パターン選択部76は、図5の破線に示すように、t5時点までPcl3すなわちファーストフィルを維持し、t5時点からt6時点まで制御油圧Pcltを、低圧のPcl1に維持している。t6時点において、制御油圧を緩やかに増加し、t7時点において制御油圧Pcltの上昇をさらに増加し、t8時点において、クラッチ係合時に設定されているPcl3としている。上記ファーストフィルは、マニュアルバルブ98から出力油圧Poが出力された後のt5時点まで維持されるので、後進用ブレーキB1に対する作動油の充填が行われる。なお、PポジションからRポジションのシフトレバー94の切換操作のみ説明したが、他の非走行ポジションから隣接する走行ポジションへのシフトレバー94の切換操作においても同様の制御が行われる。
図6は、シフトレバー94の操作速度が遅い場合に、作動が要求されているリニアソレノイドバルブSL1から前進用クラッチC1までを接続する油路L6への充填が増加するようにリニアソレノイドバルブSL1の制御を行う、もしくはリニアソレノイドバルブSL2から後進用ブレーキB1までを接続する油路L5への作動油の充填が増加するようにリニアソレノイドバルブSL1の制御を行う制御作動の要部を説明するフローチャートである。図6において、シフト切換操作判定部74の機能に対応するステップ(以下、ステップを省略する)S10において、ガレージシフトのスタート、すなわちアクセルペダルの踏込みが無い状態で非走行ポジションから走行ポジションへの切換操作が行なわれたか否かが判定される。S10の判定が否定される場合、S10の判定が繰返される。また、S10の判定が肯定された場合、シフト切換操作判定部74の機能に対応するS20において、シフトレバー94の操作速度vが所定速度va以下か否か、すなわち、非走行ポジションのオフから走行ポジションのオンへの切換時間tが所定時間ta以上か否かが判定される。S20の判定が否定されると、昇圧パターン選択部76およびクラッチ制御部78の機能に対応するS40において、リニアソレノイドバルブSL1、SL2は通常の制御が実行され図5の実線で示す昇圧パターンに沿って係合圧Pc1、Pb1が変化するようにリニアソレノイドバルブSL1、SL2が制御される。S20の判定が肯定されると、昇圧パターン選択部76およびクラッチ制御部78の機能に対応するS30において、予め記憶されているマップに基づいて制御条件が選択され、それに基づいてリニアソレノイドバルブSL1、SL2の制御が行われ、図5の破線に示す昇圧パターンに沿って係合圧Pc1、Pb1が変化するようにリニアソレノイドバルブSL1、SL2が制御される。
図7は、図6で示したフローチャートをより具体的に示したもので、非走行ポジションであるPポジションから走行ポジションであるRポジョションにシフトレバー94の切換操作が行われた場合の制御作動の要部を示すフローチャートである。シフト切換操作判定部74の機能に対応するS110において、Pポジションに設定中であるかが判定される。S110判定が否定される場合、S110の判定が繰返される。S110の判定が肯定された場合、シフト切換操作判定部74の機能に対応するS120において、Pポジションがオフであるか否かが判定される。この判定が否定された場合、S120の判定が繰返される。S120の判定が肯定された場合、シフト切換操作判定部74の機能に対応するS130において、Rポジションがオンされたか否かが判定される。S130の判定が否定された場合、S130の判定が繰返される。S130の判定が肯定された場合、シフト切換操作判定部74の機能に対応するS140において、シフトレバー94の操作速度vが所定速度va以下か否か、すなわち、PポジッションオフからRポジションオンまでの時間が所定時間ta以上か否かが判定される。このS140の判定が肯定された場合、昇圧パターン選択部76およびクラッチ制御部78の機能に対応するS150において、予め記憶されているマップに基づいて制御条件が選択され、それに基づいてリニアソレノイドバルブSL1、SL2の出力圧すなわち係合圧Pc1、Pb1が図5の破線に示すように制御される。また、S140の判定が否定された場合、昇圧パターン選択部76およびクラッチ制御部78の機能に対応するS160において、リニアソレノイドバルブSL2の通常の油圧制御が図5の実線に示すように行われる。
本実施例によれば、シフトレバー94の操作による非走行レンジから走行レンジへの切換えを、シフトレバー94の操作にともなう複数の接点の電気的な接続の切換りによって電気的に検出し、シフトレバー94に連動するマニュアルバルブ98から供給する作動油の出力油圧Poを元圧Pmとして、走行レンジのギヤ段を成立させる前進クラッチC1もしくは後進ブレーキB1の出力油圧Pc1、Pb1を制御するリニアソレノイドバルブSL1、SL2を備え、リニアソレノイドバルブSL1、SL2、によって非走行レンジから走行レンジへの切換に応答して前進クラッチC1もしくは後進ブレーキB1の作動油充填制御およびショック抑制制御を実行する自動変速機27の電子制御装置70において、シフトレバー94の操作速度vが遅いほど、リニアソレノイドバルブSL1、SL2による作動油充填制御の時間が増加するようにリニアソレノイドバルブSL1、SL2を制御する。これによって、リニアソレノイドバルブSL1、SL2から前進クラッチC1もしくは後進ブレーキB1までを接続する油路L5、L6への作動油の充填が十分に行われるとともに、シフトレンジの切換時に生じる虞の有るショックを軽減するための油圧制御を実行することが可能となる。
また、本実施例において、シフトスイッチ96の隣接接点間の距離を全ての接点間で同一としたが、シフトスイッチ装置96の隣接する接点間の距離が異なる場合は、所定時間taを接点間の距離に対応して変化させることで、所定のシフトレバー操作速度vを判定することができる。
また、本実施例において、シフトレバー94の操作速度vが所定速度vaより遅い場合に、ファーストフィルの時間を延ばすものとしたが、特にこれに限らず、たとえばマニュアルバルブ98からの出力油圧Poが元圧Pmとなった時点でファーストフィルが完了していない場合には、ファーストフィルの制御油圧Pcltを増加すること、またファーストフィル後の低圧待機の時間を長く保持すること、更に、ショック抑制制御区間の油圧設定を高く設定変更すること等によっても、油路L5、L6への作動油の充填を改善することができる。
つぎに、本発明の他の実施例を説明する。なお、以下の説明において前述の実施例と共通する部分には同一の符号を付して説明を省略する。
前述の実施例においては、シフトレバー94の切換操作によって生じるシフトスイッチ装置96の操作信号Pshのオンとオフとの経過時間tから、シフトレバー94の操作速度vを判定し、それに基づいて、リニアソレノイドバルブSL1、SL2の制御油圧を変更するものであったが、本実施例においては、シフトレバー94の全ての操作における移動位置が電気的に検出できるポジションセンサとして機能するエンコーダ100を備えることにおいて異なっている。
図8は、図2に示した油圧回路図に、シフトレバー94と機械的に連度して動き、シフトレバー94の位置を電気的な信号に変換するエンコーダ100が加えられている。前述の実施例において、シフトレバー94の操作位置が接点位置に有る場合に、接点位置のうちのどの位置であるかを判定することはできなかった。また、その操作位置が接点間にある場合においても同様であった。しかし、本実施例の構成によれば、接点位置にかかわらず、所定の位置から隣接する所定の位置までのシフトレバー94の移動を検出することが可能であり、シフトレバー94の移動速度vをより広い移動範囲において、より正確に判定することが可能となる。
本実施例によれば、前述の実施例と同様に、シフトレバー94の操作速度vが遅い場合に、リニアソレノイドバルブSL1、SL2から前進クラッチC1もしくは後進ブレーキB1までを接続する油路L5、L6への作動油の充填が十分に行われるとともに、シフトレンジの切換時に生じる虞の有るショックを軽減するための油圧制御を実行することが可能となるとともに、制御を変更する判定において、より正確な判定が可能となる。
本実施例において、シフトレバー94の位置をエンコーダ100によって検出するものとしたが、特にエンコーダ100に限らず、例えば光学的、もしくは磁気的に位置検出するセンサを用いても良い。
尚、上述したのはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
27:自動変速機(車両用自動変速機)
70:電子制御装置(制御装置)
94:シフトレバー(シフト操作子)
98:マニュアルバルブ
Po:出力油圧(走行レンジ圧)
Pm:元圧
Pc1、Pb1:係合圧
C1:前進用クラッチ(油圧式係合装置)
B1:後進用ブレーキ(油圧式係合装置)
SL1、SL2:リニアソレノイドバルブ

Claims (1)

  1. シフト操作子の操作による非走行レンジから走行レンジへの切換えを電気的に検出し、前記シフト操作子に連動するマニュアルバルブから出力される走行レンジ圧を元圧として、前記走行レンジのギヤ段を成立させる油圧係合装置の係合圧を制御するリニアソレノイドバルブを備え、前記リニアソレノイドバルブによって前記非走行レンジから走行レンジへの切換に応答して前記油圧式係合装置の作動油充填制御およびショック抑制制御を実行する車両用自動変速機の制御装置において、
    前記シフト操作子の操作速度が遅いほど、前記リニアソレノイドバルブによる前記作動油充填制御の時間が増加するように前記リニアソレノイドバルブを制御する
    ことを特徴とする車両用自動変速機の制御装置。
JP2018155021A 2018-08-21 2018-08-21 車両用自動変速機の制御装置 Pending JP2020029894A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018155021A JP2020029894A (ja) 2018-08-21 2018-08-21 車両用自動変速機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155021A JP2020029894A (ja) 2018-08-21 2018-08-21 車両用自動変速機の制御装置

Publications (1)

Publication Number Publication Date
JP2020029894A true JP2020029894A (ja) 2020-02-27

Family

ID=69624103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018155021A Pending JP2020029894A (ja) 2018-08-21 2018-08-21 車両用自動変速機の制御装置

Country Status (1)

Country Link
JP (1) JP2020029894A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115681489A (zh) * 2022-12-30 2023-02-03 苏州亚太精睿传动科技股份有限公司 一种变速器液压系统电气互锁控制装置与方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115681489A (zh) * 2022-12-30 2023-02-03 苏州亚太精睿传动科技股份有限公司 一种变速器液压系统电气互锁控制装置与方法

Similar Documents

Publication Publication Date Title
EP2644951B1 (en) Control device and control method for continuously variable transmission
JP6446139B2 (ja) 車両用駆動制御装置及び車両用駆動制御装置の制御方法
US10234032B2 (en) Control system for vehicle transmission
US10421449B2 (en) Control device for vehicle and control method for vehicle
JP2020029894A (ja) 車両用自動変速機の制御装置
US10107394B2 (en) Control device for continuously variable transmission equipped with auxiliary transmission
EP2902668B1 (en) Continuously variable transmission and control method thereof
CN114096746B (zh) 车辆的控制装置及车辆的控制方法
US10549757B2 (en) Vehicle control device and vehicle control method
CN114126937B (zh) 车辆的控制装置及车辆的控制方法
EP3159581B1 (en) Hydraulic control device for automatic transmission and control method therefor
EP3358227A1 (en) Vehicle control apparatus and vehicle control method
US11454317B2 (en) Method for controlling power transmission device and power transmission device
KR101919964B1 (ko) 자동변속기의 중립 제어장치 및 그 방법
JP2018003982A (ja) 車両用動力伝達装置の制御装置
JP2022175104A (ja) 車両用動力伝達装置
JP2017082817A (ja) 車両用動力伝達装置の制御装置
US20200370640A1 (en) Control method for power transmission device, and control device for power transmission device
WO2019131463A1 (ja) 動力伝達装置の制御方法及び動力伝達装置の制御装置
JP2022052606A (ja) 車両用動力伝達装置
JP2012225417A (ja) 車両用無段変速機の変速制御装置
JP2017207100A (ja) 車両用動力伝達装置の制御装置