JP2020023737A - Monitoring device for film deposition rate and film deposition apparatus - Google Patents

Monitoring device for film deposition rate and film deposition apparatus Download PDF

Info

Publication number
JP2020023737A
JP2020023737A JP2018149341A JP2018149341A JP2020023737A JP 2020023737 A JP2020023737 A JP 2020023737A JP 2018149341 A JP2018149341 A JP 2018149341A JP 2018149341 A JP2018149341 A JP 2018149341A JP 2020023737 A JP2020023737 A JP 2020023737A
Authority
JP
Japan
Prior art keywords
shielding
film
film formation
control unit
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018149341A
Other languages
Japanese (ja)
Other versions
JP7144232B2 (en
Inventor
住谷 利治
Toshiji Sumiya
利治 住谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Canon Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Tokki Corp filed Critical Canon Tokki Corp
Priority to JP2018149341A priority Critical patent/JP7144232B2/en
Priority to KR1020180155359A priority patent/KR102540245B1/en
Priority to CN201910714774.3A priority patent/CN110819962B/en
Publication of JP2020023737A publication Critical patent/JP2020023737A/en
Application granted granted Critical
Publication of JP7144232B2 publication Critical patent/JP7144232B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/546Controlling the film thickness or evaporation rate using measurement on deposited material using crystal oscillators
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment

Abstract

To provide a monitoring device for a film deposition rate capable of improving a production tact while extending a service life of an apparatus.SOLUTION: A monitoring device for a film deposition rate detects a film deposition rate of a film deposition material 400 to a film deposition object 100 based on a change in resonance frequency of a crystal oscillator 13a when the film deposition material 400 sublimated or evaporated from an evaporation source 300 deposits on a crystal oscillator 13. The monitoring device includes a shielding member 12 which rotates so as to be able to take a shielding state where a shielding part 12b locates between the evaporation source 300 and the crystal oscillator 13 and a non-shielding state where an opening part 12a locates between the evaporation source 300 and the crystal oscillator 13. The monitoring device has a first shielding mode where the shielding member 12 is rotated such that the non-shielding state lasts a first period in a predetermined period, and a second shielding mode where the shielding member 12 is rotated such that the non-shielding state lasts a second period longer than the first period in the predetermined period.SELECTED DRAWING: Figure 4

Description

本発明は、成膜装置に用いられる成膜レートモニタ装置に関する。   The present invention relates to a film forming rate monitor used for a film forming apparatus.

基板上に薄膜を形成する成膜装置として、真空チャンバ内において成膜材料を収容した容器(坩堝)を加熱し、成膜材料を蒸発(昇華又は気化)させて容器外へ噴射させ、基板の表面に付着・堆積させることで薄膜を形成する真空蒸着方式の成膜装置がある。かかる成膜装置では、所望の膜厚を得るべく、真空チャンバ内に配置したモニタユニットを用いて成膜レートを取得し、取得した成膜レートに基づいて容器の加熱を制御する成膜レートモニタ装置を備える場合がある。   As a film forming apparatus for forming a thin film on a substrate, a container (crucible) containing a film forming material is heated in a vacuum chamber, and the film forming material is evaporated (sublimated or vaporized) and ejected to the outside of the container. There is a vacuum deposition type film forming apparatus that forms a thin film by attaching and depositing on a surface. In such a film forming apparatus, in order to obtain a desired film thickness, a film forming rate is acquired using a monitor unit arranged in a vacuum chamber, and a heating of a container is controlled based on the acquired film forming rate. May have equipment.

成膜レートモニタ装置は、成膜材料の付着による水晶振動子の固有振動数の変化量に基づいて成膜レートを取得するものであり、水晶振動子に対する成膜材料の付着量をコントロールすべく、回転式の遮蔽部材(チョッパ)を備えた構成が知られる(特許文献1)。遮蔽部材は、成膜材料の付着を妨げるように水晶振動子と成膜材料の蒸発源との間を遮蔽する遮蔽部と、成膜材料の付着を許容するための開口部と、を有し、遮蔽状態と非遮蔽状態とを周期的に切り換えるように、サーボモータにより回転制御される。水晶振動子は成膜材料の付着量が所定量を超えると検知精度の低下により交換が必要となるため、成膜材料の付着量を遮蔽部材によってなるべく抑えることで、モニタユニットの長寿命化が図られる。   The film-forming rate monitor acquires the film-forming rate based on the amount of change in the natural frequency of the crystal oscillator due to the adhesion of the film-forming material, and controls the amount of the film-forming material attached to the crystal oscillator. A configuration including a rotary shielding member (chopper) is known (Patent Document 1). The shielding member has a shielding portion that shields between the crystal oscillator and the evaporation source of the film-forming material so as to prevent the film-forming material from adhering, and an opening for allowing the film-forming material to adhere. The rotation is controlled by a servomotor so as to periodically switch between a shielded state and a non-shielded state. When the amount of deposited film exceeds a predetermined amount, the crystal unit needs to be replaced due to a decrease in detection accuracy.Therefore, the life of the monitor unit can be extended by suppressing the amount of deposited film with a shielding member as much as possible. It is planned.

一方、検知精度を高めるため、下地処理(プレコート)として、予め水晶振動子の表面をある程度の成膜材料で覆った状態としてから、その後の付着量の増加による固有振動数の変化に基づいて成膜レートの検知を行う場合がある。例えば、水晶振動子と成膜材料との相性によっては、付着量の少ない使用初期では成膜材料が付着し難く、ある程度付着させて材料同士が付着する状態にならないと成膜レートが安定しない場合があり、正確な検知のためこのような下地処理が行われる。   On the other hand, in order to improve the detection accuracy, as a base treatment (pre-coating), the surface of the crystal unit is previously covered with a certain amount of film-forming material, and then formed based on a change in the natural frequency due to an increase in the amount of adhesion thereafter. The film rate may be detected. For example, depending on the compatibility between the crystal unit and the film-forming material, the film-forming material is difficult to adhere in the early stage of use with a small amount of adhesion, and the film-forming rate is not stable unless some amount of the material adheres to each other and the materials adhere to each other. Therefore, such a base processing is performed for accurate detection.

モニタユニットの長寿命化の観点からは、水晶振動子の蒸発源に対する暴露時間は短いことが好ましく、一方、製造タクト向上の観点からは、下地処理における暴露時間を長くして、素早く下地を形成することが好ましい。所定の期間における暴露時間の長さ、すなわち、単位時間当たりの非遮蔽状態の時間長さは、定速制御を前提とすれば、遮蔽部材における開口部(非遮蔽部)の大きさ(回転方向の幅の広さ)に依存する。例えば、遮蔽部材を開口部の大きさが可変に構成し、工程内容に応じて開口部の大きさを変更するように構成することが考えられるが、装置構成が複雑化し、コスト面において課題がある。   From the viewpoint of extending the life of the monitor unit, it is preferable that the exposure time of the crystal unit to the evaporation source be short. On the other hand, from the viewpoint of improving manufacturing tact, the exposure time in the undercoating process should be increased to quickly form the underlayer. Is preferred. The length of the exposure time in a predetermined period, that is, the length of time of the non-shielding state per unit time is determined by the size of the opening (non-shielding portion) in the shielding member (rotational direction), assuming constant speed control. Width). For example, it is conceivable to configure the shielding member such that the size of the opening is variable and change the size of the opening according to the content of the process. However, the configuration of the apparatus is complicated, and there is a problem in terms of cost. is there.

特開2014−066673号公報JP 2014-066673 A

本発明は、装置の長寿命化を図りつつ製造タクトの向上を図ることができる成膜レートモニタ装置を提供することを目的とする。   SUMMARY OF THE INVENTION It is an object of the present invention to provide a film forming rate monitoring apparatus capable of improving manufacturing tact while extending the life of the apparatus.

上記目的を達成するため、本発明の成膜レートモニタ装置は、
成膜対象物に対する成膜材料の成膜レートを検知する成膜レートモニタ装置であって、
蒸発源から昇華又は気化された前記成膜材料を付着させるための水晶振動子と、
前記成膜材料が前記水晶振動子に付着することを妨げるための遮蔽部と、前記付着を許容するための開口部と、を有し、前記蒸発源と前記水晶振動子との間に前記遮蔽部が位置する遮蔽状態と、前記蒸発源と前記水晶振動子との間に前記開口部が位置する非遮蔽状態と、を取り得るように回転する遮蔽部材と、
前記遮蔽部材の回転を制御する制御部と、
前記水晶振動子の共振周波数の変化に基づいて成膜レートを取得する取得部と、
を備え、
所定の期間において前記非遮蔽状態となる期間が第1の長さとなるように前記制御部が前記遮蔽部材を回転させる第1遮蔽モードと、
前記所定の期間において前記非遮蔽状態となる期間が前記第1の長さよりも長い第2の長さとなるように前記制御部が前記遮蔽部材を回転させる第2遮蔽モードと、
を有することを特徴とする。
上記目的を達成するため、本発明の成膜装置は、
成膜対象物を収容するチャンバと、
前記チャンバ内に配置される、成膜材料を収容する蒸発源容器と、
前記蒸発源容器を加熱する加熱手段を有し、前記蒸発源容器の加熱温度を制御する加熱制御部と、
前記チャンバ内に配置される、本発明の成膜レートモニタ装置と、
を備え、
前記加熱制御部は、前記成膜レートモニタ装置によって取得される成膜レートに基づいて、前記加熱温度を制御することを特徴とする。
In order to achieve the above object, a film formation rate monitoring device of the present invention
A film formation rate monitoring device for detecting a film formation rate of a film formation material for a film formation target,
A quartz oscillator for attaching the film-forming material sublimated or vaporized from an evaporation source,
A shielding portion for preventing the film forming material from adhering to the crystal oscillator, and an opening for allowing the adhesion, and the shielding between the evaporation source and the crystal oscillator. A shielding member that rotates so as to be able to take a shielding state in which the portion is located, and a non-shielding state in which the opening is located between the evaporation source and the quartz oscillator,
A control unit that controls the rotation of the shielding member,
An acquisition unit configured to acquire a film formation rate based on a change in a resonance frequency of the crystal unit,
With
A first shielding mode in which the control unit rotates the shielding member such that a period in which the non-shielding state is set in the predetermined period is a first length;
A second shielding mode in which the control unit rotates the shielding member so that the period in which the non-shielding state is provided in the predetermined period has a second length longer than the first length;
It is characterized by having.
In order to achieve the above object, a film forming apparatus of the present invention includes:
A chamber for accommodating a film formation target;
An evaporation source container that accommodates a film forming material, which is disposed in the chamber,
A heating control unit that has a heating unit that heats the evaporation source container, and controls a heating temperature of the evaporation source container,
Disposed in the chamber, a film deposition rate monitor of the present invention,
With
The heating control unit controls the heating temperature based on a film formation rate obtained by the film formation rate monitoring device.

本発明によれば、装置の長寿命化を図りつつ製造タクトの向上を図ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the improvement of the manufacturing tact can be aimed at, aiming at extending the life of an apparatus.

本発明の実施例における成膜装置の模式的断面図Schematic sectional view of a film forming apparatus in an embodiment of the present invention 本発明の実施例における成膜レートモニタ装置の構成を示す模式図FIG. 1 is a schematic diagram illustrating a configuration of a film formation rate monitoring apparatus according to an embodiment of the present invention. 本発明の実施例における水晶モニタヘッドと遮蔽部材の構成を示す模式図FIG. 2 is a schematic view illustrating a configuration of a crystal monitor head and a shielding member according to an embodiment of the present invention. 本発明の実施例における遮蔽部材の回転制御の説明図Explanatory drawing of rotation control of a shielding member in an example of the present invention.

以下、図面を参照しつつ本発明の好適な実施形態及び実施例を説明する。ただし、以下の実施形態及び実施例は本発明の好ましい構成を例示的に示すものにすぎず、本発明の範囲をそれらの構成に限定されない。また、以下の説明における、装置のハードウェア構成及びソフトウェア構成、処理フロー、製造条件、寸法、材質、形状などは、特に特定的な記載がないかぎりは、本発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, preferred embodiments and examples of the present invention will be described with reference to the drawings. However, the following embodiments and examples are merely illustrative examples of preferred configurations of the present invention, and the scope of the present invention is not limited to those configurations. In the following description, the hardware configuration and software configuration of the apparatus, the processing flow, the manufacturing conditions, dimensions, materials, shapes, and the like limit the scope of the present invention to only these unless otherwise specified. It is not intended.

[実施例1]
図1〜図4を参照して、本発明の実施例に係る成膜レートモニタ装置及び成膜装置について説明する。本実施例に係る成膜装置は、真空蒸着により基板に薄膜を成膜する成膜装置である。本実施例に係る成膜装置は、各種半導体デバイス、磁気デバイス、電子部品などの各種電子デバイスや、光学部品などの製造において基板(基板上に積層体が形成されているものも含む)上に薄膜を堆積形成するために用いられる。より具体的には、本実施例に係る成膜装置は、発光素子や光電変換素子、タッチパネルなどの電子デバイスの製造において好ましく用いられる。中でも、本実施例に係る成膜装置は、有機EL(ErectroLuminescence)素子などの有機発光素子や、有機薄膜太陽電池などの有機光電変換素子の製造において特に好ましく適用可能である。なお、本発明における電
子デバイスは、発光素子を備えた表示装置(例えば有機EL表示装置)や照明装置(例えば有機EL照明装置)、光電変換素子を備えたセンサ(例えば有機CMOSイメージセンサ)も含むものである。本実施例に係る成膜装置は、スパッタ装置等を含む成膜システムの一部として用いることができる。
[Example 1]
With reference to FIGS. 1 to 4, a film forming rate monitoring device and a film forming device according to an embodiment of the present invention will be described. The film forming apparatus according to the present embodiment is a film forming apparatus for forming a thin film on a substrate by vacuum evaporation. The film forming apparatus according to this embodiment is used for manufacturing various electronic devices such as various semiconductor devices, magnetic devices, and electronic components, and on a substrate (including a substrate on which a laminate is formed) in manufacturing optical components and the like. Used to deposit thin films. More specifically, the film forming apparatus according to the present embodiment is preferably used in the manufacture of electronic devices such as light emitting elements, photoelectric conversion elements, and touch panels. Above all, the film forming apparatus according to this embodiment is particularly preferably applicable to the manufacture of organic light-emitting elements such as organic EL (Electro Luminescence) elements and organic photoelectric conversion elements such as organic thin-film solar cells. Note that the electronic device in the present invention includes a display device (for example, an organic EL display device) and a lighting device (for example, an organic EL lighting device) including a light emitting element, and a sensor (for example, an organic CMOS image sensor) including a photoelectric conversion element. It is a thing. The film forming apparatus according to this embodiment can be used as a part of a film forming system including a sputtering apparatus and the like.

<成膜装置の概略構成>
図1は、本発明の実施例に係る成膜装置2の構成を示す模式図である。成膜装置2は、不図示の排気装置、ガス供給装置により、内部が真空雰囲気か窒素ガスなどの不活性ガス雰囲気に維持される真空チャンバ(成膜室、蒸着室)200を有する。なお、本明細書において「真空」とは、大気圧より低い圧力の気体で満たされた空間内の状態をいう。
<Schematic configuration of film forming apparatus>
FIG. 1 is a schematic diagram illustrating a configuration of a film forming apparatus 2 according to an embodiment of the present invention. The film forming apparatus 2 includes a vacuum chamber (film forming chamber, vapor deposition chamber) 200 whose inside is maintained in a vacuum atmosphere or an inert gas atmosphere such as a nitrogen gas by an exhaust device and a gas supply device (not shown). In this specification, “vacuum” refers to a state in a space filled with a gas having a pressure lower than the atmospheric pressure.

成膜対象物である基板100は、搬送ロボット(不図示)によって真空チャンバ200内部に搬送されると真空チャンバ200内に設けられた基板保持ユニット(不図示)によって保持され、マスク220上面に載置される。マスク220は、基板100上に形成する薄膜パターンに対応する開口パターン221を有するメタルマスクであり、真空チャンバ200内部において水平面に平行に設置されている。基板100は、基板保持ユニットによってマスク220の上面に載置されことで、真空チャンバ200内部において、水平面と平行に、かつ、被処理面である下面がマスク220で覆われる態様で設置される。   When the substrate 100, which is a film formation target, is transferred into the vacuum chamber 200 by a transfer robot (not shown), the substrate 100 is held by a substrate holding unit (not shown) provided in the vacuum chamber 200 and mounted on the upper surface of the mask 220. Is placed. The mask 220 is a metal mask having an opening pattern 221 corresponding to the thin film pattern formed on the substrate 100, and is set inside the vacuum chamber 200 in parallel with a horizontal plane. The substrate 100 is placed on the upper surface of the mask 220 by the substrate holding unit, so that the substrate 100 is installed inside the vacuum chamber 200 so as to be parallel to the horizontal plane and to cover the lower surface, which is the surface to be processed, with the mask 220.

真空チャンバ200内部におけるマスク220の下方には、蒸発源装置300が設けられている。蒸発源装置300は、概略、成膜材料(蒸着材料)400を収容する蒸発源容器(坩堝)301(以下、容器301)と、容器301に収容された成膜材料400を加熱する加熱手段としてのヒータ302と、を備える。容器301内の成膜材料400は、ヒータ302の加熱によって容器301内で蒸発し、容器301上部に設けられたノズル303を介して容器301外へ噴出される。容器301外へ噴射した成膜材料400は、装置300上方に設置された基板100の表面に、マスク220に設けられた開口パターン221に対応して、蒸着する。   An evaporation source device 300 is provided below the mask 220 inside the vacuum chamber 200. The evaporation source device 300 generally includes an evaporation source container (crucible) 301 (hereinafter, referred to as a container 301) that stores a film-forming material (evaporation material) 400 and a heating unit that heats the film-forming material 400 stored in the container 301. And the heater 302. The film-forming material 400 in the container 301 evaporates in the container 301 by the heating of the heater 302, and is jetted out of the container 301 through a nozzle 303 provided on the upper part of the container 301. The film-forming material 400 sprayed out of the container 301 is vapor-deposited on the surface of the substrate 100 provided above the apparatus 300 in accordance with the opening pattern 221 provided in the mask 220.

蒸発源装置300は、その他、図示は省略しているが、ヒータ302による加熱効率を高めるためのリフレクタや伝熱部材、それらを含む蒸発源装置300の各構成全体を収容する枠体、シャッタなどが備えられる場合がある。また、蒸発源装置300は、成膜を基板100全体に一様に行うため、固定載置された基板100に対して相対移動可能に構成される場合がある。   Although not shown, the evaporation source device 300 further includes a reflector and a heat transfer member for increasing the heating efficiency of the heater 302, a frame accommodating the entire components of the evaporation source device 300 including them, a shutter, and the like. May be provided. In addition, the evaporation source device 300 may be configured to be relatively movable with respect to the fixedly mounted substrate 100 in order to uniformly perform film formation on the entire substrate 100.

本実施例に係る成膜装置2は、容器301から噴出する成膜材料400の蒸気量、あるいは基板100に成膜される薄膜の膜厚を検知するための手段として、成膜レートモニタ装置1を備えている。成膜レートモニタ装置1は、容器301から噴出する成膜材料400の一部を、遮蔽部材12により間欠的に遮蔽状態と非遮蔽状態とを繰り返して、水晶モニタヘッド11に備えられた水晶振動子に付着させるように構成されている。成膜材料400が堆積することによる水晶振動子の共振周波数(固有振動数)の変化量(減少量)を検知することで、所定の制御目標温度に対応した成膜レート(蒸着レート)として、単位時間当たりの成膜材料400の付着量(堆積量)を取得することができる。この成膜レートをヒータ302の加熱制御における制御目標温度の設定にフィードバックすることで、基板100に対する成膜レートを任意に制御することが可能となる。したがって、成膜レートモニタ装置1によって成膜処理中に常時、成膜材料400の吐出量あるいは基板100上の膜厚をモニタすることで、精度の高い成膜が可能となる。本実施例に係る成膜装置2の制御部(演算処理装置)20は、モニタユニット10の動作の制御、成膜レートの測定、取得を行うモニタ制御部21と、蒸発源装置300の加熱制御を行う加熱制御部22と、を有する。   The film forming apparatus 2 according to this embodiment includes a film forming rate monitor 1 as a means for detecting the amount of vapor of the film forming material 400 ejected from the container 301 or the thickness of a thin film formed on the substrate 100. It has. The film formation rate monitoring device 1 intermittently repeats the shielding state and the non-shielding state of a part of the film forming material 400 ejected from the container 301 by the shielding member 12, and the crystal oscillation head provided in the crystal monitoring head 11. It is configured to attach to a child. By detecting the amount of change (decrease) in the resonance frequency (natural frequency) of the quartz oscillator due to the deposition of the film-forming material 400, the film-forming rate (evaporation rate) corresponding to a predetermined control target temperature is determined. The amount of deposition (the amount of deposition) of the deposition material 400 per unit time can be obtained. By feeding back this film formation rate to the setting of the control target temperature in the heating control of the heater 302, the film formation rate for the substrate 100 can be arbitrarily controlled. Therefore, by always monitoring the discharge amount of the film-forming material 400 or the film thickness on the substrate 100 during the film-forming process by the film-forming rate monitoring device 1, highly accurate film-forming can be performed. The control unit (arithmetic processing unit) 20 of the film forming apparatus 2 according to the present embodiment includes a monitor control unit 21 that controls the operation of the monitor unit 10, measures and obtains a film forming rate, and controls heating of the evaporation source device 300. And a heating control unit 22 that performs the following.

<成膜レートモニタ装置>
図2は、本実施例に係る成膜レートモニタ装置1の概略構成を示す模式図である。図2に示すように、本実施例に係る成膜レートモニタ装置1は、モニタヘッド11や遮蔽部材(チョッパ)12などを備えるモニタユニット10と、モニタ制御部21と、を備える。モニタユニット10は、モニタヘッド11と、遮蔽部材12と、水晶モニタヘッド11に組み込まれた水晶ホルダ(回転支持体)14の回転駆動源としてのサーボモータ16と、遮蔽部材12の回転駆動源としてのサーボモータ15と、を備える。モニタ制御部21は、遮蔽部材12の回転駆動を制御する遮蔽部材制御部212と、水晶振動子13の共振周波数(の変化量)の取得を行う成膜レート取得部213と、水晶ホルダ14の回転駆動を制御するホルダ制御部214と、を有する。
<Deposition rate monitor>
FIG. 2 is a schematic diagram illustrating a schematic configuration of the film formation rate monitoring device 1 according to the present embodiment. As shown in FIG. 2, the film formation rate monitoring apparatus 1 according to the present embodiment includes a monitor unit 10 including a monitor head 11, a shielding member (chopper) 12, and the like, and a monitor control unit 21. The monitor unit 10 includes a monitor head 11, a shielding member 12, a servo motor 16 as a rotation driving source of a crystal holder (rotary support) 14 incorporated in the crystal monitoring head 11, and a rotation driving source of the shielding member 12. And a servo motor 15. The monitor control unit 21 includes a shielding member control unit 212 that controls the rotational driving of the shielding member 12, a film formation rate acquisition unit 213 that acquires a resonance frequency (a change amount) of the crystal unit 13, and a crystal holder 14. And a holder control unit 214 for controlling the rotation drive.

図3は、モニタヘッド11(水晶ホルダ14)と遮蔽部材12をそれぞれの回転軸線方向に沿って見たときの両者の配置関係を示す模式図である。図3に示すように、モニタヘッド11の内部には、複数の水晶振動子13(13a、13b)を円周方向に等間隔で配置して支持する水晶ホルダ14が組み込まれている。モニタヘッド11には、水晶振動子13よりも僅かに大きいモニタ開口11aが一つ設けられており、水晶ホルダ14は、支持する水晶振動子13のうちの1つを、モニタ開口11aを介して外部(蒸着源装置300)に暴露される位置(回転位相)で支持する。   FIG. 3 is a schematic diagram showing an arrangement relationship between the monitor head 11 (crystal holder 14) and the shielding member 12 when viewed along the respective rotation axis directions. As shown in FIG. 3, a crystal holder 14 that supports a plurality of crystal units 13 (13a, 13b) arranged at equal intervals in the circumferential direction is incorporated in the monitor head 11. The monitor head 11 is provided with one monitor opening 11a which is slightly larger than the crystal unit 13, and the crystal holder 14 holds one of the supported crystal units 13 through the monitor opening 11a. It is supported at a position (rotational phase) exposed to the outside (evaporation source device 300).

図2及び図3に示すように、水晶ホルダ14は、その中心がサーボモータ16のモータ軸16aに連結されており、サーボモータ16によって回転駆動される。これにより、モニタ開口11aを介して外部に暴露される水晶振動子13を順次切り替えることができるように構成されている。すなわち、水晶ホルダ14に支持された複数の水晶振動子13のうち、1つの水晶振動子13aがモニタ開口11aと位相が重なる位置にあり、他の水晶振動子13bは、使用済み又は交換用の水晶振動子として、モニタヘッド11の内部に隠れた位置にある。モニタ開口11aを介して外部に暴露されている水晶振動子13が、成膜材料400の付着量が所定量を超えて寿命に到達すると、水晶ホルダ14が回転して、新しい水晶振動子13を、モニタ開口11aと重なる暴露位置に移動させる。
ホルダ制御部214によるサーボモータ16の回転制御は、検出部18aと被検出部18bとからなる位相位置検出手段18が検出する水晶ホルダ14の回転位置(回転位相)に基づいて行われる。なお、位置(位相)検知手段としては、ロータリーエンコーダ等の既知の位置センサを用いてもよい。
As shown in FIGS. 2 and 3, the center of the crystal holder 14 is connected to the motor shaft 16 a of the servomotor 16, and the crystal holder 14 is driven to rotate by the servomotor 16. Thus, the crystal resonator 13 exposed to the outside via the monitor opening 11a can be sequentially switched. That is, of the plurality of crystal oscillators 13 supported by the crystal holder 14, one crystal oscillator 13a is located at a position where the phase overlaps with the monitor opening 11a, and the other crystal oscillator 13b is used or replaced. It is located at a position hidden inside the monitor head 11 as a crystal oscillator. When the quartz oscillator 13 exposed to the outside through the monitor opening 11a reaches the end of its life when the amount of the film-forming material 400 attached exceeds a predetermined amount, the quartz holder 14 rotates and a new quartz oscillator 13 is inserted. Is moved to the exposure position overlapping the monitor opening 11a.
The rotation control of the servo motor 16 by the holder control unit 214 is performed based on the rotation position (rotation phase) of the crystal holder 14 detected by the phase position detection unit 18 composed of the detection unit 18a and the detected unit 18b. Note that a known position sensor such as a rotary encoder may be used as the position (phase) detecting means.

図3に示すように、遮蔽部材12は、略円盤状の部材であり、その中心がサーボモータ15のモータ軸15aに連結されており、サーボモータ15によって時計回り又は反時計回りのいずれか一方の単一方向に回転駆動される。遮蔽部材12は、扇型の開口スリット(開口部、非遮蔽部)12aが、回転中心から離れた位置であって、その回転軌道が、モニタヘッド11のモニタ開口11aと重なる位置に設けられている。開口スリット12aは、回転方向における幅が、モニタ開口11aの幅よりも狭く、かつモニタ開口11aで暴露されている水晶振動子13aの幅よりも狭く構成されている。   As shown in FIG. 3, the shielding member 12 is a substantially disk-shaped member, the center of which is connected to the motor shaft 15 a of the servomotor 15, and either one of clockwise or counterclockwise rotation by the servomotor 15. In a single direction. The shielding member 12 is provided with a fan-shaped opening slit (opening, non-shielding portion) 12 a at a position away from the center of rotation, and at a position where its rotation trajectory overlaps the monitor opening 11 a of the monitor head 11. I have. The opening slit 12a is configured to have a width in the rotation direction smaller than the width of the monitor opening 11a and smaller than the width of the crystal unit 13a exposed in the monitor opening 11a.

図2及び図3に示すように、遮蔽部材12が回転することで、モニタ開口11aに対する開口スリット12aの相対位置(相対位相)が、モニタ開口11aと重なる位置(開口位置、非遮蔽位置)と、重ならない位置(非開口位置、遮蔽位置)と、に変化する。これにより、遮蔽部材12において開口スリット12aを除いた領域部分が遮蔽部12bとなり、これがモニタ開口11aと重なる(覆う)位置(位相)にあるとき、水晶振動子13aへの成膜材料400の付着が妨げられる遮蔽状態(非開口状態)となる。また、開口スリット12aがモニタ開口11aと重なる位置(位相)にあるとき、水晶振動子13aへの成膜材料400の付着が許容される非遮蔽状態(開口状態)となる。
遮蔽部材制御部212によるサーボモータ15の回転制御は、検出部17aと被検出部
17bとからなる位相位置検出手段17が検出する遮蔽部材12の回転位置(回転位相)に基づいて行われる。なお、位置(位相)検知手段としては、ロータリーエンコーダ等の既知の位置センサを用いてもよい。
As shown in FIG. 2 and FIG. 3, when the shielding member 12 rotates, the relative position (relative phase) of the opening slit 12a with respect to the monitor opening 11a and the position (opening position, non-shielding position) overlapping the monitor opening 11a. , Non-overlapping position (non-opening position, shielding position). As a result, the area of the shielding member 12 excluding the opening slit 12a becomes the shielding portion 12b, and when this is in a position (phase) that overlaps (covers) the monitor opening 11a, the deposition material 400 adheres to the crystal unit 13a. Is blocked (non-open state). Further, when the opening slit 12a is at a position (phase) that overlaps the monitor opening 11a, a non-shielding state (opening state) in which the deposition material 400 is allowed to adhere to the crystal unit 13a is set.
The rotation control of the servo motor 15 by the shielding member control unit 212 is performed based on the rotational position (rotational phase) of the shielding member 12 detected by the phase position detection unit 17 including the detection unit 17a and the detected unit 17b. Note that a known position sensor such as a rotary encoder may be used as the position (phase) detecting means.

開口スリット12aは、本実施例では、閉じた孔となっているが、遮蔽部材12の周端で開放された切り欠き状になっていてもよい。また、設ける個数も2個以上でもよいし、スリット形状も、本実施例で示した扇型に限定されず種々の形状を採用し得るものであり。開口スリット12aを複数設ける場合には、個々に異なる形状としてもよい。   The opening slit 12 a is a closed hole in the present embodiment, but may be a notch open at the peripheral end of the shielding member 12. Further, the number of the slits provided may be two or more, and the slit shape is not limited to the sector shape shown in the present embodiment, and various shapes can be adopted. When a plurality of opening slits 12a are provided, the openings may have different shapes.

水晶振動子13aは、電極、同軸ケーブル等を介して外部共振器19に接続されている。水晶振動子13a表面に堆積した成膜材料400の薄膜と、裏面の電極との間に電圧を印加することで生成される発信信号が、水晶振動子13の共振周波数(の変化量)として、共振器19から成膜レート取得部213に伝達され、取得される。   The crystal unit 13a is connected to an external resonator 19 via an electrode, a coaxial cable, and the like. A transmission signal generated by applying a voltage between the thin film of the film-forming material 400 deposited on the surface of the crystal unit 13a and the electrode on the back side is represented by a resonance frequency of the crystal unit 13 (a change amount). The information is transmitted from the resonator 19 to the film formation rate acquisition unit 213 and acquired.

図示を省略するが、モニタユニット10には、熱源となるモータ15、16の熱を冷却するための冷却水を流すための流路が備えられている。
なお、ここで示した成膜レートモニタ装置の構成はあくまで一例であり、これに限定されるものではなく、既知の種々の構成を適宜採用してよい。
Although not shown, the monitor unit 10 is provided with a flow path for flowing cooling water for cooling the heat of the motors 15 and 16 serving as heat sources.
It should be noted that the configuration of the film formation rate monitor device shown here is merely an example, and the present invention is not limited to this. Various known configurations may be appropriately used.

<本実施例の特徴>
図4は、本実施例における遮蔽部材12の回転制御について説明するグラフである。図4において、遮蔽部材12が水晶振動子13を遮蔽した状態にあるときを0、遮蔽していない状態にあるときを1、でそれぞれ示している。
本実施例では、成膜レート取得部213により取得する成膜レートが安定した状態となるまで予め水晶振動子13aに所定量の成膜材料400を付着、被覆させる下地処理を行う際において、遮蔽部材12の回転速度を変速制御することを特徴とする。具体的には、下地を迅速に形成すべく、水晶振動子13aの暴露時間が長くなるように、遮蔽部材12の回転速度を制御する第2遮蔽モード(以下、第2モード)を実行する。なお、このような下地処理は、基板100を真空チャンバ200内に設置しないで行うのが一般的である。すなわち、基板100を真空チャンバ200内に収容する前(基板100上における成膜レートのモニタを行わない期間)に実施される。
<Features of the present embodiment>
FIG. 4 is a graph illustrating rotation control of the shielding member 12 in the present embodiment. In FIG. 4, 0 indicates that the shielding member 12 is in a state of shielding the crystal unit 13 and 1 indicates that the shielding member 12 is in a state of not shielding the crystal unit 13.
In this embodiment, when performing a base treatment for attaching and covering a predetermined amount of the film forming material 400 to the quartz oscillator 13a in advance until the film forming rate obtained by the film forming rate obtaining unit 213 becomes stable, The speed of the rotation of the member 12 is controlled. Specifically, a second shielding mode (hereinafter, a second mode) for controlling the rotation speed of the shielding member 12 is executed so that the exposure time of the crystal unit 13a is increased in order to quickly form the base. Note that such a base treatment is generally performed without placing the substrate 100 in the vacuum chamber 200. That is, the process is performed before the substrate 100 is housed in the vacuum chamber 200 (a period in which the film formation rate on the substrate 100 is not monitored).

また、下地処理の後、安定した成膜レートを用いてヒータ3の加熱制御を行う際には、従来の制御と同様、定常回転時における回転速度を予め定めた設定速度で等速制御することを特徴とする。具体的には、水晶振動子13aの寿命をできるだけ延ばすべく、水晶振動子13aの暴露時間が短くなるように、遮蔽部材12の回転速度を制御する第1遮蔽モード(以下、第1モード)を実行する。   In addition, when the heating control of the heater 3 is performed using the stable film forming rate after the base treatment, the rotation speed during the steady rotation is controlled at a predetermined set speed, as in the conventional control. It is characterized by. Specifically, in order to extend the life of the crystal unit 13a as much as possible, a first shielding mode (hereinafter, a first mode) that controls the rotation speed of the shielding member 12 so that the exposure time of the crystal unit 13a is shortened. Execute.

下地処理中では、第2モードとして、開口スリット12aがモニタ開口11aと重なる非遮蔽状態における遮蔽部材12の定常回転速度が、開口スリット12aがモニタ開口11aと重ならない遮蔽状態における定常回転速度の1/10となるように制御する。下地処理後の成膜レートをモニタする期間中は、第1モードとして、開口スリット12aとモニタ開口11aの遮蔽・非遮蔽の如何にかかわらず、一定の定常回転速度で遮蔽部材13の回転を制御する。第2モードの遮蔽状態における定常回転速度と、第1モードにおける定常回転速度とは同じ速度となっており、したがって、第2モードでの非遮蔽状態のおける定常回転速度が、第1モードでの非遮蔽状態における定常回転速度の1/10となっている。これにより、同じ所定の期間で比較したときに、第2モードにおいて非遮蔽状態となる期間の時間長さ(第2の長さ)は、第1モードにおいて非遮蔽状態となる期間の時間長さ(第1の長さ)よりも長くなる。   During the base treatment, as the second mode, the steady rotation speed of the shielding member 12 in the non-shielding state where the opening slit 12a overlaps the monitor opening 11a is one of the steady rotation speed in the shielding state where the opening slit 12a does not overlap the monitor opening 11a. / 10. During the period of monitoring the film formation rate after the base treatment, the first mode controls the rotation of the shielding member 13 at a constant steady rotation speed regardless of whether the opening slit 12a and the monitor opening 11a are shielded or unshielded. I do. The steady rotation speed in the shielded state in the second mode is the same as the steady rotation speed in the first mode. Therefore, the steady rotation speed in the unshielded state in the second mode is different from that in the first mode. This is 1/10 of the steady rotation speed in the unshielded state. Thereby, when compared in the same predetermined period, the time length (second length) of the non-shielding state in the second mode is the time length of the non-shielding state in the first mode. (First length).

図4に、第1モードにおいて非遮蔽状態(膜付け状態)となる期間の時間長さTO1と、第2モードにおいて非遮蔽状態となる期間の時間長さTO2と、を示している。図4に示すように、定常回転速度が1/10となることで、TO2は、TO1の10倍の時間となっている。所定の期間として、図4に示した時間内において、第1モードと第2モードとを比較すると、第1モードにおいて非遮蔽状態となる回数が3回であるのに対し、第2モードにおいて非遮蔽状態となる回数は2回となり、回数は第1モードの方が多くある。しかしながら、1回の非遮蔽状態の継続時間は、第2モードの方が第1モードより長くなり、所定の期間内におけるトータルの非遮蔽状態の継続時間も、第2モードの方が第1モードよりも長くなる。   FIG. 4 shows the time length TO1 of the period in which the first mode is in the non-shielding state (film-attached state) and the time length TO2 of the period in which the second mode is in the non-shielding state. As shown in FIG. 4, when the steady rotational speed is reduced to 1/10, TO2 is 10 times as long as TO1. When the first mode and the second mode are compared within the time shown in FIG. 4 as the predetermined period, the number of times of the non-shielding state in the first mode is three, whereas The number of times of the shielding state is two times, and the number of times is greater in the first mode. However, the duration of one non-shielding state is longer in the second mode than in the first mode, and the total duration of the non-shielding state within a predetermined period is also longer in the second mode than in the first mode. Longer than

図4に示す例では、単位時間当たりに占める非遮蔽状態の時間の割合が、第1モードでは約3.3%であるのに対し、第2モードでは約25%となっている。第1モードにおける約3.3%の上記割合は、等速回転制御による数値であるので、遮蔽部材12の開口率(遮蔽部12bに対する開口部12aの面積比)と一致する数値である。すなわち、本実施例による遮蔽部材12の変速制御(非遮蔽状態における定常回転速度を遮蔽状態における定常回転速度よりも遅くする制御)により、遮蔽部材12の開口率を実質的に増大させることができる。これにより、遮蔽部材12の形状を物理的に変化させるなどの手法を取らずに(装置構成を複雑化させずに)、遮蔽部材12の開口率を可変に制御し、水晶振動子13に対する成膜レートを任意に制御することが可能となる。したがって、安定した成膜レートモニタの下準備としての下地処理は、水晶振動子13への成膜材料400の付着量を増やして素早く終了させることができる。また、基板100の成膜レートをモニタする際には、水晶振動子13への成膜材料400の付着を極力抑えることで装置の長寿命化を図ることができる。すなわち、装置の長寿命化を図りつつ製造タクトの向上を図ることが可能となる。   In the example shown in FIG. 4, the ratio of the time of the non-shielding state per unit time is about 3.3% in the first mode, and about 25% in the second mode. Since the above ratio of about 3.3% in the first mode is a numerical value based on constant-speed rotation control, it is a numerical value that matches the aperture ratio of the shielding member 12 (the area ratio of the opening 12a to the shielding portion 12b). That is, the aperture ratio of the shielding member 12 can be substantially increased by the shift control of the shielding member 12 according to the present embodiment (control in which the steady rotation speed in the non-shielding state is made slower than the steady rotation speed in the shielding state). . Accordingly, the aperture ratio of the shielding member 12 is variably controlled without taking a method such as physically changing the shape of the shielding member 12 (without complicating the device configuration), and the composition for the crystal unit 13 is controlled. The film rate can be arbitrarily controlled. Therefore, the base treatment as preparation for stable film formation rate monitoring can be completed quickly by increasing the amount of the film forming material 400 adhered to the crystal unit 13. When monitoring the film formation rate of the substrate 100, the life of the apparatus can be extended by minimizing the adhesion of the film formation material 400 to the crystal unit 13. That is, it is possible to improve the manufacturing tact while extending the life of the device.

[実施例2]
遮蔽部材12の開口率を、遮蔽部材12の形状を物理的に変化させるなどの手法を取らずに、実質的に増大させる手法は、実施例1で説明した手法に限られるものではない。本発明の実施例2では、第2モードにおける遮蔽部材12の回転制御において、遮蔽部材12の回転方向を一時的に逆方向に変えて往復動させることで、所定の期間内において非遮蔽状態となる回数を増やす(頻度を高める)ことを特徴とする。なお、実施例2に係る成膜レートモニタ装置、成膜装置の構成は、実施例1の装置構成と同じであり、説明は省略する。
[Example 2]
The method for substantially increasing the aperture ratio of the shielding member 12 without physically changing the shape of the shielding member 12 is not limited to the method described in the first embodiment. In the second embodiment of the present invention, in the rotation control of the shielding member 12 in the second mode, the rotation direction of the shielding member 12 is temporarily changed to the reverse direction and reciprocated, so that the unshielded state is set within a predetermined period. It is characterized by increasing the number of times (increasing the frequency). The configurations of the film formation rate monitoring device and the film formation device according to the second embodiment are the same as those of the first embodiment, and a description thereof will be omitted.

開口スリット12aがモニタ開口11aの近傍で行ったり来たりするように遮蔽部材12を往復回転運動させることで、単一方向に回転させて非遮蔽状態を周期的に形成する場合よりも、所定の期間内における非遮蔽状態の発生回数を増やすことができる。これにより、所定の期間内におけるトータルの非遮蔽状態の継続時間を長くすることができる。なお、成膜ムラ回避の観点から、往復回転運動における回転方向の切り返しは、開口スリット12aがモニタ開口11aを完全に通過してから(すなわち、水晶振動子13aが十分に遮蔽された状態となってから)行うことが好ましい。   The reciprocating rotation of the shielding member 12 so that the opening slit 12a moves back and forth in the vicinity of the monitor opening 11a makes it possible to rotate the shielding member 12 in a single direction to form a predetermined non-shielding state. The number of occurrences of the non-shielding state in the period can be increased. Thereby, the total duration of the non-shielding state within the predetermined period can be extended. From the viewpoint of avoiding film formation unevenness, the turning back in the reciprocating rotation is performed after the opening slit 12a has completely passed through the monitor opening 11a (that is, a state where the crystal unit 13a is sufficiently shielded). After).

[その他]
実施例1、2とは異なり、第2モードにおいて、遮蔽状態における定常回転速度を、非遮蔽状態における定常回転速度(第1モードにおける定常回転速度)よりも速い速度に変更する制御により、所定期間内における非遮蔽状態の回数を増やすようにしてもよい。
また、実施例1と実施例2とを組み合わせた制御としてもよい。すなわち、非遮蔽状態における定常回転速度を減速しつつ、遮蔽状態と非遮蔽状態とを短期間で繰り返すように往復回転させる制御としてもよい。
また、本実施例では、第2モードの遮蔽状態における定常回転速度と、第1モードにお
ける定常回転速度とを同じ速度としているが、遮蔽部材12の開口率を実質的に増大させる効果が得られる範囲で、適宜異なる速度に設定してもよい。
[Others]
Unlike the first and second embodiments, in the second mode, the control is performed such that the steady-state rotation speed in the shielded state is changed to a speed higher than the steady-state rotation speed in the non-shielded state (the steady-state rotation speed in the first mode). You may make it increase the frequency | count of the non-shielding state in the inside.
Further, the control may be a combination of the first embodiment and the second embodiment. That is, control may be performed such that the stationary rotation speed in the non-shielding state is reduced, and the reciprocating rotation is performed so that the shielding state and the non-shielding state are repeated in a short period of time.
Further, in the present embodiment, the steady rotation speed in the shielding state in the second mode and the steady rotation speed in the first mode are the same speed, but the effect of substantially increasing the aperture ratio of the shielding member 12 is obtained. Different speeds may be set as appropriate within the range.

1…成膜レートモニタ装置、10…モニタユニット、11…水晶モニタヘッド、11a…モニタ開口、12…遮蔽部材(チョッパ)、12a…開口スリット(開口部、非遮蔽部)、12b…遮蔽部、13(13a、13b)…水晶振動子、14…水晶ホルダ(回転支持体)、15…サーボモータ(駆動源)、15a…モータ軸、16…サーボモータ(駆動源)、16a…モータ軸16a、17(17a、17b)…位置(回転位相)検出手段、18(18a、18b)…位置(回転位相)検出手段、19…共振器、2…成膜装置、100…基板、20…制御部(取得部、加熱制御部)、200…真空チャンバ(成膜室)、300…蒸発源装置、301…蒸発源容器(坩堝)、302…ヒータ(加熱手段)、303…ノズル   DESCRIPTION OF SYMBOLS 1 ... Deposition rate monitor apparatus, 10 ... Monitor unit, 11 ... Crystal monitor head, 11a ... Monitor opening, 12 ... Shielding member (chopper), 12a ... Opening slit (opening, non-shielding part), 12b ... Shielding part, 13 (13a, 13b): crystal oscillator, 14: crystal holder (rotary support), 15: servo motor (drive source), 15a: motor shaft, 16: servo motor (drive source), 16a: motor shaft 16a, 17 (17a, 17b): Position (rotational phase) detecting means, 18 (18a, 18b): Position (rotating phase) detecting means, 19: resonator, 2: film forming apparatus, 100: substrate, 20: control unit ( Acquisition unit, heating control unit), 200: vacuum chamber (film formation chamber), 300: evaporation source device, 301: evaporation source container (crucible), 302: heater (heating means), 303: nozzle

Claims (12)

成膜対象物に対する成膜材料の成膜レートを検知する成膜レートモニタ装置であって、
蒸発源から昇華又は気化された前記成膜材料を付着させるための水晶振動子と、
前記成膜材料が前記水晶振動子に付着することを妨げるための遮蔽部と、前記付着を許容するための開口部と、を有し、前記蒸発源と前記水晶振動子との間に前記遮蔽部が位置する遮蔽状態と、前記蒸発源と前記水晶振動子との間に前記開口部が位置する非遮蔽状態と、を取り得るように回転する遮蔽部材と、
前記遮蔽部材の回転を制御する制御部と、
前記水晶振動子の共振周波数の変化に基づいて成膜レートを取得する取得部と、
を備え、
所定の期間において前記非遮蔽状態となる期間が第1の長さとなるように前記制御部が前記遮蔽部材を回転させる第1遮蔽モードと、
前記所定の期間において前記非遮蔽状態となる期間が前記第1の長さよりも長い第2の長さとなるように前記制御部が前記遮蔽部材を回転させる第2遮蔽モードと、
を有することを特徴とする成膜レートモニタ装置。
A film formation rate monitoring device for detecting a film formation rate of a film formation material for a film formation target,
A quartz oscillator for attaching the film-forming material sublimated or vaporized from an evaporation source,
A shielding unit for preventing the film-forming material from adhering to the crystal unit, and an opening for allowing the adhesion, and the shielding unit is provided between the evaporation source and the crystal unit. A shielding member that rotates so as to be able to take a shielding state in which the portion is located, and a non-shielding state in which the opening is located between the evaporation source and the quartz oscillator,
A control unit that controls the rotation of the shielding member,
An acquisition unit configured to acquire a film formation rate based on a change in a resonance frequency of the crystal unit,
With
A first shielding mode in which the control unit rotates the shielding member so that a period in which the non-shielding state is set in the predetermined period is a first length;
A second shielding mode in which the control unit rotates the shielding member such that a period in which the non-shielding state is provided in the predetermined period has a second length longer than the first length;
A film formation rate monitor device comprising:
前記制御部は、前記第2遮蔽モードにおいて、前記非遮蔽状態における回転速度が、前記遮蔽状態における回転速度よりも遅くなるように、前記遮蔽部材を回転させることを特徴とする請求項1に記載の成膜レートモニタ装置。   2. The control unit according to claim 1, wherein in the second shielding mode, the control unit rotates the shielding member such that a rotation speed in the non-shielding state is lower than a rotation speed in the shielding state. 3. Film formation rate monitoring device. 前記制御部は、前記第2遮蔽モードの前記非遮蔽状態における回転速度が、前記第1遮蔽モードの前記非遮蔽状態における回転速度よりも遅くなるように、前記遮蔽部材を回転させることを特徴とする請求項1または2に記載の成膜レートモニタ装置。   The control unit rotates the shielding member such that a rotation speed in the non-shielding state of the second shielding mode is lower than a rotation speed in the non-shielding state of the first shielding mode. The film deposition rate monitoring device according to claim 1 or 2, wherein 前記制御部は、前記第2遮蔽モードにおける前記所定の期間において前記非遮蔽状態となる頻度が、前記第1遮蔽モードにおける前記所定の期間において前記非遮蔽状態となる頻度よりも高くなるように、前記第2遮蔽モードにおいて前記遮蔽部材を往復回転させることを特徴とする請求項1に記載の成膜レートモニタ装置。   The control unit, so that the frequency of the non-shielding state in the predetermined period in the second shielding mode is higher than the frequency of the non-shielding state in the predetermined period in the first shielding mode, 2. The film forming rate monitor according to claim 1, wherein the shielding member is reciprocated in the second shielding mode. 前記開口部の前記遮蔽部材の回転方向における幅は、前記水晶振動子の前記回転方向における幅よりも狭いことを特徴とする請求項1〜4のいずれか1項に記載の成膜レートモニタ装置。   The film forming rate monitor according to any one of claims 1 to 4, wherein a width of the opening in the rotation direction of the shielding member is smaller than a width of the crystal unit in the rotation direction. . 前記第1遮蔽モードは、前記取得部が前記成膜レートを取得する際に実行されることを特徴とする請求項1〜5のいずれか1項に記載の成膜レートモニタ装置。   The film formation rate monitoring apparatus according to claim 1, wherein the first shielding mode is executed when the acquisition unit acquires the film formation rate. 前記第1遮蔽モードは、前記成膜対象物に成膜を行う際に実行されることを特徴とする請求項1〜6のいずれか1項に記載の成膜レートモニタ装置。   The film formation rate monitoring apparatus according to claim 1, wherein the first shielding mode is performed when forming a film on the film formation target. 前記第2遮蔽モードは、前記成膜対象物に対する成膜を行わない期間に実行されることを特徴とする請求項1〜7のいずれか1項に記載の成膜レートモニタ装置。   The film formation rate monitoring apparatus according to claim 1, wherein the second shielding mode is performed during a period in which film formation on the film formation target is not performed. 前記第2遮蔽モードは、前記取得部が前記成膜レートを取得する前に所定量の前記成膜材料を予め前記水晶振動子に付着させる下地処理において実行されることを特徴とする請求項1〜8のいずれか1項に記載の成膜レートモニタ装置。   2. The second shielding mode is executed in a base treatment in which a predetermined amount of the film forming material is previously attached to the crystal unit before the obtaining unit obtains the film forming rate. 3. 9. The film formation rate monitoring device according to any one of items 1 to 8, above. 成膜対象物を収容するチャンバと、
前記チャンバ内に配置される、成膜材料を収容する蒸発源容器と、
前記蒸発源容器を加熱する加熱手段を有し、前記蒸発源容器の加熱温度を制御する加熱
制御部と、
前記チャンバ内に配置される、請求項1〜9のいずれか1項に記載の成膜レートモニタ装置と、
を備え、
前記加熱制御部は、前記成膜レートモニタ装置によって取得される成膜レートに基づいて、前記加熱温度を制御することを特徴とする成膜装置。
A chamber for accommodating a film formation target;
An evaporation source container that accommodates a film forming material, which is disposed in the chamber,
A heating control unit that has a heating unit that heats the evaporation source container, and controls a heating temperature of the evaporation source container,
The film formation rate monitoring device according to any one of claims 1 to 9, which is disposed in the chamber,
With
The film forming apparatus, wherein the heating control unit controls the heating temperature based on a film forming rate obtained by the film forming rate monitoring device.
前記加熱制御部は、前記成膜レートモニタ装置が前記第1遮蔽モードを実行している間に取得される前記成膜レートに基づいて、前記加熱温度を制御することを特徴とする請求項10に記載の成膜装置。   11. The heating control unit according to claim 10, wherein the heating control unit controls the heating temperature based on the film forming rate acquired while the film forming rate monitoring device is executing the first shielding mode. 3. The film forming apparatus according to item 1. 前記チャンバに前記成膜対象物が収容されていない間において、前記加熱制御部が前記蒸発源容器を加熱し、前記成膜レートモニタ装置が前記第2遮蔽モードを実行することを特徴とする請求項9または10に記載の成膜装置。   The heating control unit heats the evaporation source container while the film formation target is not stored in the chamber, and the film formation rate monitoring device executes the second shielding mode. Item 11. The film forming apparatus according to item 9 or 10.
JP2018149341A 2018-08-08 2018-08-08 Film formation rate monitor device and film formation device Active JP7144232B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018149341A JP7144232B2 (en) 2018-08-08 2018-08-08 Film formation rate monitor device and film formation device
KR1020180155359A KR102540245B1 (en) 2018-08-08 2018-12-05 Film forming rate monitoring apparatus and film forming apparatus
CN201910714774.3A CN110819962B (en) 2018-08-08 2019-08-05 Film formation rate monitoring device and film formation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149341A JP7144232B2 (en) 2018-08-08 2018-08-08 Film formation rate monitor device and film formation device

Publications (2)

Publication Number Publication Date
JP2020023737A true JP2020023737A (en) 2020-02-13
JP7144232B2 JP7144232B2 (en) 2022-09-29

Family

ID=69547732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149341A Active JP7144232B2 (en) 2018-08-08 2018-08-08 Film formation rate monitor device and film formation device

Country Status (3)

Country Link
JP (1) JP7144232B2 (en)
KR (1) KR102540245B1 (en)
CN (1) CN110819962B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174564A (en) * 2021-04-26 2021-07-27 绍兴市辰丰家居有限公司 Aluminum product vacuum coating device
CN113621932A (en) * 2021-04-26 2021-11-09 睿馨(珠海)投资发展有限公司 Crystal oscillator module, evaporation system and evaporation method thereof
KR20230069833A (en) 2021-11-12 2023-05-19 캐논 톡키 가부시키가이샤 Film forming amount measuring apparatus, film forming apparatus, method of film forming amount, film formation method, and manufacturing method of electronic device
CN116536640A (en) * 2023-05-18 2023-08-04 江苏宜兴德融科技有限公司 Crystal vibrating diaphragm thickness monitoring device and coating equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471984B (en) * 2020-04-29 2022-09-06 立讯电子科技(昆山)有限公司 Control method and control system for film coating rate and storage medium
CN112680709A (en) * 2020-12-15 2021-04-20 光芯薄膜(深圳)有限公司 High-precision film thickness measuring system and method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55172805U (en) * 1979-05-29 1980-12-11
US5262194A (en) * 1992-11-10 1993-11-16 Dielectric Coating Industries Methods and apparatus for controlling film deposition
JPH11222670A (en) * 1998-02-06 1999-08-17 Ulvac Corp Film thickness monitor and film forming device using this
JP2000008164A (en) * 1998-06-25 2000-01-11 Toray Ind Inc Production of base material with thin film and production device therefor
JP2006193811A (en) * 2005-01-17 2006-07-27 Tohoku Pioneer Corp Film thickness monitoring device, film deposition system, film deposition method and method of producing spontaneous light emitting element
JP2014070969A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Rate sensor, linear source and vapor deposition device
JP2015125131A (en) * 2013-12-27 2015-07-06 キヤノントッキ株式会社 Crystal oscillation type thickness monitor
JP2016181468A (en) * 2015-03-25 2016-10-13 株式会社ジャパンディスプレイ Manufacturing method for organic el display device, and film thickness measurement device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039514A (en) * 1998-07-23 2000-02-08 Nippon Telegr & Teleph Corp <Ntt> Production of optical thin film
AU2514900A (en) * 1999-01-27 2000-08-18 United States Of America As Represented By The Secretary Of The Navy, The Fabrication of conductive/non-conductive nanocomposites by laser evaporation
JP2012140648A (en) * 2010-12-28 2012-07-26 Canon Anelva Corp Sputtering apparatus and sputtering method thereof
JP2014066673A (en) 2012-09-27 2014-04-17 Hitachi High-Technologies Corp Rate sensor, linear source, and vapor depositing apparatus
WO2016017108A1 (en) * 2014-07-31 2016-02-04 株式会社アルバック Diagnostic method for film thickness sensor, and film thickness monitor
CN204539095U (en) * 2015-02-03 2015-08-05 汇隆电子(金华)有限公司 A kind of inner-cavity structure of quartz-crystal resonator fine setting masking device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55172805U (en) * 1979-05-29 1980-12-11
US5262194A (en) * 1992-11-10 1993-11-16 Dielectric Coating Industries Methods and apparatus for controlling film deposition
JPH11222670A (en) * 1998-02-06 1999-08-17 Ulvac Corp Film thickness monitor and film forming device using this
JP2000008164A (en) * 1998-06-25 2000-01-11 Toray Ind Inc Production of base material with thin film and production device therefor
JP2006193811A (en) * 2005-01-17 2006-07-27 Tohoku Pioneer Corp Film thickness monitoring device, film deposition system, film deposition method and method of producing spontaneous light emitting element
JP2014070969A (en) * 2012-09-28 2014-04-21 Hitachi High-Technologies Corp Rate sensor, linear source and vapor deposition device
JP2015125131A (en) * 2013-12-27 2015-07-06 キヤノントッキ株式会社 Crystal oscillation type thickness monitor
JP2016181468A (en) * 2015-03-25 2016-10-13 株式会社ジャパンディスプレイ Manufacturing method for organic el display device, and film thickness measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113174564A (en) * 2021-04-26 2021-07-27 绍兴市辰丰家居有限公司 Aluminum product vacuum coating device
CN113621932A (en) * 2021-04-26 2021-11-09 睿馨(珠海)投资发展有限公司 Crystal oscillator module, evaporation system and evaporation method thereof
KR20230069833A (en) 2021-11-12 2023-05-19 캐논 톡키 가부시키가이샤 Film forming amount measuring apparatus, film forming apparatus, method of film forming amount, film formation method, and manufacturing method of electronic device
CN116536640A (en) * 2023-05-18 2023-08-04 江苏宜兴德融科技有限公司 Crystal vibrating diaphragm thickness monitoring device and coating equipment
CN116536640B (en) * 2023-05-18 2024-01-23 江苏宜兴德融科技有限公司 Crystal vibrating diaphragm thickness monitoring device and coating equipment

Also Published As

Publication number Publication date
CN110819962B (en) 2023-07-14
JP7144232B2 (en) 2022-09-29
KR20200017316A (en) 2020-02-18
KR102540245B1 (en) 2023-06-02
CN110819962A (en) 2020-02-21

Similar Documents

Publication Publication Date Title
JP7144232B2 (en) Film formation rate monitor device and film formation device
US5906857A (en) Apparatus, system and method for controlling emission parameters attending vaporized in a HV environment
KR101188163B1 (en) Organic material evaporation source and organic vapor deposition device
TWI819206B (en) Film forming device and film forming method
US20190382884A1 (en) Evaporation device and evaporation method
RU2411304C1 (en) Device for vacuum sputtering of films
KR20120007216A (en) The depth measurement sensor part of the evaporated thin film of the vacuum evaporating apparatus
JP2009127074A (en) Vacuum deposition apparatus, vacuum deposition method, and vacuum-deposited article
CN110872695B (en) Film forming apparatus and control method for film forming apparatus
JP2004353030A (en) Vapor deposition apparatus
JP7253352B2 (en) Film forming apparatus, base film forming method, and film forming method
JP5543251B2 (en) Film forming method using ion plating method and apparatus used therefor
JP7262647B2 (en) Film forming apparatus and film forming apparatus control method
JP2013136834A (en) Shutter device for vapor deposition and deposition apparatus using the same
JP2002167662A (en) Device for feeding vapor deposition source material
JP2009149919A (en) Film thickness monitoring device and vapor deposition apparatus having the same
JP5193487B2 (en) Vapor deposition apparatus and vapor deposition method
JP2014055335A (en) Vacuum film deposition apparatus, and temperature control method and apparatus for evaporation source therefor
JP2023072407A (en) Film deposition amount measuring apparatus, film deposition device, film deposition amount measuring method, film deposition method, and manufacturing method for electronic device
JP2015209559A (en) Vapor deposition apparatus
JP2004149865A (en) Vapor deposition material storage vessel
KR20130078734A (en) Evaporation device for manufacturing of oled having evaporation loss control device of organic matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210802

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220915

R150 Certificate of patent or registration of utility model

Ref document number: 7144232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150