JP2020028869A - Method for producing voc removal catalyst, voc removal catalyst, and voc removal method - Google Patents

Method for producing voc removal catalyst, voc removal catalyst, and voc removal method Download PDF

Info

Publication number
JP2020028869A
JP2020028869A JP2018157437A JP2018157437A JP2020028869A JP 2020028869 A JP2020028869 A JP 2020028869A JP 2018157437 A JP2018157437 A JP 2018157437A JP 2018157437 A JP2018157437 A JP 2018157437A JP 2020028869 A JP2020028869 A JP 2020028869A
Authority
JP
Japan
Prior art keywords
voc removal
metal
voc
porous substrate
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018157437A
Other languages
Japanese (ja)
Other versions
JP7337338B2 (en
Inventor
和治 関
Kazuharu Seki
和治 関
官 国清
Kunikiyo Kan
国清 官
ジン 王
Jing Wang
ジン 王
曉弘 吉田
Akihiro Yoshida
曉弘 吉田
里提 阿布
Liti Abu
里提 阿布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Ziqoo Co Ltd
Original Assignee
Hirosaki University NUC
Ziqoo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hirosaki University NUC, Ziqoo Co Ltd filed Critical Hirosaki University NUC
Priority to JP2018157437A priority Critical patent/JP7337338B2/en
Publication of JP2020028869A publication Critical patent/JP2020028869A/en
Application granted granted Critical
Publication of JP7337338B2 publication Critical patent/JP7337338B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

To provide a VOC removal catalyst and method for producing the same that can be produced by a simple method and is excellent in VOC removal efficiency even at low temperature processing, and a VOC removal method.SOLUTION: The inventive method for producing electrode includes a step of performing an electrodeposition treatment in an aqueous solution containing at least one metal compound using a conductive porous substrate as an anode. The VOC removal catalyst of the present invention is formed by coating a conductive porous substrate with a metal oxide. According to this invention, a VOC removal catalyst that is excellent in VOC removal efficiency even when processing at low temperature is provided.SELECTED DRAWING: None

Description

本発明は、VOC除去用触媒の製造方法、VOC除去用触媒及びVOC除去方法に関する。   The present invention relates to a method for producing a VOC removal catalyst, a VOC removal catalyst, and a VOC removal method.

VOCは、揮発性有機化合物(Volatile Organic Compounds)の略称であり、例えば、トルエン、キシレン、ベンゼン、酢酸エチル、メタノール及びジクロロメタン等が知られている。このようなVOCは、溶剤、接着剤、化学品原料等に広く利用されている反面、VOCは、光化学オキシダント、あるいは、浮遊粒子状物質(SPM)の原因になると指摘されていることから、大気汚染防止法によりその排出量が厳しく規制されている。   VOC is an abbreviation for volatile organic compounds, and for example, toluene, xylene, benzene, ethyl acetate, methanol, dichloromethane, and the like are known. While such VOCs are widely used in solvents, adhesives, raw materials for chemicals, etc., VOCs have been pointed out as causing photochemical oxidants or suspended particulate matter (SPM). The emission control is strictly regulated by the Pollution Control Law.

VOCは、例えば、塗装(屋内、屋外)、洗浄、給油、化学製品の製造、印刷、接着等、様々な工程によって排出され、これらの中でも塗装からの排出が最も多いと言われており、固定発生源からの排出が5割以上を占めている。   VOCs are emitted through various processes such as painting (indoor and outdoor), washing, refueling, manufacturing of chemical products, printing, bonding, etc. Among them, it is said that the emission from painting is the largest, and fixed. Emissions from sources account for more than 50%.

このような観点から、VOC排出量をさらなる低減すべく、VOCをより効率良く除去する技術の確立が望まれている。これまでにも種々のVOC除去方法が提案されている。VOCの排出対策技術は、大別すると、(1)回収・再生方式;(2)密閉方式;(3)燃焼・分解方式;(4)物質代替方式の4方式に分類できる。   From such a viewpoint, it is desired to establish a technology for removing VOCs more efficiently in order to further reduce the amount of VOC emissions. Various VOC removal methods have been proposed so far. VOC emission control technologies can be roughly classified into four types: (1) recovery / regeneration system; (2) hermetic system; (3) combustion / decomposition system;

燃焼・分解方式は、VOCを二酸化炭素や水などに分解することによって、VOCを処理する。従来型の塗装や印刷などに代表されるように、物質や成分比の異なる複数のVOCを使用する場合は、VOCを回収・再生しても、これを再利用する利点が少ないので、燃焼・分解方式が現実的であるといえる。   The combustion / decomposition method processes VOC by decomposing VOC into carbon dioxide, water, and the like. When multiple VOCs with different substances and component ratios are used, as represented by conventional painting and printing, there is little advantage in reusing VOCs even if they are recovered and regenerated. It can be said that the decomposition method is realistic.

燃焼・分解方式の中でも特に、燃焼によってVOCを分解する方法は、日本では1960年頃から行われている。燃焼方法としては、例えば、直接燃焼法、触媒燃焼法、蓄熱燃焼法が知られている。中でも触媒燃焼法とは、白金、パラジウム等を担持した触媒を用いてVOCを200〜350℃の低温下で酸化分解する方法である。この方法で使用するVOC除去装置の特徴は、低温で運転ができる点、小型軽量化しやすい点、爆発危険性が少ない点、サーマルNOxの副生がない点等が挙げられる。   Among the combustion / decomposition methods, a method of decomposing VOC by combustion has been used in Japan since about 1960. As the combustion method, for example, a direct combustion method, a catalytic combustion method, and a heat storage combustion method are known. Above all, the catalytic combustion method is a method of oxidatively decomposing VOC at a low temperature of 200 to 350 ° C. using a catalyst supporting platinum, palladium, or the like. The features of the VOC removal apparatus used in this method are that it can be operated at a low temperature, that it can be easily reduced in size and weight, that there is little risk of explosion, that there is no by-product of thermal NOx, and the like.

しかし、触媒燃焼法では、触媒劣化の程度が把握しにくい等の課題もあることから、被毒されにくく寿命の長い新触媒の開発や、耐熱性の向上及び低コスト化等の観点からの触媒の開発が進められている。最近では白金などの高価な貴金属を使用しない安価な触媒も提案されている(例えば、非特許文献1を参照)。   However, in the catalytic combustion method, there is a problem that it is difficult to grasp the degree of deterioration of the catalyst. Therefore, the development of a new catalyst which is not easily poisoned and has a long life, and a catalyst from the viewpoint of improving heat resistance and reducing cost. Is being developed. Recently, inexpensive catalysts that do not use expensive noble metals such as platinum have been proposed (for example, see Non-Patent Document 1).

Applied Catalysis B: Environmental 104 (2011) 144-150Applied Catalysis B: Environmental 104 (2011) 144-150

しかしながら、近年において、VOC除去用触媒においては、白金などの高価な貴金属を使用しないことに加えて、より効率よくVOCを除去できる性質を有することが望まれており、また、そのような触媒を簡便な方法で製造することが望まれていた。特に、簡便な方法で製造でき、低温で処理してもVOCの除去効率に優れるVOC除去用触媒が強く要望されていた。   However, in recent years, it has been desired that a VOC removal catalyst not only does not use an expensive noble metal such as platinum, but also has a property capable of removing VOC more efficiently. It has been desired to produce it by a simple method. In particular, there has been a strong demand for a VOC removal catalyst that can be manufactured by a simple method and has excellent VOC removal efficiency even when treated at a low temperature.

本発明は、上記に鑑みてなされたものであり、簡便な方法で製造でき、低温で処理してもVOCの除去効率に優れるVOC除去用触媒及びその製造方法並びにVOC除去方法を提供することを目的とする。   The present invention has been made in view of the above, and it is an object of the present invention to provide a VOC removal catalyst which can be produced by a simple method and has excellent VOC removal efficiency even when treated at a low temperature, a method for producing the same, and a VOC removal method. Aim.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、例えば、電着法を利用した方法により上記目的を達成できることを見出し、本発明を完成するに至った。   The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that the above object can be achieved by, for example, a method utilizing an electrodeposition method, and have completed the present invention.

項1
導電性多孔質基材をアノードとして使用して、少なくとも1種の金属化合物を含む水溶液中で電着処理を行う工程を含む、VOC除去用触媒の製造方法。
項2
前記金属化合物は、Fe、Co、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる少なくとも1種の金属M1の化合物である、項1に記載の製造方法。
項3
前記導電性多孔質基材は、金属の多孔質基材又は炭素材料の多孔質基材である、項1又は2に記載の製造方法。
項4
導電性多孔質基材に金属酸化物が被覆されて形成される、VOC除去用触媒。
項4´
項1〜3のいずれか1項に記載の製造方法で得られたVOC除去用触媒。
項5
前記金属酸化物は、Fe、Co、Ce、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる少なくとも1種の金属M1の酸化物又は複合酸化物である、項4に記載のVOC除去用触媒。
項6
前記導電性多孔質基材は、金属の多孔質基材又は炭素材料の多孔質基材である、項4又は5に記載のVOC除去用触媒。
項7
項1〜3のいずれか1項に記載の製造方法で得られたVOC除去用触媒を用いてVOCを除去する工程を備える、VOCの除去方法。
項8
項4〜6のいずれか1項に記載のVOC除去用触媒を用いてVOCを除去する工程を備える、VOCの除去方法。
Item 1
A method for producing a VOC removal catalyst, comprising a step of performing an electrodeposition treatment in an aqueous solution containing at least one metal compound using a conductive porous substrate as an anode.
Item 2
The metal compound is a compound of at least one metal M1 selected from the group consisting of Fe, Co, Ni, Mn, Mo, V, Cu, Zn, W, Ti, Cr, Al, Mg and La. 2. The production method according to 1.
Item 3
Item 3. The method according to Item 1 or 2, wherein the conductive porous substrate is a metal porous substrate or a carbon material porous substrate.
Item 4
A VOC removal catalyst formed by coating a conductive porous substrate with a metal oxide.
Item 4 '
Item 4. A catalyst for removing VOC obtained by the production method according to any one of items 1 to 3.
Item 5
The metal oxide is an oxide of at least one metal M1 selected from the group consisting of Fe, Co, Ce, Ni, Mn, Mo, V, Cu, Zn, W, Ti, Cr, Al, Mg and La. Item 5. The VOC removal catalyst according to Item 4, which is a composite oxide.
Item 6
Item 6. The VOC removal catalyst according to Item 4 or 5, wherein the conductive porous substrate is a metal porous substrate or a carbon material porous substrate.
Item 7
Item 4. A method for removing VOCs, comprising a step of removing VOCs using the VOC removal catalyst obtained by the production method according to any one of Items 1 to 3.
Item 8
Item 7. A method for removing VOC, comprising a step of removing VOC using the catalyst for removing VOC according to any one of Items 4 to 6.

本発明のVOC除去用触媒の製造方法によれば、VOC除去用触媒を簡便な方法で製造することができ、得られたVOC除去用触媒によれば、低温でVOCを処理してもVOCの除去効率に優れる。   ADVANTAGE OF THE INVENTION According to the manufacturing method of the VOC removal catalyst of this invention, a VOC removal catalyst can be manufactured by a simple method, and according to the obtained VOC removal catalyst, even if VOC is processed at low temperature, VOC Excellent removal efficiency.

本発明のVOC除去用触媒によれば、低温でVOCを処理してもVOCの除去効率に優れる。   ADVANTAGE OF THE INVENTION According to the catalyst for VOC removal of this invention, even if it processes VOC at low temperature, the removal efficiency of VOC is excellent.

本発明のVOC除去方法によれば、低温でVOCを処理することができるので、VOCの除去に適した方法である。   According to the VOC removal method of the present invention, VOC can be processed at a low temperature, and thus is a method suitable for VOC removal.

各実施例得たVOC除去用触媒の製造フローを示す概略図である。It is the schematic which shows the manufacturing flow of the catalyst for VOC removal obtained in each Example. 各実施例で得たVOC除去用触媒の評価試験方法のフローを示す概略図である。It is the schematic which shows the flow of the evaluation test method of the catalyst for VOC removal obtained in each Example. 実施例1で得たVOC除去用触媒のSEM画像を示す。2 shows an SEM image of the VOC removal catalyst obtained in Example 1. 実施例2で得たVOC除去用触媒のSEM画像を示す。4 shows an SEM image of the VOC removal catalyst obtained in Example 2. 実施例3で得たVOC除去用触媒のSEM画像を示す。4 shows an SEM image of the VOC removal catalyst obtained in Example 3. 実施例4で得たVOC除去用触媒のSEM画像を示す。5 shows an SEM image of the VOC removal catalyst obtained in Example 4. 実施例5で得たVOC除去用触媒のSEM画像を示す。9 shows a SEM image of the VOC removal catalyst obtained in Example 5. 実施例6で得たVOC除去用触媒のSEM画像を示す。8 shows an SEM image of the VOC removal catalyst obtained in Example 6. 実施例7で得たVOC除去用触媒のSEM画像を示す。9 shows a SEM image of the VOC removal catalyst obtained in Example 7. 各実施例で得られたVOC除去用触媒の評価試験結果を示し、(a)は温度とトルエンのコンバージョンとの関係を示すグラフ、(b)は温度と二酸化炭素選択率との関係を示すグラフである。The evaluation test result of the catalyst for VOC removal obtained in each Example is shown, (a) is a graph showing the relationship between temperature and conversion of toluene, (b) is a graph showing the relationship between temperature and carbon dioxide selectivity. It is.

以下、本発明の実施形態について詳細に説明する。なお、本明細書中において、「含有」及び「含む」なる表現については、「含有」、「含む」、「実質的にからなる」及び「のみからなる」という概念を含む。   Hereinafter, embodiments of the present invention will be described in detail. In this specification, the expressions “contain” and “contain” include the concepts of “contain”, “contain”, “consisting essentially of” and “consisting of only”.

1.VOC除去用触媒の製造方法
本発明のVOC除去用触媒の製造方法は、導電性多孔質基材をアノードとして使用して、少なくとも1種の金属化合物を含む水溶液中で電着処理を行う工程を含む。以下、この工程を「電着工程」と略記する。
1. Method for Producing VOC Removal Catalyst The method for producing a VOC removal catalyst of the present invention comprises a step of performing an electrodeposition treatment in an aqueous solution containing at least one metal compound using a conductive porous substrate as an anode. Including. Hereinafter, this step is abbreviated as “electrodeposition step”.

本発明の製造方法は、電着工程を具備することにより、VOC除去用触媒を簡便な方法で製造することができ、得られたVOC除去用触媒を用いることで、低温でVOCを処理することができ、VOCの除去効率に優れる。   The production method of the present invention can produce a VOC removal catalyst by a simple method by including an electrodeposition step, and can process VOC at a low temperature by using the obtained VOC removal catalyst. And is excellent in VOC removal efficiency.

電着工程で使用する導電性多孔質基材は、導電性を有し、かつ、多孔質に形成された基材であり、VOC除去用触媒作用を有する材料を保持する役割を果たす。導電性多孔質基材は、例えば、板状、線状、棒状、メッシュ状等の形状に形成される。   The conductive porous base material used in the electrodeposition step is a base material having conductivity and being porous, and plays a role of holding a material having a catalytic action for VOC removal. The conductive porous substrate is formed in a shape such as a plate, a line, a bar, and a mesh.

導電性多孔質基材の種類は特に限定されず、導電性を有し、かつ、多孔質に形成された基材である限りは、公知の基材を広く使用することができる。   The type of the conductive porous substrate is not particularly limited, and a known substrate can be widely used as long as the substrate has conductivity and is formed porous.

導電性多孔質基材としては、空気中において燃焼温度が400℃以上である導電材料であることが好ましい。中でも、導電性多孔質基材は、例えば、金属の多孔質基材又は炭素材料の多孔質基材であることが好ましい。この場合、VOC除去用触媒を製造しやすく、また、得られるVOC除去用触媒もVOCの除去効率に優れる。金属の多孔質基材としては、金属の発泡体を挙げることができ、炭素材料の多孔質基材としては、炭素材料の発泡体等を挙げることができる。   The conductive porous substrate is preferably a conductive material whose combustion temperature in air is 400 ° C. or higher. In particular, the conductive porous substrate is preferably, for example, a metal porous substrate or a carbon material porous substrate. In this case, a VOC removal catalyst can be easily produced, and the obtained VOC removal catalyst is also excellent in VOC removal efficiency. Examples of the metal porous substrate include a metal foam, and examples of the carbon material porous substrate include a carbon material foam.

金属の発泡体としては、ニッケルの発泡体又は銅の発泡体等、各種金属の発泡体を挙げることができる。金属の発泡体は、合金の発泡体又は金属を2種以上含む発泡体であってもよい。炭素材料の発泡体としては、カーボン紙の発泡体、炭素繊維の発泡体及び活性炭の発泡体等を挙げることができる。   Examples of the metal foam include various metal foams such as a nickel foam and a copper foam. The metal foam may be an alloy foam or a foam containing two or more metals. Examples of the foam of the carbon material include a foam of carbon paper, a foam of carbon fiber, and a foam of activated carbon.

導電性多孔質基材には、本発明の効果が得られる範囲内で、他の成分が含まれていてもよい。   Other components may be contained in the conductive porous substrate as long as the effects of the present invention can be obtained.

導電性多孔質基材は、公知の方法で得ることができ、あるいは、市販の導電性多孔質基材を採用することもできる。   The conductive porous substrate can be obtained by a known method, or a commercially available conductive porous substrate can be employed.

電着工程で使用する金属化合物において、金属の種類は特に限定されず、例えば、VOC除去用触媒で使用される金属を広く適用することができる。以下、金属化合物における金属を「金属M」と表記する。   In the metal compound used in the electrodeposition step, the kind of the metal is not particularly limited, and for example, a metal used in a VOC removal catalyst can be widely applied. Hereinafter, the metal in the metal compound is referred to as “metal M”.

金属Mの種類としては、例えば、Fe、Co、Ce、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる少なくとも1種の金属M1であることが好ましい。この場合、VOC除去用触媒を製造しやすく、また、得られるVOC除去用触媒もVOCの除去効率に優れる。つまり、電着工程で使用する金属化合物は、Fe、Co、Ce、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる少なくとも1種の金属M1の化合物であることが好ましい。電着工程で使用する金属化合物は、少なくともCoの金属化合物を含むことが好ましい。   Examples of the type of the metal M include, for example, at least one metal M1 selected from the group consisting of Fe, Co, Ce, Ni, Mn, Mo, V, Cu, Zn, W, Ti, Cr, Al, Mg, and La. It is preferred that In this case, a VOC removal catalyst can be easily produced, and the obtained VOC removal catalyst is also excellent in VOC removal efficiency. That is, the metal compound used in the electrodeposition step is at least one selected from the group consisting of Fe, Co, Ce, Ni, Mn, Mo, V, Cu, Zn, W, Ti, Cr, Al, Mg and La. Is preferred. The metal compound used in the electrodeposition step preferably contains at least a metal compound of Co.

電着工程で使用する金属Mの化合物の種類は特に限定されない。例えば、金属Mの化合物としては、公知の金属Mの無機酸塩、公知の金属Mの有機酸塩、公知の金属Mの水酸化物及び公知の金属Mのハロゲン化物等を広く使用することができる。金属Mの化合物は水和物であってもよい。   The type of the metal M compound used in the electrodeposition step is not particularly limited. For example, as the compound of the metal M, a known inorganic acid salt of the metal M, a known organic acid salt of the metal M, a known metal M hydroxide, a known metal M halide, and the like can be widely used. it can. The compound of metal M may be a hydrate.

金属Mの無機酸塩としては、金属Mの硝酸塩、硫酸塩、塩酸塩、炭酸塩、炭酸水素塩、リン酸塩及びリン酸水素塩等からなる群より選ばれる1種以上を挙げることができる。   Examples of the inorganic acid salt of the metal M include at least one selected from the group consisting of a nitrate, a sulfate, a hydrochloride, a carbonate, a hydrogen carbonate, a phosphate, a hydrogen phosphate, and the like of the metal M. .

金属Mの有機酸塩としては、金属Mの酢酸塩、シュウ酸塩、蟻酸塩、コハク酸塩等からなる群より選ばれる1種以上を挙げることができる。   Examples of the organic acid salt of the metal M include at least one selected from the group consisting of an acetate, an oxalate, a formate, and a succinate of the metal M.

電着工程で使用する金属Mの化合物としては、水に溶解して水溶液を形成しやすいことが好ましく、この場合、VOC除去用触媒を製造しやすい。中でも、電着工程で使用する金属Mの化合物としては、金属Mの硝酸塩、金属Mの硫酸塩及び金属Mの塩化物等であることが好ましく、金属Mの硝酸塩であることがより好ましい。特に、電着工程で使用する金属Mの化合物としては、金属M1の硝酸塩、金属M1の硫酸塩及び金属M1の塩化物等であることが好ましく、金属M1の硝酸塩であることが最も好ましい。   It is preferable that the metal M compound used in the electrodeposition step be easily dissolved in water to form an aqueous solution, and in this case, a VOC removal catalyst is easily manufactured. Among them, the metal M compound used in the electrodeposition step is preferably a metal M nitrate, a metal M sulfate, a metal M chloride, or the like, and more preferably a metal M nitrate. In particular, the metal M compound used in the electrodeposition step is preferably a metal M1 nitrate, a metal M1 sulfate, a metal M1 chloride, or the like, and most preferably a metal M1 nitrate.

電着工程で使用する金属Mの化合物は、1種単独で使用してもよく、あるいは異なる2種以上を併用することが可能である。得られるVOC除去用触媒がVOCの除去効率に優れやすくなる点で、電着工程で使用する金属Mの化合物は、異なる2種以上を併用することが好ましい。異なる2種以上の金属Mの化合物を併用する場合、各金属Mの化合物は、同じ種類の塩であることが好ましい。例えば、各金属Mの化合物は、すべて硝酸塩とすることができる。   The metal M compound used in the electrodeposition step may be used singly, or two or more different compounds may be used in combination. It is preferable to use two or more different compounds of the metal M used in the electrodeposition step in that the obtained VOC removal catalyst tends to have excellent VOC removal efficiency. When two or more different compounds of metal M are used in combination, the compounds of each metal M are preferably the same type of salt. For example, all compounds of each metal M can be nitrates.

電着工程において、異なる2種以上の金属Mの化合物を併用する場合、各金属Mの化合物の使用割合は特に限定されない。例えば、2種の金属Mの化合物を併用する場合、一方の化合物の金属Mと、他方の化合物の金属Mとのモル比は1:0.1〜1:20とすることができ、1:1〜1:10とすることが特に好ましい。   When two or more different compounds of the metal M are used in combination in the electrodeposition step, the use ratio of each metal M compound is not particularly limited. For example, when two kinds of compounds of metal M are used in combination, the molar ratio between metal M of one compound and metal M of the other compound can be 1: 0.1 to 1:20, and 1: It is particularly preferred that the ratio be 1 to 1:10.

電着工程において、異なる2種以上の金属Mの化合物を併用する場合、各金属Mの化合物における金属Mの組み合わせは特に限定されない。例えば、電着工程において、異なる2種以上の金属M1の化合物を併用する場合、各化合物間の金属M1の組み合わせとしては、Fe、Co、Ce、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる金属M1のうちのいずれの2種以上の組み合わせを選択してもよい。   When two or more different compounds of metal M are used in combination in the electrodeposition step, the combination of metals M in each metal M compound is not particularly limited. For example, in the electrodeposition step, when two or more different compounds of the metal M1 are used in combination, the combination of the metals M1 between the compounds may be Fe, Co, Ce, Ni, Mn, Mo, V, Cu, Zn, Any combination of any two or more of the metals M1 selected from the group consisting of W, Ti, Cr, Al, Mg and La may be selected.

特に、異なる2種以上の金属M1の化合物を併用する場合、少なくともひとつの金属M1の化合物の金属M1はコバルトであることが好ましい。例えば、電着工程において、異なる2種の金属Mの化合物を併用する場合であって、一方の金属化合物がコバルトの化合物である場合、他の金属化合物の金属とコバルトとのモル比は1:0.1〜1:20とすることができ、1:1〜1:10とすることが特に好ましい。異なる2種の金属Mの化合物を併用する場合の各化合物の金属の組み合わせとしては、CoとNiの組み合わせ、CoとMnの組み合わせ、CoとFeの組み合わせ、CoとCuの組み合わせ、CoとVの組み合わせ及びCoとCeの組み合わせを挙げることができ、中でも、より低温でVOCを除去できるという観点で、CoとNiの組み合わせ、CoとMnの組み合わせ及びCoとCeの組み合わせであることが特に好ましい。   In particular, when two or more different compounds of the metal M1 are used in combination, the metal M1 of at least one compound of the metal M1 is preferably cobalt. For example, in the electrodeposition step, when two different compounds of the metal M are used in combination, and one of the metal compounds is a compound of cobalt, the molar ratio of the metal to cobalt of the other metal compound is 1: The ratio can be 0.1 to 1:20, and particularly preferably 1: 1 to 1:10. When two different compounds of the metal M are used in combination, the metal combination of each compound includes a combination of Co and Ni, a combination of Co and Mn, a combination of Co and Fe, a combination of Co and Cu, and a combination of Co and V. Combinations and combinations of Co and Ce can be mentioned. Among them, from the viewpoint that VOC can be removed at a lower temperature, a combination of Co and Ni, a combination of Co and Mn, and a combination of Co and Ce are particularly preferable.

金属Mの化合物は、公知の製造方法で得ることができ、あるいは、市販の金属Mの化合物を使用することもできる。   The metal M compound can be obtained by a known production method, or a commercially available metal M compound can be used.

電着工程では、少なくとも1種の前記金属Mの化合物を含む水溶液を使用する。この水溶液の調製方法は特に限定されず、例えば、少なくとも1種の前記金属Mの化合物と、溶媒とを混合することで調製できる。溶媒としては、水、あるいは、水と低級アルコール(例えば、メタノール、エタノール等の炭素数1〜4のアルコール)との混合物を使用することができ、特に好ましくは、水である。水は、蒸留水、水道水、工業用水、イオン交換水、脱イオン水、純水、電解水などの各種の水を用いることができる。溶媒には、本発明の効果が阻害されない限り、pH調整剤、粘度調整剤、防かび剤等を含有していてもよい。   In the electrodeposition step, an aqueous solution containing at least one compound of the metal M is used. The method for preparing this aqueous solution is not particularly limited, and can be prepared, for example, by mixing at least one compound of the metal M with a solvent. As the solvent, water or a mixture of water and a lower alcohol (for example, an alcohol having 1 to 4 carbon atoms such as methanol and ethanol) can be used, and water is particularly preferable. As the water, various types of water such as distilled water, tap water, industrial water, ion-exchanged water, deionized water, pure water, and electrolytic water can be used. The solvent may contain a pH adjuster, a viscosity adjuster, a fungicide and the like as long as the effects of the present invention are not impaired.

電着工程で使用する水溶液の濃度は特に限定されない。例えば、水溶液において、溶媒100mLあたり、金属M(2種以上の金属が存在する場合は、各金属Mのそれぞれ)が1〜1000mmol溶解していることが好ましい。この場合、構造が安定な触媒を容易に形成することができる。水溶液において、溶媒100mLあたり、金属M(2種以上の金属が存在する場合は、各金属Mのそれぞれ)が1〜500mmol溶解していることがより好ましく、5〜100mmol溶解していることが特に好ましい。   The concentration of the aqueous solution used in the electrodeposition step is not particularly limited. For example, in an aqueous solution, it is preferable that 1 to 1000 mmol of the metal M (each metal M when two or more metals exist) is dissolved per 100 mL of the solvent. In this case, a catalyst having a stable structure can be easily formed. In the aqueous solution, it is more preferable that 1 to 500 mmol of the metal M (each of the metals M when two or more metals are present) is dissolved, more preferably 5 to 100 mmol, per 100 mL of the solvent. preferable.

電着工程で使用する水溶液には、本発明の効果が阻害されない限り、他の添加剤を含むことができる。他の添加剤としては、例えば、pH調整剤を挙げることができる。   The aqueous solution used in the electrodeposition step may contain other additives as long as the effects of the present invention are not impaired. Other additives include, for example, pH adjusters.

電着工程において、電着処理の方法は特に限定されず、公知の電着処理の方法を広く採用することができる。例えば、前記水溶液に前記導電性多孔質基材を浸漬し、電着処理を実施することができる。   In the electrodeposition step, the method of the electrodeposition treatment is not particularly limited, and a known electrodeposition method can be widely used. For example, the conductive porous substrate can be immersed in the aqueous solution to perform an electrodeposition process.

本発明の製造方法では、電着工程において、前記導電性多孔質基材をアノードとして使用して、電着処理を行う。   In the production method of the present invention, in the electrodeposition step, the electrodeposition treatment is performed using the conductive porous substrate as an anode.

電着処理では、各種の電着法を採用することができる。電着法としては、定電流法(GM)、定電圧法(PM)、サイクリックボルタンメトリー法(CV)、パルス電着処理法などの電着処理方法などが挙げられる。パルス電着処理法は、金属イオンの電着速度を制御できる電着処理法であり、例えば、高端電圧と低端電圧とを一定周期で印加するパルス電圧法(PPM)、高端電流と低端電流とを一定周期で印加するパルス電流法(PGM)、高端電圧の印加と開回路状態とを一定周期で繰り返し行う単極性パルス電圧法(UPED)などが挙げられる。   In the electrodeposition process, various electrodeposition methods can be adopted. Examples of the electrodeposition method include a constant current method (GM), a constant voltage method (PM), a cyclic voltammetry method (CV), and an electrodeposition method such as a pulse electrodeposition method. The pulse electrodeposition method is an electrodeposition method capable of controlling the electrodeposition speed of metal ions. For example, a pulse voltage method (PPM) in which a high-end voltage and a low-end voltage are applied at a constant period, a high-end current and a low-end A pulse current method (PGM) in which a current is applied at a constant cycle, and a unipolar pulse voltage method (UPED) in which application of a high-end voltage and an open circuit state are repeated at a constant cycle are exemplified.

電着法は、パルス電着処理法が好ましく、中でも単極性パルス電圧法(UPED)がより好ましい。   As the electrodeposition method, a pulse electrodeposition method is preferable, and a unipolar pulse voltage method (UPED) is more preferable.

電着処理における電着法として、単極性パルス電圧法(UPED)を採用する場合、単極性パルス電圧法の条件としては特に制限されない。例えば、印加電圧として−0.6〜1.8V、パルスのオン/オフ時間は0.5〜1秒、サイクル回数は100〜1000の条件で単極性パルス電圧法を行うことができ、より具体的な例としては、印加電圧が−1V、オン/オフ時間が1sの条件にて単極性パルス電圧法を行うことができる。   When the unipolar pulse voltage method (UPED) is employed as the electrodeposition method in the electrodeposition process, the conditions of the unipolar pulse voltage method are not particularly limited. For example, the unipolar pulse voltage method can be performed under the conditions of an applied voltage of -0.6 to 1.8 V, a pulse on / off time of 0.5 to 1 second, and a cycle number of 100 to 1000. As a typical example, the unipolar pulse voltage method can be performed under the condition that the applied voltage is -1 V and the on / off time is 1 s.

電着処理を行う際の水溶液の温度は特に制限されず、例えば0〜50℃程度、好ましくは20〜30℃とすることができる。   The temperature of the aqueous solution at the time of performing the electrodeposition treatment is not particularly limited and may be, for example, about 0 to 50 ° C, preferably 20 to 30 ° C.

電着工程において、電着処理は、アノードの他、カソード、参照電極、電解装置、電源、制御ソフトウェア等を使用することができる。これらの種類は、特に制限されず、目的に応じて公知のものを使用することができる。例えば、参照電極としては、銀/塩化銀電極(Ag/AgCl電極)、水銀/塩化水銀電極(Hg/HgCl電極)、標準水素電極などを使用することができる。 In the electrodeposition process, the electrodeposition process can use a cathode, a reference electrode, an electrolyzer, a power supply, control software, and the like, in addition to the anode. These types are not particularly limited, and known types can be used according to the purpose. For example, as a reference electrode, a silver / silver chloride electrode (Ag / AgCl electrode), a mercury / mercury chloride electrode (Hg / HgCl 2 electrode), a standard hydrogen electrode, or the like can be used.

電着処理で使用するカソードとしては、例えば、公知の不溶性電極を使用することができる。カソードとしては、例えば、炭素、白金族金属、金などを素材とする電極を用いることができる。白金族金属としては、白金、パラジウム、ルテニウム、ロジウム、オスミウム、及びイリジウムが挙げられ、中でも白金が好ましい。カソードに含まれる白金族金属は、上記した金属種を1種単独で又は2種以上含んでいてもよい。また、白金族金属は、合金、金属酸化物等の状態で含まれていてもよい。   As a cathode used in the electrodeposition treatment, for example, a known insoluble electrode can be used. As the cathode, for example, an electrode made of carbon, a platinum group metal, gold, or the like can be used. Examples of platinum group metals include platinum, palladium, ruthenium, rhodium, osmium, and iridium, with platinum being preferred. The platinum group metal contained in the cathode may include one or more of the above metal species. Further, the platinum group metal may be contained in a state of an alloy, a metal oxide or the like.

カソードの形状は特に制限されず、使用目的や要求される性能により適宜選択することができる。形状としては、例えば、金属線、シート状、板状、棒状、メッシュ状などが挙げられる。具体的には、螺旋状白金線、白金板などを例示することができる。   The shape of the cathode is not particularly limited, and can be appropriately selected depending on the purpose of use and required performance. Examples of the shape include a metal wire, a sheet, a plate, a bar, and a mesh. Specifically, a spiral platinum wire, a platinum plate and the like can be exemplified.

電着処理において、水溶液のpHは特に制限されず、例えば6未満、好ましくは2〜5程度、より好ましくは3〜4程度である。   In the electrodeposition treatment, the pH of the aqueous solution is not particularly limited, and is, for example, less than 6, preferably about 2 to 5, and more preferably about 3 to 4.

電着処理によって、導電性多孔質基材上に金属Mの水酸化物が形成される。電着工程で2種以上の金属Mの化合物を使用した場合は、導電性多孔質基材上に金属Mの複水酸化物が形成される。   By the electrodeposition treatment, a hydroxide of the metal M is formed on the conductive porous substrate. When two or more compounds of metal M are used in the electrodeposition step, a double hydroxide of metal M is formed on the conductive porous substrate.

電着工程で電着処理された導電性多孔質基材は、焼成処理をすることができる。これにより、導電性多孔質基材上の水酸化物又は複水酸化物が焼成され、酸化物に変化する。導電性多孔質基材上の複水酸化物が形成されていた場合は、焼成によって、複合酸化物へと変化し得る。   The conductive porous substrate that has been electrodeposited in the electrodeposition step can be subjected to a baking treatment. As a result, the hydroxide or double hydroxide on the conductive porous substrate is baked and changes to an oxide. When a double hydroxide is formed on the conductive porous substrate, it can be changed to a composite oxide by firing.

つまり、本発明の製造方法では、電着工程の後、電着工程で電着処理された導電性多孔質基材を焼成処理する工程を含むことができる。以下、この工程を焼成工程と略記する。   That is, the production method of the present invention can include a step of firing the conductive porous substrate that has been electrodeposited in the electrodeposition step after the electrodeposition step. Hereinafter, this step is abbreviated as a firing step.

焼成工程において、焼成処理の方法は特に限定的ではなく、公知の焼成方法を広く採用することができる。例えば、焼成処理の温度は、100℃以上とすることができ、150〜450℃とすることが好ましく、200〜400℃とすることがより好ましい。焼成時間は、焼成温度によって適宜選択すればよく、例えば、1.5〜5時間とすることができる。工程1において、焼成を行う際の昇温速度も特に限定されず、所望の酸化物が形成される程度に適宜設定することができる。   In the firing step, the firing method is not particularly limited, and a known firing method can be widely used. For example, the temperature of the firing treatment can be 100 ° C. or higher, preferably 150 to 450 ° C., and more preferably 200 to 400 ° C. The firing time may be appropriately selected depending on the firing temperature, and may be, for example, 1.5 to 5 hours. In Step 1, the rate of temperature rise during baking is not particularly limited, and can be appropriately set to such an extent that a desired oxide is formed.

焼成処理は、空気中及び不活性ガス雰囲気中のいずれで行ってもよい。好ましくは、空気中で焼成処理を行うことである。焼成処理は、例えば、市販の加熱炉等の公知の加熱装置を使用することができる。   The firing treatment may be performed in any of air and an inert gas atmosphere. Preferably, the firing treatment is performed in air. For the baking treatment, for example, a known heating device such as a commercially available heating furnace can be used.

焼成処理を行う前に必要に応じて、電着工程で電着処理された導電性多孔質基材を、空気中で50℃〜150℃で乾燥処理を行うこともできる。   Before conducting the firing treatment, the conductive porous substrate electrodeposited in the electrodeposition step may be subjected to a drying treatment at 50 ° C. to 150 ° C. in air, if necessary.

上記焼成処理によって、導電性多孔質基材上の金属の水酸化物又は複水酸化物が酸化物又は複合酸化物へと変化し、導電性多孔質基材が金属の酸化物又は複合酸化物で被覆される。   By the above calcination treatment, the hydroxide or double hydroxide of the metal on the conductive porous substrate is changed to an oxide or a composite oxide, and the conductive porous substrate is converted to a metal oxide or a composite oxide. Covered.

本発明の製造方法では、電着工程を備えることで、従来の化学合成法に比べて合成時間を短縮することができる。従来の化学合成法では、反応時間が長い上に反応温度も高くする必要があり、また、反応後は洗浄が必要であったのに対して、電着工程を備える本発明の製造方法では、反応時間が短く、反応後の洗浄等も必ずしも必要でない。   In the production method of the present invention, by providing the electrodeposition step, the synthesis time can be reduced as compared with the conventional chemical synthesis method. In the conventional chemical synthesis method, the reaction time was long and the reaction temperature had to be raised, and after the reaction, washing was required.On the other hand, in the production method of the present invention including the electrodeposition step, The reaction time is short, and washing after the reaction is not always necessary.

また、本発明の製造方法では、従来の化学合成法で必要であった合成後の造粒工程も不要になるので、これによっても全体の製造時間が従来よりも短縮され、得られた生成物をそのままVOC除去用触媒として使用することができる。   Further, in the production method of the present invention, a granulation step after synthesis, which was required in the conventional chemical synthesis method, is not required, so that the entire production time is shortened as compared with the conventional method, and the obtained product is obtained. Can be used as a VOC removal catalyst as it is.

さらに、本発明の製造方法では、電着工程を備えることで、金属酸化物又は金属の複合酸化物は担体(導電性多孔質基材)上に均一に分布しやすく、これにより、従来の化学合成法で得られた触媒よりも少ない使用量で、VOCを効率的に除去することができる。   Furthermore, in the production method of the present invention, by providing the electrodeposition step, the metal oxide or the composite oxide of the metal can be easily uniformly distributed on the carrier (conductive porous substrate), and thereby, the conventional chemical VOCs can be efficiently removed with a smaller amount of use than the catalyst obtained by the synthesis method.

2.VOC除去用触媒
本発明のVOC除去用触媒は、導電性多孔質基材に金属酸化物が被覆されて形成される。このようなVOC除去用触媒は、例えば、前述の本発明のVOC除去用触媒の製造方法によって得ることができる。
2. VOC Removal Catalyst The VOC removal catalyst of the present invention is formed by coating a conductive porous substrate with a metal oxide. Such a VOC removal catalyst can be obtained, for example, by the above-described method for producing a VOC removal catalyst of the present invention.

導電性多孔質基材の種類は、本発明の製造方法で使用する導電性多孔質基材と同様である。従って、導電性多孔質基材としては、ニッケルの発泡体又は銅の発泡体等、各種金属の発泡体;カーボン紙の発泡体、炭素繊維の発泡体及び活性炭の発泡体等の炭素材料の発泡体を挙げることができる。   The type of the conductive porous substrate is the same as the conductive porous substrate used in the production method of the present invention. Accordingly, as the conductive porous base material, foams of various metals such as foams of nickel or copper; foams of carbon materials such as foams of carbon paper, foams of carbon fiber, and foams of activated carbon. The body can be mentioned.

導電性多孔質基材に金属酸化物は、前記金属Mの酸化物である。金属酸化物は、金属Mを2種以上含むことができる。金属Mは、Fe、Co、Ce、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる少なくとも1種の金属M1であることが好ましい。特に、金属Mは、Coを含むことが好ましく、この場合、VOC除去用触媒はVOCの除去効率に特に優れる。   The metal oxide in the conductive porous substrate is an oxide of the metal M. The metal oxide can include two or more types of metal M. The metal M is preferably at least one metal M1 selected from the group consisting of Fe, Co, Ce, Ni, Mn, Mo, V, Cu, Zn, W, Ti, Cr, Al, Mg and La. . In particular, the metal M preferably contains Co, and in this case, the VOC removal catalyst is particularly excellent in VOC removal efficiency.

導電性多孔質基材に金属酸化物の形状は特に限定されない。例えば、金属酸化物は、花びら形状の粒子、球状粒子、多孔質状の粒子等のいずれかの形状に形成される。   The shape of the metal oxide in the conductive porous substrate is not particularly limited. For example, the metal oxide is formed in any shape such as a petal-shaped particle, a spherical particle, a porous particle, and the like.

本発明のVOC除去用触媒は、上記構造を有することで、低温でVOCを処理してもVOCの除去効率に優れ、特に、本発明の製造方法でVOC除去用触媒を得た場合は、除去効率がさらに高まる。   The VOC removal catalyst of the present invention, having the above structure, has excellent VOC removal efficiency even when VOC is treated at a low temperature. In particular, when the VOC removal catalyst is obtained by the production method of the present invention, the VOC removal catalyst is removed. Efficiency is further increased.

さらに、本発明のVOC除去用触媒は、金属酸化物又は金属の複合酸化物が担体(導電性多孔質基材)上に均一に分布しやすいことから、従来の化学合成法で得られた触媒よりも少ない使用量で、VOCを効率的に除去することができる。特に、本発明の製造方法でVOC除去用触媒を得た場合は、より均一に担体上に金属酸化物又は金属の複合酸化物が分布しやすくなり、VOC除去効率がより一層高まる。   Further, the catalyst for VOC removal of the present invention can be obtained by a conventional chemical synthesis method because the metal oxide or the composite oxide of the metal is easily distributed uniformly on the carrier (conductive porous substrate). VOCs can be efficiently removed with a smaller amount of use. In particular, when the VOC removal catalyst is obtained by the production method of the present invention, the metal oxide or the composite oxide of the metal is more easily distributed on the carrier, and the VOC removal efficiency is further enhanced.

3.VOC除去方法
本発明のVOC除去方法は、前記本発明の製造方法で得られたVOC除去用触媒を用いてVOCを除去する工程を備える。あるいは、本発明のVOC除去方法は、前記本発明のVOC除去用触媒を用いてVOCを除去する工程を備える。
3. VOC Removal Method The VOC removal method of the present invention includes a step of removing VOC using the VOC removal catalyst obtained by the above-described production method of the present invention. Alternatively, the VOC removal method of the present invention includes a step of removing VOCs using the VOC removal catalyst of the present invention.

例えば、本発明のVOC除去用触媒を容器内に収容し、該容器にトルエン等のVOCを導入し、所定の温度で処理することで、VOCを燃焼する。これにより、VOCを除去することができる。必要に応じて、容器内には窒素及び酸素の一方又は両方を流入させることができ、窒素及び酸素の一方又は両方の存在下でVOCを燃焼させることができる。容器の種類は特に限定されず、例えば、VOCの触媒燃焼で使用される公知の容器を広く使用することができる。   For example, the VOC removal catalyst of the present invention is housed in a container, and a VOC such as toluene is introduced into the container and treated at a predetermined temperature to burn the VOC. Thereby, VOC can be removed. If desired, one or both of nitrogen and oxygen can be flowed into the vessel, and the VOC can be burned in the presence of one or both of nitrogen and oxygen. The type of the container is not particularly limited, and for example, a known container used for catalytic combustion of VOC can be widely used.

容器内でのVOCの処理温度は特に限定されず、公知のVOCの除去のために設定される処理温度と同様とすることができる。特に本発明では、上記VOC除去用触媒を使用することで、低温であってもVOC除去効率に優れることから、例えば、350℃以下でVOCを処理することができる。   The processing temperature of the VOC in the container is not particularly limited, and may be the same as the processing temperature set for removing a known VOC. In particular, in the present invention, since the VOC removal catalyst is excellent in VOC removal efficiency even at a low temperature, the VOC can be treated at 350 ° C. or lower, for example.

以下、実施例により本発明をより具体的に説明するが、本発明はこれら実施例の態様に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the embodiments of these examples.

(実施例1)
図1に示す製造フローに従ってVOC除去用触媒を製造した。まず、Co(NO・6HOと、Ni(NO・6HOとをCoとNiのモル比Co:Ni=1:1、かつ、各金属の濃度が0.1mol/Lとなるように水溶液100mLを調製した(溶媒は水のみを使用した)。この水溶液に、導電性多孔質基材であるニッケル発泡体(1.5cm×1.5cm各、MTI, Japan製)をアノードとして浸漬し、単極性パルス電圧法により電着処理を行った。単極性パルス電圧法は、印加電圧を−1V、パルスのオン/オフ時間を1秒に設定し、サイクル数500回で行った。また、カソード(対電極)として白金電極、参照電極としてAg/AgClを使用した。この電着処理により、導電性多孔質基材上にCoとNiの複水酸化物を形成させた。このように電着処理された導電性多孔質基材を100℃の雰囲気下で一晩乾燥処理をし、その後、該導電性多孔質基材を空気中、350℃の雰囲気下で2時間にわたって焼成処理した。これにより、Co及びNiの複合物で被覆された導電性多孔質基材をVOC除去用触媒として得た。
(Example 1)
A VOC removal catalyst was produced according to the production flow shown in FIG. First, Co (NO 3 ) 2 .6H 2 O and Ni (NO 3 ) 2 .6H 2 O are mixed at a molar ratio of Co: Ni = 1: 1, and the concentration of each metal is 0.1 mol. / L (100 mL of an aqueous solution was prepared) (only water was used as a solvent). A nickel foam (1.5 cm × 1.5 cm each, manufactured by MTI, Japan) as a conductive porous substrate was immersed in this aqueous solution as an anode, and electrodeposited by a unipolar pulse voltage method. The unipolar pulse voltage method was carried out with 500 cycles, with an applied voltage of -1 V and a pulse on / off time of 1 second. A platinum electrode was used as a cathode (counter electrode), and Ag / AgCl 2 was used as a reference electrode. By this electrodeposition treatment, a double hydroxide of Co and Ni was formed on the conductive porous substrate. The conductive porous substrate thus subjected to the electrodeposition treatment is dried overnight at 100 ° C. in an atmosphere, and then the conductive porous substrate is dried in air at 350 ° C. for 2 hours. It was fired. Thus, a conductive porous substrate coated with a composite of Co and Ni was obtained as a VOC removal catalyst.

(実施例2)
Ni(NO・6HOの代わりにMn(NO・6HOを使用し、CoとMnのモル比Co:Mn=1:1としたこと以外は実施例1と同様の方法でVOC除去用触媒を得た。
(Example 2)
Same as Example 1 except that Mn (NO 3 ) 2 .6H 2 O was used instead of Ni (NO 3 ) 2 .6H 2 O and the molar ratio of Co to Mn was Co: Mn = 1: 1. Thus, a VOC removal catalyst was obtained.

(実施例3)
Ni(NO・6HOの代わりにFe(NO・9HOを使用し、CoとFenのモル比Co:Fe=10:1としたこと以外は実施例1と同様の方法でVOC除去用触媒を得た。
(Example 3)
Same as Example 1 except that Fe (NO 3 ) 3 .9H 2 O was used instead of Ni (NO 3 ) 2 .6H 2 O and the molar ratio of Co to Fen was Co: Fe = 10: 1. Thus, a VOC removal catalyst was obtained.

(実施例4)
Ni(NO・6HOの代わりにCu(NO・3HOを使用し、CoとCuのモル比Co:Cu=2:1としたこと以外は実施例1と同様の方法でVOC除去用触媒を得た。
(Example 4)
Same as Example 1 except that Cu (NO 3 ) 2 .3H 2 O was used instead of Ni (NO 3 ) 2 .6H 2 O and the molar ratio of Co to Cu was Co: Cu = 2: 1. Thus, a VOC removal catalyst was obtained.

(実施例5)
Ni(NO・6HOの代わりにNHVOを使用し、CoとVのモル比Co:V=10:1としたこと以外は実施例1と同様の方法でVOC除去用触媒を得た。
(Example 5)
VOC removal is performed in the same manner as in Example 1 except that NH 4 VO 3 is used instead of Ni (NO 3 ) 2 .6H 2 O and the molar ratio of Co to V is Co: V = 10: 1. A catalyst was obtained.

(実施例6)
Ni(NO・6HOの代わりにCe(NO・6HOを使用し、CoとCeのモル比Co:Ce=10:1としたこと以外は実施例1と同様の方法でVOC除去用触媒を得た。
(Example 6)
Same as Example 1 except that Ce (NO 3 ) 3 .6H 2 O was used instead of Ni (NO 3 ) 2 .6H 2 O, and the molar ratio of Co to Ce was Co: Ce = 10: 1. Thus, a VOC removal catalyst was obtained.

(実施例7)
Ni(NO・6HOを使用しなかったこと以外は実施例1と同様の方法でVOC除去用触媒を得た。
(Example 7)
A VOC removal catalyst was obtained in the same manner as in Example 1 except that Ni (NO 3 ) 2 .6H 2 O was not used.

<評価方法>
(SEM測定)
SEM(走査型電子顕微鏡)画像の観察は、日立ハイテクノロジーズ社製「走査電子顕微鏡SU8010」を使用して行った。
<Evaluation method>
(SEM measurement)
Observation of an SEM (scanning electron microscope) image was performed using "scanning electron microscope SU8010" manufactured by Hitachi High-Technologies Corporation.

(元素分析)
VOC除去用触媒の元素分析は、HORIBA社製の「エネルギー分散型X線分析装置」を使用して行った。
(Elemental analysis)
Elemental analysis of the VOC removal catalyst was performed using an “energy dispersive X-ray analyzer” manufactured by HORIBA.

(VOC除去試験)
図2に示す概略フローにより、各実施例で得たVOC除去用触媒のトルエン除去試験を行った。この試験では、容器内にVOC除去用触媒を石英ウールで挟み込むように充填し、そこへトルエンを所定の流速で流入させて反応させることで、トルエンを除去するようにした。図2に示すように、容器は、酸素ボンベ及び窒素ボンベと連結しており、容器内に酸素及び窒素を流入できるようにしている。トルエン除去試験の条件として、内径8mmのガラス反応器を使用し、そこへVOC除去用触媒の充填量を100mg充填し、容器内のトルエン濃度を881〜964体積ppmとなるようにした。また、容器内へのキャリアー用窒素ガス流量を35mL/min、トルエン導入用窒素ガス流量を5mL/min、酸素ガス流量を10mL/minとした。容器内での反応温度を100〜350℃の範囲の種々の温度に調節して、トルエン除去特性を評価した。VOC濃度の測定は、島津製作所社製「GC−2014ガスクロマトグラフ」を使用した。また、容器出口から排出される二酸化炭素濃度をHORIBA社製FT−IRガス分析装置「FG−120」を使用して計測した。
(VOC removal test)
The toluene removal test of the VOC removal catalyst obtained in each example was performed according to the schematic flow shown in FIG. In this test, a VOC removal catalyst was filled in a container so as to be sandwiched between quartz wools, and toluene was introduced into the container at a predetermined flow rate to cause a reaction, thereby removing toluene. As shown in FIG. 2, the container is connected to an oxygen cylinder and a nitrogen cylinder so that oxygen and nitrogen can flow into the container. As a condition for the toluene removal test, a glass reactor having an inner diameter of 8 mm was used, and 100 mg of the VOC removal catalyst was charged therein, so that the toluene concentration in the vessel was 881 to 964 ppm by volume. The flow rate of nitrogen gas for carrier into the container was 35 mL / min, the flow rate of nitrogen gas for introducing toluene was 5 mL / min, and the flow rate of oxygen gas was 10 mL / min. The reaction temperature in the vessel was adjusted to various temperatures in the range of 100 to 350 ° C. to evaluate the toluene removal characteristics. For measurement of the VOC concentration, “GC-2014 gas chromatograph” manufactured by Shimadzu Corporation was used. The concentration of carbon dioxide discharged from the container outlet was measured using an FT-IR gas analyzer “FG-120” manufactured by HORIBA.

(評価結果)
図3〜9はそれぞれ、実施例1〜7で得られたVOC除去用触媒のSEM画像を示している。また、図3〜8の各SEM画像中には一部拡大画像(破線内)を挿入しており、図9では(b)に(a)の拡大画像を示している。
(Evaluation results)
3 to 9 show SEM images of the VOC removal catalysts obtained in Examples 1 to 7, respectively. Further, a partially enlarged image (within a broken line) is inserted in each of the SEM images in FIGS. 3 to 8, and FIG. 9B shows the enlarged image in FIG.

図3〜9から、実施例1〜7で得られたVOC除去用触媒は、ニッケル発泡体基材上に、均一な多孔質状の金属酸化物がコーティングされていることがわかり、また、金属酸化物の組成に応じて、様々な形状(例えば、花びら状、球状粒子状、多孔質粒子状)を取り得ることがわかった。   3 to 9, it can be seen that the VOC removal catalysts obtained in Examples 1 to 7 are coated with a uniform porous metal oxide on a nickel foam base material. It was found that various shapes (for example, a petal shape, a spherical particle shape, and a porous particle shape) can be taken depending on the composition of the oxide.

表1には、実施例1〜7で得られたVOC除去用触媒のEDSによる元素分析結果を示している。   Table 1 shows the results of elementary analysis by EDS of the VOC removal catalysts obtained in Examples 1 to 7.

表1から、実施例1〜7で得られたVOC除去用触媒は、ニッケル発泡体基材上に所望の酸化物又は複合酸化物が形成されていることがわかった。   From Table 1, it was found that the VOC removal catalysts obtained in Examples 1 to 7 had a desired oxide or composite oxide formed on the nickel foam base material.

図10には、実施例1〜7で得られたVOC除去用触媒によるVOC除去試験の結果を示している。図10(a)は、温度(X軸)とトルエン除去率(Y軸)との関係を示すプロット、図10(b)は、温度(X軸)と二酸化炭素選択率(Y軸)との関係を示すプロットである。   FIG. 10 shows the results of a VOC removal test using the VOC removal catalysts obtained in Examples 1 to 7. FIG. 10A is a plot showing the relationship between the temperature (X-axis) and the toluene removal rate (Y-axis). FIG. 10B is a graph showing the relationship between the temperature (X-axis) and the carbon dioxide selectivity (Y-axis). It is a plot showing a relationship.

図10の結果から、実施例1〜7で得られたVOC除去用触媒を、代表的なVOC物質の一種であるトルエンの触媒燃焼の触媒として使用することで、トルエンを除去できることがわかった。特に、実施例6で得られたVOC除去用触媒(Co-Ce/nickel foam)では、実施例の中でも最高の触媒性能を示し、280℃で約950ppmのトルエンを完全に除去できることがわかった。その他のVOC除去用触媒にあっても、350℃以下の温度で900ppm程度のトルエンを除去する能力を有していた。   From the results of FIG. 10, it was found that toluene can be removed by using the catalyst for VOC removal obtained in Examples 1 to 7 as a catalyst for catalytic combustion of toluene, which is a typical VOC substance. In particular, it was found that the VOC removal catalyst (Co-Ce / nickel foam) obtained in Example 6 exhibited the highest catalytic performance among the examples, and was able to completely remove about 950 ppm of toluene at 280 ° C. Other VOC removal catalysts had the ability to remove about 900 ppm of toluene at a temperature of 350 ° C. or less.

表2には、実施例1〜7で得られたVOC除去用触媒によるVOC除去試験の結果を示している。   Table 2 shows the results of a VOC removal test using the VOC removal catalysts obtained in Examples 1 to 7.

表2に示すように、いずれのVOC除去用触媒を使用した場合も、トルエン導入量と誤差範囲内で対応する量のCOの生成が観測されている。この結果から、トルエンは全てCOへと変換され、CO等は副生しないことがわかった。 As shown in Table 2, when any of the VOC removal catalysts was used, generation of a corresponding amount of CO 2 within the error range with the amount of toluene introduced was observed. From this result, it was found that all toluene was converted to CO 2 , and that CO and the like were not produced as by-products.

表3には、実施例1〜6で得られたVOC除去用触媒と、前記非特許文献1に記載のVOC除去用触媒とのVOC除去試験結果の対比を示している。例えば、非特許文献1に開示されるCo−Mn複合酸化物を触媒として使用した場合は、触媒の量が200mgであってもトルエンの完全燃焼温度が360℃であったのに対し、各実施例のVOC除去用触媒では、触媒の量が100mgでトルエンの完全燃焼温度は360℃を下回るものであった。従って、本発明のVOC除去用触媒は、従来の触媒よりも少ない使用量であってもVOCをより低温で完全燃焼できるといえる。   Table 3 shows a comparison of the VOC removal test results of the VOC removal catalyst obtained in Examples 1 to 6 and the VOC removal catalyst described in Non-Patent Document 1. For example, when the Co-Mn composite oxide disclosed in Non-Patent Document 1 was used as a catalyst, the complete combustion temperature of toluene was 360 ° C even when the amount of the catalyst was 200 mg. In the example VOC removal catalyst, the amount of the catalyst was 100 mg, and the complete combustion temperature of toluene was lower than 360 ° C. Therefore, it can be said that the VOC removal catalyst of the present invention can completely burn VOC at a lower temperature even with a smaller amount of use than a conventional catalyst.

Claims (8)

導電性多孔質基材をアノードとして使用して、少なくとも1種の金属化合物を含む水溶液中で電着処理を行う工程を含む、VOC除去用触媒の製造方法。 A method for producing a VOC removal catalyst, comprising a step of performing an electrodeposition treatment in an aqueous solution containing at least one metal compound using a conductive porous substrate as an anode. 前記金属化合物は、Fe、Co、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる少なくとも1種の金属M1の化合物である、請求項1に記載の製造方法。 The metal compound is a compound of at least one metal M1 selected from the group consisting of Fe, Co, Ni, Mn, Mo, V, Cu, Zn, W, Ti, Cr, Al, Mg and La. Item 1. The production method according to Item 1. 前記導電性多孔質基材は、金属の多孔質基材又は炭素材料の多孔質基材である、請求項1又は2に記載の製造方法。 The method according to claim 1, wherein the conductive porous substrate is a metal porous substrate or a carbon material porous substrate. 導電性多孔質基材に金属酸化物が被覆されて形成される、VOC除去用触媒。 A VOC removal catalyst formed by coating a conductive porous substrate with a metal oxide. 前記金属酸化物は、Fe、Co、Ce、Ni、Mn、Mo、V、Cu、Zn、W、Ti、Cr、Al、Mg及びLaからなる群より選ばれる少なくとも1種の金属M1の酸化物又は複合酸化物である、請求項4に記載のVOC除去用触媒。 The metal oxide is an oxide of at least one metal M1 selected from the group consisting of Fe, Co, Ce, Ni, Mn, Mo, V, Cu, Zn, W, Ti, Cr, Al, Mg and La. 5. The VOC removal catalyst according to claim 4, which is a composite oxide. 前記導電性多孔質基材は、金属の多孔質基材又は炭素材料の多孔質基材である、請求項4又は5に記載のVOC除去用触媒。 The VOC removal catalyst according to claim 4 or 5, wherein the conductive porous substrate is a metal porous substrate or a carbon material porous substrate. 請求項1〜3のいずれか1項に記載の製造方法で得られたVOC除去用触媒を用いてVOCを除去する工程を備える、VOCの除去方法。 A VOC removal method comprising a step of removing VOC using the VOC removal catalyst obtained by the production method according to claim 1. 請求項4〜6のいずれか1項に記載のVOC除去用触媒を用いてVOCを除去する工程を備える、VOCの除去方法。 A VOC removal method comprising a step of removing VOC using the VOC removal catalyst according to any one of claims 4 to 6.
JP2018157437A 2018-08-24 2018-08-24 Method for producing catalyst for removing VOC and method for removing VOC Active JP7337338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018157437A JP7337338B2 (en) 2018-08-24 2018-08-24 Method for producing catalyst for removing VOC and method for removing VOC

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157437A JP7337338B2 (en) 2018-08-24 2018-08-24 Method for producing catalyst for removing VOC and method for removing VOC

Publications (2)

Publication Number Publication Date
JP2020028869A true JP2020028869A (en) 2020-02-27
JP7337338B2 JP7337338B2 (en) 2023-09-04

Family

ID=69623428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157437A Active JP7337338B2 (en) 2018-08-24 2018-08-24 Method for producing catalyst for removing VOC and method for removing VOC

Country Status (1)

Country Link
JP (1) JP7337338B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368810A (en) * 2021-07-14 2021-09-10 南京信息工程大学 Core-shell VOCs adsorbent and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144750A (en) * 1985-12-20 1987-06-27 Tanaka Kikinzoku Kogyo Kk Preparation of platinum group oxidizing catalyst
JPS63179094A (en) * 1987-01-20 1988-07-23 Tosoh Corp Pr plating method
JP2009220009A (en) * 2008-03-14 2009-10-01 Yokohama National Univ Laminated reaction unit using thermal catalyst element
JP2009256790A (en) * 2008-03-19 2009-11-05 Tam Network Kk Coating method of titanium oxide
JP2010214366A (en) * 2009-02-17 2010-09-30 Tokyo Univ Of Agriculture & Technology Carrier for toxic gas decomposition catalyst and method of producing the same
JP2012200628A (en) * 2011-03-24 2012-10-22 Tokyo Metropolitan Industrial Technology Research Institute Carrier catalyst for volatile organic compound and method for producing the catalyst
WO2017154134A1 (en) * 2016-03-09 2017-09-14 国立大学法人弘前大学 Method for manufacturing electrode for electrolysis of water
CN107899582A (en) * 2017-11-09 2018-04-13 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of monoblock type cobalt-base catalyst and products thereof and application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100569357C (en) 2004-07-23 2009-12-16 东莞市宇洁新材料有限公司 A kind of preparation method of photocatalyst composite
EP2803756A1 (en) 2013-05-13 2014-11-19 Atotech Deutschland GmbH Method for depositing thick copper layers onto sintered materials
WO2017085829A1 (en) 2015-11-19 2017-05-26 国立大学法人弘前大学 Method for manufacturing lead dioxide electrode

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144750A (en) * 1985-12-20 1987-06-27 Tanaka Kikinzoku Kogyo Kk Preparation of platinum group oxidizing catalyst
JPS63179094A (en) * 1987-01-20 1988-07-23 Tosoh Corp Pr plating method
JP2009220009A (en) * 2008-03-14 2009-10-01 Yokohama National Univ Laminated reaction unit using thermal catalyst element
JP2009256790A (en) * 2008-03-19 2009-11-05 Tam Network Kk Coating method of titanium oxide
JP2010214366A (en) * 2009-02-17 2010-09-30 Tokyo Univ Of Agriculture & Technology Carrier for toxic gas decomposition catalyst and method of producing the same
JP2012200628A (en) * 2011-03-24 2012-10-22 Tokyo Metropolitan Industrial Technology Research Institute Carrier catalyst for volatile organic compound and method for producing the catalyst
WO2017154134A1 (en) * 2016-03-09 2017-09-14 国立大学法人弘前大学 Method for manufacturing electrode for electrolysis of water
CN107899582A (en) * 2017-11-09 2018-04-13 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of monoblock type cobalt-base catalyst and products thereof and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113368810A (en) * 2021-07-14 2021-09-10 南京信息工程大学 Core-shell VOCs adsorbent and preparation method thereof

Also Published As

Publication number Publication date
JP7337338B2 (en) 2023-09-04

Similar Documents

Publication Publication Date Title
CN105377428B (en) Electrode catalyst for fuel cell and method for activating catalyst
CN111569936A (en) Cluster-supported catalyst and method for producing same
WO2017169682A1 (en) Metal-containing cluster catalyst, electrode for carbon dioxide reduction using same, and carbon dioxide reduction device
CN109201048A (en) A kind of monatomic catalyst and preparation method thereof
KR20060081913A (en) Fabrication method of catalytic materials with metal nanoparticles dispersed colloid
JP7344495B2 (en) Method for producing VOC removal catalyst, VOC removal catalyst and VOC removal method
US10022713B2 (en) Photocatalyst for water splitting, production method for same, and photoelectrode for water splitting
JP2010059446A (en) Electrode for electrolysis
JP4437230B2 (en) Tantalum-based oxynitride photocatalyst and method for producing the same
JP2007054714A (en) Decomposition catalyst of nitrous oxide and decomposition method of nitrous oxide using the catalyst
JP2021030180A (en) Production method of voc removal catalyst, voc removal catalyst, and voc removal method
JP7337338B2 (en) Method for producing catalyst for removing VOC and method for removing VOC
JP4381071B2 (en) Method for producing exhaust gas treatment catalyst
KR20200028275A (en) Porous carbon catalysts for oxygen reduction reaction, method for manufacturing the same, and fuel cell including the same
CN105126863A (en) Ni-Mn composite oxide catalyst for eliminating benzene-series volatile organic substances from air and preparation method thereof
JP7142862B2 (en) Electrode manufacturing method, electrode and hydrogen manufacturing method
JP5328888B2 (en) Method for preparing electrode catalyst for fuel cell
JP2004196581A (en) Hydrogen production method and catalyst used for the same
EP3870361A1 (en) Ammonia deposition precipitation process for producing a copper-nickel/gamma-alumina catalyst, said catalyst and its use in the conversion of exhaust gases
Babar et al. Engineered Nanoscale Single‐Metal‐Oxides Catalytic Thin Films for High‐Performance Water Oxidation
CN111001406B (en) Catalyst for catalytic combustion of chlorine-containing volatile organic compounds and preparation method thereof
JP6403046B2 (en) Method for producing catalyst for fuel cell, catalyst using the same and fuel cell
JP4250971B2 (en) Inorganic material and shift catalyst using the same
CN111686723A (en) Iridium-containing bimetallic catalyst for catalytic combustion of methane and preparation method thereof
JP2019093324A (en) Hydrazine decomposition catalyst and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7337338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150