JPS63179094A - Pr plating method - Google Patents

Pr plating method

Info

Publication number
JPS63179094A
JPS63179094A JP898987A JP898987A JPS63179094A JP S63179094 A JPS63179094 A JP S63179094A JP 898987 A JP898987 A JP 898987A JP 898987 A JP898987 A JP 898987A JP S63179094 A JPS63179094 A JP S63179094A
Authority
JP
Japan
Prior art keywords
plating
alloy
electrode
electrolysis
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP898987A
Other languages
Japanese (ja)
Inventor
Kazuhito Amamiya
雨宮 一仁
Takashi Mori
隆 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP898987A priority Critical patent/JPS63179094A/en
Publication of JPS63179094A publication Critical patent/JPS63179094A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To form a PR plating exhibiting high durability and a low hydrogen overvoltage characteristic by forming the coated film of an alloy of the surface of an electrically conductive base material by a cathode current in a soln. of the salt of a noble metal and the salt of a base metal, and dissolving and removing the base metal in the coated film by an anode current. CONSTITUTION:The soln. of at least one kind of salt selected from the salts of noble metals and at least one kind of salt selected from the salts of base metals is prepared. The coated film of the alloy of the noble metal and the base metal is formed on the surface of the conductive base material by a cathode current in the soln. by using a PR plating method. The base metal in the alloy coated film is then selectively dissolved and removed by an anode current. For example, Zn is removed from an Ni-Zn eutectoid coated film. By this method, a Raney alloy activating electrode, etc., exhibiting high durability and a low electrochemical over-voltage can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気めっき法に関するものであり、特に、カ
ソード電流により合金被膜を形成させ、アノード電流に
より卑な金属を選択的に溶解除去する操作を繰り返すこ
とを特徴とするPRめっき法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electroplating method, and in particular, an alloy film is formed by a cathodic current, and a base metal is selectively dissolved and removed by an anode current. This relates to a PR plating method characterized by repeated operations.

本発明より得られるめっき被膜は、その合金組成に応じ
て耐食用鋼板から触媒としての用途まで幅広い利用が可
能である。特に、本発明よりなるめっき被膜の特徴とし
ては、一般にラネー触媒と称されるタイプの金属が容易
に得られることであり、触媒としての用途に適している
。更に、触媒的応用の一例として、電極として使用した
場合、酸素・水素発生用電極、燃料電池用電極等、種々
の電気化学装置における電極として適用可能なものであ
り、特に1工業電解用電極、例えば水電解や食塩電解用
陰極としての用途に適し、耐久性。
The plating film obtained by the present invention can be used in a wide range of applications, from corrosion-resistant steel plates to catalysts, depending on its alloy composition. In particular, a feature of the plating film according to the present invention is that a type of metal generally referred to as a Raney catalyst can be easily obtained, and it is suitable for use as a catalyst. Furthermore, as an example of catalytic application, when used as an electrode, it can be applied as an electrode in various electrochemical devices such as an electrode for oxygen/hydrogen generation, an electrode for fuel cells, etc. In particular, it can be used as an electrode for industrial electrolysis, For example, it is suitable for use as a cathode for water electrolysis or salt electrolysis, and is durable.

密着性に優れ、かつ極めて低い水素過電圧特性を示すも
のである。
It has excellent adhesion and exhibits extremely low hydrogen overvoltage characteristics.

〔従来の技術゛〕[Conventional technology]

本発明のめっき手法により得られた電着物は、上述のよ
うに幅広い用途が考えられるが、その中でもっとも効果
の期待される触媒としての用途、特に水電解や食塩電解
の電極としての用途を取り上げて言及する。
The electrodeposit obtained by the plating method of the present invention can be used in a wide range of applications as mentioned above, but among these, it is most likely to be used as a catalyst, especially as an electrode for water electrolysis or salt electrolysis. Bring it up and mention it.

一般の触媒として使用されるラネー合金は、冶金法によ
り得られたNi−Al、 Ni−Zn合金等が主なもの
である。この場合、kl、 Znを苛性ンーダ水浴液等
のアルカリ溶液中でAl、 Znを溶解除去することが
必要となる。
Raney alloys used as general catalysts are mainly Ni-Al, Ni-Zn alloys, etc. obtained by metallurgical methods. In this case, it is necessary to remove Al and Zn by dissolving Kl and Zn in an alkaline solution such as a caustic soda bath solution.

電極としての使用については、水電解や食塩電解用の電
極としての使用に%に適するが、これらの分野に於て、
電解電圧の低減が重要な課題となっている。特に、陽イ
オン交換脱法食塩電解技術に於て、従来の鉄陰極の有す
、(14V前後の水素過電圧を低減するために各所で精
力的な検討が進められてきた。低水素過電圧陰極の製造
法として(i、 +1)  含硫黄化合物を含むニッケルめっき浴を用い
てニッケルめっきを行う方法(特開昭57−19388
号等)。
Regarding use as an electrode, it is suitable for use as an electrode for water electrolysis and salt electrolysis, but in these fields,
Reducing electrolysis voltage has become an important issue. In particular, in the field of cation exchange removal salt electrolysis technology, vigorous studies have been carried out in various places to reduce the hydrogen overvoltage (around 14 V) of conventional iron cathodes.Production of low hydrogen overvoltage cathodes As a method (i, +1) A method of performing nickel plating using a nickel plating bath containing a sulfur-containing compound (Japanese Patent Application Laid-Open No. 57-19388
No. etc.).

(2)  ラネーニッケルタイプの電着物より活性化電
極を得る方法としては、Ni−Zn合金電着後、これを
アルカリ溶液中に浸漬するか、アルカリ又は、鉱酸溶液
中で陽極として電解することにより、亜鉛その他の溶解
性物質を溶出除去する方法(特公昭51−6611号等
)。
(2) A method for obtaining an activated electrode from a Raney nickel type electrodeposit is to electrodeposit a Ni-Zn alloy and then immerse it in an alkaline solution, or electrolyze it as an anode in an alkaline or mineral acid solution. , a method for eluting and removing zinc and other soluble substances (Japanese Patent Publication No. 51-6611, etc.).

等が提案されている。etc. have been proposed.

これらの提案された陰極は、経済的な手法で得られ、又
、電解初期は比較的低い水素過電圧を示すものもあり、
低水素過電圧陰極として有望視されているが、電解日数
の増大とともに徐々に水素過電圧が上昇するという欠点
を有し、この傾向は陰極として使用される電解電流密度
の増大と共に著しくなる。特に、 ニッケルー亜鉛共析
被膜より亜鉛を除去してなる、いわゆる電着ラネーニッ
ケルタイプの低水素過電圧陰極は、被膜層そのものが 
、もろく、耐久性の乏しいことが問題であった。
These proposed cathodes can be obtained by economical methods, and some exhibit relatively low hydrogen overpotentials at the initial stage of electrolysis.
Although it is considered promising as a low hydrogen overvoltage cathode, it has the disadvantage that the hydrogen overvoltage gradually increases as the number of days of electrolysis increases, and this tendency becomes more pronounced as the electrolytic current density used as the cathode increases. In particular, the so-called electrodeposited Raney nickel type low hydrogen overvoltage cathode, which is made by removing zinc from a nickel-zinc eutectoid coating, has a structure in which the coating layer itself is
The problem was that it was brittle and had poor durability.

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

本発明は、ラネー触媒の新規な製造法を提供するPRめ
っき法であり、経済的、かつ簡便な方法により、多層に
積層した特殊なラネー触媒を与える手法を提供するもの
であるが、本発明を用いることにより、例えば、従来耐
久性に問題があったニッケルー亜鉛共析被膜より亜鉛を
除去してなる活性化電極に比較して、高耐久性かつ極め
て低い電気化学的な過電圧を示す新規なラネー合金活性
化電極を得ることができる。
The present invention is a PR plating method that provides a new method for producing Raney catalysts, and provides a method for producing special Raney catalysts laminated in multiple layers by an economical and simple method. For example, by using a nickel-zinc eutectoid coating, which has conventionally had durability problems, a new type of activated electrode that exhibits high durability and extremely low electrochemical overvoltage has been developed. A Raney alloy activated electrode can be obtained.

〔問題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、導電性基材表面に貴な金属から選ばれ
た少なくとも一種の塩と、卑な金属から選ばれた少なく
とも一種の塩を溶解した浴液中において、PRめっき法
を用い、カソード電流により、貴な金属から選ばれた少
なくとも一抛の金属と、卑な金属から選ばれた少なくと
も一種の金属との合金被膜を形成させ、アノード電流に
より合金被膜中の卑な金属を選択的に溶解除去する操作
を繰り返すことを特徴とするPRめっき法にある。
The gist of the present invention is to use a PR plating method in a bath solution in which at least one salt selected from noble metals and at least one salt selected from base metals are dissolved on the surface of a conductive base material. The cathode current forms an alloy film of at least one metal selected from noble metals and at least one metal selected from base metals, and the anode current selectively removes the base metal in the alloy film. The PR plating method is characterized by repeating the operation of dissolving and removing the particles.

貴な金属と卑な金属との組合せは、異常共析を起こす組
合せであることが必要である。異常共析とは卑な金属が
、貴な金属に比べ優先析出する現象の事である。この様
な金属の組合せとしては、Fe−Ni、 Fe−Co、
 Zn−鉄族系、 Ca−鉄族系等が知られているが、
異常共析を示す組合せであれば、これに限定されるもの
ではない。
The combination of a noble metal and a base metal must be a combination that causes abnormal eutectoid formation. Anomalous eutectoid is a phenomenon in which base metals precipitate preferentially compared to noble metals. Such metal combinations include Fe-Ni, Fe-Co,
Zn-iron group system, Ca-iron group system, etc. are known, but
The combination is not limited to this as long as it shows abnormal eutectoid.

なお、ここで先に示した合金組成中、左側に示した金属
が卑な金属、右側に示した金属が貴な金属である。本発
明者らは、これらの共析被膜が、適切なアノード溶解条
件を選択することにより、共析浴と同一の浴中において
、正常溶解すなわち卑な金属を選択的KW解させ得るこ
とを見いだし、更に、PRめっき法により異常共析、正
常溶解を繰り返すことにより本発明を完成するに至った
ものである。
In the alloy compositions shown above, the metals shown on the left are base metals, and the metals shown on the right are noble metals. The present inventors have found that these eutectoid coatings can be normally dissolved, that is, selective KW dissolution of base metals, in the same bath as the eutectoid bath by selecting appropriate anode dissolution conditions. Furthermore, the present invention was completed by repeating abnormal eutectoid and normal dissolution using the PR plating method.

PRめっき法を含むパルスめっき法は、一般に広く知ら
れためっき手法であるが、その目的は均一電着性、レベ
リングの向上及びめっき速度の増大等であり、本発明で
示されるような特定成分の選択溶解を目的とした例は、
これまで存在しない。
The pulse plating method, including the PR plating method, is a generally widely known plating method, and its purpose is to improve uniform electrodeposition, leveling, and increase the plating speed. An example for selective dissolution of
Never existed.

本発明者等は、パルスめっき法の中で、特に電流を周期
的に反転させるPRめっき法による異常共析に関し鋭意
検討を重ねた結果、適切なパルス条件を設定することに
より、異常共析と正常溶解、即ち卑な金属の選択溶解の
繰り返しが可能となることを初めて見いだし、これによ
りパルスめっき法が元来持つ均一電着性、レベリングの
向上という特徴を持ち、かつ卑な金属の少な(とも一部
を選択的に溶解した多層構造を持つ合金被膜を得るめっ
き手法を完成するに至った。本発明は特殊な優れた機能
を持つ多層ラネー触媒を与えるものであるが、例えば、
これを工業電解用電極、特に水電解や食塩電解用の陰極
として応用した場合、均一電着性、密着性、耐久性に優
れ、かつ極めて低い水素過電圧を示す、多層構造を持っ
たラネー合金活性化電極を得ることができる。
The present inventors have conducted intensive studies on abnormal eutectoid in pulse plating methods, especially PR plating in which the current is periodically reversed, and have found that by setting appropriate pulse conditions, abnormal eutectoid We discovered for the first time that it is possible to repeat normal dissolution, that is, selective dissolution of base metals, and this allows us to achieve the characteristics of uniform electrodeposition and improved leveling originally found in the pulse plating method, while reducing the amount of base metals ( We have now completed a plating method to obtain an alloy film with a multilayer structure in which a portion of the metal is selectively dissolved.The present invention provides a multilayer Raney catalyst with special and excellent functions.
When this is applied as an electrode for industrial electrolysis, especially as a cathode for water electrolysis or salt electrolysis, it is an active Raney alloy with a multilayer structure that exhibits excellent uniformity, adhesion, and durability, as well as extremely low hydrogen overvoltage. It is possible to obtain a chemical electrode.

本発明に用いる導電性基材としては、金属又は導電性を
有す樹脂又はセラミックス等任意の導電性基材が用いら
れるが、食塩電解の様なアルカリ水浴液系の水素発生電
極の場合は通常、鉄、ニッケル、クロム、銅、又はこれ
らの合金が用いられる。
As the conductive base material used in the present invention, any conductive base material such as metal, conductive resin, or ceramics can be used, but in the case of a hydrogen generating electrode using an alkaline water bath such as salt electrolysis, , iron, nickel, chromium, copper, or an alloy thereof.

更に、電極基体形状については、平板、メッカ状、多孔
状等、いかなる形状のものでも良いが高電流密度での気
体発生電極として用いる場合は、特ニエキスバンドメタ
ル、パンチングメタル、金網状等の基体形状を用いるこ
とが好ましい。
Furthermore, the shape of the electrode substrate may be any shape such as a flat plate, a mecca shape, a porous shape, etc., but when used as a gas generating electrode at high current density, it is particularly suitable for use in the shape of expanded band metal, punched metal, wire mesh, etc. Preferably, a base shape is used.

本発明に用いるめっき浴は、貴な金属に稿する少な(と
も一種の塩と、卑な金属に属する少なくとも一種の塩を
必須成分として含む。6塩は可溶性の塩であれば良(、
通常塩化物塩、硫酸塩、スルファミン酸塩等任意の塩が
用いられる。
The plating bath used in the present invention contains, as essential components, at least one kind of salt that belongs to noble metals and at least one kind of salt that belongs to base metals.
Usually, any salt such as chloride salt, sulfate salt, sulfamate salt, etc. is used.

更に1めっき浴の浴温は、任意の温度を選択することが
出来るが、通常室温から100℃の間の範囲にて実施さ
れる。なお、良好な電着物を得るためには、室温から5
0℃の浴温か好ましい。
Further, the bath temperature of one plating bath can be arbitrarily selected, but the plating is usually carried out in a range from room temperature to 100°C. In addition, in order to obtain a good electrodeposit, it is necessary to
A bath temperature of 0°C is preferred.

カソード電流密度は、異常共析が起こる範囲で任意の値
を選択することが出来るが、通常α5〜50A/−の範
囲に於て実施される。又、溶解析出の一周期におけるカ
ソード電解時間は任意の値を選択することが出来るが、
通常30分〜1秒の間の範囲にて実施することができる
The cathode current density can be selected at any value within the range in which abnormal eutectoid deposition occurs, but it is usually carried out in the range of α5 to 50 A/-. Moreover, the cathode electrolysis time in one cycle of dissolution deposition can be selected at any value.
It can usually be carried out within a range of 30 minutes to 1 second.

アノード電流密度は、任意の値を選択することが出来る
が、通常Q、5〜50A/−の範囲にて実施される。又
、溶解析出の一周期におけるアノード電解時間は任意の
値を選択することが出来るが、通常30分〜1秒の間の
範囲にて実施することができる。
Although an arbitrary value can be selected for the anode current density, the anode current density is usually Q in the range of 5 to 50 A/-. Further, the anode electrolysis time in one cycle of dissolution deposition can be selected to be any value, but it can usually be carried out within a range of 30 minutes to 1 second.

更に、全めっき時間は任意の値を選択することが出来る
が、活性陰極として使用する場合、通常めっきの膜厚が
10〜!l001IrrLの範囲となる様にめっき時間
を選べば良い。
Furthermore, any value can be selected for the total plating time, but when used as an active cathode, the plating film thickness is usually 10~! The plating time may be selected so as to fall within the range of 1001IrrL.

本発明の、PRめっき手法においては、卑な金属の選択
溶解は、共析浴と同一浴中に於て周期的にアノード溶解
することにより行われるが、そのためにはアノード電解
条件、すなわちアノード電流値と時間を任意のカソード
電解条件に応じて適当に調節する必要がある。アノード
溶解の際電位をモニタリングすれば、溶解電位が卑な金
属の溶解電位から貴な金属の溶解電位へと電位が上昇す
ることが認められるので、溶解に必要な条件は比較的容
易に見積れる。−例として、図2にN1(1!’l、:
ZnO14:NH,C1−1: (L 5 : 1 [
M ]、25℃の浴中、4 A / diの電密で1分
間共析後、同室流密 。
In the PR plating method of the present invention, selective dissolution of base metals is performed by periodic anodic dissolution in the same bath as the eutectoid bath. Values and times need to be adjusted appropriately depending on the given cathodic electrolysis conditions. By monitoring the potential during anode dissolution, it is observed that the dissolution potential increases from the dissolution potential of a base metal to the dissolution potential of a noble metal, so the conditions necessary for dissolution can be estimated relatively easily. . - As an example, in Figure 2 N1(1!'l,:
ZnO14:NH, C1-1: (L5: 1 [
M], in a bath at 25° C., after eutectoid deposition for 1 minute at a density of 4 A/di, and then flow-tight in the same room.

度でアノード溶解した際のものを示した。図2中の(A
1点までがZnの溶解を示す電位である。従って(A)
点で溶解を停止すれば良い。なおアノード電解条件は、
卑な金属が選択溶解するように選ぶことが効果的である
が、貴な金属の一部が同時に溶解した場合でも同様な効
果が得られる場合もある。
The results are shown when the anode is melted at 30°C. (A in Figure 2)
The potential up to one point indicates the dissolution of Zn. Therefore (A)
It is sufficient to stop the dissolution at this point. The anodic electrolysis conditions are as follows:
It is effective to choose a method in which base metals are selectively dissolved, but the same effect may be obtained even if some noble metals are melted at the same time.

このようにして任意のカソード電解条件に対応するアノ
ード電解条件を決定したならば、それを周期的に繰り返
すことにより、貴な金属から選ばれた少なくとも一種の
金属と、卑な金属から選ばれた少なくとも一種の金属と
の合金被膜から、合金被膜中の卑な金属が選択的に溶解
除去された電着物を得ることができる。
Once the anodic electrolytic conditions corresponding to any cathodic electrolytic conditions have been determined in this way, by periodically repeating the process, at least one metal selected from noble metals and one selected from base metals can be combined. An electrodeposited material in which the base metal in the alloy coating is selectively dissolved and removed can be obtained from an alloy coating with at least one type of metal.

〔本発明の効果〕[Effects of the present invention]

本発明は、一般にラネー触媒と称されるタイプの金属を
電気めっき法より得る新規な手法を提供するものである
。本発明より得られるめっき被膜は、その合金組成に応
じて耐食用鋼板から触媒としての用途まで幅広い利用が
可能であるが、特に、本発明よりなるめっき被膜の特徴
としては、一般にラネー触媒と称されるタイプの金属が
容易に得られることであり、触媒としての適用に適して
いる。触媒的応用の一例として、電極として使用した場
合、酸素・水素発生用電極、燃料電池用電極等、種々の
電気化学装置における電極として適用可能なものである
が、特に、工業電解用電極、例えば水電解や食塩電解用
陰極としての用途に適用した場合、耐久性、密着性に優
れ、かつ水素過電圧を長期の間、数100 mV低減す
ることが可能となり、その工業的価値は極めて大きなも
のである。
The present invention provides a novel method for obtaining metals of the type commonly referred to as Raney catalysts by electroplating. The plating film obtained by the present invention can be used in a wide range of applications, from corrosion-resistant steel plates to catalysts, depending on its alloy composition. This type of metal is readily available and suitable for application as a catalyst. As an example of catalytic application, when used as an electrode, it can be applied as an electrode in various electrochemical devices such as an electrode for oxygen/hydrogen generation, an electrode for a fuel cell, etc., but it is particularly applicable as an electrode for industrial electrolysis, e.g. When applied as a cathode for water electrolysis or salt electrolysis, it has excellent durability and adhesion, and can reduce hydrogen overvoltage by several hundred mV for a long period of time, and its industrial value is extremely large. be.

〔実施例〕〔Example〕

以下、本発明を実施例により更に詳しく説明するが、本
発明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto.

実施例1,2.比較例1 を極基材として、直径1cMのニッケル基材を用い、そ
の周囲をアクリル樹脂で被覆した。この基材を脱脂、酸
洗等の前処理、及び下地めっきを施した後に、表1.2
に示したニッケル塩及び亜鉛塩を含む、めっき液組成及
び電解条件下でPRめっきを行った。ここで、表1には
、実施例1のめっき液組成とtM条件を、表2には、実
施例2のめっき液組成と電解条件を示す。又、比較例と
して従来のPRパルス法を用いないNi−Zn合金の例
のめっき液組成と電解条件を表3に示す。
Examples 1 and 2. Comparative Example 1 was used as a polar base material, and a nickel base material with a diameter of 1 cM was used, and the periphery thereof was covered with an acrylic resin. After pretreatment such as degreasing and pickling, and base plating, Table 1.2
PR plating was performed under the plating solution composition and electrolytic conditions including the nickel salt and zinc salt shown in . Here, Table 1 shows the plating solution composition and tM conditions of Example 1, and Table 2 shows the plating solution composition and electrolysis conditions of Example 2. Further, as a comparative example, Table 3 shows the plating solution composition and electrolytic conditions of an example of a Ni-Zn alloy in which the conventional PR pulse method was not used.

電極性能の評価は、90℃、55 wt*NaOH水浴
液を電解液とし、40A/−における水素発生反応で行
った。参照電極には、電解液と同一溶液(同−pH)、
同一温度の可逆水素電極(以下、R,T(J、と略す)
を用いた。電極電位測定にはカレントインタラプタ−法
を用い、溶液抵抗による電圧降下を除去した。なお、水
素発生反応で、R,HoE。
The electrode performance was evaluated using a hydrogen generation reaction at 40 A/- at 90° C. using a 55 wt*NaOH water bath solution as the electrolyte. For the reference electrode, the same solution as the electrolyte (same pH),
Reversible hydrogen electrodes at the same temperature (hereinafter abbreviated as R, T (J))
was used. A current interrupter method was used to measure the electrode potential to eliminate voltage drops due to solution resistance. In addition, in the hydrogen generation reaction, R, HoE.

基準で測定される電極電位の絶対値を取ったものが、水
素過電圧となる。
The hydrogen overvoltage is the absolute value of the electrode potential measured using the standard.

表1 実施例1のめっき液組成と電解条件めっき液組成
   電解条件 N1(J、  1.0m0171   K解温度  ・
  25℃ZnC1,Q、5 !nol/1pH4NH
4C11,0mol/1   カソード電流   1o
&a/アノード電流    6.5A/di 力ソードパルス幅 60秒 アノードパルス幅 60秒 電解時間     60分 表2 実施例2のめっき液組成と電解条件めっき液組成
   電解条件 N i C1@  1. Om O1/1   電解温
度     25℃Zn C11α5 mol/1  
 pH4N)(、C11,Omol/1   カソード
電流   10A/4W?アノード電流    5)−
/dy? カソードパルス幅  3分 アノードパルス幅  五5分 電解時間     65分 表3 比較例1のめっき液組成と電解条件めっき液組成
   電解条件 Ni011 1.0mol/l   電解温度   2
5℃ZnC]4  α3mol/1pH4 NI(4(:!l  α5mol/l   カソード電
流  5)y’tly?電解時間   30分 めっき終了後苛性ソーダ水溶液中に自然浸漬し、亜鉛を
溶解させた。
Table 1 Plating solution composition and electrolytic conditions of Example 1 Plating solution composition Electrolytic condition N1 (J, 1.0m0171 K solution temperature ・
25℃ZnC1,Q,5! nol/1pH4NH
4C11,0mol/1 Cathode current 1o
&a/Anode current 6.5A/di Sword pulse width 60 seconds Anode pulse width 60 seconds Electrolysis time 60 minutes Table 2 Plating solution composition and electrolytic conditions of Example 2 Plating solution composition Electrolytic conditions N i C1@1. Om O1/1 Electrolysis temperature 25℃Zn C11α5 mol/1
pH4N) (, C11, Omol/1 Cathode current 10A/4W? Anode current 5) -
/dy? Cathode pulse width 3 minutes Anode pulse width 55 minutes Electrolysis time 65 minutes Table 3 Plating solution composition and electrolysis conditions of comparative example 1 Plating solution composition Electrolysis conditions Ni011 1.0mol/l Electrolysis temperature 2
5°C ZnC]4 α3mol/1pH4 NI(4(:!l α5mol/l Cathode current 5)y'tly? Electrolysis time 30 minutes After completion of plating, it was naturally immersed in a caustic soda aqueous solution to dissolve zinc.

以上の電極の水素発生反応の電解経過による電極電位の
経時変化を図1に示した。本発明のPRめっき法により
得られた電極、実施例1.2は、従来の苛性中で亜鉛を
溶解させた比較例1に比べて、水素過電圧、耐久性共に
優れた性質を示した。なお、実施例1は30パルス、実
施例2は10パルスにより作成されたものである。
FIG. 1 shows the change in electrode potential over time due to the progress of electrolysis in the hydrogen generation reaction of the above electrode. The electrode obtained by the PR plating method of the present invention, Example 1.2, exhibited superior properties in both hydrogen overvoltage and durability compared to Comparative Example 1 in which zinc was dissolved in a conventional caustic solution. Note that Example 1 was created using 30 pulses, and Example 2 was created using 10 pulses.

実施例3 コバルト及び亜鉛を含む浴中で、実施例1と同様の電極
基材を用い、表4に示しためっき液組成及び電解条件で
PRめっきを行った。
Example 3 PR plating was carried out in a bath containing cobalt and zinc using the same electrode base material as in Example 1 under the plating solution composition and electrolytic conditions shown in Table 4.

表4 実施例3のめっき液組成と電解条件めっき液組成
   電解条件 C!001. 1.0 mol/1   電解温度  
   25℃ZnC!11  α5mol/1   p
H4N )T4 C11,Om Ox7’1   カン
ード電流    s  A/dm”アノード電流   
 五6Vd− カソードパルス幅 60秒 アノードパルス幅 60秒 電解時間    150分 以上の条件により得られた電極は、40 A、/eLr
lの電解電流において、160 mVの水素過電圧を示
した。又、実施例1等と同一の条件で、アルカリ系で2
000時間水素発生陰極として使用したが、過電圧の上
昇は認められず、耐久性においても優れた性能を示した
Table 4 Plating solution composition and electrolytic conditions of Example 3 Plating solution composition Electrolytic conditions C! 001. 1.0 mol/1 Electrolysis temperature
25℃ ZnC! 11 α5mol/1p
H4N ) T4 C11, Om Ox7'1 Cand current s A/dm"Anode current
56Vd- Cathode pulse width 60 seconds Anode pulse width 60 seconds Electrolysis time 150 minutes or more The electrode obtained under conditions of 40 A, /eLr
It exhibited a hydrogen overpotential of 160 mV at an electrolytic current of 1. In addition, under the same conditions as Example 1, etc., 2
Although it was used as a hydrogen generating cathode for 1,000 hours, no increase in overvoltage was observed, and it exhibited excellent performance in terms of durability.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は、本発明の一実施例で得られたラネー合金活性化
電極の電極電位の経時変化を示すものである。図2は、
Ni−Zn系の浴で得られたアノード溶解時における電
位変化曲線である。 特許出願人  東洋曹達工業株式会社 E/mv、 VS R,H,E Time/Sec アノード溶解電位曲線
FIG. 1 shows the change over time in the electrode potential of a Raney alloy activated electrode obtained in one example of the present invention. Figure 2 shows
It is a potential change curve during anode dissolution obtained in a Ni-Zn based bath. Patent applicant Toyo Soda Kogyo Co., Ltd. E/mv, VS R, H, E Time/Sec Anode dissolution potential curve

Claims (1)

【特許請求の範囲】[Claims] (1)導電性基体上に、カソード電流により、貴な金属
から選ばれた少なくとも一種の金属と、卑な金属から選
ばれた少なくとも一種の金属との合金被膜を形成させ、
アノード電流により合金被膜中の卑な金属を選択的に溶
解除去する操作を繰り返すことを特徴とするPRめっき
法。
(1) Forming an alloy film of at least one metal selected from noble metals and at least one metal selected from base metals on a conductive substrate using a cathode current,
A PR plating method characterized by repeating an operation of selectively dissolving and removing base metals in an alloy coating using an anode current.
JP898987A 1987-01-20 1987-01-20 Pr plating method Pending JPS63179094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP898987A JPS63179094A (en) 1987-01-20 1987-01-20 Pr plating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP898987A JPS63179094A (en) 1987-01-20 1987-01-20 Pr plating method

Publications (1)

Publication Number Publication Date
JPS63179094A true JPS63179094A (en) 1988-07-23

Family

ID=11708093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP898987A Pending JPS63179094A (en) 1987-01-20 1987-01-20 Pr plating method

Country Status (1)

Country Link
JP (1) JPS63179094A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028869A (en) * 2018-08-24 2020-02-27 時空化学株式会社 Method for producing voc removal catalyst, voc removal catalyst, and voc removal method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148438A (en) * 1976-06-07 1977-12-09 Fujitsu Ltd Rp plating method
JPS53111440A (en) * 1977-03-10 1978-09-29 Kogyo Gijutsuin Air zinc secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52148438A (en) * 1976-06-07 1977-12-09 Fujitsu Ltd Rp plating method
JPS53111440A (en) * 1977-03-10 1978-09-29 Kogyo Gijutsuin Air zinc secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020028869A (en) * 2018-08-24 2020-02-27 時空化学株式会社 Method for producing voc removal catalyst, voc removal catalyst, and voc removal method

Similar Documents

Publication Publication Date Title
Safizadeh et al. Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions–a review
US4652348A (en) Method for the production of alloys possessing high elastic modulus and improved magnetic properties by electrodeposition
US4105531A (en) Plated metallic cathode
JP6877650B2 (en) Method of manufacturing electrode catalyst
JPS634920B2 (en)
US4162204A (en) Plated metallic cathode
US3272728A (en) Method of producing activated electrodes
US4414064A (en) Method for preparing low voltage hydrogen cathodes
US4250004A (en) Process for the preparation of low overvoltage electrodes
US4221643A (en) Process for the preparation of low hydrogen overvoltage cathodes
JP2629963B2 (en) High durability low hydrogen overvoltage cathode
US4214954A (en) Plated metallic cathode with porous copper subplating
US3503799A (en) Method of preparing an electrode coated with a platinum metal
JPH10130878A (en) Electrolytic nickel plating method
JP6753195B2 (en) Manufacturing method of hydrogen generation electrode and electrolysis method using hydrogen generation electrode
JPS63179094A (en) Pr plating method
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
SU537125A1 (en) Electrode for electrolysis of an alkali aqueous solution and method for its manufacture
JPH0341559B2 (en)
US4177129A (en) Plated metallic cathode
JPS6045710B2 (en) electrolytic cell
JP3236682B2 (en) Electrolytic cathode and method for producing the same
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
JPS5846553B2 (en) Method of manufacturing activated electrodes
JPS6213588A (en) Production of highly durable activated electrode