JPH03174706A - Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus - Google Patents

Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus

Info

Publication number
JPH03174706A
JPH03174706A JP1314595A JP31459589A JPH03174706A JP H03174706 A JPH03174706 A JP H03174706A JP 1314595 A JP1314595 A JP 1314595A JP 31459589 A JP31459589 A JP 31459589A JP H03174706 A JPH03174706 A JP H03174706A
Authority
JP
Japan
Prior art keywords
coil
container
coil device
superconducting
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1314595A
Other languages
Japanese (ja)
Inventor
Shohei Suzuki
昌平 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1314595A priority Critical patent/JPH03174706A/en
Publication of JPH03174706A publication Critical patent/JPH03174706A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To improve dimensional accuracy and magnetic field performance by reducing the strain of a vessel by adopting a double structure of an inner coil vessel assembled by welding a thin member and an outer coil vessel assembled by mechanical coupling. CONSTITUTION:An inner coil vessel 2 is formed, in order to contain superconductive coil winding 1 and refrigerant, in a completely sealed structure by welding. Since the vessel 2 is thinly formed, even if it is assembled by welding, strain by welding is minimized. An outer coil vessel 3 is so formed of a thick metal plate member as to fixedly support the winding 1 durably against a generated electromagnetic force. The vessel 3 of the thick structure is assembled by mechanical coupling means, and no problem of strain by welding occurs. Thus, they can be mounted without strain due to welding to enhance dimensional accuracy and magnetic field performance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超伝導コイル装置とこれを含む核融合装置及び
エネルギ貯蔵装置に関し、特に大型の超伝導コイル巻線
を固定支持するのに最適な取イ」け構造であって、高い
精度の磁場を作ることが可能な超伝導コイル装置とこれ
を含む核融合装置及びエネルギ貯蔵装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a superconducting coil device, a nuclear fusion device, and an energy storage device including the same, and particularly to a superconducting coil device that is optimal for fixedly supporting a large superconducting coil winding. The present invention relates to a superconducting coil device that has a unique structure and can generate a highly accurate magnetic field, and to a nuclear fusion device and an energy storage device including the same.

〔従来の技術〕[Conventional technology]

超伝導コイル装置の従来例として特公昭6050329
号公報に開示されたものを挙げることができる。この先
行技術によれば、その第1図に示されるように、超伝導
コイル巻線がコイル容器に収容され、超伝導コイル巻線
とコイル容器の間に楔部材を打ち込んでコイル容器内で
超伝導コイル巻線を固定するようにした構造が従来技術
として開示されている。当該コイル容器は、その内部に
超伝導コイル巻線とこの巻線を所定の極低温に保持する
ための冷媒を収容する機能と、超伝導コイル巻線を励磁
する時に発生する強大な電磁力に対抗して超伝導コイル
巻線を固定支持する機能とを有している。従って、コイ
ル容器は図示例では一枚の容器壁部を有しているが、前
記後者の機能を達成するため、かなり厚肉にて形成され
ている。
As a conventional example of superconducting coil device, Japanese Patent Publication No. 6050329
Examples include those disclosed in Japanese Patent Publication No. According to this prior art, as shown in FIG. 1, a superconducting coil winding is housed in a coil container, a wedge member is driven between the superconducting coil winding and the coil container, and the superconducting coil winding is placed in the coil container. Structures in which conductive coil windings are fixed have been disclosed in the prior art. The coil container has the function of accommodating the superconducting coil winding and a refrigerant to maintain the winding at a predetermined cryogenic temperature, and the function of storing the strong electromagnetic force generated when the superconducting coil winding is excited. In contrast, it has the function of fixedly supporting the superconducting coil winding. Therefore, although the coil container has a single container wall in the illustrated example, it is formed with a considerably thick wall in order to achieve the latter function.

超伝導コイル装置が大型化が進めば進むほど、容器壁部
の厚肉化は顕著になり、例えば70〜90mm程度とな
る場合もある。また前記前者の機能によれば、コイル容
器の内部に液体ヘリウム等の極低温冷媒を収納するため
、コイル容器は溶接によって完全な密閉状態に作られる
As the size of the superconducting coil device progresses, the wall thickness of the container becomes more pronounced, and may be, for example, about 70 to 90 mm thick. According to the former function, the coil container is made completely sealed by welding in order to store a cryogenic refrigerant such as liquid helium inside the coil container.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の超伝導コイル装置のコイル巻線固定構造で
は、コイル容器作製時の溶接によって発生するコイル容
器の歪みについて何等の配慮もされていない。すなわち
、超伝導コイル装置が大型化した場合において、上記の
コイル容器構造を採用して溶接によってコイル容器の密
閉化を行うときには、容器壁部の厚みが相当に大きなも
のとなっているため、組立て溶接時にコイル容器の壁部
が歪み、それによってコイル容器の内部に収容、固定さ
れた超伝導コイル巻線が変形し、設計された所定の磁場
性能を得ることができないという不具合が発生する。
In the coil winding fixing structure of the conventional superconducting coil device described above, no consideration is given to the distortion of the coil container caused by welding when manufacturing the coil container. In other words, when a superconducting coil device becomes larger and the coil container structure described above is adopted and the coil container is hermetically sealed by welding, the thickness of the container wall is considerably large, so it is difficult to assemble the coil container. During welding, the wall of the coil container is distorted, which deforms the superconducting coil winding housed and fixed inside the coil container, resulting in a problem that a predetermined designed magnetic field performance cannot be obtained.

本発明の目的は、上記従来の超伝導コイル装置の問題点
に鑑みこれを有効に解決すべくなされたものであり、組
立て時の溶接でほとんど歪みが発生しないようにし、溶
接による変形が発生しない超伝導コイル巻線取付は構造
を有し、そのため高い磁場性能を発揮する超伝導コイル
装置を提供することにある。
The purpose of the present invention is to effectively solve the problems of the conventional superconducting coil device described above, and it is an object of the present invention to effectively solve the above-mentioned problems of the conventional superconducting coil device. The purpose of the present invention is to provide a superconducting coil device that has a structure in which the superconducting coil winding is attached and therefore exhibits high magnetic field performance.

また本発明の目的は、上記の如く高い磁場性能を有した
超伝導コイル装置を備えた核融合装置及びエネルギ貯蔵
装置を提供することにある。
Another object of the present invention is to provide a nuclear fusion device and an energy storage device equipped with a superconducting coil device having high magnetic field performance as described above.

〔課題を達成するための手段〕[Means to accomplish the task]

本発明に係る第1の超伝導コイル装置は、超伝導導体を
巻いて形成したコイル巻線と、このコイル巻線を冷却す
るための冷媒とを収容したコイル容器を備える超伝導コ
イル装置において、前記コイル容器を、薄肉部材で形成
され且つ溶接結合手段で密閉構造に組立てた第1のコイ
ル容器と、厚肉部材で形成され且つ少なくとも主要部を
機械的結合手段で組立てた第2のコイル容器とから形成
するように構成される。
A first superconducting coil device according to the present invention is a superconducting coil device comprising a coil winding formed by winding a superconducting conductor and a coil container containing a refrigerant for cooling the coil winding. A first coil container, in which the coil container is formed of a thin-walled member and assembled into a sealed structure using a welding connection means; and a second coil container, in which the coil container is formed of a thick-walled member and at least a main portion thereof is assembled by a mechanical connection means. It is configured to form from.

本発明に係る第2の超伝導コイル装置は、前記第1の構
成において、第1のコイル容器がコイル巻線と冷媒を収
容し、第2のコイル容器が第1のコイル容器を収容する
ように構成される。
In the second superconducting coil device according to the present invention, in the first configuration, the first coil container accommodates the coil winding and the refrigerant, and the second coil container accommodates the first coil container. It is composed of

本発明に係る第3の超伝導コイル装置は、前記第1の構
成において、第2のコイル容器がコイル巻線と冷媒を収
容し、第↑のコイル容器が第2のコイル容器を収容する
ように構成される。
A third superconducting coil device according to the present invention is such that, in the first configuration, the second coil container accommodates the coil winding and the refrigerant, and the ↑th coil container accommodates the second coil container. It is composed of

本発明に係る第4の超伝導コイル装置は、前記第1〜3
のいずれか↑つの構成において、第↓及び第2のコイル
容器の断面が多角形である場合に、第↓及び第2のコイ
ル容器の径方向内側の壁部材を共通にしたことを特徴と
する。
A fourth superconducting coil device according to the present invention includes the first to third superconducting coil devices.
In any one of the above configurations, when the cross section of the first ↓ and second coil containers is polygonal, the radially inner wall member of the second ↓ and second coil containers is made common. .

本発明に係る前記超伝導コイル装置において、第2のコ
イル容器は機械的結合手段と溶接結合手段とを併用して
組立てたことを特徴とする。
The superconducting coil device according to the present invention is characterized in that the second coil container is assembled using both mechanical coupling means and welding coupling means.

本発明に係る前記超伝導コイル装置において、冷媒が液
体ヘリウム又は液体窒素であることを特徴とする。
The superconducting coil device according to the present invention is characterized in that the coolant is liquid helium or liquid nitrogen.

本発明に係る前記の超伝導コイル装置において、第2の
コイル装置の機械的結合手段として、ボルト締結手段又
は嵌合結合手段が用いられることを特徴とする。
The superconducting coil device according to the present invention is characterized in that bolt fastening means or fitting coupling means are used as the mechanical coupling means of the second coil device.

本発明に係る核融合装置は、前記構成を有する超伝導コ
イル装置をトロイダルコイル装置又はポロイダルコイル
装置の少な(ともいずれか一方に使用するように構成さ
れる。
The nuclear fusion device according to the present invention is configured to use the superconducting coil device having the above-mentioned configuration as either a toroidal coil device or a poloidal coil device.

本発明に係るエネルギ貯蔵装置は、前記構成を有する超
伝導コイル装置をコイル装置として使用するように構成
される。
The energy storage device according to the present invention is configured to use the superconducting coil device having the above configuration as a coil device.

〔作用〕[Effect]

本発明による超伝導コイル装置では、コイル巻線と冷媒
を収容するコイル容器を内外二重とし、第1のコイル容
器は薄肉部祠で形成し、完全密閉構造となるように溶接
結合で組立て、第2のコイル容器は厚肉部材で形成し、
少なくとも主要部は機械的結合手段を用いて結合し組立
てるように構成する。第1のコイル容器は薄肉で形成さ
れるため溶接を用いても歪みの発生が小さく、組立て溶
接による歪みが減少して超伝導コイルの磁場性能を低減
させることがない。また第2のコイル容器は超伝導コイ
ルの発生する電磁力を支持し、十分な剛性を確保してい
る。
In the superconducting coil device according to the present invention, the coil containers for accommodating the coil windings and the refrigerant are double-layered inside and outside, and the first coil container is formed of a thin-walled part and assembled by welding to form a completely sealed structure. The second coil container is formed of a thick-walled member,
At least the main parts are configured to be coupled and assembled using mechanical coupling means. Since the first coil container is formed with a thin wall, even if welding is used, the generation of distortion is small, and the distortion caused by assembly welding is reduced, so that the magnetic field performance of the superconducting coil is not reduced. Further, the second coil container supports the electromagnetic force generated by the superconducting coil and ensures sufficient rigidity.

本発明による核融合装置及びエネルギ貯蔵装置では、本
発明による超伝導コイル装置を利用しているため磁場性
能を高く保持でき、核融合装置及びエネルギ貯蔵装置の
本来の全体性能を高くすることができる。
Since the nuclear fusion device and energy storage device according to the present invention utilize the superconducting coil device according to the present invention, it is possible to maintain high magnetic field performance and improve the original overall performance of the nuclear fusion device and energy storage device. .

〔実施例〕〔Example〕

以下に、本発明の実施例を添付図面に基づいて説明する
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明に係る超伝導コイル装置の要部断面図を
示す。本発明による超伝導コイル装置では超伝導コイル
巻線を収容するコイル容器を内外二重構造とした点に特
徴がある。
FIG. 1 shows a sectional view of essential parts of a superconducting coil device according to the present invention. The superconducting coil device according to the present invention is characterized in that the coil container that accommodates the superconducting coil winding has a dual structure inside and outside.

第1図において、1はリング形状の超伝導コイル巻線で
あり、2は内側に位置するリング形状の内側コイル容器
であり、3は外側に位置するリング形状の外側コイル容
器である。超伝導コイル巻線1は周知の如く多数の基本
のコイル巻線を相互に隙間を設けて配設することにより
構成されるものである。隙間の間には超伝導コイル巻線
1を極低温に冷却するための液体ヘリウムや液体窒素等
の冷媒が流れる。この隙間は通常クーリングチャンネル
と呼ばれる。かかる超伝導コイル巻線1を収容する内側
コイル容器2は薄肉の金属板部祠によって形成されてい
る。内側コイル容器2は、超伝導コイル巻線1と前記冷
媒を収容する。冷媒を収容しなければならないため、内
側コイル容器2は溶接を用いて完全な密閉構造に形成さ
れる。内側コイル容器2は可能な範囲で薄肉に形成され
ているため、溶接によって組み立てられても溶接によっ
て生じる歪みは極小となる。また、外側コイル容器3は
超伝導コイル巻線王の発生する電磁力に耐え超伝導コイ
ル巻線1を固定支持することができるように厚肉の金属
板部材で形成されている。
In FIG. 1, 1 is a ring-shaped superconducting coil winding, 2 is a ring-shaped inner coil container located inside, and 3 is a ring-shaped outer coil container located outside. As is well known, the superconducting coil winding 1 is constructed by arranging a large number of basic coil windings with gaps between them. A coolant such as liquid helium or liquid nitrogen flows between the gaps to cool the superconducting coil winding 1 to an extremely low temperature. This gap is usually called a cooling channel. An inner coil container 2 accommodating the superconducting coil winding 1 is formed of a thin metal plate. The inner coil container 2 accommodates the superconducting coil winding 1 and the refrigerant. Since the refrigerant must be contained, the inner coil container 2 is formed into a completely sealed structure using welding. Since the inner coil container 2 is formed to be as thin as possible, even when assembled by welding, distortion caused by welding is minimal. Further, the outer coil container 3 is formed of a thick metal plate member so as to be able to withstand the electromagnetic force generated by the superconducting coil winding and fixedly support the superconducting coil winding 1.

超伝導コイル巻線1の励磁時には例えば長さ1mあたり
に1000)ンの電磁力が加わる。このような電磁力で
超伝導コイル巻線↓が変形しないように外側コイル容器
3は強大な支持構造の機能を発揮する必要がある。かか
る条件を満足するように外側コイル容器3は厚肉構造に
て形成される。
When the superconducting coil winding 1 is excited, an electromagnetic force of, for example, 1000 mm is applied per meter of length. In order to prevent the superconducting coil winding ↓ from being deformed by such electromagnetic force, the outer coil container 3 must function as a powerful support structure. In order to satisfy these conditions, the outer coil container 3 is formed with a thick wall structure.

またこのような厚肉構造を有する外側コイル容器3の組
立てには、全部又は主要部について機械的結合手段が使
用される。なお、主要部について機械的結合手段が使用
される場合、外側コイル容器3にもその他の部分には差
障りがない範囲内で溶接を使用することが可能である。
Further, in assembling the outer coil container 3 having such a thick-walled structure, mechanical coupling means is used for all or the main parts. In addition, when mechanical coupling means are used for the main parts, it is possible to use welding for the outer coil container 3 and other parts within a range that does not cause any problem.

このように外側コイル容器3については主たる組立て手
段として溶接を使用しないため、組立て溶接による歪み
の問題は発生しない。
As described above, since welding is not used as the main assembly method for the outer coil container 3, the problem of distortion due to assembly and welding does not occur.

なお、前記の外側コイル容器3の外側は、極低温冷媒へ
の外熱の侵入と、侵入による蒸発量の増大とを抑制する
ため断熱真空雰囲気て構成されている。
Note that the outside of the outer coil container 3 is configured with an adiabatic vacuum atmosphere in order to suppress the intrusion of external heat into the cryogenic refrigerant and the increase in the amount of evaporation due to the intrusion.

第2図は上記実施例の具体的組立て構造を断面図にて示
す。第2図によれば、超伝導コイル巻線1を組立て、そ
の外側に内側コイル容器2を取付ける。内側コイル容器
2は溶接によって組み立てられ、完全な密閉構造を有し
、冷媒をシールすることができる。全体的にリング状に
形成された超伝導コイル巻線1と内側コイル容器2の組
立て体1 に対し、厚肉の例えば内筒部利3A及び外筒部材3Bを
それぞれ内側、外側に配置し、且つかかる内筒部材3A
と外筒部材3Bを嵌合せしめる構造を有する厚肉の側板
部材3Cを両側(図中」二重の位置)に配置し、ボルト
4で所定の複数箇所を結合し、内筒部材3Aと外筒部材
3Bと側板部組3Cを一体化する。
FIG. 2 shows a concrete assembly structure of the above embodiment in a sectional view. According to FIG. 2, a superconducting coil winding 1 is assembled, and an inner coil container 2 is attached to the outside thereof. The inner coil container 2 is assembled by welding, has a completely hermetic structure, and can seal the refrigerant. For an assembly 1 of a superconducting coil winding 1 and an inner coil container 2, which are formed into a ring shape as a whole, thick-walled inner cylindrical parts 3A and outer cylindrical members 3B are arranged inside and outside, respectively. Moreover, such an inner cylinder member 3A
Thick-walled side plate members 3C having a structure for fitting the inner cylinder member 3A and the outer cylinder member 3B are arranged on both sides (double position in the figure), and are connected at a plurality of predetermined locations with bolts 4 to connect the inner cylinder member 3A and the outer cylinder member 3B. The cylinder member 3B and the side plate assembly 3C are integrated.

上記実施例では、外側コイル容器3を組立てる機械的結
合手段としてボルトを使用したが、単に嵌合結合によっ
て組み付けるように構成することも可能である。
In the above embodiment, bolts are used as mechanical coupling means for assembling the outer coil container 3, but it is also possible to construct the assembly by simply fitting and coupling.

第3図は本発明の他の実施例を示す。この実施例では、
前記実施例において、外側コイル容器3の径方向におけ
る内側の壁部を省略するような構造を有している。すな
わち、超伝導コイル装置における励磁時の電磁力荷重は
径方向の外方に向かって強(作用し、内方に向かっては
それ程強く作用しないので、超伝導コイル巻線工の内径
側の箇所は内側コイル容器2のみとし、−重構造とした
ものである。その他の構造については第1図に示された
構造と同じである。この実施例による超伝導コイル装置
でも、従来の装置に比較して、組立てのための溶接量は
大幅に減少しており、溶接歪みの少ない高性能な超伝導
コイル装置としての機能を発揮する。
FIG. 3 shows another embodiment of the invention. In this example,
In the embodiment described above, the structure is such that the inner wall portion in the radial direction of the outer coil container 3 is omitted. In other words, the electromagnetic force load during excitation in a superconducting coil device acts strongly outward in the radial direction, and does not act as strongly inward, so The superconducting coil device according to this embodiment has only the inner coil container 2 and has a -layered structure.The other structure is the same as the structure shown in Fig. 1.The superconducting coil device according to this embodiment also has a large structure compared to the conventional device. As a result, the amount of welding required for assembly has been significantly reduced, and the device functions as a high-performance superconducting coil device with little welding distortion.

第4図は前記他の実施例の具体的な構成例を示す。前記
の内筒部+4’ 3 Aが不要になっただけであり、そ
の他の構成については第2図に示した構成と同じである
FIG. 4 shows a specific example of the configuration of the other embodiment. Only the above-mentioned inner cylinder part +4' 3 A is no longer necessary, and the other configurations are the same as the configuration shown in FIG. 2.

前記各実施例では、内側コイル容器を薄肉で溶接を用い
て形成し、外側コイル容器を厚肉で機械的結合手段を用
いて形成したが、内外のコイル容器の構造を反対にする
ことも可能である。この場合には、外側の薄肉の溶接結
合構造を有するコイル容器が厚肉の内側コイル容器を収
容する構造となる。
In each of the above embodiments, the inner coil container is thin and formed using welding, and the outer coil container is thick and formed using mechanical coupling means, but it is also possible to reverse the structure of the inner and outer coil containers. It is. In this case, the structure is such that an outer thin-walled coil container having a welded joint structure accommodates a thick-walled inner coil container.

本発明に係る超伝導コイル装置の適用例を第5図及び第
6図に示す。第5図は核融合装置の一部断面平面図、第
6図は第5図中のVI−VI線断面図である。この核融
合装置では、プラズマ11を所定の空間に閉じ込めるた
めにそれぞれ複数のトロイダルコイル12やポロイダル
コイルエ3が配設されている。これらのトロイダルコイ
ル12とポロイダルコイル13に前記実施例で示した構
造を有する超伝導コイル装置を用いることができる。
Application examples of the superconducting coil device according to the present invention are shown in FIGS. 5 and 6. FIG. 5 is a partially sectional plan view of the nuclear fusion device, and FIG. 6 is a sectional view taken along the line VI-VI in FIG. In this nuclear fusion device, a plurality of toroidal coils 12 and a plurality of poloidal coils 3 are provided to confine plasma 11 in a predetermined space. A superconducting coil device having the structure shown in the above embodiment can be used for these toroidal coils 12 and poloidal coils 13.

前記実施例の超伝導コイル装置を使用すれば、プラズマ
↑1を閉じ込める磁場の精度を向上させ、性能の高い核
融合装置を実現することができる。
By using the superconducting coil device of the above embodiment, it is possible to improve the accuracy of the magnetic field that confines the plasma ↑1 and realize a high-performance nuclear fusion device.

なお第5図中、1つのトロイダルコイルの断面だけ内外
二重のコイル容器構造を示し、その他の断面については
通常の断面表示で示し、詳細な図示を省略した。
In addition, in FIG. 5, only the cross section of one toroidal coil shows the double inner and outer coil container structure, and the other cross sections are shown in normal cross-sectional representation, and detailed illustrations are omitted.

本発明に係る超伝導コイル装置は、同様に、エネルギ貯
蔵装置のコイル装置としても用いることができる。
The superconducting coil device according to the present invention can also be used as a coil device for an energy storage device.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明によれば次のよう
な効果が発生する。
As is clear from the above description, according to the present invention, the following effects occur.

超伝導コイル巻線を収容するコイル容器を、薄肉部材で
形成され且つ溶接で組立てられる第1のコイル容器と厚
肉部材で形成され且つ機械的結合手段で組立てる第2の
コイル容器とによる内外二重構造としたため、組立て溶
接量が少なくなり、溶接歪みを低減することができ、溶
接歪みによる超伝導コイル装置の変形が小さくなり、も
って装置全体の寸法精度が高くなり、磁場性能を高くす
ることができる。
A coil container accommodating a superconducting coil winding is divided into two parts: a first coil container made of a thin-walled member and assembled by welding, and a second coil container made of a thick-walled member and assembled by mechanical coupling means. Due to the heavy structure, the amount of assembly welding is reduced and welding distortion can be reduced, and the deformation of the superconducting coil device due to welding distortion is reduced, resulting in higher dimensional accuracy of the entire device and higher magnetic field performance. I can do it.

高い磁場性能を有する本発明による超伝導コイル装置を
使用して核融合装置及びエネルギ貯蔵装置を作製したた
め、核融合装置及びエネルギ貯蔵装置は本来の機能に関
し高い性能をを発揮することができる。
Since the fusion device and the energy storage device are fabricated using the superconducting coil device according to the present invention having high magnetic field performance, the fusion device and the energy storage device can exhibit high performance with respect to their original functions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例に係る超伝導コイル装置を
示す縦断面図、第2図は第1実施例の超伝導コイル装置
の具体的組立て構造を示す縦断面図、第3図は本発明の
他の実施例を示す第1図と同様な図、第4図は前記性の
実施例の超伝導コイル装置の具体的組立て構造を示す第
2図と同様な図、第5図は本発明を適用した核融合装置
の一部5 第6図は第5図中のVI−VI線断面図断面平面図、 である。 〔符号の説明〕 1・・・・ 2・・・・ 3・・・・ 4・・・・ 12・・・ 13・・・ ・超伝導コイル巻線 ・内側コイル容器 ・外側コイル容器 ・ボルト ・トロイダルコイル ・ポロイダルコイル
FIG. 1 is a longitudinal sectional view showing a superconducting coil device according to a first embodiment of the present invention, FIG. 2 is a longitudinal sectional view showing a specific assembly structure of the superconducting coil device according to the first embodiment, and FIG. 4 is a diagram similar to FIG. 1 showing another embodiment of the present invention, FIG. 4 is a diagram similar to FIG. 2 showing a specific assembly structure of the superconducting coil device of the above embodiment, and FIG. 6 is a cross-sectional plan view taken along the line VI-VI in FIG. 5. FIG. [Explanation of symbols] 1... 2... 3... 4... 12... 13... ・Superconducting coil winding・Inner coil container・Outer coil container・Bolt・Toroidal coil/poloidal coil

Claims (11)

【特許請求の範囲】[Claims] (1)超伝導導体を巻いて形成したコイル巻線とこのコ
イル巻線を冷却するための冷媒とを収容したコイル容器
を備える超伝導コイル装置において、前記コイル容器を
、薄肉部材で形成され且つ溶接結合手段で密閉構造に組
立てた第1のコイル容器と、厚肉部材で形成され且つ少
なくとも主要部を機械的結合手段で組立てた第2のコイ
ル容器とから形成したことを特徴とする超伝導コイル装
置。
(1) In a superconducting coil device comprising a coil container containing a coil winding formed by winding a superconducting conductor and a refrigerant for cooling the coil winding, the coil container is formed of a thin-walled member, and A superconductor characterized in that it is formed from a first coil container that is assembled into a sealed structure by welding coupling means, and a second coil container that is formed of a thick-walled member and at least a main part is assembled by mechanical coupling means. coil device.
(2)請求項1記載の超伝導コイル装置において、前記
第1のコイル容器は前記コイル巻線と前記冷媒を収容し
、前記第2のコイル容器は前記第1のコイル容器を収容
することを特徴とする超伝導コイル装置。
(2) In the superconducting coil device according to claim 1, the first coil container accommodates the coil winding and the refrigerant, and the second coil container accommodates the first coil container. Characteristic superconducting coil device.
(3)請求項1記載の超伝導コイル装置において、前記
第2のコイル容器は前記コイル巻線と前記冷媒を収容し
、前記第1のコイル容器は前記第2のコイル容器を収容
することを特徴とする超伝導コイル装置。
(3) In the superconducting coil device according to claim 1, the second coil container accommodates the coil winding and the refrigerant, and the first coil container accommodates the second coil container. Characteristic superconducting coil device.
(4)請求項1〜3のいずれか1項に記載の超伝導コイ
ル装置において、前記第1及び第2のコイル容器の断面
が多角形である場合に、前記第1及び第2のコイル容器
の径方向内側の壁部材を共通にしたことを特徴とする超
伝導コイル装置。
(4) In the superconducting coil device according to any one of claims 1 to 3, when the first and second coil containers have polygonal cross sections, the first and second coil containers have polygonal cross sections. A superconducting coil device characterized by having a common radially inner wall member.
(5)請求項1記載の超伝導コイル装置において、前記
第2のコイル容器は機械的結合手段と溶接結合手段とを
併用して組立てたことを特徴とする超伝導コイル装置。
(5) The superconducting coil device according to claim 1, wherein the second coil container is assembled using a combination of mechanical coupling means and welding coupling means.
(6)請求項1記載の超伝導コイル装置において、前記
冷媒が液体ヘリウムであることを特徴とする超伝導コイ
ル装置。
(6) The superconducting coil device according to claim 1, wherein the coolant is liquid helium.
(7)請求項1記載の超伝導コイル装置において、前記
冷媒が液体窒素であることを特徴とする超伝導コイル装
置。
(7) The superconducting coil device according to claim 1, wherein the coolant is liquid nitrogen.
(8)請求項1記載の超伝導コイル装置において、前記
第2のコイル装置の機械的結合手段としてボルト締結手
段が用いられることを特徴とする超伝導コイル装置。
(8) The superconducting coil device according to claim 1, wherein bolt fastening means is used as the mechanical coupling means of the second coil device.
(9)請求項1記載の超伝導コイル装置において、前記
第2のコイル装置の機械的結合手段として嵌合結合手段
が用いられることを特徴とする超伝導コイル装置。
(9) The superconducting coil device according to claim 1, wherein a fitting coupling means is used as the mechanical coupling means of the second coil device.
(10)核融合装置において、請求項1〜9のいずれか
1項に記載された超伝導コイル装置をトロイダルコイル
装置又はポロイダルコイル装置の少なくともいずれか一
方に使用したことを特徴とする核融合装置。
(10) A nuclear fusion device, characterized in that the superconducting coil device according to any one of claims 1 to 9 is used in at least one of a toroidal coil device and a poloidal coil device.
(11)コイル装置を備えたエネルギ貯蔵装置において
、請求項1〜9のいずれか1項に記載された超伝導コイ
ル装置を前記コイル装置に使用したことを特徴とするエ
ネルギ貯蔵装置。
(11) An energy storage device comprising a coil device, characterized in that the superconducting coil device according to any one of claims 1 to 9 is used in the coil device.
JP1314595A 1989-12-04 1989-12-04 Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus Pending JPH03174706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314595A JPH03174706A (en) 1989-12-04 1989-12-04 Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314595A JPH03174706A (en) 1989-12-04 1989-12-04 Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus

Publications (1)

Publication Number Publication Date
JPH03174706A true JPH03174706A (en) 1991-07-29

Family

ID=18055191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314595A Pending JPH03174706A (en) 1989-12-04 1989-12-04 Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus

Country Status (1)

Country Link
JP (1) JPH03174706A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013219195A (en) * 2012-04-09 2013-10-24 Chubu Electric Power Co Inc Conduction cooling plate of superconducting coil and superconducting coil device
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
JP2020021901A (en) * 2018-08-03 2020-02-06 住友重機械工業株式会社 Superconducting electromagnet
JP2021077810A (en) * 2019-11-12 2021-05-20 住友重機械工業株式会社 Superconducting coil device and current lead structure of superconducting coil
JP2021077811A (en) * 2019-11-12 2021-05-20 住友重機械工業株式会社 Superconducting coil device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
JP2013219195A (en) * 2012-04-09 2013-10-24 Chubu Electric Power Co Inc Conduction cooling plate of superconducting coil and superconducting coil device
JP2020021901A (en) * 2018-08-03 2020-02-06 住友重機械工業株式会社 Superconducting electromagnet
JP2021077810A (en) * 2019-11-12 2021-05-20 住友重機械工業株式会社 Superconducting coil device and current lead structure of superconducting coil
JP2021077811A (en) * 2019-11-12 2021-05-20 住友重機械工業株式会社 Superconducting coil device

Similar Documents

Publication Publication Date Title
EP1739446B1 (en) A MRI superconductive magnet
US8305173B2 (en) Superconductive magnet
JP3940454B2 (en) Magnet assembly
US6011454A (en) Superconducting magnet suspension assembly
US6078234A (en) Helium vessel for open architecture magnetic resonance imaging superconducting magnet
US5701112A (en) Cryogenic MRI magnets
US5736859A (en) Cryogenic MRI magnets
JPH09120912A (en) Open structure conductive cooling magnetic resonance imagingmagnet
JPH03174706A (en) Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus
US5225782A (en) Eddy current free MRI magnet with integrated gradient coils
JPS6118349A (en) Rotor of superconductive rotary electric machine
GB2326527A (en) Superconducting magnet
JP3824412B2 (en) Superconducting magnet device for crystal pulling device
JPH04294503A (en) Coil body and coil container
JP2569165B2 (en) Superconducting magnet for nuclear magnetic resonance imaging equipment
JPH0442977A (en) Superconducting magnet device
JPH10340811A (en) Superconducting magnet apparatus
JPH0442511A (en) Superconducting magnet
JP2765044B2 (en) Cryogenic support structure
JPS5856242B2 (en) Superconducting magnet device
JPS62274707A (en) Superconducting coil and manufacture thereof
JP3068922B2 (en) Superconducting magnet
JPS603555Y2 (en) superconducting coil
JP2002093616A (en) Open-type superconducting magnet device and magnetic resonance imaging equipment using the same
JPH11162725A (en) Superconducting magnet