JP2020021901A - Superconducting electromagnet - Google Patents

Superconducting electromagnet Download PDF

Info

Publication number
JP2020021901A
JP2020021901A JP2018146680A JP2018146680A JP2020021901A JP 2020021901 A JP2020021901 A JP 2020021901A JP 2018146680 A JP2018146680 A JP 2018146680A JP 2018146680 A JP2018146680 A JP 2018146680A JP 2020021901 A JP2020021901 A JP 2020021901A
Authority
JP
Japan
Prior art keywords
outer peripheral
coil
flange portion
peripheral portion
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018146680A
Other languages
Japanese (ja)
Other versions
JP7209489B2 (en
Inventor
三上 行雄
Yukio Mikami
行雄 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2018146680A priority Critical patent/JP7209489B2/en
Publication of JP2020021901A publication Critical patent/JP2020021901A/en
Application granted granted Critical
Publication of JP7209489B2 publication Critical patent/JP7209489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Particle Accelerators (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

To provide a superconducting electromagnet in which the reliability of fixing of a flange portion and an outer peripheral portion of a support member is improved.SOLUTION: A superconducting electromagnet 7 includes a pair of coils 30A in which a superconducting wire is wound around the axis, and arranged so as to be opposite to the axial direction D1 along the axis, and a support member 40 that supports the pair of coils 30A, and the support member 40 includes, in one coil 30A, a flange portion 41 that supports the facing surface 31 in which the one coil 30A faces the other coil, an outer peripheral portion 42 supporting the outer peripheral surface 32 of the one coil 30A, and a fastening portion 43 that fastens the flange portion 41 and the outer peripheral portion 42. The flange portion 41 and the outer peripheral portion 42 have locking portions 41A and 42A that lock, respectively.SELECTED DRAWING: Figure 6

Description

本発明は、超伝導電磁石に関する。   The present invention relates to a superconducting electromagnet.

従来、荷電粒子を加速するための粒子加速器として、例えば特許文献1に記載されたサイクロトロンが記載されている。このサイクロトロンは、コイルと、コイルを保持する保持部材とを備えている。保持部材は、コイルの軸方向の2つの端面のそれぞれに対して設けられたフランジ部と、フランジ部同士を接続する外周部とを有している。   BACKGROUND ART Conventionally, as a particle accelerator for accelerating charged particles, for example, a cyclotron described in Patent Document 1 is described. This cyclotron includes a coil and a holding member that holds the coil. The holding member has a flange portion provided for each of the two axial end surfaces of the coil, and an outer peripheral portion connecting the flange portions.

特開2014−241217号公報JP 2014-241217 A

ところで、特許文献1のような粒子加速器に用いられるコイルでは、コイルの径方向及び軸方向の両方向に強大な電磁力が発生する。この電磁力に耐えるために、コイルを支持する支持部材のフランジ部と外周部とを固定する必要がある。   By the way, in a coil used in a particle accelerator as disclosed in Patent Document 1, a strong electromagnetic force is generated in both the radial direction and the axial direction of the coil. In order to withstand this electromagnetic force, it is necessary to fix the flange portion and the outer peripheral portion of the support member that supports the coil.

フランジ部と外周部とを固定する方法としては、例えば溶接が考えられるが、コイルが超伝導線である場合、溶接時の熱によって超伝導線が劣化する可能性がある。このため、コイルが超伝導線である場合には、ボルト等の締結部を用いてフランジ部と外周部とを固定する必要がある。しかしながら、ボルト等の締結部は、当該締結部の軸に交差する方向の力に対しては耐久力が低く、締結部の強度が不足する可能性がある。したがって、支持部材のフランジ部と外周部との固定の信頼性向上が要請されている。   As a method of fixing the flange portion and the outer peripheral portion, for example, welding can be considered, but when the coil is a superconducting wire, there is a possibility that the superconducting wire is deteriorated by heat during welding. Therefore, when the coil is a superconducting wire, it is necessary to fix the flange portion and the outer peripheral portion using a fastening portion such as a bolt. However, a fastening portion such as a bolt has low durability against a force in a direction intersecting the axis of the fastening portion, and the strength of the fastening portion may be insufficient. Therefore, it is required to improve the reliability of fixing the flange portion and the outer peripheral portion of the support member.

本発明は、上記の課題を解決するためになされたものであり、支持部材のフランジ部と外周部との固定の信頼性向上が図られた超伝導電磁石を提供することを目的とする。   The present invention has been made to solve the above-described problem, and has as its object to provide a superconducting electromagnet in which the reliability of fixing a flange portion and an outer peripheral portion of a support member is improved.

本発明の一形態に係る超電導電磁石は、超伝導線材が軸線まわりに巻回され、軸線に沿った軸方向に対向して配置された一対のコイルと、一対のコイルを支持する支持部材と、を備え、支持部材は、一方のコイルにおいて、当該一方のコイルが他方のコイルに対向する対向面を支持するフランジ部と、一方のコイルの外周面を支持する外周部と、コイルの径方向に延伸し、フランジ部と外周部とを締結する締結部と、を有し、外周部は、外周面よりも径方向の内側に突出してフランジ部に入り込む突出部を有する。   A superconducting electromagnet according to one embodiment of the present invention, a superconducting wire is wound around an axis, and a pair of coils arranged in an axial direction along the axis, and a supporting member that supports the pair of coils, The support member includes, in one coil, a flange portion that supports an opposing surface in which the one coil faces the other coil, an outer peripheral portion that supports an outer peripheral surface of the one coil, and a radial direction of the coil. The outer peripheral portion has a protruding portion that protrudes radially inward from the outer peripheral surface and enters the flange portion.

この超伝導電磁石の支持部材は、一方のコイルの対向面を支持するフランジ部と、コイルの外周面を支持する外周部と、コイルの径方向に延伸してフランジ部と外周部とを締結する締結部とを有し、外周部は、外周面よりも径方向の内側に突出してフランジ部に入り込む突出部を有している。このような突出部を外周部が有していることにより、コイルの軸方向に発生する電磁力は、フランジ部だけでなく外周部にも分散される。これにより、締結部の軸に交差する方向(すなわち、コイルの軸方向)において、当該締結部にかかる力が低減される。したがって、支持部材のフランジ部と外周部との固定の信頼性向上を図ることができる。   The support member of the superconducting electromagnet has a flange portion that supports the opposing surface of one of the coils, an outer peripheral portion that supports the outer peripheral surface of the coil, and extends in the radial direction of the coil to fasten the flange portion and the outer peripheral portion. The outer peripheral portion has a protruding portion that protrudes radially inward from the outer peripheral surface and enters the flange portion. Since the outer peripheral portion has such a protrusion, the electromagnetic force generated in the axial direction of the coil is dispersed not only in the flange portion but also in the outer peripheral portion. Thereby, the force applied to the fastening portion in the direction intersecting the axis of the fastening portion (that is, the axial direction of the coil) is reduced. Therefore, the reliability of fixing the flange portion and the outer peripheral portion of the support member can be improved.

本発明の一形態に係る超伝導電磁石は、超伝導線材が軸線まわりに巻回され、軸線に沿った軸方向に対向して配置された一対のコイルと、一対のコイルを支持する支持部材と、を備え、支持部材は、一方のコイルにおいて、当該一方のコイルが他方のコイルに対向する対向面を支持するフランジ部と、一方のコイルの外周面を支持する外周部と、コイルの軸方向に延伸し、フランジ部と外周部とを締結する締結部と、を有し、フランジ部は、対向面よりも軸方向における一方のコイル側に突出して外周部に入り込む突出部を有する。   A superconducting electromagnet according to one embodiment of the present invention includes a pair of coils in which a superconducting wire is wound around an axis and arranged in an axial direction along the axis, and a support member that supports the pair of coils. The support member includes, in one coil, a flange portion that supports an opposing surface of the one coil facing the other coil, an outer peripheral portion that supports an outer peripheral surface of the one coil, and an axial direction of the coil. And a fastening portion for fastening the flange portion and the outer peripheral portion. The flange portion has a protruding portion that protrudes toward the one coil side in the axial direction from the opposing surface and enters the outer peripheral portion.

この超電導電磁石の支持部材は、一方のコイルの対向面を支持するフランジ部と、コイルの外周面を支持する外周部と、コイルの軸方向に延伸してフランジ部と外周部とを締結する締結部とを有し、フランジ部は、対向面よりも軸方向における一方のコイル側に突出して外周部に入り込む突出部を有している。このような突出部をフランジ部が有していることにより、コイルの径方向に発生する電磁力は、外周部だけでなくフランジ部にも分散される。これにより、締結部の軸に交差する方向(すなわち、コイルの径方向)において、当該締結部にかかる力が低減される。したがって、支持部材のフランジ部と外周部との固定の信頼性向上を図ることができる。   The support member of the superconducting electromagnet includes a flange portion that supports the opposing surface of one of the coils, an outer peripheral portion that supports the outer peripheral surface of the coil, and a fastening that extends in the axial direction of the coil and fastens the flange portion and the outer peripheral portion. The flange portion has a protruding portion that protrudes toward the one coil side in the axial direction from the opposing surface and enters the outer peripheral portion. Since the flange portion has such a protrusion, the electromagnetic force generated in the radial direction of the coil is dispersed not only in the outer peripheral portion but also in the flange portion. Thereby, the force applied to the fastening portion in the direction intersecting the axis of the fastening portion (that is, the radial direction of the coil) is reduced. Therefore, the reliability of fixing the flange portion and the outer peripheral portion of the support member can be improved.

本発明の一形態に係る超伝導電磁石は、超伝導線材が軸線まわりに巻回され、軸線に沿った軸方向に対向して配置された一対のコイルと、一対のコイルを支持する支持部材と、を備え、支持部材は、一方のコイルにおいて、当該一方のコイルが他方のコイルに対向する対向面を支持するフランジ部と、一方のコイルの外周面を支持する外周部と、フランジ部と外周部とを締結する締結部とを有し、フランジ部及び外周部のそれぞれは、互いに係止する係止部を有する。   A superconducting electromagnet according to one embodiment of the present invention includes a pair of coils in which a superconducting wire is wound around an axis and arranged in an axial direction along the axis, and a support member that supports the pair of coils. The supporting member includes, in one of the coils, a flange portion that supports an opposing surface of the one coil facing the other coil; an outer peripheral portion that supports an outer peripheral surface of the one coil; The flange portion and the outer peripheral portion each have a locking portion that locks each other.

この超伝導電磁石の支持部材は、一方のコイルの対向面を支持するフランジ部と、コイルの外周面を支持する外周部と、フランジ部と外周部とを締結する締結部とを有し、フランジ部及び外周部のそれぞれは、互いに係止する係止部を有している。このような係止部をフランジ部及び外周部のそれぞれが有していることにより、コイルの軸方向に発生する電磁力は、フランジ部だけでなく外周部にも分散される。同様に、コイルの径方向に発生する電磁力は、外周部だけでなくフランジ部にも分散される。これにより、締結部の軸に交差する方向において、当該締結部にかかる力が低減される。したがって、支持部材のフランジ部と外周部との固定の信頼性向上を図ることができる。   The support member of the superconducting electromagnet has a flange portion that supports the opposing surface of one of the coils, an outer peripheral portion that supports the outer peripheral surface of the coil, and a fastening portion that fastens the flange portion to the outer peripheral portion. Each of the portion and the outer peripheral portion has a locking portion that locks each other. Since each of the flange portion and the outer peripheral portion has such a locking portion, the electromagnetic force generated in the axial direction of the coil is dispersed not only in the flange portion but also in the outer peripheral portion. Similarly, the electromagnetic force generated in the radial direction of the coil is distributed not only to the outer peripheral portion but also to the flange portion. Thereby, the force applied to the fastening portion in the direction intersecting the axis of the fastening portion is reduced. Therefore, the reliability of fixing the flange portion and the outer peripheral portion of the support member can be improved.

一形態において、係止部は、外周面よりも内側に設けられていてもよい。この構成によれば、コイルの径方向における支持部材の寸法を低減できるので、超伝導電磁石の小型化を図ることができる。   In one embodiment, the locking portion may be provided inside the outer peripheral surface. According to this configuration, the size of the support member in the radial direction of the coil can be reduced, so that the size of the superconducting electromagnet can be reduced.

一形態において、軸方向に交差する方向から見て、フランジ部の係止部と外周部の係止部とが互いに対向する係止面は、軸方向に対して傾斜していてもよい。このように係止面が傾斜していることにより、フランジ部に軸方向の電磁力がかかると、係止部によって径方向内側に向かう力が外周部にかかる。同様に、外周部に径方向の電磁力がかかると、係止部によって、軸方向においてコイル側に向かう力がフランジ部にかかる。すなわち、径紙面が傾斜していることにより、電磁力が発生すると、フランジ部と外周部とがより強固に係止する。したがって、フランジ部と外周部とをより強固に固定することができる。   In one embodiment, a locking surface where the locking portion of the flange portion and the locking portion of the outer peripheral portion face each other may be inclined with respect to the axial direction when viewed from a direction intersecting with the axial direction. Since the locking surface is inclined in this manner, when an axial electromagnetic force is applied to the flange portion, a force inward in the radial direction is applied to the outer peripheral portion by the locking portion. Similarly, when a radial electromagnetic force is applied to the outer peripheral portion, a force toward the coil side in the axial direction is applied to the flange portion by the locking portion. That is, when an electromagnetic force is generated due to the slanted paper surface, the flange portion and the outer peripheral portion are more firmly locked. Therefore, the flange portion and the outer peripheral portion can be more firmly fixed.

本発明によれば、支持部材のフランジ部と外周部との固定の信頼性向上が図られた超伝導電磁石が提供される。   According to the present invention, there is provided a superconducting electromagnet in which the reliability of fixing the flange portion and the outer peripheral portion of the support member is improved.

本発明の一実施形態に係る超伝導電磁石が搭載された粒子加速器を示す概略断面図である。1 is a schematic cross-sectional view illustrating a particle accelerator on which a superconducting electromagnet according to an embodiment of the present invention is mounted. 本発明の一実施形態に係る超伝導電磁石を示す概略断面図である。FIG. 1 is a schematic sectional view showing a superconducting electromagnet according to one embodiment of the present invention. 図2の超伝導電磁石を概略的に示す平面図である。FIG. 3 is a plan view schematically showing the superconducting electromagnet of FIG. 2. フランジ部と外周部との締結構造を示す概略断面図である。It is a schematic sectional drawing which shows the fastening structure of a flange part and an outer peripheral part. 変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。It is a schematic sectional drawing which shows the fastening structure of the flange part and outer peripheral part in the superconducting electromagnet which concerns on a modification. 他の変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。It is a schematic sectional drawing which shows the fastening structure of the flange part and outer peripheral part in the superconducting electromagnet which concerns on another modification. 他の変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。It is a schematic sectional drawing which shows the fastening structure of the flange part and outer peripheral part in the superconducting electromagnet which concerns on another modification. 他の変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。It is a schematic sectional drawing which shows the fastening structure of the flange part and outer peripheral part in the superconducting electromagnet which concerns on another modification.

以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付し、重複する説明を省略する。   Hereinafter, various embodiments will be described in detail with reference to the drawings. In each of the drawings, the same or corresponding portions are denoted by the same reference characters, and redundant description will be omitted.

図1は、本実施形態に係る超伝導電磁石が搭載された粒子加速器を示す概略断面図である。図1に示される粒子加速器1は、例えば、ホウ素中性子捕捉療法(BNCT:Boron Neutron Capture Therapy)を用いたがん治療を行う中性子捕捉療法システム等において、イオン源(不図示)から供給された荷電粒子を加速して荷電粒子線を生成して出射するために用いられるサイクロトロンである。荷電粒子としては、例えば陽子、重粒子(重イオン)、電子等が挙げられる。また、粒子加速器1は、PET用サイクロトロン、RI製造用サイクロトロン、及び原子核実験用サイクロトロン等として用いることもできる。図1に示されるように、粒子加速器1は、ヨーク2と、超伝導電磁石3と、一対の磁極4A,4Bと、真空容器5と、を備えている。   FIG. 1 is a schematic sectional view showing a particle accelerator on which a superconducting electromagnet according to the present embodiment is mounted. The particle accelerator 1 shown in FIG. 1 is, for example, a neutron capture therapy system that performs a cancer treatment using boron neutron capture therapy (BNCT: Boron Neutron Capture Therapy). This is a cyclotron used to accelerate particles to generate and emit charged particle beams. The charged particles include, for example, protons, heavy particles (heavy ions), electrons, and the like. Further, the particle accelerator 1 can also be used as a cyclotron for PET, a cyclotron for RI production, a cyclotron for nuclear experiments, and the like. As shown in FIG. 1, the particle accelerator 1 includes a yoke 2, a superconducting electromagnet 3, a pair of magnetic poles 4A and 4B, and a vacuum vessel 5.

ヨーク2は、超伝導電磁石3、一対の磁極4A,4B、及び真空容器5等を支持するものである。ヨーク2は、中空の円盤型ブロックであり、その内部には、荷電粒子の加速に必要な磁場を形成する一対の磁極4A,4Bが設けられている。磁極4A,4Bは、平面視で円形状であり、メディアンプレーンMP(荷電粒子が加速する加速平面)を挟んで互いに対向して配置されている。磁極4A,4Bの周囲には、超伝導電磁石3が配置されている。超伝導電磁石3の詳細な構成については後述する。   The yoke 2 supports the superconducting electromagnet 3, the pair of magnetic poles 4A and 4B, the vacuum vessel 5, and the like. The yoke 2 is a hollow disk-shaped block, in which a pair of magnetic poles 4A and 4B for forming a magnetic field necessary for accelerating charged particles are provided. The magnetic poles 4A and 4B have a circular shape in plan view, and are arranged to face each other across a median plane MP (an acceleration plane where charged particles are accelerated). Superconducting electromagnet 3 is arranged around magnetic poles 4A and 4B. The detailed configuration of the superconducting electromagnet 3 will be described later.

超伝導電磁石3は、真空容器5に収容されている。真空容器5及び冷却機(不図示)により、超伝導電磁石3のコイルを超伝導状態となるまで冷却可能なクライオスタットが構成されている。冷凍機としては、例えば、GM冷凍機(Gifford-McMhon cooler)が用いられ得る。なお、冷凍機の種類はGM冷凍機に限定されず、例えばスターリング冷凍機等のその他の冷凍機であってもよい。粒子加速器1では、真空容器5の内部を真空状態にした上で、冷却機によって超伝導状態とされた超伝導電磁石3のコイルに電流を流すことで強力な磁場を形成する。イオン源(不図示)から供給された荷電粒子は、磁極4Aと磁極4Bとの間の空間のメディアンプレーンMP上において磁場の影響によって加速され、荷電粒子線として出射される。   The superconducting electromagnet 3 is housed in a vacuum vessel 5. A cryostat capable of cooling the coil of the superconducting electromagnet 3 to a superconducting state is constituted by the vacuum vessel 5 and a cooler (not shown). As the refrigerator, for example, a GM refrigerator (Gifford-McMhon cooler) can be used. The type of refrigerator is not limited to the GM refrigerator, but may be another refrigerator such as a Stirling refrigerator. In the particle accelerator 1, a strong magnetic field is formed by applying a current to the coil of the superconducting electromagnet 3, which has been brought into a superconducting state by a cooler, after the inside of the vacuum vessel 5 is evacuated. Charged particles supplied from an ion source (not shown) are accelerated by the influence of a magnetic field on the median plane MP in the space between the magnetic poles 4A and 4B, and are emitted as charged particle beams.

次に、図2及び図3を参照して、超伝導電磁石3の構成について詳細に説明する。図2は、本実施形態に係る超伝導電磁石を示す概略断面図である。図3は、図2の超伝導電磁石を概略的に示す平面図である。図2及び図3に示されるように、超伝導電磁石3は全体として円筒状を呈しており、一対のコイル30A,30Bと、一対のコイル30A,30Bを支持する支持部材40と、を備えている。それぞれのコイル30A,30Bは円環状であり、超伝導線材が軸線Aのまわりに巻回されて形成されている。軸線Aに沿った断面において、コイル30A,30Bは矩形状である。また、コイル30A,30Bは、軸線Aに沿った軸方向D1において対向して配置されている。コイル30Aは磁極4Aの周囲を囲むように配置され、コイル30Bは磁極4Bの周囲を囲むように配置されている(図1参照)。コイル30A,30Bのそれぞれは、互いに対向する対向面31と、コイル30A,30Bの径方向D2の外側に位置する外周面32と、を有している。対向面31は、軸方向D1(軸線A)に交差(直交)する方向に沿って延びる平面であり、外周面32は、軸方向D1に沿うと共にコイル30A,30Bの径方向D2に延びる面である。コイル30A,30Bを構成する超伝導線材としては、例えば、酸化物超伝導体(例えばBi2223、Bi2212、Y123)、MgB等の高温超伝導線材を用いることができる。なお、超伝導線材として低温超伝導線材を用いてもよい。 Next, the configuration of the superconducting electromagnet 3 will be described in detail with reference to FIGS. FIG. 2 is a schematic sectional view showing the superconducting electromagnet according to the present embodiment. FIG. 3 is a plan view schematically showing the superconducting electromagnet of FIG. As shown in FIGS. 2 and 3, the superconducting electromagnet 3 has a cylindrical shape as a whole, and includes a pair of coils 30A and 30B and a support member 40 that supports the pair of coils 30A and 30B. I have. Each of the coils 30A and 30B is annular, and is formed by winding a superconducting wire around an axis A. In a cross section along the axis A, the coils 30A and 30B are rectangular. The coils 30A and 30B are arranged to face each other in the axial direction D1 along the axis A. The coil 30A is arranged so as to surround the magnetic pole 4A, and the coil 30B is arranged so as to surround the magnetic pole 4B (see FIG. 1). Each of the coils 30A and 30B has an opposing surface 31 facing each other and an outer peripheral surface 32 located outside the radial direction D2 of the coils 30A and 30B. The facing surface 31 is a plane extending along a direction intersecting (perpendicular to) the axial direction D1 (the axis A), and the outer peripheral surface 32 is a surface extending along the axial direction D1 and extending in the radial direction D2 of the coils 30A and 30B. is there. The superconducting wire constituting the coil 30A, the 30B, for example, an oxide superconductor (e.g. Bi-2223-based, Bi2212, Y123), can be used a high-temperature superconducting wire of MgB 2, or the like. Note that a low-temperature superconducting wire may be used as the superconducting wire.

支持部材40は、コイル30A,30Bのそれぞれにおいて、一方のコイル30A(コイル30B)が他方のコイル30B(コイル30A)に対向する対向面31を支持するフランジ部41と、コイル30A,30Bの外周面32を支持する外周部42と、フランジ部41と外周部42とを締結する後述の締結部43(図4参照)と、を有している。フランジ部41は、軸方向D1に交差する方向(すなわち、対向面31に沿った方向)に沿って延びる円環板状の部材である。外周部42は、外周面32に沿った筒状の部材である。本実施形態では、フランジ部41と対向面31とは接触している。また、外周部42と外周面32とも接触している。フランジ部41と外周部42とは、互いに略直角となるように締結されている。コイル30Aを支持するフランジ部41とコイル30Bを支持するフランジ部41とは、円筒状の接続部Cによって接続されている。フランジ部41、外周部42、及び接続部Cを構成する材料としては、磁場への影響を低減するために、例えばステンレス等の非磁性材料が用いられ得る。また、軽量化の観点から、チタン等が用いられてもよい。   The support member 40 includes, in each of the coils 30A and 30B, a flange portion 41 that supports the facing surface 31 in which one coil 30A (coil 30B) faces the other coil 30B (coil 30A), and an outer periphery of the coils 30A and 30B. It has an outer peripheral portion 42 that supports the surface 32, and a later-described fastening portion 43 (see FIG. 4) that fastens the flange portion 41 and the outer peripheral portion 42. The flange portion 41 is an annular plate-shaped member extending along a direction intersecting the axial direction D1 (that is, a direction along the facing surface 31). The outer peripheral portion 42 is a cylindrical member along the outer peripheral surface 32. In the present embodiment, the flange portion 41 and the facing surface 31 are in contact with each other. Further, the outer peripheral portion 42 and the outer peripheral surface 32 are also in contact with each other. The flange portion 41 and the outer peripheral portion 42 are fastened so as to be substantially perpendicular to each other. The flange portion 41 supporting the coil 30A and the flange portion 41 supporting the coil 30B are connected by a cylindrical connection portion C. As a material for forming the flange portion 41, the outer peripheral portion 42, and the connection portion C, a non-magnetic material such as stainless steel can be used to reduce the influence on the magnetic field. Further, from the viewpoint of weight reduction, titanium or the like may be used.

次に、図4を参照して、フランジ部41と外周部42との締結構造について説明する。図4は、フランジ部と外周部との締結構造を示す概略断面図である。なお、図4では、コイル30Aを支持するフランジ部41及び外周部42の一部のみを示しているが、コイル30Bを支持するフランジ部41と外周部42との締結構造も同様である。図4に示されるように、外周部42は、コイル30Aの外周面32よりも径方向D2の内側に突出してフランジ部41に入り込む突出部44を有している。突出部44は、外周部42のフランジ部41側の一端において、径方向D2の全周にわたって設けられている。フランジ部41には、突出部44に対応した切り欠き部45が設けられている。ここで、切り欠き部45とは、フランジ部41の厚さ(すなわち、軸方向D1の寸法)に対して、厚さが薄くなっている部分である。本実施形態では、切り欠き部45は、軸方向D1において、コイル31Aとは反対側のフランジ部41の端部に設けられている。なお、切り欠き部45は、軸方向D1において、フランジ部41の中央部に設けられていてもよい。フランジ部41と外周部42とは、突出部44と切り欠き部45とが嵌合した状態で、コイル30Aの径方向D2に延伸するボルト等の締結部43によって締結されている。締結部43は、突出部44が設けられていない部分において外周部42を貫通している。ここで、突出部44がフランジ部41に「入り込む」とは、軸方向D1から見て、フランジ部41と突出部44とが重なる部分を有し、且つ、径方向D2から見て、フランジ部41と突出部44とが重なる部分を有している状態である。すなわち、本実施形態において突出部44がフランジ部41に「入り込む」とは、フランジ部41のフランジ部41の切り欠き部45に突出部44の少なくとも一部が嵌合した状態のことをいう。なお、突出部44は、径方向D2の全周にわたって設けられていなくてもよく、例えば、締結部43に対応した箇所のみに設けられていてもよい。   Next, a fastening structure between the flange portion 41 and the outer peripheral portion 42 will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view showing a fastening structure between the flange portion and the outer peripheral portion. Although FIG. 4 shows only a part of the flange portion 41 supporting the coil 30A and a part of the outer peripheral portion 42, the fastening structure between the flange portion 41 supporting the coil 30B and the outer peripheral portion 42 is the same. As shown in FIG. 4, the outer peripheral portion 42 has a protruding portion 44 that protrudes inward in the radial direction D2 from the outer peripheral surface 32 of the coil 30 </ b> A and enters the flange portion 41. The protruding portion 44 is provided at one end of the outer peripheral portion 42 on the flange portion 41 side over the entire circumference in the radial direction D2. The flange 41 is provided with a notch 45 corresponding to the protrusion 44. Here, the notch portion 45 is a portion whose thickness is smaller than the thickness of the flange portion 41 (that is, the dimension in the axial direction D1). In the present embodiment, the notch 45 is provided at the end of the flange 41 on the side opposite to the coil 31A in the axial direction D1. The notch 45 may be provided at the center of the flange 41 in the axial direction D1. The flange portion 41 and the outer peripheral portion 42 are fastened by a fastening portion 43 such as a bolt extending in the radial direction D2 of the coil 30A in a state where the protrusion portion 44 and the notch portion 45 are fitted. The fastening portion 43 penetrates the outer peripheral portion 42 at a portion where the protrusion 44 is not provided. Here, the “projection” of the protrusion 44 into the flange 41 includes a portion where the flange 41 and the protrusion 44 overlap each other when viewed from the axial direction D1, and the flange 44 when viewed from the radial direction D2. This is a state where there is a portion where the projection 41 and the projection 44 overlap. That is, in the present embodiment, the “entrance” of the protruding portion 44 into the flange portion 41 refers to a state where at least a part of the protruding portion 44 is fitted into the cutout portion 45 of the flange portion 41 of the flange portion 41. In addition, the protrusion part 44 does not need to be provided over the entire circumference in the radial direction D2, and may be provided only at a portion corresponding to the fastening part 43, for example.

以上説明したように、超伝導電磁石3の支持部材40は、コイル30A,30Bの対向面31を支持するフランジ部41と、コイル30A,30Bの外周面32を支持する外周部42と、コイル30A,30Bの径方向D2に延伸してフランジ部41と外周部42とを締結する締結部43とを有し、外周部42は、外周面32よりも径方向D2の内側に突出してフランジ部41に入り込む突出部44を有している。超伝導電磁石3では、図4に示されるように、コイル30Aとコイル30Bとが互いに引き合うことにより、軸方向D1において強大な電磁力F1が発生する。また、磁場の影響によってコイル30A,30Bの捲回された超伝導線材が外側に広がろうとし、その結果、コイル30A,30Bの径方向D2において強大な電磁力F2が発生する。しかしながら、ボルト等の締結部43は、当該締結部43の軸43Aに交差する方向の力に対しては耐久力が低く、締結部43の強度が不足する可能性がある。   As described above, the support member 40 of the superconducting electromagnet 3 includes the flange portion 41 that supports the facing surface 31 of the coils 30A and 30B, the outer peripheral portion 42 that supports the outer peripheral surface 32 of the coils 30A and 30B, and the coil 30A. , 30B extending in the radial direction D2 to fasten the flange portion 41 and the outer peripheral portion 42. The outer peripheral portion 42 projects more inward than the outer peripheral surface 32 in the radial direction D2, and the flange portion 41 is provided. It has a projecting portion 44 that enters. In the superconducting electromagnet 3, as shown in FIG. 4, when the coil 30A and the coil 30B attract each other, a strong electromagnetic force F1 is generated in the axial direction D1. Further, the wound superconducting wire of the coils 30A and 30B tends to spread outward due to the influence of the magnetic field, and as a result, a strong electromagnetic force F2 is generated in the radial direction D2 of the coils 30A and 30B. However, the fastening portion 43 such as a bolt has low durability against a force in a direction intersecting the shaft 43A of the fastening portion 43, and the strength of the fastening portion 43 may be insufficient.

これに対し、超伝導電磁石3では、突出部44を外周部42が有していることにより、コイル30A,30Bの軸方向D1に発生する電磁力F1は、フランジ部41だけでなく外周部42にも分散される。これにより、締結部43の軸43Aに交差する方向(すなわち、軸方向D1)において、締結部43に係る力F1’が低減される。したがって、支持部材40のフランジ部41と外周部42との固定の信頼性向上を図ることができる。また、締結部43に係る力F1’が低減されることにより、締結部43の小型化を図ることや、締結部43の数の低減を図ることができる。したがって、超伝導電磁石3の小型化を図ることが可能である。   On the other hand, in the superconducting electromagnet 3, since the outer peripheral portion 42 has the protruding portion 44, the electromagnetic force F1 generated in the axial direction D1 of the coils 30 </ b> A and 30 </ b> Is also distributed. Thereby, the force F1 'of the fastening portion 43 in the direction intersecting the axis 43A of the fastening portion 43 (i.e., the axial direction D1) is reduced. Therefore, the reliability of fixing the flange portion 41 and the outer peripheral portion 42 of the support member 40 can be improved. In addition, the reduction of the force F <b> 1 ′ related to the fastening portion 43 makes it possible to reduce the size of the fastening portion 43 and reduce the number of the fastening portions 43. Therefore, the size of the superconducting electromagnet 3 can be reduced.

次に、図5を参照して、変形例に係る超伝導電磁石6について説明する。図5は、変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。図5に示されるように、超伝導電磁石6は、超伝導電磁石3と同様に、一対のコイル30A,30Bと、一対のコイル30A,30Bを支持する支持部材40と、を備えている。支持部材40は、フランジ部41と外周部42を有している。超伝導電磁石6が超伝導電磁石3と相違する点は、フランジ部41に突出部44が設けられ、外周部42に切り欠き部45が設けられている点、及び、締結部43が軸方向D1に延伸している点である。突出部44は、フランジ部41の径方向外側の一端において、径方向D2の全周にわたって設けられている。軸方向D1におけるコイル30A側に突出して外周部42に入り込んでいる。締結部43は、突出部44が設けられていない部分においてフランジ部41を貫通している。   Next, a superconducting electromagnet 6 according to a modification will be described with reference to FIG. FIG. 5 is a schematic sectional view showing a fastening structure between a flange portion and an outer peripheral portion in a superconducting electromagnet according to a modification. As shown in FIG. 5, the superconducting electromagnet 6 includes a pair of coils 30A and 30B and a support member 40 that supports the pair of coils 30A and 30B, like the superconducting electromagnet 3. The support member 40 has a flange portion 41 and an outer peripheral portion 42. The superconducting electromagnet 6 is different from the superconducting electromagnet 3 in that a projecting portion 44 is provided on a flange portion 41, a notch portion 45 is provided on an outer peripheral portion 42, and a fastening portion 43 is formed in the axial direction D1. It is a point that is stretched. The protruding portion 44 is provided at one end on the radially outer side of the flange portion 41 over the entire circumference in the radial direction D2. It projects toward the coil 30 </ b> A side in the axial direction D <b> 1 and enters the outer peripheral portion 42. The fastening portion 43 penetrates through the flange portion 41 at a portion where the protrusion 44 is not provided.

上記の超伝導電磁石6においては、フランジ部41は、対向面31よりも軸方向D1における一方のコイル30A(又はコイル30B)側に突出して外周部42に入り込む突出部44を有している。このような突出部44をフランジ部41が有していることにより、コイル30Aの径方向D2に発生する電磁力F2は、外周部42だけでなくフランジ部41にも分散される。これにより、締結部43の軸43Aに交差する方向(すなわち、径方向D2)において、締結部43にかかる力F2’が低減される。したがって、超伝導電磁石3と同様に、支持部材40のフランジ部41と外周部42との固定の信頼性向上を図ることができる。   In the above-described superconducting electromagnet 6, the flange portion 41 has a protruding portion 44 that protrudes from the opposing surface 31 toward the one coil 30A (or the coil 30B) in the axial direction D1 and enters the outer peripheral portion 42. Since the flange portion 41 has such a protrusion 44, the electromagnetic force F2 generated in the radial direction D2 of the coil 30A is dispersed not only in the outer peripheral portion 42 but also in the flange portion 41. Thereby, the force F2 'applied to the fastening portion 43 in the direction intersecting the axis 43A of the fastening portion 43 (that is, the radial direction D2) is reduced. Therefore, similarly to the superconducting electromagnet 3, the reliability of fixing the flange portion 41 and the outer peripheral portion 42 of the support member 40 can be improved.

次に、図6を参照して、他の変形例に係る超伝導電磁石7について説明する。図6は、他の変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。図6に示されるように、超伝導電磁石7は、超伝導電磁石3と同様に、一対のコイル30A,30Bと、一対のコイル30A,30Bを支持する支持部材40と、を備えている。支持部材40は、フランジ部41と外周部42を有している。超伝導電磁石7が超伝導電磁石3と相違する点は、フランジ部41及び外周部42のそれぞれが、互いに係止する係止部41A,42Aを有する点である。フランジ部41の係止部41Aと外周部42の係止部42Aとは、コイル30Aの外周面32よりも内側に設けられている。軸方向D1に交差する方向から見て、フランジ部41の係止部41Aと外周部42の係止部42Aとが互いに対向する係止面46は、軸方向D1に対して傾斜している。係止面46の傾斜角は、例えば30°〜60°程度とすることができる。本実施形態においては、係止部41Aと係止部42Aとは、それぞれの係止面46において互いに接触しており、係止面46の傾斜角は約45°である。締結部43は、係止部41A及び係止部42Aを通るように、軸方向D1に沿って延伸している。なお、締結部は径方向D2に沿って延伸していてもよい。   Next, a superconducting electromagnet 7 according to another modification will be described with reference to FIG. FIG. 6 is a schematic sectional view showing a fastening structure between a flange portion and an outer peripheral portion in a superconducting electromagnet according to another modification. As shown in FIG. 6, the superconducting electromagnet 7 includes a pair of coils 30A and 30B and a support member 40 that supports the pair of coils 30A and 30B, like the superconducting electromagnet 3. The support member 40 has a flange portion 41 and an outer peripheral portion 42. The superconducting electromagnet 7 differs from the superconducting electromagnet 3 in that each of the flange portion 41 and the outer peripheral portion 42 has locking portions 41A and 42A that lock each other. The locking portion 41A of the flange portion 41 and the locking portion 42A of the outer peripheral portion 42 are provided inside the outer peripheral surface 32 of the coil 30A. When viewed from a direction intersecting with the axial direction D1, a locking surface 46 where the locking portion 41A of the flange portion 41 and the locking portion 42A of the outer peripheral portion 42 face each other is inclined with respect to the axial direction D1. The inclination angle of the locking surface 46 can be, for example, about 30 ° to 60 °. In the present embodiment, the locking portion 41A and the locking portion 42A are in contact with each other on the respective locking surfaces 46, and the inclination angle of the locking surface 46 is about 45 °. The fastening portion 43 extends along the axial direction D1 so as to pass through the locking portion 41A and the locking portion 42A. In addition, the fastening portion may extend along the radial direction D2.

上記の超伝導電磁石7においては、フランジ部41及び外周部42のそれぞれは、互いに係止する係止部41A,42Aを有している。このような係止部41A,42Aをフランジ部41及び外周部42のそれぞれが有していることにより、コイル30A,30Bの軸方向D1に発生する電磁力F1は、フランジ部41だけでなく外周部42にも分散される。同様に、コイル30A,30Bの径方向D2に発生する電磁力F2は、外周部42だけでなくフランジ部41にも分散される。これにより、締結部43の軸43Aに交差する方向において、締結部43にかかる力が低減される。したがって、超伝導電磁石3と同様に、支持部材40のフランジ部41と外周部42との固定の信頼性向上を図ることができる。   In the superconducting electromagnet 7 described above, each of the flange portion 41 and the outer peripheral portion 42 has locking portions 41A and 42A that lock with each other. Since each of the flange portion 41 and the outer peripheral portion 42 has such locking portions 41A and 42A, the electromagnetic force F1 generated in the axial direction D1 of the coils 30A and 30B is not limited to the flange portion 41 but to the outer periphery. It is also distributed to the unit 42. Similarly, the electromagnetic force F2 generated in the radial direction D2 of the coils 30A and 30B is dispersed not only in the outer peripheral portion 42 but also in the flange portion 41. Thereby, the force applied to the fastening portion 43 in the direction intersecting the shaft 43A of the fastening portion 43 is reduced. Therefore, similarly to the superconducting electromagnet 3, the reliability of fixing the flange portion 41 and the outer peripheral portion 42 of the support member 40 can be improved.

また、係止部41A,42Aは、外周面32よりも内側に設けられている。これにより、コイル30A,30Bの径方向D2における支持部材40の寸法を低減できるので、超伝導電磁石7の小型化を図ることができる。また、超伝導電磁石7を収容する真空容器5の小型化も図ることができる。   The locking portions 41A and 42A are provided inside the outer peripheral surface 32. Thus, the size of the support member 40 in the radial direction D2 of the coils 30A and 30B can be reduced, so that the size of the superconducting electromagnet 7 can be reduced. Further, the size of the vacuum vessel 5 containing the superconducting electromagnet 7 can be reduced.

また、軸方向D1に交差する方向から見て、フランジ部41の係止部41Aと外周部42の係止部42Aとが互いに対向する係止面46は、軸方向D1に対して傾斜している。これにより、フランジ部41に軸方向D1の電磁力F1がかかると、係止部41A,42Aによって径方向D2内側に向かう力F3が外周部42にかかる。同様に、外周部42に径方向D2の電磁力F2がかかると、係止部41A,42Aによって、軸方向D1においてコイル30A側に向かう力F4がフランジ部41にかかる。すなわち、係止面46が傾斜していることにより、電磁力F1,F2が発生すると、フランジ部41と外周部42とがより強固に係止する。したがって、フランジ部41と外周部42とをより強固に固定することができる。   When viewed from a direction intersecting with the axial direction D1, the locking surface 46 where the locking portion 41A of the flange portion 41 and the locking portion 42A of the outer peripheral portion 42 face each other is inclined with respect to the axial direction D1. I have. Accordingly, when the electromagnetic force F1 in the axial direction D1 is applied to the flange portion 41, a force F3 inward in the radial direction D2 is applied to the outer peripheral portion 42 by the locking portions 41A and 42A. Similarly, when an electromagnetic force F2 in the radial direction D2 is applied to the outer peripheral portion 42, a force F4 toward the coil 30A in the axial direction D1 is applied to the flange portion 41 by the locking portions 41A and 42A. That is, when the locking surfaces 46 are inclined and the electromagnetic forces F1 and F2 are generated, the flange portion 41 and the outer peripheral portion 42 are more firmly locked. Therefore, the flange portion 41 and the outer peripheral portion 42 can be more firmly fixed.

次に、図7を参照して、図6に示される超伝導電磁石7の変形例に係る超伝導電磁石8について説明する。図7は、他の変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。図7に示されるように、超伝導電磁石8が超伝導電磁石7と相違する点は、フランジ部41と外周部42とを接続する接続板47を更に有する点である。接続板47は円環板状の部材であり、フランジ部41の外側に配置されている。締結部43は、接続板47を貫通して軸方向D1に沿って延伸しており、フランジ部41と接続板47、及び、外周部42と接続板47をそれぞれ締結することにより、フランジ部41と外周部42とを締結している。   Next, a superconducting electromagnet 8 according to a modification of the superconducting electromagnet 7 shown in FIG. 6 will be described with reference to FIG. FIG. 7 is a schematic sectional view showing a fastening structure between a flange portion and an outer peripheral portion in a superconducting electromagnet according to another modification. As shown in FIG. 7, the superconducting electromagnet 8 differs from the superconducting electromagnet 7 in that the superconducting electromagnet 8 further includes a connection plate 47 for connecting the flange portion 41 and the outer peripheral portion 42. The connection plate 47 is an annular plate-shaped member, and is disposed outside the flange portion 41. The fastening portion 43 extends through the connection plate 47 along the axial direction D <b> 1. The fastening portion 43 fastens the flange portion 41 to the connection plate 47 and the outer peripheral portion 42 to the connection plate 47. And the outer peripheral portion 42 are fastened.

上記の超伝導電磁石8は、超伝導電磁石7と同様に、フランジ部41及び外周部42のそれぞれは、互いに係止する係止部41A,42Aを有している。また、係止部41A,42Aの係止面46は、軸方向D1に対して傾斜している。したがって、超伝導電磁石8においても、超伝導電磁石7と同様の作用効果を得ることができる。また、接続板47を介してフランジ部41と外周部42とが締結されていることにより、フランジ部41と外周部42との位置ずれが発生しやすい係止部41A,42Aに締結部43を配置する必要がないので、締結部43にかかる力を更に低減できる。   In the superconducting electromagnet 8 described above, similarly to the superconducting electromagnet 7, the flange portion 41 and the outer peripheral portion 42 have locking portions 41A and 42A that lock each other. The locking surfaces 46 of the locking portions 41A and 42A are inclined with respect to the axial direction D1. Therefore, the same effect as the superconducting electromagnet 7 can be obtained also in the superconducting electromagnet 8. In addition, since the flange portion 41 and the outer peripheral portion 42 are fastened via the connection plate 47, the fastening portion 43 is attached to the locking portions 41A and 42A where displacement between the flange portion 41 and the outer peripheral portion 42 is likely to occur. Since it is not necessary to arrange, the force applied to the fastening portion 43 can be further reduced.

次に、図8を参照して、図6に示される超伝導電磁石7の変形例に係る超伝導電磁石9について説明する。図8は、他の変形例に係る超伝導電磁石におけるフランジ部と外周部との締結構造を示す概略断面図である。図8に示されるように、超伝導電磁石9が超伝導電磁石7と相違する点は、係止部41A,42Aの係止面46が傾斜していない点である。軸方向D1に交差する方向から見て、フランジ部41の係止部41Aと外周部42の係止部42Aとが互いに対向する係止面46は階段状になっている。この場合においても、超伝導電磁石7と同様に電磁力F1,F2が分散されるので、締結部43の軸43Aに交差する方向において、締結部43にかかる力が低減される。したがって、支持部材40のフランジ部41と外周部42との固定の信頼性向上を図ることができる。   Next, a superconducting electromagnet 9 according to a modification of the superconducting electromagnet 7 shown in FIG. 6 will be described with reference to FIG. FIG. 8 is a schematic sectional view showing a fastening structure between a flange portion and an outer peripheral portion in a superconducting electromagnet according to another modification. As shown in FIG. 8, superconducting electromagnet 9 differs from superconducting electromagnet 7 in that locking surfaces 46 of locking portions 41A and 42A are not inclined. When viewed from a direction intersecting with the axial direction D1, the locking surface 46 where the locking portion 41A of the flange portion 41 and the locking portion 42A of the outer peripheral portion 42 face each other has a stepped shape. Also in this case, since the electromagnetic forces F1 and F2 are dispersed similarly to the superconducting electromagnet 7, the force applied to the fastening portion 43 in the direction intersecting the axis 43A of the fastening portion 43 is reduced. Therefore, the reliability of fixing the flange portion 41 and the outer peripheral portion 42 of the support member 40 can be improved.

以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に限定されず、種々の変更を行うことができる。例えば、上記の実施形態では、粒子加速器1が超伝導電磁石3を備える例について説明したが、超伝導電磁石3が用いられる機器は粒子加速器に限定されない。一例として、MRI装置に超伝導電磁石3が適用されてもよい。   The embodiments of the present invention have been described above, but the present invention is not limited to the above embodiments, and various changes can be made. For example, in the above-described embodiment, an example in which the particle accelerator 1 includes the superconducting electromagnet 3 has been described, but the device using the superconducting electromagnet 3 is not limited to the particle accelerator. As an example, the superconducting electromagnet 3 may be applied to an MRI apparatus.

また、上記の実施形態では、コイル30A及びコイル30Bを支持するフランジ部41又は外周部42の両方に突出部44が設けられている例について説明したが、一方のコイル30A(又はコイル30B)を支持するフランジ部41又は外周部42のみに突出部が設けられていてもよい。同様に、図6に示される超伝導電磁石7においても、一方のコイル30A(又はコイル30B)を支持するフランジ部41及び外周部42のみが、係止部41A,42Aを有していてもよい。   Further, in the above embodiment, the example in which the protrusions 44 are provided on both the flange portion 41 or the outer peripheral portion 42 that supports the coil 30A and the coil 30B has been described, but one of the coils 30A (or the coil 30B) is provided. The protruding portion may be provided only on the supporting flange portion 41 or the outer peripheral portion 42. Similarly, in superconducting electromagnet 7 shown in FIG. 6, only flange portion 41 and outer peripheral portion 42 that support one coil 30A (or coil 30B) may have locking portions 41A and 42A. .

3,6,7,8,9…超伝導電磁石、30A,30B…コイル、31…対向面、32…外周面、40…支持部材、41…フランジ部、41A…係止部、41A,42A…係止部、42…外周部、43…締結部、44…突出部、46…係止面、A…軸線、D1…軸方向、D2…径方向。   3, 6, 7, 8, 9 ... superconducting electromagnet, 30A, 30B ... coil, 31 ... facing surface, 32 ... outer peripheral surface, 40 ... support member, 41 ... flange portion, 41A ... locking portion, 41A, 42A ... Locking portion, 42: outer peripheral portion, 43: fastening portion, 44: projecting portion, 46: locking surface, A: axis, D1: axial direction, D2: radial direction.

Claims (5)

超伝導線材が軸線まわりに巻回され、前記軸線に沿った軸方向に対向して配置された一対のコイルと、
前記一対のコイルを支持する支持部材と、を備え、
前記支持部材は、
一方の前記コイルにおいて、当該一方のコイルが他方の前記コイルに対向する対向面を支持するフランジ部と、
前記一方のコイルの外周面を支持する外周部と、
前記コイルの径方向に延伸し、前記フランジ部と前記外周部とを締結する締結部と、を有し、
前記外周部は、前記外周面よりも前記径方向の内側に突出して前記フランジ部に入り込む突出部を有する、超伝導電磁石。
A pair of coils in which a superconducting wire is wound around an axis, and arranged in an axial direction along the axis,
A supporting member for supporting the pair of coils,
The support member,
In one of the coils, a flange portion in which the one coil supports a facing surface facing the other coil,
An outer peripheral portion supporting the outer peripheral surface of the one coil,
Extending in the radial direction of the coil, having a fastening portion for fastening the flange portion and the outer peripheral portion,
The superconducting electromagnet, wherein the outer peripheral portion has a protruding portion that protrudes inward in the radial direction from the outer peripheral surface and enters the flange portion.
超伝導線材が軸線まわりに巻回され、前記軸線に沿った軸方向に対向して配置された一対のコイルと、
前記一対のコイルを支持する支持部材と、を備え、
前記支持部材は、
一方の前記コイルにおいて、当該一方のコイルが他方の前記コイルに対向する対向面を支持するフランジ部と、
前記一方のコイルの外周面を支持する外周部と、
前記コイルの前記軸方向に延伸し、前記フランジ部と前記外周部とを締結する締結部と、を有し、
前記フランジ部は、前記対向面よりも前記軸方向における前記一方のコイル側に突出して前記外周部に入り込む突出部を有する、超伝導電磁石。
A pair of coils in which a superconducting wire is wound around an axis, and arranged in an axial direction along the axis,
A supporting member for supporting the pair of coils,
The support member,
In one of the coils, a flange portion in which the one coil supports a facing surface facing the other coil,
An outer peripheral portion supporting the outer peripheral surface of the one coil,
A fastening portion extending in the axial direction of the coil and fastening the flange portion and the outer peripheral portion,
The superconducting electromagnet, wherein the flange portion has a protruding portion that protrudes from the facing surface toward the one coil side in the axial direction and enters the outer peripheral portion.
超伝導線材が軸線まわりに巻回され、前記軸線に沿った軸方向に対向して配置された一対のコイルと、
前記一対のコイルを支持する支持部材と、を備え、
前記支持部材は、
一方の前記コイルにおいて、当該一方のコイルが他方の前記コイルに対向する対向面を支持するフランジ部と、
一方の前記コイルの外周面を支持する外周部と、
前記フランジ部と前記外周部とを締結する締結部とを有し、
前記フランジ部及び前記外周部のそれぞれは、互いに係止する係止部を有する、超伝導電磁石。
A pair of coils in which a superconducting wire is wound around an axis, and arranged in an axial direction along the axis,
A supporting member for supporting the pair of coils,
The support member,
In one of the coils, a flange portion in which the one coil supports a facing surface facing the other coil,
An outer peripheral portion supporting an outer peripheral surface of one of the coils,
Having a fastening portion for fastening the flange portion and the outer peripheral portion,
A superconducting electromagnet, wherein each of the flange portion and the outer peripheral portion has a locking portion that locks each other.
前記係止部は、前記外周面よりも内側に設けられている、請求項3に記載の超伝導電磁石。   The superconducting electromagnet according to claim 3, wherein the locking portion is provided inside the outer peripheral surface. 前記軸方向に交差する方向から見て、前記フランジ部の前記係止部と前記外周部の前記係止部とが互いに対向する係止面は、前記軸方向に対して傾斜している、請求項3又は4に記載の超伝導電磁石。   When viewed from a direction intersecting with the axial direction, a locking surface where the locking portion of the flange portion and the locking portion of the outer peripheral portion face each other is inclined with respect to the axial direction. Item 5. A superconducting electromagnet according to item 3 or 4.
JP2018146680A 2018-08-03 2018-08-03 superconducting electromagnet Active JP7209489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018146680A JP7209489B2 (en) 2018-08-03 2018-08-03 superconducting electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018146680A JP7209489B2 (en) 2018-08-03 2018-08-03 superconducting electromagnet

Publications (2)

Publication Number Publication Date
JP2020021901A true JP2020021901A (en) 2020-02-06
JP7209489B2 JP7209489B2 (en) 2023-01-20

Family

ID=69588902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018146680A Active JP7209489B2 (en) 2018-08-03 2018-08-03 superconducting electromagnet

Country Status (1)

Country Link
JP (1) JP7209489B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220136179A (en) 2021-03-30 2022-10-07 스미도모쥬기가이고교 가부시키가이샤 Superconductive electromagnet, particle accelerator, and particle beam treatment device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571508U (en) * 1978-11-13 1980-05-16
JPS55160481A (en) * 1979-05-31 1980-12-13 Toshiba Corp Superconductive coil containing tank
JPH03174706A (en) * 1989-12-04 1991-07-29 Hitachi Ltd Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus
JPH0661035A (en) * 1992-08-10 1994-03-04 Showa Electric Wire & Cable Co Ltd Manufacture of superconducting coil
JP2006026296A (en) * 2004-07-21 2006-02-02 Nec Saitama Ltd Sealed casing
JP2008004868A (en) * 2006-06-26 2008-01-10 Kobe Steel Ltd Superconducting coil, and quenching prevention method thereof
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
JP2014212250A (en) * 2013-04-19 2014-11-13 住友重機械工業株式会社 Superconducting magnet
JP2014241217A (en) * 2013-06-11 2014-12-25 住友重機械工業株式会社 Cyclotron

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571508U (en) * 1978-11-13 1980-05-16
JPS55160481A (en) * 1979-05-31 1980-12-13 Toshiba Corp Superconductive coil containing tank
JPH03174706A (en) * 1989-12-04 1991-07-29 Hitachi Ltd Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus
JPH0661035A (en) * 1992-08-10 1994-03-04 Showa Electric Wire & Cable Co Ltd Manufacture of superconducting coil
JP2006026296A (en) * 2004-07-21 2006-02-02 Nec Saitama Ltd Sealed casing
JP2008004868A (en) * 2006-06-26 2008-01-10 Kobe Steel Ltd Superconducting coil, and quenching prevention method thereof
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
JP2014212250A (en) * 2013-04-19 2014-11-13 住友重機械工業株式会社 Superconducting magnet
JP2014241217A (en) * 2013-06-11 2014-12-25 住友重機械工業株式会社 Cyclotron

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220136179A (en) 2021-03-30 2022-10-07 스미도모쥬기가이고교 가부시키가이샤 Superconductive electromagnet, particle accelerator, and particle beam treatment device

Also Published As

Publication number Publication date
JP7209489B2 (en) 2023-01-20

Similar Documents

Publication Publication Date Title
JP4008030B2 (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
JP6231039B2 (en) Cyclotron and superconducting electromagnet
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
JP6511069B2 (en) Undulator
JPS63200500A (en) Synchrotron radiation source
JPS61227400A (en) Superconductive magnet system for particle accelerator of synchrotron radiation source
JPS61294800A (en) Magnetic field apparatus for charged particle acceleration or storage equipment
US10332718B1 (en) Compact deflecting magnet
JPS62186500A (en) Charged beam device
JP2017176820A (en) Low-stray-field permanent magnet arrangement for mr apparatuses
JP7209489B2 (en) superconducting electromagnet
US10881881B2 (en) Rotary irradiation apparatus, rotary irradiation method, and rotation radiotherapy apparatus
JP2019096404A (en) Circular accelerator and particle therapy system
KR100999047B1 (en) The Multi-layered Magnetic Field Generator for a ECR Ion Source
JP2008125893A (en) Electromagnet apparatus and magnetic resonance imaging apparatus
JP6096063B2 (en) cyclotron
JP6460922B2 (en) Superconducting deflection electromagnet for beam and beam deflection apparatus using the same
US10790078B2 (en) Apparatus and method for magnetic field compression
JP6534630B2 (en) Superconducting electromagnet device
JP3559659B2 (en) Electron beam cooling device
CN118098751A (en) Superconducting magnet winding device for nuclear waste treatment
JP2945158B2 (en) Deflection magnet for charged particle devices
JP2744672B2 (en) Superconducting magnet device
Murray A general method, a la Transport, for evaluation of the perturbing effects of solenoidal inserts in storage ring interaction regions
JP2511257Y2 (en) Charged particle focusing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230110

R150 Certificate of patent or registration of utility model

Ref document number: 7209489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150