JP2020029600A - 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法 - Google Patents

一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法 Download PDF

Info

Publication number
JP2020029600A
JP2020029600A JP2018156521A JP2018156521A JP2020029600A JP 2020029600 A JP2020029600 A JP 2020029600A JP 2018156521 A JP2018156521 A JP 2018156521A JP 2018156521 A JP2018156521 A JP 2018156521A JP 2020029600 A JP2020029600 A JP 2020029600A
Authority
JP
Japan
Prior art keywords
mass
less
final
aluminum alloy
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018156521A
Other languages
English (en)
Other versions
JP6614293B1 (ja
Inventor
雄一 玉置
Yuichi Tamaoki
雄一 玉置
圭治 金森
Keiji Kanamori
圭治 金森
大輔 下坂
Daisuke SHIMOSAKA
大輔 下坂
敏也 穴見
Toshiya Anami
敏也 穴見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018156521A priority Critical patent/JP6614293B1/ja
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to KR1020207005766A priority patent/KR20200035994A/ko
Priority to EP19851040.6A priority patent/EP3842559A4/en
Priority to PCT/JP2019/027789 priority patent/WO2020039792A1/ja
Priority to CN201980004371.8A priority patent/CN111094606B/zh
Priority to US16/644,639 priority patent/US11401584B2/en
Priority to TW108124940A priority patent/TWI700377B/zh
Application granted granted Critical
Publication of JP6614293B1 publication Critical patent/JP6614293B1/ja
Publication of JP2020029600A publication Critical patent/JP2020029600A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/049Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for direct chill casting, e.g. electromagnetic casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/164Lids or covers characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

【課題】適度な強度を有し、成形性、加工軟化性に優れた電池蓋用アルミニウム合金板であって、作動圧バラツキが少なく、耐繰り返し疲労特性に優れた一体型防爆弁を成形することが可能な電池蓋用アルミニウム合金板およびその製造方法を提供する。【解決手段】Fe:1.05〜1.50質量%、Mn:0.15〜0.70質量%、Ti:0.002〜0.15質量%、及びB:0.04質量%未満を含有し、残部がAlおよび不純物からなり、Fe/Mn比が1.8〜7.0に規制され、不純物としてのSiが0.40質量%未満、Cuが0.03質量%未満、Mgが0.05質量%未満、Vが0.03質量%未満に規制された成分組成を有し、引張り強度が95MPa以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率80%で冷間圧延を施した後の引張り強度をTS80と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS80)の値が−3MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であることを特徴とする、一体型防爆弁成形用の電池蓋用アルミニウム合金板。さらに再結晶組織の再結晶粒の平均結晶粒径が15〜30μmであることが好ましい。【選択図】なし

Description

本発明は、角形、円筒形等のリチウムイオン電池に用いられる、作動圧バラツキの少ない、一体型防爆弁成形用の電池蓋用アルミニウム合金板に関するものである。
近年、各国で自動車の排ガス規制が厳しくなり、環境対応車としての電気自動車の生産が急速に伸びている。電気自動車に使用される二次電池は、現在リチウムイオン電池が主流となっている。リチウムイオン電池のケースとしては、角型、円筒型、ラミネート型等様々なタイプのものがあるが、角型、円筒型の場合、軽量化を達成できるアルミニウム合金板を絞り加工やしごき加工(DI加工ともいう。)したものが使用されている。
このように、電池ケース用の材料として、加工性に優れDI加工が容易で、しかも高強度なアルミニウム合金板が要求されている。特許文献1には、Mn0.8〜2.0%(mass%、以下同じ)を含有し、かつ不純物としてのFe量が0.6%以下、Si量が0.3%以下に規制され、残部が実質的にAlよりなり、しかもMn固溶量が0.75%以上でかつMn添加量に対するMn固溶量の比が0.6以上であり、さらに耐力値が185〜260N/mm の範囲内にあることを特徴とする、耐高温フクレ性に優れたケース用アルミニウム合金板が提案されている。これによると、特に70〜90℃程度の高温に温度上昇して内圧が増大した時、すなわち高温内圧負荷時においても、フクレによる変形が発生しにくい耐高温フクレ性に優れたケース用アルミニウム合金板が提供されるとのことである。
また、特許文献2には、アルミニウム合金板の組成として、Si:0.10〜0.60wt%、Fe:0.20〜0.60wt%、Cu:0.10〜0.70wt%、Mn:0.60〜1.50wt%、Mg:0.20〜1.20wt%、Zr:0.12を超え0.20wt%未満、Ti:0.05〜0.25wt%、B:0.0010〜0.02wt%を含有し、残部Alと不可避的不純物とからなり、円筒容器深絞り成形法で圧延方向に対する45°耳率が4〜7%であることを特徴とする矩形断面電池容器用アルミニウム合金板が提案されている。これによると、製品歩留が高く、薄板の矩形DI成形性が良好で、しかもパルスレーザの溶接性に優れたアルミニウム合金板を提供されるとのことである。
さらに特許文献3には、Fe:0.3〜1.5質量%、Mn:0.3〜1.0質量%、Ti:0.002〜0.20質量%を含有し、Mn/Feの質量比が0.2〜1.0であり、残部Alおよび不純物からなり、不純物としてのSiが0.30質量%未満、Cuが0.20質量%未満、Mgが0.20質量%未満である成分組成と、円相当径5μm以上の第2相粒子数が500個/mm未満である金属組織を有し、5%以上の伸びの値、且つ90MPa以上の引張り強度を呈する冷延まま材であることを特徴とする成形性、溶接性に優れた電池ケース用アルミニウム合金板が提案されている。これによると、高い強度を有するとともに成形性にも優れ、しかも優れたレーザー溶接性を備えているので、密閉性能に優れるとともに膨れの抑制が可能な二次電池用容器を低コストで製造可能であるとのことである。
自動車用リチウムイオン電池は、急速な充放電を伴うものであるため、その安全性について充分に考慮した設計がなされている。しかし、不測の事態で破壊事故が起こり、電池容器内の内圧が急速に高まった際には、内圧を解放する必要性があるため、電池容器又は電池蓋には防爆弁が付いている。この防爆弁は、容器の内圧が所定圧を超えた場合に、弁が自動的に破断するなどして、確実に作動する必要がある。
例えば、特許文献4には、電池容器に電池蓋が溶接またはかしめ等の方法により密閉されている密閉電池の電池蓋または電池容器に少なくとも1個の貫通孔Aを設け、該貫通孔Aを金属薄板で閉塞して電池内圧で破断する安全機構を持たせた密閉電池において、大きさが該金属薄板より大きくなく、少なくとも1個の貫通孔Bを有する金属板を該金属薄板上に重ねて、電池蓋または電池容器にシーム溶接したことを特徴とする密閉電池が提案されている。
この防爆弁を電池蓋に設ける場合、電池蓋に防爆弁を一体的に成形した、いわゆる一体型防爆弁付の蓋とすることにより、電池蓋の製造コストを削減することができる。特許文献5には、Fe:1.15〜1.35質量%,Mn:0.40〜0.60質量%,残部Alと不純物とからなり、不純物としてのSiが0.15質量%以下,Cuが0.05質量%以下,Mgが0.05質量%以下に規制された組成と、圧延面において、圧延方向に直角な方向における結晶粒の最大幅が100μm以下,結晶粒の幅の平均が25μm以下の組織を有することを特徴とする電池蓋用アルミニウム合金板が記載されている。これによると、成分組成が規定されているとともに、連続焼鈍炉を用いることによって最終焼鈍を急速加熱、急速冷却で行うため、粗大結晶粒がなく、微細な結晶粒で構成されているために、所望の耐圧強度を呈するとともに、耐圧強度のバラツキが小さくなるとのことである。
また、特許文献6には、質量%で、Mn0.8%以上1.5%以下、Si0.6%以下、Fe0.7%以下、Cu0.20%以下、Zn0.20%以下を含有し、残部Alおよび不可避不純物からなる組成を有し、元板の厚みをT0、プレス加工後の厚みをT1とし、冷間加工度R(%)=[(T0−T1)/T0]×100としたとき、Rが80%の時の引張強さTS80(MPa)とRが96%の時の引張強さTS96(MPa)を比較した場合、(TS96−TS80)が15MPa未満であり、TS80が200MPa以上であることを特徴とするリチウムイオン電池封口材用アルミニウム合金板材が記載されている。これによると、加工硬化性が低減されて、プレス加工後の熱処理が不要となるとともに、防爆弁の作動圧が高くなるのを抑制できるとのことである。
特開2002−134069号公報 特開2004−197172号公報 特開2012−177186号公報 特開平9−199088号公報 特許第5004007号公報 特許第5872256号公報
確かに3000系のアルミニウム合金板は、成形性に優れており、強度が高くリチウムイオン電池容器用の材料としての特性を備えている。しかしながら、Mn,Feを必須元素として含み、Fe含有量よりもMn含有量の高いアルミニウム合金板では、マトリックスにおけるMn固溶量が高く、このため冷間加工による加工硬化が著しくなるため、プレス加工によって薄肉部を成形する一体型防爆弁付電池蓋用の材料としては適していない。
一体型防爆弁付電池蓋は、防爆弁の薄肉部を成形する際に80%〜95%程度の加工率で冷間プレス成形されるため、当然のことながら一体型防爆弁付電池蓋用の素材として、適度な強度を有し、成形性に優れるとともに、高加工率において加工硬化の抑制されたアルミニウム合金板が要求されている。特に車載用リチウムイオン電池は、充放電の際に内部での発熱量が大きいため、充放電の度に一体型防爆弁の薄肉部に掛かる内圧が繰り返し変化する。したがって、用いる材料として、放熱性に優れたものが必要であり、さらには、成形された一体型防爆弁の薄肉部は、作動圧のバラツキが少なく、繰り返し疲労特性に優れたものが求められる。
ところで、リチウムイオン電池のケースとしては、角型、円筒型、ラミネート型等様々なタイプのものがあるが、円筒型は円形断面を呈するため、製造コストが低く、充放電の際に内部の温度分布を均一とすることが容易である。最近では、特に車載用リチウムイオン電池として、18650に代表される円筒型のリチウムイオン電池が注目を浴びている。しかしながら、円筒型のリチウムイオン電池を所定の車載用電池パック内に複数本並べると、隙間が生じてしまい、フル充電した際に車載用電池パック内での見掛けのエネルギー密度が低下してしまうという欠点がある。角型のリチウムイオン電池は、製造コストはやや高くなるものの、所定の車載用電池パック内に複数個を密に並べることが可能であり、フル充電した際に車載用電池パック内での見掛けのエネルギー密度を高くできるという利点がある。
特許文献5に記載された電池蓋用アルミニウム合金板では、Mn,Feを必須元素として含み、Mn含有量よりもFe含有量が高いものの、矩形の電池蓋及び矩形の防爆弁が示されているのみで、円形の防爆弁は示されていない。また、特許文献6に記載されたリチウムイオン電池封口材用アルミニウム合金板材では、加工硬化性が低減されて、プレス加工後の熱処理が不要となるとともに、防爆弁の作動圧が高くなるのを抑制できるとのことであるが、防爆弁の作動圧バラツキについては特に言及されていない。
本願発明は、以上のような従来技術に鑑みて成されたものであり、適度な強度を有し、成形性、加工軟化性に優れた電池蓋用アルミニウム合金板であって、作動圧バラツキが少なく、耐繰り返し疲労特性に優れた一体型防爆弁を成形することが可能な電池蓋用アルミニウム合金板およびその製造方法を提供することを目的とする。本願の電池蓋用アルミニウム合金板は、リチウムイオン電池の蓋として使用されるが、電池容器の形状を問わず、電池蓋として適用可能である。つまり、電池蓋の平面視形状は、例えば、円形、楕円形、矩形、六角形等どのような形状であってもよいし、グラウンド状のように円弧と直線の組み合わせの形状であってもよい。本願の電池蓋用アルミニウム合金板は、リチウムイオン電池の蓋として使用されるが、電池蓋の形状を問わず、電池蓋には防爆弁が一体的に成形される。つまり、一体型防爆弁の平面視形状は、例えば、円形、楕円形、矩形、六角形等どのような形状であってもよいし、グラウンド状のように円弧と直線の組み合わせの形状であってもよい。
本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板は、その目的を達成するために、Fe:1.05〜1.50質量%、Mn:0.15〜0.70質量%、Ti:0.002〜0.15質量%、及びB:0.04質量%未満を含有し、残部がAlおよび不純物からなり、Fe/Mn比が1.8〜7.0に規制され、不純物としてのSiが0.40質量%未満、Cuが0.03質量%未満、Mgが0.05質量%未満、Vが0.03質量%未満に規制された成分組成を有し、引張り強度が95MPa以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率80%で冷間圧延を施した後の引張り強度をTS80と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS80)の値が−3MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であることを特徴とする。さらに再結晶組織の再結晶粒の平均結晶粒径が15〜30μmであることが好ましい。
また、本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板の製造方法は、その目的を達成するために、上記記載の成分組成を有するアルミニウム合金溶湯を半連続鋳造法によって鋳塊に鋳造するスラブ鋳造工程と、鋳塊に520〜620℃の保持温度、1時間以上の保持時間で均質化処理を施す均質化処理工程と、上記均質化処理工程後、開始温度420〜520℃未満に設定して、鋳塊に熱間圧延を施して熱間圧延板を得る熱間圧延工程と、上記熱間圧延板に冷間圧延を施して冷間圧延板を得る冷間圧延工程と、上記冷間圧延板にバッチ炉にて最終焼鈍を施す最終焼鈍工程と、を含むことを特徴とする。さらに上記冷間圧延工程において、最終冷延率50%〜95%の範囲である最終冷間圧延を施し、上記最終焼鈍工程において、保持温度300〜450℃で1時間以上の最終焼鈍を行うことが好ましい。
本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板は、引張り強度が95MPa以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率80%で冷間圧延を施した後の引張り強度をTS80と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS80)の値が−3MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であるため、適度な強度を有し、成形性、加工軟化性に優れており、さらに一体的に成形される防爆弁は、作動圧のバラツキが少なく、耐繰り返し疲労特性に優れている。
所定の成分組成のアルミニウム合金溶湯をDC鋳造機によって、半連続的に鋳造して鋳塊とし、両面面削した後、均質化処理及び熱間圧延を施し、熱間圧延板をロールに巻き取る。均質化処理の温度は、520〜620℃とする。熱間圧延の開始温度を520℃未満に設定することで、固溶しているMn、SiをAl−(Fe・Mn)−Si等のFe系化合物に吸収させるか、AlMn等のMn系析出物を析出させることにより、マトリックスにおけるMn固溶量、Si固溶量を低減させる。熱間圧延板は、所定の厚さまで冷間圧延され、必要に応じてバッチ炉にて300〜400℃の中間焼鈍を施して軟化させ、最終冷延率50%〜95%の冷間圧延を施した後、バッチ炉にて300〜450℃の最終焼鈍を施して焼鈍材(O材)とする。さらに冷間圧延を施して冷延材(H材)としてもよい。
本発明により製造される、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、引張り強度が95MPa以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率80%で冷間圧延を施した後の引張り強度をTS80と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS80)の値が−3MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であるため、適度な強度を有し、成形性、加工軟化性に優れており、さらに一体的に成形される防爆弁は、作動圧のバラツキが少なく、耐繰り返し疲労特性に優れたものとなる。
従来の電池蓋用アルミニウム合金板は、高強度であっても、電池蓋としての一体型防爆弁の成形加工では、微小割れなどの不良が発生するケースも多く見られる。これは、最終板におけるMn固溶量が高いためであると考えられる。このため、鋳塊の均質化処理温度や熱間圧延の開始温度を適切に制御して、Mn固溶量を充分に調整しておく必要がある。しかも、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、一体型防爆弁の成形加工において、加工率80%〜95%程度の冷間加工を施して薄肉部を形成する必要があり、成形性の優れたものであることを要する。
特に車載用リチウムイオン電池は、充放電の際に内部での発熱量が大きいため、充放電の度に一体型防爆弁の薄肉部に掛かる内圧が繰り返し変化する。したがって、用いる材料として、放熱性に優れたものが必要であり、さらには、成形された一体型防爆弁は、作動圧のバラツキが少なく、繰り返し疲労特性に優れたものが求められる。
前述のように、一体型防爆弁の成形加工において、加工率80%〜95%程度の冷間加工を施して薄肉部を形成する。したがって、この薄肉部の繰り返し疲労特性に優れたものとするためには、所定の成分組成を有し、再結晶組織を有するとともに、高加工率の冷間加工における加工軟化性に優れ、所定の圧下率で冷間圧延を施した後の伸びの値が高い、電池蓋用アルミニウム合金板とする必要がある。
以下にその内容を説明する。
まず、本発明の一体型防爆弁成形用の電池蓋用アルミニウム合金板に含まれる各元素の作用、適切な含有量等について説明する。
〔Fe:1.05〜1.50質量%〕
Feは、本発明の範囲内の組成において、鋳造の際に鋳塊にAl−(Fe・Mn)−Si等のFe系金属間化合物を析出させ、均質化処理の際にこれらFe系金属間化合物がマトリックスに固溶されたMnを吸収する。このためFeは必須の元素である。
Fe含有量が1.05質量%未満であると、鋳塊におけるFe系金属間化合物のサイズと数が減少することにより、均質化処理の際に鋳塊のMn固溶量を充分に低下させることができなくなる。このため、最終板について高加工率における加工硬化が顕著になる虞がある。Fe含有量が1.50質量%を超えると、Fe系金属間化合物のサイズと数が増加することにより、最終板について成形性が低下するとともに、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Fe含有量は、1.05〜1.50質量%の範囲とする。好ましいFe含有量は、1.05〜1.45質量%の範囲である。さらに好ましいFe含有量は、1.10〜1.45質量%の範囲である。
〔Mn:0.15〜0.70質量%〕
Mnは、アルミニウム合金板の耐力を増加させる元素であり、一部はマトリックス中に固溶して固溶体強化を促進するため、必須元素である。
Mn含有量が0.15質量%未満であると、Fe/Mn比が7.0を超える虞があり、鋳塊におけるFe系金属間化合物の形状が針状となり、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。Mn含有量が0.70質量%を超えると、Fe/Mn比が1.8未満となる虞があり、鋳塊におけるMn固溶量が高くなりすぎて、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Mn含有量は、0.15〜0.70質量%の範囲とする。好ましいMn含有量は、0.15〜0.65質量%の範囲である。さらに好ましいMn含有量は、0.20〜0.65質量%の範囲である。
〔Fe/Mn比:1.8〜7.0〕
Mnは、鋳造の際に鋳塊にAl−(Fe・Mn)−Si等のFe系金属間化合物を析出させる元素でもあるが、Fe系金属間化合物の形状を球状化する効果がある。
Fe/Mn比が1.8未満であると、均質化処理の際にFe系金属間化合物がマトリックスに固溶しているMnを吸収する効果が小さくなり、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。Fe/Mn比が7.0を超えると、Fe系金属間化合物の形状を球状化する効果が小さくなり、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Fe/Mn比は1.8〜7.0に規制する。
〔Ti:0.002〜0.15質量%〕
Tiは鋳塊鋳造時に結晶粒微細化剤として作用し、鋳造割れを防止することができるので、必須の元素である。勿論、Tiは単独で添加してもよいが、Bと共存することによりさらに強力な結晶粒の微細化効果を期待できるので、Al−5%Ti−1%Bなどのロッドハードナーでの添加であってもよい。
Ti含有量が、0.002質量%未満であると、鋳塊鋳造時の微細化効果が不十分なため、鋳造割れを招く虞がある。Ti含有量が、0.15質量%を超えると、鋳塊鋳造時にTiAl等の粗大な金属間化合物が晶出して、最終板について圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Ti含有量は、0.002〜0.15質量%の範囲とする。好ましいTi含有量は、0.002〜0.08質量%の範囲である。さらに好ましいTi含有量は、0.005〜0.06質量%の範囲である。
なお、Ti含有量については、さらに好ましい範囲を、好ましい範囲に対して下限値及び上限値のいずれも減縮することで規定しているが、さらに好ましい範囲は、下限値及び上限値のそれぞれについて単独で適用でき、双方同時にのみ適用する必要はない。
〔B:0.04質量%未満〕
Bは、Tiと共存することにより、さらに強力な結晶粒の微細化効果を期待できるので、必須の元素である。Tiと同様に、Al−5%Ti−1%Bなどのロッドハードナーでの添加であってもよい。
B含有量が0.04質量%以上であると、Ti含有量にもよるが、Ti−B化合物が安定化してTiBとなり易く、結晶粒微細化効果が減衰するとともに、TiBが炉内で沈降して炉底に堆積する虞がある。
したがって、B含有量は、0.04質量%未満の範囲とする。好ましいB含有量は、0.02質量%未満の範囲である。さらに好ましいB含有量は、0.01質量%未満の範囲である。
〔V:0.03質量%未満〕
本願発明において、Vは不純物である。V含有量が0.03質量%以上であると、鋳造時に比較的大きいサイズのFe系金属間化合物を析出させ、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、V含有量は、0.03質量%未満の範囲とする。好ましいV含有量は、0.02質量%未満の範囲である。
〔Si:0.40質量%未満〕
本願発明において、Siは不純物である。Siは、鋳造時にAl−(Fe・Mn)−Si等のFe系金属間化合物を析出させ、一部はマトリックス内に固溶し、アルミニウム合金板の強度を高める。
Si含有量が、0.40質量%以上であると、最終板についてSi固溶量が高くなり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。
したがって、Si含有量は、0.40質量%未満の範囲とする。好ましいSi含有量は、0.35質量%未満の範囲である。さらに好ましいSi含有量は、0.30質量%未満の範囲である。
〔Cu:0.03質量%未満〕
本願発明において、Cuは不純物である。本発明において、Cu含有量が0.03質量%以上であると、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。したがって、Cuの含有量は、0.03質量%未満の範囲とする。好ましいCu含有量は、0.02質量%未満の範囲である。さらに好ましいCu含有量は、0.01質量%未満の範囲である。
〔Mg:0.05質量%未満〕
本願発明において、Mgは不純物である。本発明において、Mg含有量が0.05質量%以上であると、最終板について成形性が低下するとともに、高加工率における加工硬化が著しくなり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%未満となる虞がある。したがって、Mgの含有量は、0.05質量%未満の範囲とする。好ましいMg含有量は、0.03質量%未満の範囲である。さらに好ましいMg含有量は、0.02質量%未満の範囲である。
〔その他の不可避的不純物〕
不可避的不純物は原料地金、返り材等から不可避的に混入する管理外元素であって、それらの許容できる含有量は、例えば、Crの0.20質量%未満、Znの0.20質量%未満、Niの0.10質量%未満、Gaの0.05質量%未満、Pb、Bi、Sn、Na、Ca、Srについては、それぞれ0.02質量%未満、その他(例えば、Co、Nb、Mo、W)各0.05質量%未満であって、この範囲で管理外元素を含有しても本発明の効果を妨げるものではない。
〔引張り強度:95MPa以上〕
前述のように、一体型防爆弁付電池蓋用の素材として、適度な強度を有するアルミニウム合金板が要求されている。したがって、強度を評価する指標として、引張り強度(MPa)を採用し、引張り強度を95MPa以上に規定した。
〔(TS95−TS80)の値:−3MPa未満〕
前述のように、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、一体型防爆弁の成形加工において、加工率80%〜95%程度の冷間加工を施して薄肉部を形成するため、一体型防爆弁付電池蓋用の素材として、高加工率において加工軟化性の優れたものが必要である。したがって、加工軟化性を評価する指標として、圧下率80%で冷間圧延を施した後の引張り強度をTS80と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS80)の値(MPa)を採用し、(TS95−TS80)の値を−3MPa未満に規定した。
〔伸びの値:40%以上〕
前述のように、一体型防爆弁成形用の電池蓋用アルミニウム合金板は、一体型防爆弁の成形加工において、加工率80%〜95%程度の冷間加工を施して薄肉部を形成するため、成形性の優れたものである必要がある。したがって、成形性を評価する指標として、最終板について引張り試験を行った際の伸びの値を採用し、伸びの値を40%以上に規定した。
〔再結晶組織を有すること〕
一体型防爆弁の薄肉部を繰り返し疲労特性に優れたものとするためには、所定の成分組成を有し、再結晶組織を有する最終板とする必要がある。最終板の金属組織が未再結晶組織である場合には、焼鈍処理による軟化が不十分であり、伸びの値が低く成形性が著しく低下する。また、一体型防爆弁が仮に成形できたとしても薄肉部の金属組織の異方性によって、作動圧のバラツキの要因となる虞がある。
最終板の金属組織が再結晶組織である場合に、再結晶粒の平均結晶粒径が30μmを超えると、防爆弁の作動圧のバラツキが大きくなる虞があるため、好ましくない。再結晶粒の平均結晶粒径が15μm未満であると、放熱性が低下する虞があるため、好ましくない。したがって、好ましい再結晶組織の再結晶粒の平均結晶粒径は、15〜30μmの範囲である。より好ましい再結晶組織の再結晶粒の平均粒径は、15〜25μmの範囲である。
〔圧下率90%で冷間圧延を施した後の伸びの値:5.0%以上〕
前述のように、車載用リチウムイオン電池は、充放電の際に内部での発熱量が大きいため、一体型防爆弁の成形加工後の薄肉部において、伸びが高く、繰り返し疲労特性に優れたものが求められる。したがって、防爆弁の作動圧安定性を評価する指標として、最終板について圧下率90%で冷間圧延を施した後の伸びの値を採用し、この伸びの値を5.0%以上に規定した。
次に、上記のような一体型防爆弁成形用の電池蓋用アルミニウム合金板を製造する方法の一例について簡単に紹介する。
〔溶解・溶製工程〕
溶解炉に原料を投入し、所定の溶解温度に到達したら、フラックスを適宜投入して攪拌を行い、さらに必要に応じてランス等を使用して炉内脱ガスを行った後、鎮静保持して溶湯の表面から滓を分離する。
この溶解・溶製では、所定の合金成分とするため、母合金等再度の原料投入も重要ではあるが、上記フラックス及び滓がアルミニウム合金溶湯中から湯面に浮上分離するまで、鎮静時間を十分に取ることが極めて重要である。鎮静時間は、通常30分以上取ることが望ましい。
溶解炉で溶製されたアルミニウム合金溶湯は、場合によって保持炉に一端移湯後、鋳造を行なうこともあるが、直接溶解炉から出湯し、鋳造する場合もある。より望ましい鎮静時間は45分以上である。
必要に応じて、インライン脱ガス、フィルターを通してもよい。
インライン脱ガスは、回転ローターからアルミニウム溶湯中に不活性ガス等を吹き込み、溶湯中の水素ガスを不活性ガスの泡中に拡散させ除去するタイプのものが主流である。不活性ガスとして窒素ガスを使用する場合には、露点を例えば−60℃以下に管理することが重要である。鋳塊の水素ガス量は、0.20cc/100g以下に低減することが好ましい。
鋳塊の水素ガス量が多い場合には、鋳塊の最終凝固部にポロシティが発生するおそれがあるため、熱圧延工程における1パス当たりの圧下率を例えば7%以上に規制してポロシティを潰しておくことが好ましい。また、鋳塊に過飽和に固溶している水素ガスは、冷延コイルの熱処理条件にもよるが、最終板の防爆弁のプレス成形後であっても、例えば電池蓋と電池容器とのレーザー溶接時に析出して、ビードに多数のブローホールを発生させる場合もある。このため、より好ましい鋳塊の水素ガス量は、0.15cc/100g以下である。
〔スラブ鋳造工程〕
鋳塊は、半連続鋳造(DC鋳造)によって製造する。通常の半連続鋳造の場合は、鋳塊の厚みが一般的には400〜600mm程度であるため、鋳塊中央部における凝固冷却速度が1℃/sec程度である。このため、特にFe、Mnの含有量が高いアルミニウム合金溶湯を半連続鋳造する場合には、鋳塊中央部にはAl(Fe・Mn)、α-Al−(Fe・Mn)−Siなどの比較的粗い金属間化合物がアルミニウム合金溶湯から晶出する傾向がある。
半連続鋳造における鋳造速度は鋳塊の幅、厚みにもよるが、通常は生産性も考慮して、50〜70mm/minである。しかしながら、インライン脱ガスを行なう場合、脱ガス処理槽内における実質的な溶湯の滞留時間を考慮すると、不活性ガスの流量等脱ガス条件にもよるが、アルミニウム溶湯の流量(単位時間当たりの溶湯供給量)が小さいほど槽内での脱ガス効率が向上し、鋳塊の水素ガス量を低減することが可能である。鋳造の注ぎ本数等にもよるが、鋳塊の水素ガス量を低減するために、鋳造速度を30〜50mm/minと規制することが望ましい。さらに望ましい鋳造速度は、30〜40mm/minである。勿論、鋳造速度が30mm/min未満であると、生産性が低下するため望ましくない。なお、鋳造速度の遅い方が、鋳塊におけるサンプ(固相/液相の界面)の傾斜が緩やかになり、鋳造割れを防止できることは言うまでもない。
〔均質化処理工程〕
半連続鋳造法により鋳造して得た鋳塊に均質化処理を施す。
均質化処理は、圧延を容易にするために鋳塊を高温に保持して、鋳造偏析、鋳塊内部の残留応力の解消を行なう処理である。本発明において、保持温度520〜620℃で1時間以上保持することが必要である。この場合、鋳造時に晶析出した金属間化合物を構成する遷移元素等をマトリックスにある程度固溶させるための処理でもある。この保持温度が低すぎ、或いは保持温度が短い場合には、上記固溶が進まず、成形後の外観肌が綺麗に仕上がらない虞がある。また、保持温度が高すぎると、鋳塊のミクロ的な最終凝固部である共晶部分が溶融する、いわゆるバーニングを起こすおそれがある。より好ましい均質化処理温度は、520〜610℃である。
〔熱間圧延工程〕
このように、鋳塊の均質化処理を520〜620℃の保持温度、1時間以上の保持時間で行うとともに、熱間圧延の開始温度を520℃未満に設定することで、マトリックスに固溶しているMn、Siを低減させることが可能となる。熱間圧延の開始温度が520℃以上であると、マトリックスに固溶しているMn、Siを低減させることが困難となる。熱間圧延の開始温度が420℃未満であると、熱間圧延時の塑性変形に必要なロール圧力が高くなり、1パス当たりの圧下率が低くなりすぎて生産性が低下する。したがって、熱間圧延の開始温度は、420〜520℃未満の範囲である。ソーキング炉内から取り出された鋳塊は、そのままクレーンで吊るされて、熱間圧延機に持ち来たされ、熱間圧延機の機種にもよるが、通常何回かの圧延パスによって熱間圧延されて所定の厚み、例えば4〜8mm程度の熱延板としてコイルに巻き取る。
〔冷間圧延工程〕
熱間圧延板を巻き取ったコイルは、冷延機に通され、通常何パスかの冷間圧延が施される。この際、冷間圧延によって導入される塑性歪により加工硬化が起こるため、必要に応じて、中間焼鈍処理が行なわれる。通常中間焼鈍は軟化処理でもあるので、材料にもよるがバッチ炉に冷延コイルを挿入し、300〜400℃の温度で、1時間以上の保持を行なってもよい。保持温度が300℃よりも低いと、軟化が促進されず、保持温度が400℃を超えると、生産性が低下する可能性があるため、好ましくない。
〔最終焼鈍工程〕
本発明において、最終冷間圧延の後に行なわれる最終焼鈍工程は、例えば焼鈍炉によって温度300〜450℃で1時間以上保持するバッチ処理が好ましい。このような条件で最終焼鈍を行うことにより、焼鈍板(最終板)は、再結晶粒の平均結晶粒径が15〜30μmである再結晶組織を有する。より好ましい最終焼鈍工程は、焼鈍炉によって温度300〜400℃で1時間以上保持するバッチ処理である。さらに好ましい最終焼鈍工程は、焼鈍炉によって温度300〜380℃で1時間以上保持するバッチ処理である。焼鈍炉における保持温度が高いほど再結晶粒の成長速度が速くなるため、再結晶粒の平均結晶粒径は大きくなる。いずれにしても、本発明において最終焼鈍は必須であり、プレス成形による一体型防爆弁の薄肉部の冷間加工率80%〜95%程度を考慮すると、最終板を軟化させておく必要がある。なお、最終焼鈍工程を連続焼鈍で行う場合には、焼鈍板(最終板)の放熱性、一体型防爆弁の作動安定性が低下する虞があるため、好ましくない。
最終焼鈍を施す場合の最終冷延率は、50%〜95%の範囲であることが好ましい。より好ましい最終冷延率は、70%〜95%の範囲である。最終冷延率がこの範囲であれば、300〜450℃の温度で、1時間以上の保持を行なう最終焼鈍を施すことで、平均結晶粒径が15〜30μmである再結晶組織となる。なお、再結晶粒の平均結晶粒径は、焼鈍炉における保持温度のみならず、最終冷延率によっても変化するものである。
以上のような通常の工程を経ることにより、一体型防爆弁成形用の電池蓋用アルミニウム合金板を得ることができる。
<ラボ試験材による実施例>
〔供試材の作成〕
16水準(実施例1〜6、比較例1〜10)の成分組成のインゴット5kgをそれぞれ#20坩堝内に挿入し、この坩堝を小型電気炉で加熱してインゴットを溶解した。次いで、溶湯中にランスを挿入して、Nガスを流量1.0L/minで5分間吹き込んで脱ガス処理を行なった。その後30分間の鎮静を行なって溶湯表面に浮上した滓を攪拌棒にて除去した。次に坩堝を小型電気炉から取り出して、溶湯を内寸法250×200×30mmの金型に流し込み、鋳塊を作製し、各坩堝中の溶湯から実施例1〜6、比較例1〜10の各供試材を得た。これら供試材のディスクサンプルは、発光分光分析によって組成分析を行なった。その結果を表1に示す。
Figure 2020029600
これら鋳塊の両面を5mmずつ面削加工して、厚さ20mmとした後、590℃×1時間、480℃×1時間の均質化処理を連続して行い、熱間圧延を施して、厚さ6.0mmの熱間圧延板とした。その後、この熱間圧延板に冷間圧延を施して板厚1.0mmの冷延板とした。冷間圧延工程の間に中間焼鈍処理は行っていない。この場合の最終冷延率は83%であった。
次に、これらの冷延板(実施例1〜6、比較例1〜7,9,10)について、バッチ焼鈍を模擬して、アニーラーに挿入し340℃×1時間の焼鈍処理を施して最終板(O材)とした。他の冷延板(比較例8)については、425℃×10秒間の連続焼鈍を模擬して、425℃×15秒間ソルトバスで加熱した後に水冷して最終板(O材)とした。
さらに、これらの最終板に対して、一体型防爆弁の成形を模擬して、加工硬化特性等を調査する目的で、0.2mm、0.1mm、0.05mmまで冷間圧延して、それぞれの圧下率:80,90,95%における冷延材を採取した。
次に、このようにして得られた各供試材(最終板:16水準、冷延材:16水準×各3水準)について、諸特性の測定、評価を行った。
〔引張り試験による特性の測定〕
得られた各最終板の強度の評価は、最終板(O材)の引張り強度(MPa)によって行った。得られた各最終板の成形性の評価は、最終板(O材)の伸びの値(%)によって行った。各最終板の加工軟化性の評価は、最終板(O材)に圧下率95%の冷間圧延を施した後の引張り強度TS95(MPa)から最終板(O材)に圧下率80%の冷間圧延を施した後の引張り強度TS80(MPa)を引いた値である(TS95−TS80)(MPa)によって行った。一体型防爆弁の作動安定性の評価は、最終板(O材)に圧下率90%の冷間圧延を施した後の伸びの値(%)によって行った。具体的には、得られた供試材より、引張り方向が圧延方向に対して平行方向になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、引張り強度、0.2%耐力、伸び(破断伸び)を求めた。なお、これら引張り試験は、各供試材につき3回(n=3)行い、その平均値で算出した。各最終板の引張り強度、伸び(破断伸び)の測定結果、各最終板に圧下率80%の冷間圧延を施した後の引張り強度の測定結果、各最終板に圧下率90%の冷間圧延を施した後の伸び(破断伸び)の測定結果および各最終板に圧下率95%の冷間圧延を施した後の引張り強度の測定結果を表2に示す。
最終板の引張り強度が100MPa以上であったものを強度評価良好(〇)とし、最終板の引張り強度が100MPa未満であったものを強度評価不良(×)とした。
最終板の伸びの値が35.0%以上であったものを成形性評価良好(〇)とし、最終板の伸びの値が35.0%未満であったものを成形性評価不良(×)とした。
(TS95−TS80)の値が10MPa未満であったものを加工軟化性評価良好(〇)とし、(TS95−TS80)の値が10MPa以上であったものを加工軟化性評価不良(×)とした。
最終板について圧下率90%の冷間圧延を施した後の伸びの値が4.0%以上であったものを作動安定性評価良好(〇)とし、最終板について圧下率90%の冷間圧延を施した後の伸びの値が4.0%未満であったものを作動安定性評価不良(×)とした。これらの評価結果を表2に示す。
Figure 2020029600
供試材の特性評価結果を示す表2における実施例1〜6は、本発明の組成範囲内であるとともに、最終焼鈍はバッチ焼鈍であり、最終板の引張り強度、最終板の伸びの値、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしていた。具体的には、実施例1〜6は、最終板の引張り強度が100MPa以上であり、最終板の伸びの値が35.0%以上であり、(TS95−TS80)の値が10MPa未満であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が4.0%以上であった。したがって、実施例1〜6は、強度評価良好(〇)、成形性評価良好(〇)、加工軟化性評価良好(〇)、作動安定性評価良好(〇)であった。
表2における比較例1〜7,9,10は、最終焼鈍はバッチ焼鈍であるものの、本発明の組成範囲外であり、最終板の引張り強度、最終板の伸びの値、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のうち少なくとも一つが基準値を満たしていなかった。
比較例1は、Fe含有量1.58質量%と高すぎたため、最終板の伸びの値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、成形性評価不良(×)、作動安定性評価不良(×)であった。
比較例2は、Fe含有量0.97質量%と低すぎたため、(TS95−TS80)の値が基準値を満たしておらず、加工軟化性評価不良(×)であった。
比較例3は、Cu含有量0.04質量%と高すぎたため、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、作動安定性評価不良(×)であった。
比較例4は、Mn含有量0.80質量%と高すぎたため、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、作動安定性評価不良(×)であった。
比較例5は、Mg含有量が0.21質量%と高すぎたため、最終板の伸びの値、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、成形性評価不良(×)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
比較例6は、V含有量が0.04質量%と高すぎたため、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、作動安定性評価不良(×)であった。
比較例7は、V含有量が0.11質量%と高すぎたため、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしておらず、作動安定性評価不良(×)であった。
比較例8は、本発明の組成範囲内であるものの、最終焼鈍は連続焼鈍であったため、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
比較例9は、AA1050合金組成であり、Fe含有量、Mn含有量がそれぞれ0.19質量%、0.02質量%と低すぎたため、最終板の引張り強度、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、強度評価不良(×)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
比較例10は、AA3003合金組成であり、Fe含有量が0.20質量%と低すぎ、Cu含有量、Mn含有量がそれぞれ0.14質量%、1.29質量%と高すぎたため、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしておらず、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。
<実機材による実施例>
〔供試材の作成〕
表3に示す組成の溶湯を溶解炉にて溶製し、DC鋳造機にて、幅1200mm×厚さ560mm×丈3800mmの鋳塊を鋳造した。この鋳塊の両面を面削して、ソーキング炉に挿入して加熱し、590℃×1時間、480℃×1時間の均質化処理を連続して行い、続いて熱間圧延を施して、厚さ7.0mmの熱間圧延板としてコイルに巻き取った。その後、この熱間圧延板に冷間圧延を施して板厚1.0mmの冷延板としてコイルに巻き取った。この冷延板から、適切な寸法の切り板を採取した。
Figure 2020029600
次に、この切り板から採取した冷延板について、バッチ焼鈍を模擬して、アニーラーに挿入し240℃,340℃,440℃×各1時間の焼鈍処理を施して最終板(O材)とした。他の冷延板については、425℃×10秒間,520℃×5秒間の連続焼鈍を模擬して、それぞれ425℃×15秒間,520℃×10秒間ソルトバスで加熱した後に水冷して最終板(O材)とした。
さらに、これらの最終板に対して、一体型防爆弁の成形を模擬して、加工硬化特性等を調査する目的で、0.2mm、0.1mm、0.05mmまで冷間圧延して、圧下率:80%、90%、95%における冷延材を採取した。
次に、このようにして得られた各供試材(最終板:5水準、冷延材:5水準×各3水準)について、諸特性の測定、評価を行った。
〔引張り試験による特性の測定〕
得られた各最終板の強度の評価は、最終板(O材)の引張り強度(MPa)によって行った。得られた各最終板の成形性の評価は、最終板(O材)の伸びの値(%)によって行った。また、各最終板の加工軟化性の評価は、最終板(O材)に圧下率95%の冷間圧延を施した後の引張り強度TS95(MPa)から最終板(O材)に圧下率80%の冷間圧延を施した後の引張り強度TS80(MPa)を引いた値(TS95−TS80)(MPa)によって行った。一体型防爆弁の作動安定性の評価は、最終板(O材)に圧下率90%の冷間圧延を施した後の引張り試験の伸びの値(%)によって行った。具体的には、得られた供試材より、引張り方向が圧延方向に対して平行方向になるようにJIS5号試験片を採取し、JISZ2241に準じて引張り試験を行って、引張り強度、0.2%耐力、伸び(破断伸び)を求めた。なお、これら引張り試験は、各供試材につき3回(n=3)行い、その平均値で算出した。各最終板の引張り強度、伸び(破断伸び)の測定結果、各最終板に圧下率80%の冷間圧延を施した後の引張り強度の測定結果、各最終板に圧下率90%の冷間圧延を施した後の伸び(破断伸び)の測定結果および各最終板に圧下率95%の冷間圧延を施した後の引張り強度の測定結果を表4に示す。
〔再結晶粒の平均結晶粒径の測定〕
得られた最終板を切り出して、板の圧延表面(L-LT面)が研磨できるよう熱可塑性樹脂に埋め込んで鏡面研磨し、ホウフッ化水素酸水溶液中で陽極酸化処理を施して、偏光顕微鏡(倍率50倍)による金属組織の観察を行った。得られた各最終板の再結晶粒の平均結晶粒径の測定は、切片法(切断法)によって行った。偏光顕微鏡の視野の目盛りを順次ずらしながら、視野の中で長さ12.1mmの仮想線を引いた際に、仮想線が横切る結晶粒界の数(n)を測定し、(1)式によって平均結晶粒径(μm)を算出した。
{12.1×10/(n−1)}・・・(1)
この測定を各最終板について2回行って、その2回の測定値の平均値を採用した。各最終板の再結晶粒の平均結晶粒径の測定結果を、表4に示す。
最終板の引張り強度が95MPa以上であったものを強度評価良好(〇)とし、最終板の引張り強度が95MPa未満であったものを強度評価不良(×)とした。
最終板の伸びの値が40.0%以上であったものを成形性評価良好(〇)とし、最終板の伸びの値が40.0%未満であったものを成形性評価不良(×)とした。
(TS95−TS80)の値が−3MPa未満であったものを加工軟化性評価良好(〇)とし、(TS95−TS80)の値が−3MPa以上であったものを加工軟化性評価不良(×)とした。
最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であったものを作動安定性評価良好(〇)とし、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%未満であったものを作動安定性評価不良(×)とした。これらの評価結果を表4に示す。
Figure 2020029600
供試材の特性評価結果を示す表4における実施例51は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度340℃で1時間保持のバッチ焼鈍を模擬したアニーラー焼鈍であり、最終板の引張り強度、最終板の伸びの値、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしていた。具体的には、実施例51は、最終板の引張り強度が95MPa以上であり、最終板の伸びの値が40.0%以上であり、(TS95−TS80)の値が−3MPa未満であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であった。したがって、実施例51は、強度評価良好(〇)、成形性評価良好(〇)、加工軟化性評価良好(〇)、作動安定性評価良好(〇)であった。また、実施例51の最終板は、再結晶組織を呈しており、再結晶粒の平均結晶粒径は16.0μmであった。
供試材の特性評価結果を示す表4における実施例52は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度440℃で1時間保持のバッチ焼鈍を模擬したアニーラー焼鈍であり、最終板の引張り強度、最終板の伸びの値、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値のいずれもが基準値を満たしていた。具体的には、実施例52は、最終板の引張り強度が95MPa以上であり、最終板の伸びの値が40.0%以上であり、(TS95−TS80)の値が−3MPa未満であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であった。したがって、実施例52は、強度評価良好(〇)、成形性評価良好(〇)、加工軟化性評価良好(〇)、作動安定性評価良好(〇)であった。また、実施例52の最終板は、再結晶組織を呈しており、再結晶粒の平均結晶粒径は29.1μmであった。
供試材の特性評価結果を示す表4における比較例53は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度240℃で1時間保持のバッチ焼鈍を模擬したアニーラー焼鈍であり、最終板の引張り強度、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしていたものの、最終板の伸びの値、(TS95−TS80)の値が基準値を満たしていなかった。具体的には、比較例53は、最終板の引張り強度が95MPa以上であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%以上であったものの、最終板の伸びの値が40.0%未満であり、(TS95−TS80)の値が−3MPa以上であった。したがって、比較例53は、強度評価良好(〇)、成形性評価不良(×)、加工軟化性評価不良(×)、作動安定性評価良好(〇)であった。また、比較例53の最終板は、未結晶組織を呈しており、再結晶粒が存在せず、その平均結晶粒径を測定することはできなかった。
供試材の特性評価結果を示す表4における比較例54は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度425℃で10秒間保持の連続焼鈍を模擬したソルトバス焼鈍であり、最終板の引張り強度、最終板の伸びの値が基準値を満たしていたものの、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしていなかった。具体的には、比較例54は、最終板の引張り強度が95MPa以上であり、最終板の伸びの値が40.0%以上であったものの、(TS95−TS80)の値が−3MPa以上であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%未満であった。したがって、比較例54は、強度評価良好(〇)、成形性評価良好(〇)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。また、比較例54の最終板は、再結晶組織を呈しており、再結晶粒の平均結晶粒径は13.6μmであった。
供試材の特性評価結果を示す表4における比較例55は、本発明の組成範囲内であるとともに、最終焼鈍は保持温度520℃で5秒間保持の連続焼鈍を模擬したソルトバス焼鈍であり、最終板の引張り強度、最終板の伸びの値が基準値を満たしていたものの、(TS95−TS80)の値、最終板について圧下率90%の冷間圧延を施した後の伸びの値が基準値を満たしていなかった。具体的には、比較例55は、最終板の引張り強度が95MPa以上であり、最終板の伸びの値が40.0%以上であったものの、(TS95−TS80)の値が−3MPa以上であり、最終板について圧下率90%の冷間圧延を施した後の伸びの値が5.0%未満であった。したがって、比較例55は、強度評価良好(〇)、成形性評価良好(〇)、加工軟化性評価不良(×)、作動安定性評価不良(×)であった。また、比較例55の最終板は、再結晶組織を呈しており、再結晶粒の平均結晶粒径は12.0μmであった。
以上のことから、上記特定の成分組成を有し、且つ引張り強度が95MPa以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率80%で冷間圧延を施した後の引張り強度をTS80と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS80)の値が−3MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上である値を呈するものが、適度な強度を有し、成形性、加工軟化性に優れ、作動圧バラツキの少ない一体型防爆弁を成形可能な電池蓋用アルミニウム合金板であることが判る。

Claims (4)

  1. Fe:1.05〜1.50質量%、Mn:0.15〜0.70質量%、Ti:0.002〜0.15質量%、及びB:0.04質量%未満を含有し、残部がAlおよび不純物からなり、Fe/Mn比が1.8〜7.0に規制され、不純物としてのSiが0.40質量%未満、Cuが0.03質量%未満、Mgが0.05質量%未満、Vが0.03質量%未満に規制された成分組成を有し、引張り強度が95MPa以上であり、伸びの値が40%以上であり、再結晶組織を有するとともに、圧下率80%で冷間圧延を施した後の引張り強度をTS80と定義し、圧下率95%で冷間圧延を施した後の引張り強度をTS95と定義したときの(TS95−TS80)の値が−3MPa未満であり、圧下率90%で冷間圧延を施した後の伸びの値が5.0%以上であることを特徴とする、一体型防爆弁成形用の電池蓋用アルミニウム合金板。
  2. 再結晶組織の再結晶粒の平均結晶粒径が15〜30μmであることを特徴とする請求項1に記載の一体型防爆弁成形用の電池蓋用アルミニウム合金板。
  3. 請求項1に記載の成分組成を有するアルミニウム合金溶湯を半連続鋳造法によって鋳塊に鋳造するスラブ鋳造工程と、
    鋳塊に520〜620℃の保持温度、1時間以上の保持時間で均質化処理を施す均質化処理工程と、
    前記均質化処理工程後、開始温度420〜520℃未満に設定して、鋳塊に熱間圧延を施して熱間圧延板を得る熱間圧延工程と、
    前記熱間圧延板に冷間圧延を施して冷間圧延板を得る冷間圧延工程と、
    前記冷間圧延板にバッチ炉にて最終焼鈍を施す最終焼鈍工程と、を含むことを特徴とする、一体型防爆弁成形用の電池蓋用アルミニウム合金板の製造方法。
  4. 前記冷間圧延工程において、最終冷延率50%〜95%の範囲である最終冷間圧延を施し、
    前記最終焼鈍工程において、保持温度300〜450℃で1時間以上の最終焼鈍を行うことを特徴とする請求項3に記載の一体型防爆弁成形用の電池蓋用アルミニウム合金板の製造方法。
JP2018156521A 2018-08-23 2018-08-23 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法 Active JP6614293B1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018156521A JP6614293B1 (ja) 2018-08-23 2018-08-23 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
EP19851040.6A EP3842559A4 (en) 2018-08-23 2019-07-12 ALUMINUM ALLOY SHEET FOR BATTERY COVER FOR INTEGRATED EXPLOSION-PROOF VALVE CASTING AND METHOD FOR PRODUCTION THEREOF
PCT/JP2019/027789 WO2020039792A1 (ja) 2018-08-23 2019-07-12 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
CN201980004371.8A CN111094606B (zh) 2018-08-23 2019-07-12 一体型防爆阀成形用的电池盖用铝合金板及其制造方法
KR1020207005766A KR20200035994A (ko) 2018-08-23 2019-07-12 일체형 방폭 밸브 성형용의 전지 덮개용 알루미늄 합금판 및 그 제조 방법
US16/644,639 US11401584B2 (en) 2018-08-23 2019-07-12 Aluminum alloy sheet for battery lid use for forming integrated explosion-proof valve and method of production of same
TW108124940A TWI700377B (zh) 2018-08-23 2019-07-15 用於成形一體型防爆閥之電池蓋用鋁合金板及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018156521A JP6614293B1 (ja) 2018-08-23 2018-08-23 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法

Publications (2)

Publication Number Publication Date
JP6614293B1 JP6614293B1 (ja) 2019-12-04
JP2020029600A true JP2020029600A (ja) 2020-02-27

Family

ID=68763393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018156521A Active JP6614293B1 (ja) 2018-08-23 2018-08-23 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法

Country Status (7)

Country Link
US (1) US11401584B2 (ja)
EP (1) EP3842559A4 (ja)
JP (1) JP6614293B1 (ja)
KR (1) KR20200035994A (ja)
CN (1) CN111094606B (ja)
TW (1) TWI700377B (ja)
WO (1) WO2020039792A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6780685B2 (ja) * 2018-09-21 2020-11-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6614305B1 (ja) * 2018-09-21 2019-12-04 日本軽金属株式会社 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
KR20200038953A (ko) * 2018-10-01 2020-04-14 니폰게이긴조쿠가부시키가이샤 일체형 방폭 밸브 성형용의 전지 덮개용 알루미늄 합금판 및 그 제조 방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504007B1 (ja) 1968-09-03 1975-02-13
JPH09199088A (ja) 1996-01-12 1997-07-31 Seiko Instr Inc 密閉電池およびその製造方法
JP3843368B2 (ja) 2000-10-23 2006-11-08 古河スカイ株式会社 耐高温フクレ性に優れた電池ケース用アルミニウム合金板およびその製造方法
JP4001007B2 (ja) 2002-12-19 2007-10-31 日本軽金属株式会社 矩形断面電池容器用アルミニウム合金板
JP4281727B2 (ja) 2005-10-13 2009-06-17 日本軽金属株式会社 電池蓋用アルミニウム合金板
JP5004007B2 (ja) * 2007-04-12 2012-08-22 日本軽金属株式会社 電池蓋用アルミニウム合金板及びその製造方法
JP5725344B2 (ja) 2011-02-02 2015-05-27 日本軽金属株式会社 成形性、溶接性に優れた電池ケース用アルミニウム合金板
WO2013008314A1 (ja) * 2011-07-12 2013-01-17 住友軽金属工業株式会社 リチウムイオン電池ケース用アルミニウム合金板材
JP5872256B2 (ja) 2011-11-11 2016-03-01 株式会社Uacj リチウムイオン電池封口材用アルミニウム合金板材およびその製造方法
JP5954099B2 (ja) * 2012-10-12 2016-07-20 日本軽金属株式会社 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
CN102978484B (zh) * 2012-11-30 2015-02-18 苏州有色金属研究院有限公司 一种动力电池外壳用Al-Fe合金板及其制备方法
JP5929855B2 (ja) * 2013-08-02 2016-06-08 日本軽金属株式会社 成形性、放熱性及び溶接性に優れた電池ケース用アルミニウム合金板
CN105593392B (zh) * 2014-04-09 2017-08-29 日本轻金属株式会社 弯曲加工性与形状冻结性优良的高强度铝合金板及其制造方法
CN107502787B (zh) * 2017-08-15 2019-02-22 中铝瑞闽股份有限公司 一种新能源电池盖防爆阀用铝合金带材及其制备方法
CN107604212A (zh) * 2017-09-12 2018-01-19 中铝瑞闽股份有限公司 一体化电池盖板用铝合金带材及其制备方法
JP6780664B2 (ja) 2017-12-05 2020-11-04 日本軽金属株式会社 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法

Also Published As

Publication number Publication date
US20210062302A1 (en) 2021-03-04
JP6614293B1 (ja) 2019-12-04
US11401584B2 (en) 2022-08-02
WO2020039792A1 (ja) 2020-02-27
EP3842559A1 (en) 2021-06-30
CN111094606A (zh) 2020-05-01
TW202012647A (zh) 2020-04-01
EP3842559A4 (en) 2022-06-08
CN111094606B (zh) 2021-10-22
TWI700377B (zh) 2020-08-01
KR20200035994A (ko) 2020-04-06

Similar Documents

Publication Publication Date Title
JP6780783B2 (ja) 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6614305B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6780679B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
CN111094604B (zh) 一体型防爆阀成形用的电池盖用铝合金板及其制造方法
CN111094606B (zh) 一体型防爆阀成形用的电池盖用铝合金板及其制造方法
CN111094605B (zh) 一体型防爆阀成形用的电池盖用铝合金板及其制造方法
WO2019111422A1 (ja) 一体型円形防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6614307B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
WO2020070944A1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法
JP6780685B2 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板及びその製造方法
JP6614306B1 (ja) 一体型防爆弁成形用の電池蓋用アルミニウム合金板およびその製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191021

R150 Certificate of patent or registration of utility model

Ref document number: 6614293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350