CN100569357C - Process for preparing photocatalyst composite material - Google Patents

Process for preparing photocatalyst composite material Download PDF

Info

Publication number
CN100569357C
CN100569357C CN 200410028196 CN200410028196A CN100569357C CN 100569357 C CN100569357 C CN 100569357C CN 200410028196 CN200410028196 CN 200410028196 CN 200410028196 A CN200410028196 A CN 200410028196A CN 100569357 C CN100569357 C CN 100569357C
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
process
preparing
photocatalyst
composite
material
Prior art date
Application number
CN 200410028196
Other languages
Chinese (zh)
Other versions
CN1724143A (en )
Inventor
峰 何
王宝柱
Original Assignee
东莞市宇洁新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开了一种在泡沫金属或斜拉金属网上复合纳米光催化材料的光触媒复合材料的制备方法。 The present invention discloses a method for preparing a photocatalyst composite foam metal or metal mesh composite photocatalysts oblique material. 所采用的技术方案为:首先,以泡沫金属或者金属网作为基体,对其表面进行电化学阳极氧化处理,使其表面形成大比表面积的纳米晶态结构;其次,将经过上述处理的基体在含有铜和稀土元素的低浓度瓦特液中复合闪镀,形成结合层与扩散层;然后,在已经配置好的具有光催化活性的有机钛溶胶中进行电泳浸渍,取出后风干;最后,将风干后的基体置于低温烧结炉中进行烧结,得到光触媒复合材料。 Technical proposal is as follows: First, a foam metal or metal mesh as a substrate, electrochemical anodic oxidation treatment on its surface, its surface is formed nanocrystalline structure of large specific surface area; Next, after the above-described process in the base body copper and a rare earth element containing low concentrations of watt flash composite plating solution to form a binding layer and the diffusion layer; then, subjected to electrophoresis is immersed in the configured having photocatalytic activity in an organic titanium sol, dried after removal; and finally, air dried after the substrate is placed low temperature sintering furnace for sintering to obtain a photocatalyst composite material. 利用本发明得到的产品化学性质稳定,风阻低,比表面积大,光催化活性高,抗菌性能优良,可在自然光下反应,应用于空气净化、饮用水、污水处理行业。 With the present invention obtained product is chemically stable, low drag, large surface area, high photocatalytic activity, good antibacterial properties can be reacted under natural light, used in air purification, drinking water, sewage treatment industry.

Description

一种光触媒复合材料的制备方法 Method for preparing a photocatalyst composite material

技术领域: FIELD:

本发明涉及一种光触媒复合材料的制备方法,特别是在泡沫金属或斜拉金属网上复合纳米光催化材料的光触媒复合材料的制备方法。 The present invention relates to a method of preparing a photocatalyst composite material, method of preparing photocatalyst Photocatalyst composite material in particular metal foam or a metal mesh composite oblique. 属纳米表面工程领域。 It belongs to the field of nano surface engineering. 背景技术: Background technique:

光催化技术是目前在国内外得到公认的最有发展前景的空气、水处理的最理想的技术。 Photocatalytic technology is currently at home and abroad have been recognized as the most promising air, the best water treatment technology. 对光催化材料中有关成分的研究可追溯到十九世纪。 Research on photocatalytic materials related components dating back to the nineteenth century. 但直至二十世纪九十年代,在健康和环保等领域日本科学家才真正发现其巨大的应用价值。 But until the 1990s, health and environmental protection in areas such as Japanese scientists really found great value. 近五年来,日本利用光催化材料在纺织、 饮用水处理、化妆品、食品、药品和空气净化领域等创制了种类繁多 The past five years, Japan using the photocatalytic material in the textile, drinking water treatment, cosmetics, food, medicine and the field of air purification created a wide variety of

的应用产品,其年产值在2001年己达到200亿美元。 The application of the product, its annual output value in 2001 has reached $ 20 billion. 因此,此材料被誉为二十一世纪梦幻材料;大自然赐予人类之瑰宝等。 Therefore, this material is known as the 21st century fantasy material; given human nature's treasures and so on. 紧随其后, 韩国、美国及中国台湾地区等对光催化材料的研究和市场应用也正在急剧升温。 Followed by market research and application of photocatalytic materials South Korea, the United States and China Taiwan region, also is rapidly heating up.

近年来,纳米材料加工技术的进展使得以纳米二氧化钛为代表的 In recent years, progress of nano-material processing techniques such as titanium dioxide nano represented

光催化材料得到了广泛和深入的研究,由于二氧化钛(Ti02)光催化 The photocatalytic material has been widely and intensive studies, since titania (Titania and) Photocatalytic

抗菌材料作用效果持久,利用太阳光、荧光灯中含有的紫外光作激发源就可具有抗菌效应,且具有净化空气、污水处理、自清洁等光催化效应,在环保方面展示了广泛的应用前景,已成为新一代的无机抗菌 Antibacterial material lasting effect, sunlight, ultraviolet fluorescent lamp as an excitation source can be contained in the antibacterial effect and having air purification, sewage treatment, the photocatalytic self-cleaning effect, environmental aspects demonstrated broad application prospects, It has become a new generation of inorganic antibacterial

净化材料。 Purification materials. 经过掺杂处理和表面修饰的纳米TK)2光催化产品,在实际应用中技术工艺简单、成本低廉,利用自然光即可催化分解细菌和污染物,具有高催化活性、良好的化学稳定性和热稳定性、无二次污染、无刺激性、安全无毒等优点,且能长期有益于生态自然环境,是最具有开发前景的绿色环保催化剂之一。 After doping treatment and surface modification of nano-TK) 2 photocatalytic products, in the practical application process is simple, low cost, use of natural light to catalytic decomposition of bacteria and contaminants, having high catalytic activity, good thermal and chemical stability stability, no secondary pollution, non-irritating, non-toxic, safe, etc., and can benefit the long-term ecology of the natural environment, it is one of the most green catalyst development prospects.

但是,纳米光催化材料的分散和担载是应用中的重要问题,纳米光催化材料的适合工作粒径为30~50纳米,用成品粉体分散极难做到,严重影响工作效率。 However, dispersing and supporting photocatalysts material is an important issue in the application, suitable materials Photocatalyst working diameter of 30 to 50 nanometers, with the finished powder dispersibility is extremely difficult, very inefficient. 寻求合适的担载材料和担载办法,也是决定能否在空气、水处理领域得到实际应用的关键,市场上可以见到的产品,分为: Seek appropriate supporting material and supported option, which is the key to determine the practical application of the availability of air, water treatment, it can be seen on the market, divided into:

1. 直接涂布型:将光触媒粉体同粘结剂混和,涂布于海棉、蜂窝纸板等多孔材料上,由于纳米材料没有被很好分散,加上粘结剂的掩蔽作用,光催化效果微弱。 1. Direct coating type: Photocatalyst powder mixed with a binder, coated on a sponge, porous materials such as honeycomb, since the nano-material is not well dispersed, with the masking effect of the adhesive, the photocatalytic the effect of the weak.

2. 钛溶胶浸渍型:以钛酸酯类水解反应形成的钛溶胶为前驱体, 将玻璃纤维、金属丝网等耐温材料进行浸渍提拉,再以500度左右的温度进行烧结,完成晶形转换。 2. impregnated type of sol: titanium titanate sol is formed by hydrolysis reaction of the precursor, glass fibers, wire mesh and other materials dip-coating temperature, and then at a temperature of about 500 degrees is sintered to complete the Form conversion. 这种方式反应面积小、光催化效率低。 In this manner a small reaction area, low photocatalytic efficiency.

3. 在泡沫金属镍材料上复合电沉积光催化粉体材料:二氧化钛粉体极难在离子型液体中分散和保持,团聚的颗粒已经不是纳米材料;表面覆盖率过低,不超过70%,光催化活性较低。 3. On the foamed nickel electrodeposited composite photocatalyst powder materials: extremely difficult with titania powder dispersed and held in the ionic liquid, the agglomerated particles is not nanomaterials; surface coverage is too low, no more than 70%, Photocatalytic activity is low.

经文件检索发现,公开号为CN1486785A的中国发明专利,发明名称为"泡沫金属负载Ti02纳米光催化过滤网的制备方法"。 Document retrieval was found, Publication No. CN1486785A Chinese invention patent, entitled "method for preparing Ti02 Photocatalyst filter foamed metal loading." 该专利公开了一种以泡沫金属为载体进行负载的光催化滤网,首先对泡沫金属进行氧化处理,再在以钛酸酯类或四氯化钛为前驱体的溶胶中浸渍,经干燥、烧结而制得。 This patent discloses a photocatalytic filter for performing load carrier is a foam metal, foam metal is first subjected to oxidation treatment in order to re-titanate or titanium tetrachloride precursor sol immersed, dried, sintering system. 这种方法需要两次烧结,泡沫金属的纤维壁极薄,氧化和烧结过程会严重影响泡沫金属的强度和柔韧性,制成的产品酥脆,机械强度差,不利于应用,同时产品没有在可见光下的活性。 This method requires two sintered metal fiber walls of thin foam, oxidation and sintering processes will seriously affect the strength and flexibility of metal foam, crisp products made of low mechanical strength, is not conducive to the application, while the product was not visible activity under. 发明内容: SUMMARY:

本发明的目的在于制造一种适合于目前空气净化、水质净化所需的高效光触媒复合材料的制备方法。 Object of the present invention is suitable for producing a current of air purification, efficient method for preparing the composite photocatalyst material required water purification.

本发明所采用的技术方案为:首先,以泡沫金属或者金属网作为基体,对其表面进行电化学阳极氧化处理,使其表面形成大比表面积 The technical proposal of the present invention is as follows: First, a foam metal or metal mesh as a substrate, electrochemical anodic oxidation treatment on its surface, its surface is formed large specific surface area

的纳米晶态结构;其次,将经过上述处理的基体在含有铜和稀土元素的低浓度瓦特液中复合闪镀,形成结合层与扩散层;然后,将经过闪镀的基体在已经配置好的具有光催化活性的有机钛溶胶中进行电泳浸渍,取出后风干;最后,将风干后的基体置于低温烧结炉中进行烧结,得到光触媒复合材料。 Nanocrystalline structure; Next, via the base of the above process is complex flash-plated in low concentration w solution containing copper and rare earth elements, forming the bonding layer and the diffusion layer; then, after a flash-plated base has been configured in organic titanium sol having photocatalytic activity in the electrophoresis was immersed, dried after removal; and finally, the dried substrate placed in the low-temperature sintering furnace for sintering to obtain a photocatalyst composite material.

所述的泡沫金属是泡沫金属镍、泡沫金属铜、泡沫金属铁中的一种;所述的斜拉金属网是镍、铜、铁中的一种,其厚度小于0.1毫米, 孔径小于1毫米。 The foamed nickel metal foam, a copper metal foam, a foam metallic iron; the oblique nickel metal mesh, copper, iron in a thickness of less than 0.1 mm, a pore size less than 1 mm .

所述的表面进行电化学阳极氧化处理所釆用的电解液为0.3-2摩尔浓度的硫酸,阴极使用不锈钢板。 Electrochemical anodic oxidation treatment of the surface of the electrolyte preclude the use of 0.3 to 2 molar concentration of sulfuric acid, the cathode stainless steel plate.

所述的在含有铜和稀土元素的低浓度瓦特液中复合闪镀,瓦特镀液配方每升为硫酸镍70〜110克,氯化镍30〜80克,硼酸30〜40克, 氯化铁5〜10克,氯化稀土0.5〜2克,ATPN0.01-0.5克。 At low concentrations of the liquid W and a rare earth element containing copper flash composite plating Watt bath formulation 70~110 g per liter of nickel sulfate, 30~80 g of nickel chloride, 30 to 40 g of boric acid, ferric chloride 5 to 10 grams of rare earth chloride 0.5~2 g, ATPN0.01-0.5 g.

所述的具有光催化活性的有机钛溶胶采用钛酸正丁酯为前驱体配置,具体配置方法为: The organic titanium sol having photocatalytic activity using n-butyl titanate configured as a precursor, the specific configuration method:

(1)、以重量比计算,准备3%~30%的钛酸正丁酯,60°/。 (1), to calculate the weight ratio, prepared from 3% to 30% n-butyl titanate, 60 ° /. ~90% 的无水乙醇,0.5%〜2°/。 To 90% ethanol, 0.5% ~2 ° /. 的盐酸或40%浓度的硫酸,3%~5%的正硅酸乙酯,0.1%~0.5%的硫酸铜和氯化稀土的混合溶液,0.5%~2%纳米二氧化钛粉体; Hydrochloric acid or sulfuric acid concentration of 40%, 3% to 5% TEOS, 0.1% to 0.5% of a mixed solution of rare earth chloride and copper sulfate, 0.5% to 2% titanium dioxide powder;

(2) 、将钛酸正丁酯在搅拌状态下加入到乙醇中,然后在高速搅拌下滴入盐酸或硫酸; (2), n-butyl titanate was added under stirring to the ethanol and then added dropwise hydrochloric acid or sulfuric acid with stirring at a high speed;

(3) 、在搅拌状态下加入硫酸铜和氯化稀土的混合液; (3), rare earth chloride and copper sulfate were added while stirring the mixture;

(4) 、在搅拌状态下,用紫外线灯照射,时间2~50小时; (4), under stirring, irradiation with ultraviolet light, for 2 to 50 hours;

(5) 、在搅拌状态下,滴加正硅酸乙酯; (5), under stirring, a solution of ethyl orthosilicate;

(6) 、在搅拌状态下,将经过用乙醇和超声波辅助浸润的纳米二氧化钛粉末加入,并连续搅拌1~3小时; (6), while stirring, after the titanium dioxide powder with ethanol and ultrasonic assisted infiltration was added, and stirring was continued for 1 to 3 hours;

(7) 、将配好的具有光催化活性的有机钛溶胶静置24小时即可。 (7), with a good organic titanium sol having a photocatalytic activity for 24 hours. 采用本发明所制作的复合光触媒材料,具有以下优点: Photocatalyst composite material produced by the present invention has the following advantages:

1. 表面的微观结构可对有害气体产生附集作用,易于形成"吸附一传质一反应"的光催化基本效应,保证光催化反应的正常高效进行; 1. The microstructure surface may produce harmful gases frit effect, is easy to form "a reaction mass transfer adsorbing a" fundamental photocatalytic effect, to ensure the normal photocatalytic reaction with high efficiency;

2. 大的比表面积和光触媒材料处于纳米尺度,使复合的光催化材料反应面积增大,中间复合镀层使光触媒工作所需激发光源红移,光能利用率增加,提髙量子效率,增强催化作用效果; 2. The large specific surface area and the photocatalyst material is nanoscale, photocatalytic reactions of the composite material is increased, so that the intermediate photocatalyst composite coatings red shift effort required excitation light source, to increase energy efficiency, mention Gao quantum efficiency, enhance the catalytic Effect;

3. 能够抵御光催化过程中紫外线和产生的强氧化剂的结构破坏作用,可设计成标准部件长期使用; 3. The structure can withstand ultraviolet photocatalytic process produces a strong oxidizing agent and damaging effects of the long-term can be designed to use standard components;

4. 便于通过外加磁场、电场的方式提高自由基量子反应效率; 4. easy to improve the quantum efficiency of the reaction by a radical magnetic field, electric field mode;

5. 易于加工成型,表面可清洗。 The processibility, surface cleaning. 具体实施方式: detailed description:

本发明是以泡沫金属或者斜拉金属网为基体,首先对其表面进行电化学阳极氧化处理,使表面形成大比表面积的纳米晶态结构,再在含有铁和稀土元素的低浓度瓦特液中复合闪镀,然后在已经配置好的具有光催化活性的有机钛溶胶中进行电泳浸渍,取出后自然风干,置于低温烧结炉中进行烧结,进行低温烧结的温度一般为150〜300度。 The present invention is a foam metal or metal mesh oblique, first, as the base surface thereof electrochemical anodic oxidation treatment, the surface of nano-crystalline structure is formed large specific surface area, then in a low concentration solution containing iron and rare earth elements watts of composite plating flash, then immersed in the electrophoresis has been configured with an organic photocatalytic activity of titanium sol, after removing the natural air-dry, placed in the low-temperature sintering in a sintering furnace, low-temperature sintering temperature generally ranges from 150~300 °. 最后制成高效光触媒复合材料,制成的产品光触媒活性成分占产品总重量的4~10%。 Finally made efficient photocatalyst composite products made of photocatalyst active ingredient accounts for 4-10% of the total weight of the product.

其中,泡沫金属是泡沬金属镍、泡沫金属铜、泡沬金属铁中的一种;所述的斜拉金属网是镍、铜、铁中的一种,厚度小于0.1毫米, 孔径小于l毫米。 Wherein the foam metal is nickel Foam, a copper metal foam, a metallic iron Foam; said oblique metal mesh is nickel, copper, an iron in a thickness less than 0.1 mm, a pore size of less than l mm . 为使光催化层与其结合更牢固,比表面积更大,活性更高,首先对其表面进行阳极氧化处理,采用的电解液为0.3-2摩尔浓度的硫酸,阴极使用不锈钢板,电流1〜5A,时间1〜30分钟,然后在含有铜和稀土元素的低浓度瓦特液中复合沉积闪镀,瓦特镀液配方每升为:硫酸镍70〜110克,氯化镍30〜80克,硼酸30〜40克,氯化铁5~10克,氯化稀土0.5~2克,ATPN0.01〜0.5克,电流密度2~15A, 时间3〜60秒。 Photocatalytic layer is more firmly bound thereto, larger surface area, higher activity, is first anodized surface thereof, the electrolyte employed is 0.3 to 2 molar concentration of sulfuric acid, the cathode stainless steel plate, the current 1~5A time 1~30 minutes, and then flash-plated composite deposited in a low concentration solution containing copper and a rare earth element w in watt per liter of bath formulation: 70~110 g of nickel sulfate, 30~80 g of nickel chloride, boric acid 30 ~ 40 g, 5 to 10 grams of ferric chloride, rare earth chloride, 0.5 to 2 grams, ATPN0.01~0.5 g, a current density of 2 ~ 15A, time 3~60 seconds. 经所述两步预处理后的泡沬金属或斜拉金属网,表面形成纳米晶状结构,同时复合电沉积一层中间层,与光催化材料结合牢固,比表面积大,光催化活性高。 Through the two-step pretreatment of the metal or oblique Foam metal, nanocrystalline structure surface, while the intermediate layer is a layer of composite electrodeposition, and the photocatalytic material with a solid, large surface area, high photocatalytic activity.

上述过程中,具有光催化活性的有机钛溶胶采用钛酸正丁酯为前驱体配置,具体配置方法为: In the above process, an organic titanium sol having photocatalytic activity using n-butyl titanate configured as a precursor, the specific configuration method:

(1)、以重量比计算,准备3%~30%的钛酸正丁酯,60%~90% 的无水乙醇,0.5%~2%的盐酸或40%浓度的硫酸,3%~5%的正硅酸乙酯,0.1%~0.5°/。 (1), to calculate the weight ratio to prepare n-butyl titanate 3% to 30%, 60% to 90% ethanol, 0.5% to 2% of a 40% strength hydrochloric acid or sulfuric acid, 3% to 5 % TEOS, 0.1% ~ 0.5 ° /. 的硫酸铜和氯化稀土的混合溶液,0.5%〜2%纳米二氧化钛粉体; A mixed solution of rare earth chloride and copper sulfate, 0.5% ~ 2% titanium dioxide powder;

(2) 、将钛酸正丁酯在搅拌状态下加入到乙醇中,然后在高速搅拌下滴入盐酸或硫酸; (2), n-butyl titanate was added under stirring to the ethanol and then added dropwise hydrochloric acid or sulfuric acid with stirring at a high speed;

(3) 、在搅拌状态下加入硫酸铜和氯化稀土的混合液; (3), rare earth chloride and copper sulfate were added while stirring the mixture;

(4) 、在搅拌状态下,用紫外线灯照射,时间2〜50小时; (4), under stirring, irradiation with ultraviolet light, time of 2~50 hours;

(5) 、在搅拌状态下,滴加正硅酸乙酯; (5), under stirring, a solution of ethyl orthosilicate;

(6) 、在搅拌状态下,将经过用乙醇和超声波辅助浸润的纳米二氧化钛粉末加入,并连续搅拌1〜3小时; (6), while stirring, after the titanium dioxide powder with ethanol and ultrasonic assisted infiltration was added, and stirring was continued for 1 ~ 3 hours;

(7) 、将配好的具有光催化活性的有机钛溶胶静置24小时即可。 (7), with a good organic titanium sol having a photocatalytic activity for 24 hours. 结合本发明内容,提供以下实施例: In conjunction with the present invention, the following Example:

实施例l: Example l:

一.具有光催化活性的有机钛溶胶配置。 An organic titanium sol having photocatalytic activity configuration.

(1)称量钛酸正丁酯200g,无水乙醇735克,37%的盐酸或40% 浓度的硫酸10克,正硅酸乙酯40克,硫酸铜和氯化稀土的混合溶液5克,纳米二氧化钛粉体10克;(2) 将钛酸正丁酯在搅拌状态下加入到乙醇中,然后在高速搅拌下滴入盐酸或硫酸; (1) n-butyl titanate were weighed 200g, 735 g of anhydrous ethanol, 10 g of 37% hydrochloric acid or 40% strength sulfuric acid, 40 g TEOS, a mixed solution of rare earth chloride and copper sulfate 5 g , titanium dioxide powder 10 g; (2) the n-butyl titanate was added under stirring to the ethanol and then added dropwise hydrochloric acid or sulfuric acid with stirring at a high speed;

(3) 搅拌状态下加入硫酸铜和氯化稀土的混合液; (3) copper sulfate was added and stirring a mixture of the rare earth chloride;

(4) 搅拌状态下,用紫外线灯照射,时间20小时; (4) stirring, irradiation with ultraviolet light, 20 hours;

(5) 搅拌状态下,滴加正硅酸乙酯; (5) Under stirring, a solution of ethyl orthosilicate;

(6) 搅拌状态下,将经过用乙醇和超声波辅助浸润的纳米二氧化钛粉末加入,并连续搅拌1〜3小时; Lower (6) stirred, after the titanium dioxide powder with ethanol and ultrasonic assisted infiltration was added, and stirring was continued for 1 ~ 3 hours;

(7)将配好的具有光催化活性的有机钛溶胶静置24小时,陈化 (7) The organic titanium sol with a good photocatalytic activity for 24 hours, aging

二、 配置lMol浓度的硫酸溶液,作为阳极氧化电解液。 Second, the configuration lMol concentration sulfuric acid solution as an electrolyte anodizing.

三、 配置复合沉积闪镀电解液,按每升添加量称量:硫酸镍90克, 氯化镍50克,硼酸30克,氯化亚铁7克,氯化稀土1克,ATPN0.02 克。 Third, the composite is deposited by flash-plating electrolyte configuration, by weighing added per liter: 90 g of nickel sulfate, 50 grams of nickel chloride, 30 g boric acid, 7 g of ferrous chloride, a rare earth chloride 1 g, ATPN0.02 g . 按电镀手册公布公知的瓦特电解液配液方式进行配置,其中ATPN 先用少量稀盐酸溶解后加入。 Manual published by electroplating Watts electrolyte known manner the dosing configuration, wherein ATPN first with a small amount of dilute hydrochloric acid was added and dissolved.

四、 选用成品泡沫金属镍(70PPI,面密度300克,厚度2.5毫米, 深圳融联兴电池材料有限公司生产,PPI指每英寸孔隙数),首先在表面阳极氧化电解槽中进行电解处理,选用电流2.5A,时间12分钟; 取出后控干残液,直接放入复合沉积槽中电镀镍、铁、稀土合金,电流10A,电镀时间10秒,取出后水洗烘干。 Fourth, the choice of the finished foamed nickel (70PPI, surface density 300 g, 2.5 mm thickness, Shenzhen Ronglian-Battery Materials Co., the PPI refers to the number of pores per inch), the surface is first subjected to an electrolytic anodization treatment cell, the selection of current 2.5A, time of 12 minutes; after dry residue after removal control, is deposited directly into a composite plating bath of nickel, iron, rare earth alloy, current 1OA, plating time of 10 seconds, remove the washing and drying.

五、 将经过表面处理的泡沫金属烘干后马上浸渍于具有光催化活性的有机钛溶胶中,以钛板为阳极,施加直流电压70伏,进行电泳沉积,时间3分钟,中间轻轻搅拌排出气泡。 Fifth, the surface-treated metal foam immediately after drying was immersed in an organic titanium sol having photocatalytic activity, the titanium plate to an anode, applying a DC voltage 70 V, for electrophoretic deposition, 3 minutes, stirring gently discharged intermediate bubble. 六、 将浸渍处理的泡沫金属自然干燥1小时,放入烘箱,烘干温 Sixth, the foam metal impregnation treatment naturally dried for 1 hour, placed in an oven, drying temperature

度150度,时间10分钟。 Degrees 150 degrees, 10 minutes.

七、 重复5〜6步骤1次。 Seven, repeat steps 1 5 to 6 times. 在泡沫金属表面形成光催化纳米材料膜, 其中二氧化钛负载量为7.5%。 Nanomaterial photocatalytic film is formed on the surface of the metal foam, wherein the titanium dioxide loading of 7.5%.

八、 取300X300毫米面积的高效光催化复合材料,放入l立方米测试箱中,距离100毫米放置8瓦特的紫外灯,另一面距离200毫米放置一台仪表风扇。 Eight, taking efficient photocatalytic composite material 300X300 mm area, l m into the test chamber, distance of 100 mm for 8 watt ultraviolet lamp, the other side of 200 mm is placed one meter from the fan. 用微量移液管注入1毫克甲醛,开启风扇15分钟,使内部浓度达到平衡,开启紫外灯,使用多参数在线检测仪(同时测量氨、有机挥发物总合(TVoc)、 二氧化碳、湿度、温度,型号IAQRAE-PGM5210 ),甲醛测试仪(型号ppm FormaldemeterTM 400 ) 进行连续测试,初始甲醛浓度0.83毫克/立方米,二氧化碳浓度1020ppm, 15分钟后,甲醛浓度降为0.15毫克,二氧化碳浓度上升为1205ppm,甲醛降解率为82%,反应过程经拟合计算,符合一级反应动力学方程(郎缪尔一谢夏尔伍德方程,简称L一-H方程)。 By micropipette injection of 1 mg of formaldehyde, turning on the fan for 15 minutes so that the internal concentration equilibrium, open UV lamp, multi-parameter line detector (simultaneous measurement of ammonia, volatile organic compounds sum (TVOC), carbon dioxide, humidity, temperature , model IAQRAE-PGM5210), formaldehyde tester (model ppm FormaldemeterTM 400) continuous test, the initial formaldehyde concentration 0.83 mg / cubic meter, the carbon dioxide concentration of 1020ppm, 15 minutes, down to 0.15 mg of formaldehyde concentration, carbon dioxide concentration increased to 1205ppm, degradation rate of 82% formaldehyde, the reaction process is calculated by fitting the first order reaction kinetics equation (Langmuir equation a 谢夏尔伍德 abbreviated L -H equation a).

实施例2: Example 2:

按实施例1中要求配置钛溶胶,复合电沉积液,阳极氧化电解液浓度0.5Mo1。 Example 1 according to the configuration required titanium sol, liquid composite electrodeposition, anodization electrolyte concentration 0.5Mo1.

一、选用半成品泡沫金属镍(70PPI,面密度90克,厚度2.5毫米,深圳融联兴电池材料有限公司生产或使用公知技术自制),首先在表面阳极氧化电解槽中进行电解处理,选用电流1.5A,时间6分钟.;取出后控干残液,直接放入复合沉积槽中电镀镍、铁、稀土合金, 电流10A,电镀时间15秒,取出后水洗烘干。 First, the selection semifinished foamed nickel (70PPI, surface density 90 g, 2.5 mm thickness, Shenzhen Ronglian-Battery Materials Co., or made using known techniques), the surface is first subjected to an electrolytic anodization treatment cell, the selection of the current 1.5 A, for 6 min; after dry residue after removal control, is deposited directly into a composite plating bath of nickel, iron, rare earth alloy, current 1OA, plating time of 15 seconds, remove the washing and drying. 二、 将经过表面处理的泡沫金属烘干后马上浸渍于具有光催化活 Second, the foam, after drying the metal surface treatment immediately immersed having photocatalytic activity

性的有机钛溶胶中,以钛板为阳极,施加直流电压90伏,进行电泳沉积,时间2分钟,中间轻轻搅拌排出气泡。 The organic sol of titanium to titanium plate as an anode, applying a DC voltage of 90 volts, for electrophoretic deposition, 2 minutes, gently stirring the intermediate discharging bubbles.

三、 将浸渍处理的泡沫金属自然干燥1小时,放入烘箱,烘干温度130度,时间5分钟。 Third, the impregnation treatment the metal foam naturally dried for 1 hour, into the oven, a drying temperature of 130 degrees, 5 minutes.

四、 重复第二〜三步骤1次。 Fourth, the second to third step is repeated once. 在泡沫金属表面形成光催化纳米材料膜,其中二氧化钛负载量为4.7%。 Nanomaterial photocatalytic film is formed on the surface of the metal foam, wherein the titanium dioxide loading of 4.7%.

五、 取300X300毫米面积的高效光催化复合材料,放入l立方米测试箱中,距离100毫米放置8瓦特紫外灯,另一面距离200毫米放置一台仪表风扇。 Five, to take effective photocatalytic composites 300X300 mm area, l m into the test chamber, placed 100 mm from the UV lamp 8 watts, the other side of 200 mm are placed one meter from the fan. 用微量移液管注入1毫克甲醛,开启风扇15分钟, 使内部浓度达到平衡,开启紫外灯,使用多参数在线检测仪,甲醛测试仪进行连续测试,初始甲醛浓度0.85毫克/立方米,二氧化碳浓度1060ppm, 15分钟后,甲醛浓度降为0.13毫克,二氧化碳浓度上升为1285ppm,甲醛降解率为85%,反应过程经拟合计算,符合一级反应动力学方程。 By micropipette injection of 1 mg of formaldehyde, the fan is turned on for 15 minutes so that the internal equilibrium concentration, the UV lamp is turned on, a continuous multi-parameter test line detector, formaldehyde tester, the initial formaldehyde concentration 0.85 mg / cubic meter, the carbon dioxide concentration 1060ppm, 15 minutes, down to 0.13 mg of formaldehyde concentration, carbon dioxide concentration increased to 1285ppm, degradation of formaldehyde was 85%, the reaction process of calculating the fitted first order reaction kinetics.

实施例3 Example 3

按实施例1中要求配置钛溶胶,复合电沉积液,阳极氧化电解液浓度0.8Mol。 Example 1 according to the configuration required titanium sol, liquid composite electrodeposition, anodization electrolyte concentration of 0.8 mol.

一、选用斜拉金属网(厚度0.05毫米,深圳北辰有色金属公司生产),首先在表面阳极氧化电解槽中进行电解处理,选用电流2A,时间5分钟;取出后控干残液,直接放入复合沉积槽中电镀镍、铁、稀土合金,电流4A,电镀时间20秒,取出后水洗烘干。 First, selection of oblique metal mesh (0.05 mm thickness, produced by Shenzhen North Star non-ferrous metal), the surface is first subjected to an electrolytic anodization process in an electrolytic cell, the current selection. 2A, 5 minutes; dry residue after removing control, directly into depositing a composite plating bath of nickel, iron, rare earth alloy, current. 4A, plating time of 20 seconds, washing with water and drying after the removal. 二、 将经过表面处理的泡沬金属烘干后马上浸渍于具有光催化活 Second, after the drying Foam Metal immediately immersed treated surface having photocatalytic activity

性的有机钛溶胶中,以钛板为阳极,施加直流电压60伏,迸行电泳沉积,时间3分钟。 The organic sol of titanium to titanium plate as an anode, applying a DC voltage of 60 volts, into line electrophoretic deposition, over 3 minutes.

三、 将浸渍处理的泡沫金属自然干燥1小时,放入烘箱,烘干温度180度,时间2分钟。 Third, the impregnation treatment the metal foam naturally dried for 1 hour, placed in an oven drying temperature of 180 degrees, 2 minutes.

四、 重复2~3步骤1次。 Four, Step 1 was repeated 2-3 times. 在泡沫金属表面形成光催化纳米材料膜, 其中二氧化钛负载量为5.7%。 Nanomaterial photocatalytic film is formed on the surface of the metal foam, wherein the titanium dioxide loading of 5.7%.

五、 取300X300毫米面积的高效光催化复合材料三层叠加,放入l立方米测试箱中,距离100毫米放置8W紫外灯,另一面距离200 毫米放置一台仪表风扇。 Five, to take effective photocatalytic composites 300X300 mm area of ​​three superimposed, placed in the test chamber l m, the distance of 100 mm placed 8W UV lamp, the other side of 200 mm are placed one meter from the fan. 用微量移液管注入1毫克甲醛,开启风扇15分钟,使内部浓度达到平衡,开启紫外灯,使用多参数在线检测仪),甲醛测试仪进行连续测试,初始甲醛浓度0.82毫克/立方米, 二氧化碳浓度1088ppm, 15分钟后,甲醛浓度降为0.16毫克,二氧化碳浓度上升为1264ppm,甲醛降解率为80%,反应过程经拟合计算, 符合一级反应动力学方程。 By micropipette injection of 1 mg of formaldehyde, the fan is turned on for 15 minutes so that the internal equilibrium concentration, the UV lamp is turned on, the use of multi-parameter line detector), formaldehyde tester continuous testing, the initial formaldehyde concentration 0.82 mg / cubic meter, CO concentration of 1088ppm, 15 minutes, down to 0.16 mg of formaldehyde concentration, carbon dioxide concentration increased to 1264ppm, degradation of formaldehyde was 80%, the reaction process of calculating the fitted first order reaction kinetics.

实施例1和实施例2所制成的样品,经广东省微生物研究所检测, 在无光、自然散射光、荧光灯、紫外灯等条件下,对大肠杆菌、金黄色葡萄球菌的抗菌效果达到99.99%。 And the samples prepared in Example 1 Example 2, detected by the Guangdong Provincial Institute of Microbiology, matte, under natural light scattering, fluorescent, ultraviolet light and other conditions, the antibacterial effect on Escherichia coli, Staphylococcus aureus 99.99 %.

Claims (1)

  1. 1、一种光触媒复合材料的制备方法,其特征在于,它包括如下步骤: 1)、配置具有光催化活性的有机钛溶胶,其具体配置方法如下: a)称量钛酸正丁酯200克,无水乙醇735克,37%的盐酸或40%的硫酸10克,正硅酸乙酯40克,硫酸铜和氯化稀土的混合溶液5克,纳米二氧化钛粉体10克; b)将钛酸正丁酯在搅拌状态下加入到无水乙醇中,然后在高速搅拌下滴入盐酸或硫酸; c)搅拌状态下加入硫酸铜和氯化稀土的混合液; d)搅拌状态下用紫外灯照射,照射时间为20小时; e)搅拌状态下滴加正硅酸乙酯; f)搅拌状态下将经过用乙醇和超声波辅助浸润的纳米二氧化钛粉末加入,并连续搅拌1-3小时; g)将配好的具有光催化活性的有机钛溶胶静置24小时,陈化备用; 2)、配置1mol浓度的用作阳极氧化电解液的硫酸溶液; 3)、配置复合沉积闪镀电解液,其各成份含量及配 1. A process for preparing a composite photocatalyst material, characterized in that it comprises the following steps: 1), an organic titanium sol configuration having photocatalytic activity, the specific configuration is as follows: a) weighing 200 g n-butyl titanate , 735 g of anhydrous ethanol, 10 g of 37% hydrochloric acid or 40% sulfuric acid, 40 g TEOS, a mixed solution of rare earth chloride and copper sulfate 5 g, 10 g titanium dioxide powder; b) titanium n-butyl acrylate was added under stirring in anhydrous ethanol, and then added dropwise hydrochloric or sulfuric acid with stirring at a high speed; copper sulfate and a rare earth chloride mixture under c) stirring; under d) stirring UV light irradiation, the irradiation time of 20 hours; TEOS was added dropwise under e) stirring; at f) after stirring with ethanol and the ultrasound-assisted infiltration titanium dioxide powder was added, and stirring continued for 1-3 h; G) organic titanium sol with a good photocatalytic activity for 24 hours, aging standby; 2), arranged 1mol anodizing electrolyte concentration as a sulfuric acid solution; 3), the composite is deposited by flash-plating electrolyte configuration which each ingredient and distribution 方法如下:按每升添加量称量,硫酸镍90克,氯化镍50克,硼酸30克,氯化亚铁7克,氯化稀土1克,ATPN0.02克;将上述成份按电镀手册公布公知的瓦特电解液配液方式进行配置,其中ATPN先用少量稀盐酸溶解后加入; 4)、选用成品泡沫金属镍为基体,先在表面阳极氧化电解槽中进行电解处理,然后取出控干残液,直接放入复合沉积槽中电镀镍、铁、稀土合金,再后取出水洗烘干;所述电解处理的电流为2.5安,电解处理时间为12分钟,所述电镀镍、铁、稀土合金的电镀电流为10安,电镀时间为10秒; 5)、将经过表面处理的泡沫金属烘干后马上浸渍于具有光催化活性的有机钛溶胶中,以钛板为阳极进行电泳沉积,在沉积过程中轻轻搅拌以排出气泡;所述电泳沉积施加的直流电压为70伏,电泳沉积时间为3分钟; 6)、将浸渍处理的泡沫金属自然干燥1小时后,放入 As follows: by adding weighed per liter, 90 g of nickel sulfate, 50 grams of nickel chloride, 30 g boric acid, 7 g of ferrous chloride, a rare earth chloride 1 g, ATPN0.02 g; The above ingredients by plating Manual published known watts electrolyte dosing mode configuration, wherein ATPN first with dissolved a small amount of dilute hydrochloric acid was added; 4), the choice of the finished metal foam nickel substrate, the first electrolytic treatment in the surface of the anodized electrolytic bath, then removed control dry the residue is deposited directly into a composite plating bath of nickel, iron, rare earth alloy, and then taken out after washing with water and drying; the electrolysis current is 2.5 a, electrolysis treatment time of 12 minutes, the plated nickel, iron, rare earth alloy plating current of 10 a, a plating time of 10 seconds; 5), the surface-treated metal foam immediately after drying is immersed in a sol having a photocatalytic activity of the organic titanium to titanium plate as an anode electrophoretic deposition, was stirred gently during the deposition process to discharge air bubbles; DC voltage applied to the electrophoretic deposition of 70 volts, electrophoretic deposition time was 3 minutes; 6) after the impregnation treatment the metal foam naturally dried for 1 hour, placed in 烘箱烘干,烘干温度为150度,时间10分钟; 7)、重复5)-6)步骤1次,在泡沫金属表面形成光催化纳米材料膜,其中二氧化钛的负载量为7.5%。 Oven dried, the drying temperature is 150 degrees, 10 minutes; 7), was repeated 5) -6) Step 1, nanomaterial photocatalytic film is formed on the surface of the metal foam, wherein the titanium dioxide loading of 7.5%.
CN 200410028196 2004-07-23 2004-07-23 Process for preparing photocatalyst composite material CN100569357C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410028196 CN100569357C (en) 2004-07-23 2004-07-23 Process for preparing photocatalyst composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410028196 CN100569357C (en) 2004-07-23 2004-07-23 Process for preparing photocatalyst composite material

Publications (2)

Publication Number Publication Date
CN1724143A true CN1724143A (en) 2006-01-25
CN100569357C true CN100569357C (en) 2009-12-16

Family

ID=35923854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410028196 CN100569357C (en) 2004-07-23 2004-07-23 Process for preparing photocatalyst composite material

Country Status (1)

Country Link
CN (1) CN100569357C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8546288B2 (en) * 2012-02-15 2013-10-01 Ford Global Technologies, Llc Substrate selection for a catalyst
CN104422019A (en) * 2013-08-22 2015-03-18 袁满雪 Complex multi-functional indoor air pollution control unit
CN104422018B (en) * 2013-08-22 2017-05-17 袁满雪 Means improving indoor air quality
CN103585828A (en) * 2013-11-27 2014-02-19 广州市威斯丹利净化技术有限公司 Air purification module
CN105289292A (en) * 2015-11-28 2016-02-03 韦昱灵 Air purifying agent and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000985A1 (en) 1987-07-27 1989-02-09 Wisconsin Alumni Research Foundation Degradation of organic chemicals with titanium ceramic membranes
WO1999041005A1 (en) 1998-02-12 1999-08-19 Basf Aktiengesellschaft Method for the combinatorial production and testing of heterogeneous catalysts
CN1095487C (en) 1999-12-17 2002-12-04 中国科学院感光化学研究所 Active oxide coated porous powder and its preparin gprocess and application
CN1422920A (en) 2002-12-31 2003-06-11 中国建筑材料科学研究院 Multi-waveband photocatalytic material, preparation method thereof and air-purifying exposed wall coating composition
CN1486785A (en) 2003-08-12 2004-04-07 上海交通大学 Prepn process of photocatalytic filtering net of foamed metal carrying nano Tio2

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000985A1 (en) 1987-07-27 1989-02-09 Wisconsin Alumni Research Foundation Degradation of organic chemicals with titanium ceramic membranes
WO1999041005A1 (en) 1998-02-12 1999-08-19 Basf Aktiengesellschaft Method for the combinatorial production and testing of heterogeneous catalysts
CN1095487C (en) 1999-12-17 2002-12-04 中国科学院感光化学研究所 Active oxide coated porous powder and its preparin gprocess and application
CN1422920A (en) 2002-12-31 2003-06-11 中国建筑材料科学研究院 Multi-waveband photocatalytic material, preparation method thereof and air-purifying exposed wall coating composition
CN1486785A (en) 2003-08-12 2004-04-07 上海交通大学 Prepn process of photocatalytic filtering net of foamed metal carrying nano Tio2

Also Published As

Publication number Publication date Type
CN1724143A (en) 2006-01-25 application

Similar Documents

Publication Publication Date Title
Wu et al. Synthesis and characterization of carbon-doped TiO2 nanostructures with enhanced visible light response
Zhuang et al. Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity
Zhang et al. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation
Zhang et al. Preparation and performances of mesoporous TiO2 film photocatalyst supported on stainless steel
Xiao et al. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing
Macak et al. Self‐Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts
Wang et al. Ag/AgBr/WO3· H2O: visible-light photocatalyst for bacteria destruction
Lu et al. Oxygen evolution reaction on Ni-substituted Co3O4 nanowire array electrodes
Zhang et al. Nonenzymatic glucose sensor based on graphene oxide and electrospun NiO nanofibers
Li et al. Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania
De Tacconi et al. Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: influence of process variables on morphology and photoelectrochemical response
Guo et al. High photocatalytic capability of self-assembled nanoporous WO3 with preferential orientation of (002) planes
Guo et al. Sol gel derived photocatalytic porous TiO2 thin films
Vijayan et al. The effects of Pt doping on the structure and visible light photoactivity of titania nanotubes
Marci et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems. 1. Surface and bulk characterization
McDonald et al. Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation
Matsumoto et al. A new electrochemical method to prepare mesoporous titanium (IV) oxide photocatalyst fixed on alumite substrate
Paramasivam et al. Photocatalytic activity of TiO2 nanotube layers loaded with Ag and Au nanoparticles
Xin et al. Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2
Chu et al. Highly porous (TiO2− SiO2− TeO2)/Al2O3/TiO2 composite nanostructures on glass with enhanced photocatalysis fabricated by anodization and sol− gel process
Liang et al. Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2, 3-dichlorophenol in aqueous solution
Liu et al. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode
Wu et al. Large-scale preparation of ordered titania nanorods with enhanced photocatalytic activity
Li et al. Photoelectrocatalytic degradation of rhodamine B using Ti/TiO2 electrode prepared by laser calcination method
Guerin et al. Electrochemical behaviour of electrodeposited nanostructured palladium+ platinum films in 2 M H2SO4

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model