JP2002093616A - Open-type superconducting magnet device and magnetic resonance imaging equipment using the same - Google Patents

Open-type superconducting magnet device and magnetic resonance imaging equipment using the same

Info

Publication number
JP2002093616A
JP2002093616A JP2000282719A JP2000282719A JP2002093616A JP 2002093616 A JP2002093616 A JP 2002093616A JP 2000282719 A JP2000282719 A JP 2000282719A JP 2000282719 A JP2000282719 A JP 2000282719A JP 2002093616 A JP2002093616 A JP 2002093616A
Authority
JP
Japan
Prior art keywords
pair
magnetic material
disposed
cooling
open
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000282719A
Other languages
Japanese (ja)
Other versions
JP2002093616A5 (en
JP4565721B2 (en
Inventor
Hirotaka Takeshima
弘隆 竹島
Kenji Sakakibara
健二 榊原
Yoshihide Wadayama
芳英 和田山
Takao Honna
孝男 本名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2000282719A priority Critical patent/JP4565721B2/en
Publication of JP2002093616A publication Critical patent/JP2002093616A/en
Publication of JP2002093616A5 publication Critical patent/JP2002093616A5/ja
Application granted granted Critical
Publication of JP4565721B2 publication Critical patent/JP4565721B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a open-type superconducting magnet for MRI equipment, where a subject would sense openness when he undergoes a medical examination, and an operator is improved in accessibility to the subject from sideways. SOLUTION: A superconducting magnet is composed of an upper superconducting coil 10 and a lower superconductive coil 12, an upper magnetic plate 20 and a lower magnetic plate 22 are provided, so as to restrain a leakage magnetic flux, magnetic material poles 24 and 26 are provided to support the magnetic plates 20 and 22, and an upper cooling vessel 16 and a lower cooling vessel 18 house the superconducting coils 10 and 12 and the magnetic material poles 24 and 26. Connecting tubes 44 and 46 linking the cooling vessels 16 and 18 are, so disposed at positions as to overlap with each other as seen from the center of a uniform magnetic field space 14 and so to be located toward the inner side in the direction, into which the subject is introduced, and a refrigerator 48 for cooling down the superconducting coils 10 and 12 is provided above the upper magnetic material plate 20 and apart from the magnetic material poles 24 and 26.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は、被検者へのアクセ
ス性および被検者の開放感の点から優れた、磁気共鳴イ
メージング装置(以下MRI装置と称する)に用いられ
る側面が開放された磁場発生源である上下に対向して配
置された一対の超電導コイルから構成される開放型超電
導磁石装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an open side for use in a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus), which is excellent in terms of accessibility to a subject and a feeling of openness of the subject. The present invention relates to an improvement of an open type superconducting magnet device comprising a pair of superconducting coils arranged vertically opposite each other as a magnetic field generating source.

【0002】[0002]

【従来技術】この種のMRI装置用開放型超電導磁石装
置は、例えば、特開平4−132539および特開平5
−234746等に開示されている。これら従来技術に
開示されている開放型超電導磁石装置では、上下に対向
して配設される一対の超電導コイルを各々収容するドー
ナッツ形状の上下一対の冷却容器を電気的、熱的あるい
は構造的に連結する連結管の構造および配置および、こ
れら上下一対の冷却容器中に各々収容される一対の超電
導コイルを冷却するための冷凍機の構造および配置につ
いて十分な配慮がなされておらず、そのためこれら連結
管および冷凍機が術者の被検者へのアクセス性および被
検者の開放感を阻害する原因ともなっていた。
2. Description of the Related Art This type of open superconducting magnet apparatus for an MRI apparatus is disclosed in, for example, Japanese Patent Application Laid-Open Nos.
234746. In the open-type superconducting magnet device disclosed in these prior arts, a pair of upper and lower donut-shaped cooling containers accommodating a pair of superconducting coils disposed vertically facing each other are electrically, thermally or structurally. Sufficient consideration has not been given to the structure and arrangement of the connecting pipes to be connected and the structure and arrangement of the refrigerator for cooling the pair of superconducting coils housed in the pair of upper and lower cooling vessels, respectively. The tube and the refrigerator were also a factor that hindered the operator's accessibility to the subject and the open feeling of the subject.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、被検
者には高い開放感を与えかつ術者には被検者への高いア
クセス性と広い作業スペースを与えるMRI装置用開放
型超電導磁石装置を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide an open superconductivity for an MRI apparatus which gives a subject a high sense of openness and gives a surgeon high access to the subject and a wide working space. It is to provide a magnet device.

【0004】[0004]

【課題を解決するための手段】上記した本発明の目的
は、上下一対の冷却容器中にそれぞれ収容された上下一
対の超伝導コイルを冷却する冷凍機を、上下一対の冷却
容器の上側および下側に配設した上下一対の磁性材プレ
ートを磁気的、機械的に結合している磁性材柱から遠い
位置で上下一対の磁性材プレート中の上側の磁性材プレ
ート上に配設し、上側の磁性材プレートに形成した切り
欠き部を通して上下一対の冷却容器中の上側の冷却容器
に結合することによって達成される。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a refrigerator for cooling a pair of upper and lower superconducting coils housed in a pair of upper and lower cooling vessels, respectively. The pair of upper and lower magnetic material plates disposed on the upper side are disposed on the upper magnetic material plate of the pair of upper and lower magnetic material plates at a position distant from the magnetic material column that is magnetically and mechanically coupled. This is achieved by connecting the upper cooling container of the pair of upper and lower cooling containers through a cutout formed in the magnetic material plate.

【0005】上記した本発明の目的は、さらに、上下一
対の冷却容器の上側および下側に配設した上下一対の磁
性材プレートを磁気的および機械的に結合する磁性材柱
を、上下一対のドーナッツ状冷却容器中に収容される上
下一対の超電導コイルによって形成される被検者を挿入
しMRI撮影を行うための均一磁場空間の中心から奥の
方向に偏って配設しかつ上下一対の冷却容器を電気的、
熱的に連結する連結管も上記均一磁場空間の中心から見
て磁性材柱の配設方向とほぼ同じ方位に配設しかつドー
ナッツ形状の上下一対の冷却容器の外周部外側に配設す
ることによって達成される。
The object of the present invention is further to provide a magnetic material column that magnetically and mechanically couples a pair of upper and lower magnetic material plates disposed above and below a pair of upper and lower cooling vessels. A pair of superconducting coils formed by a pair of upper and lower superconducting coils housed in a donut-shaped cooling container are arranged so as to be deviated from the center of the uniform magnetic field space to the back for performing MRI imaging, and a pair of upper and lower cooling units are provided. Electrical container,
The connecting pipe thermally connected is also arranged in substantially the same direction as the arrangement direction of the magnetic material columns when viewed from the center of the uniform magnetic field space, and is arranged outside the outer periphery of a pair of upper and lower donut-shaped cooling vessels. Achieved by

【0006】[0006]

【発明の実施の形態】図1、図2、図3によって本発明
の第1の実施例である開放型超電導磁石装置を説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An open superconducting magnet apparatus according to a first embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3. FIG.

【0007】上下一対の対称に配置された超電導コイル
10、12にそれぞれ同一方向の直流励磁電流が流され
ると、この上下一対の超電導コイル10、12間に、上
下方向に均一な静磁場が発生し、この磁石の中央に、被
検者を挿入しMRI撮影を行うための均一磁場空間14
が形成される。
When a DC exciting current in the same direction flows through a pair of upper and lower symmetrically arranged superconducting coils 10 and 12, a uniform static magnetic field is generated vertically between the pair of upper and lower superconducting coils 10 and 12. Then, a uniform magnetic field space 14 for inserting a subject and performing MRI imaging is provided in the center of the magnet.
Is formed.

【0008】上下一対の超電導コイル10、12はそれ
ぞれ上下一対の冷却容器16、18内に収容されてい
る。
The pair of upper and lower superconducting coils 10 and 12 are accommodated in a pair of upper and lower cooling vessels 16 and 18, respectively.

【0009】超電導コイル10、12の上下方向外側に
は磁石装置外部への漏洩磁場を抑制するためそれぞれの
超電導コイル10、12に近接して上下一対の磁性材プ
レート20、22が配置されており、またこれら磁性材
プレート20、22は2本の磁性材柱24、26によっ
て磁気的に結合されると共に構造的にも支持されてい
る。
A pair of upper and lower magnetic material plates 20 and 22 are arranged close to the superconducting coils 10 and 12, respectively, outside the superconducting coils 10 and 12 in order to suppress a leakage magnetic field to the outside of the magnet device. The magnetic material plates 20, 22 are magnetically coupled by two magnetic material columns 24, 26 and are structurally supported.

【0010】上下一対の超電導コイル10、12の内側
には、上下一対の突出部を有するポールピース28、3
0が設けられている。それぞれのポールピース28、3
0に包囲されたそれぞれの円形の凹部には、静磁場中の
位置情報を与えるためのそれぞれ上下一対の傾斜磁場コ
イル32、34が設けられている。またそれぞれの傾斜
磁場コイル32、34の背後には磁場均一度制御部材3
6、38が配設されている。
Inside the pair of upper and lower superconducting coils 10, 12, pole pieces 28, 3 having a pair of upper and lower protrusions are provided.
0 is provided. Each pole piece 28, 3
A pair of upper and lower gradient magnetic field coils 32 and 34 for providing positional information in a static magnetic field are provided in the respective circular concave portions surrounded by zero. Behind the respective gradient magnetic field coils 32 and 34, a magnetic field uniformity control member 3 is provided.
6, 38 are provided.

【0011】なおこの図1において、紙面の上下方向を
Z方向、左右方向をX方向、垂直方向をY方向と定義す
る。
In FIG. 1, the vertical direction of the paper is defined as the Z direction, the horizontal direction as the X direction, and the vertical direction as the Y direction.

【0012】図2は超電導コイル10と、冷却容器16
の部分の拡大図である。この超電導コイル10はその超
電導特性を発揮できる所定温度にまで冷却するため冷却
容器16の中に配置される。冷却容器16としては最外
部を真空槽40で囲み、その内側に冷媒槽(本実施例で
は液体ヘリウム槽)42を配置している。また、図示し
ていないが、真空槽40と冷媒槽42の間には熱シール
ドを配置し、輻射による熱の流入を防止することで冷媒
槽42(最終的には、超電導コイル10)への熱侵入を
抑制している。
FIG. 2 shows a superconducting coil 10 and a cooling vessel 16.
It is an enlarged view of the part. The superconducting coil 10 is arranged in a cooling vessel 16 for cooling to a predetermined temperature at which the superconducting properties can be exhibited. As the cooling vessel 16, the outermost part is surrounded by a vacuum tank 40, and a refrigerant tank (liquid helium tank in this embodiment) 42 is arranged inside the vacuum tank 40. Although not shown, a heat shield is arranged between the vacuum tank 40 and the refrigerant tank 42 to prevent the inflow of heat due to radiation, thereby preventing the heat from flowing into the refrigerant tank 42 (finally, the superconducting coil 10). It suppresses heat penetration.

【0013】さらに、本超電導磁石装置では、上下の冷
却容器16、18を電気的、熱的、あるいは上下超電導
コイル10、12間に働く電磁力、および荷重に耐えら
れるように構造的に接続する連絡管44、46を設けて
いる。上下の冷却容器16、18と同様に、これらの連
結管44、46も真空槽と冷媒槽等から構成され、この
冷媒槽により上下の冷却容器16、18を結合すること
で冷媒を連通させている。なお、上下の超電導コイル1
0、12を所定の距離で保持するために、この冷媒槽内
に上下支持材を配置してもよい。本実施例では連結管4
4、46の周方向における配置個所は、均一磁場空間の
中心から見て周方向の位置を磁性材柱24、26と同一
にしたので視界が広がり、開放性が増加する。
Further, in the present superconducting magnet apparatus, the upper and lower cooling vessels 16, 18 are electrically, thermally, or structurally connected so as to withstand the electromagnetic force and load acting between the upper and lower superconducting coils 10, 12. Communication pipes 44 and 46 are provided. Similarly to the upper and lower cooling vessels 16 and 18, these connecting pipes 44 and 46 also include a vacuum tank and a refrigerant tank, and the upper and lower cooling vessels 16 and 18 are connected by the refrigerant tank so that the refrigerant communicates. I have. The upper and lower superconducting coils 1
In order to hold 0 and 12 at a predetermined distance, upper and lower support members may be arranged in the refrigerant tank. In this embodiment, the connecting pipe 4
The positions of the circumferential positions 4 and 46 in the circumferential direction are the same as the positions of the magnetic material columns 24 and 26 in the circumferential direction when viewed from the center of the uniform magnetic field space.

【0014】本実施例では、IVR等への利用を考え、
被検者の側方が広く開けられるよう、2本の連結管4
4、46を使用しているが、本数はこれに限らず、1
本、または3本以上でもよい。さらに、本実施例では、
以下で説明する図4に示すように、連結管44、46、
磁性材柱24、26を前後・非対称に、即ち被検者挿入
方向の奥側に配置することで、前方側の両側方に十分に
広いスペースを形成している。
In this embodiment, use for an IVR or the like is considered.
Two connecting pipes 4 are provided so that the sides of the subject can be opened widely.
4, 46 are used, but the number is not limited to this.
It may be a book, or three or more. Further, in this embodiment,
As shown in FIG. 4 described below, the connecting pipes 44, 46,
By arranging the magnetic material columns 24, 26 asymmetrically in the front-rear direction, that is, on the back side in the subject insertion direction, a sufficiently wide space is formed on both sides on the front side.

【0015】連結管44、46の配置構造を更に説明す
るために、上方から見た中央断面を図4に示す。本実施
例において、被検者は体軸をY方向として磁石内に挿入
されるが、X方向の視野は2本の連結管44、46の間
隔Wによって規定される。したがって、この間隔が狭い
と開放感が得られにくい。本実施例で示すように、連結
管をドーナッツ形状の冷却容器18の外周部よりも径方
向に更に外側に配置することで、間隔Wを広げることが
でき開放性を高められる。
To further explain the arrangement of the connecting pipes 44 and 46, FIG. 4 shows a central section viewed from above. In this embodiment, the subject is inserted into the magnet with the body axis in the Y direction, and the visual field in the X direction is defined by the distance W between the two connecting tubes 44 and 46. Therefore, if this interval is small, it is difficult to obtain a feeling of opening. As shown in the present embodiment, by arranging the connecting pipe further radially outward than the outer peripheral portion of the donut-shaped cooling container 18, the interval W can be increased and the openness can be enhanced.

【0016】また、連結管44、46の間隔を広げるた
め、磁性材柱24、26にくぼみを設け、その間にやわ
らかい構造の連結管44、46を配置することが有効で
ある。この構造により、磁性材柱24、26の断面積の
減少は最小に押さえられるので、漏洩磁場への影響も少
ない。
In order to widen the interval between the connecting pipes 44 and 46, it is effective to provide a recess in the magnetic material columns 24 and 26 and to arrange the connecting pipes 44 and 46 having a soft structure between them. With this structure, the reduction in the cross-sectional area of the magnetic material columns 24 and 26 is minimized, so that the influence on the leakage magnetic field is small.

【0017】なお、連結管44、46により上下の冷却
容器16、18を構造的に連結することで、冷却容器1
6、18の全体を一体構造とすることは可能であるが、
本実施例では、冷却容器16、18を磁性材プレート2
0、22に固定し、連結管44、46は単に上下冷却容
器16、18の電気的あるいは、熱的な結合だけを受け
持つ構造としたので、上下の超電導コイル10、12の
間隔は、磁性材柱24、26によって間接的に規定され
るが、連結管44、46で支持する場合に比べて構造体
として高い剛性を得ることができる。また、磁性体柱2
4、26の方が、断面積も大きく、構造も簡素なため、
寸法精度を得やすい。この結果、設計通りの上下の超電
導コイル間距離を得やすいので、磁場均一度も高めやす
い。
The upper and lower cooling vessels 16 and 18 are structurally connected by connecting pipes 44 and 46, so that the cooling vessel 1
Although it is possible to make the whole of 6, 18 into an integral structure,
In this embodiment, the cooling containers 16 and 18 are
0, 22 and the connecting pipes 44, 46 have a structure that only serves to electrically or thermally couple the upper and lower cooling vessels 16, 18, so that the distance between the upper and lower superconducting coils 10, 12 is equal to the magnetic material. Although it is indirectly defined by the columns 24 and 26, a higher rigidity can be obtained as a structure as compared with the case where it is supported by the connecting pipes 44 and 46. In addition, magnetic pillar 2
4, 26 have a larger cross-sectional area and a simpler structure,
Easy to obtain dimensional accuracy. As a result, the distance between the upper and lower superconducting coils as designed is easily obtained, and the uniformity of the magnetic field is easily increased.

【0018】図1、図3に示すように、本実施例では超
電導コイル10、12を冷却するための冷凍機(圧縮
機)48を上方の磁性材プレート20の上方に配置して
いる。このことにより、均一磁場空間を取り巻く空間の
側面に冷凍機48を配設するスペースを必要としないの
で、側方からのアクセス性、作業性、開放性が改善され
る。また、冷凍機48と超電導コイル10、12との間
に磁性材プレート20、22が介在することにより、冷
凍機48に作用する漏洩磁場が大幅に低減する。冷凍機
48に用いられる蓄冷材は一般に強磁場中では性能が劣
化するので、この構造の採用により、蓄冷材の性能劣化
が防止される。
As shown in FIGS. 1 and 3, in this embodiment, a refrigerator (compressor) 48 for cooling the superconducting coils 10 and 12 is disposed above the upper magnetic material plate 20. This eliminates the need for a space for disposing the refrigerator 48 on the side surface of the space surrounding the uniform magnetic field space, and thus improves the accessibility, workability, and openness from the side. Further, since the magnetic material plates 20 and 22 are interposed between the refrigerator 48 and the superconducting coils 10 and 12, the leakage magnetic field acting on the refrigerator 48 is greatly reduced. Since the performance of the cold storage material used in the refrigerator 48 generally deteriorates in a strong magnetic field, the use of this structure prevents the performance deterioration of the cold storage material.

【0019】次に本発明のもう一つの実施例を図4、5
を使って説明する。先の実施例と同等部分には同一の参
照番号を付してその説明を省略する。
Next, another embodiment of the present invention will be described with reference to FIGS.
I will explain using. The same parts as those in the previous embodiment are denoted by the same reference numerals, and description thereof will be omitted.

【0020】本実施例でも、連結管44、46と磁性材
柱24、26の配置は先の実施例の図3に示されている
ように、均一磁場空間14の中心から見て、周方向の同
じ位置、方位に配設されている。
Also in this embodiment, as shown in FIG. 3 of the previous embodiment, the arrangement of the connecting pipes 44, 46 and the magnetic material columns 24, 26 is circumferentially viewed from the center of the uniform magnetic field space 14. At the same position and orientation.

【0021】また、本実施例でも先の実施例と同様に超
電導コイルを冷却するための冷凍機48は上側の磁性材
プレート20の上方に配置されている。
Also, in this embodiment, a refrigerator 48 for cooling the superconducting coil is disposed above the upper magnetic material plate 20, as in the previous embodiment.

【0022】更に、本実施例では、冷凍機48と冷却容
器16とを接続する部位に相当する磁性材プレート20
を切り欠き、その空間を利用して両者を接続している。
この構造により、接続部50が上部冷却容器16の外周
直径よりもはみ出すことがないので、開放性を得ること
ができる。また、周囲を迂回して冷却容器16に接続す
る場合に比べて経路を短くできるので、熱抵抗を低減で
きる。この結果、冷却効率が向上するので、冷媒の消費
量を低減できる。あるいは、別の見方をすると、熱侵入
量の増加に対応可能となるので、冷却容器の構造を簡素
化できたり、超電導コイルの支持構造の剛性を向上でき
る等の利点が得られる。
Further, in the present embodiment, the magnetic material plate 20 corresponding to a portion connecting the refrigerator 48 and the cooling vessel 16 is provided.
Is cut out, and the two are connected using the space.
With this structure, the connection portion 50 does not protrude beyond the outer diameter of the upper cooling container 16, so that openness can be obtained. Further, the path can be made shorter than in a case where the cooling vessel 16 is connected around the periphery, so that the thermal resistance can be reduced. As a result, the cooling efficiency is improved, and the consumption of the refrigerant can be reduced. Alternatively, from another point of view, it is possible to cope with an increase in the amount of heat infiltration, so that advantages such as simplification of the structure of the cooling vessel and improvement in rigidity of the superconducting coil support structure can be obtained.

【0023】図4、5に示すように冷凍機48を磁性材
プレート20の前側に配置することの利点の一つは、磁
石装置の高さを抑制できることである。漏洩磁場を抑制
するための磁性材プレート20は、その中を通る磁束の
密度に応じて、その厚さを選ぶ必要がある。このため、
磁性材柱24、26の位置を前後非対称に配置した場合
には、磁束密度の低い磁性材プレート20の前方は薄く
できる。したがって、この位置に冷却機48を配置する
ことで、装置全体の高さを低くでき、装置の運搬、搬入
が容易となる。また、この部分の磁性材プレート20の
磁束密度が低いので、この部分を切り欠いても漏洩磁場
や磁場均一度への影響を微少とできる。
One of the advantages of disposing the refrigerator 48 in front of the magnetic material plate 20 as shown in FIGS. 4 and 5 is that the height of the magnet device can be reduced. The thickness of the magnetic material plate 20 for suppressing the leakage magnetic field needs to be selected according to the density of the magnetic flux passing therethrough. For this reason,
When the positions of the magnetic material columns 24 and 26 are arranged asymmetrically in the front-rear direction, the front of the magnetic material plate 20 having a low magnetic flux density can be made thin. Therefore, by arranging the cooler 48 at this position, the height of the entire apparatus can be reduced, and the transportation and loading of the apparatus become easy. Further, since the magnetic flux density of the magnetic material plate 20 in this portion is low, even if this portion is cut out, the influence on the leakage magnetic field and the uniformity of the magnetic field can be reduced.

【0024】更に、冷凍機48はそのピストンシリンダ
ーの軸方向を鉛直方向に近付けるほど、冷凍機の動作効
率は一般に良くなる。従って、図4、5のように冷凍機
48の軸方向を斜めに配置することで、冷却効率を高め
ることができる。なお、52は冷凍機48の支持部材で
ある。
Further, as the axial direction of the piston cylinder of the refrigerator 48 approaches the vertical direction, the operation efficiency of the refrigerator generally improves. Therefore, by arranging the refrigerator 48 obliquely as shown in FIGS. 4 and 5, the cooling efficiency can be increased. In addition, 52 is a support member of the refrigerator 48.

【0025】図6は図5の変形例で、ここでは冷凍機4
8と冷却容器16との接続部位をフレキシブルな配管5
0aで結ぐことにより、冷凍機48の振動が超電導コイ
ルに伝達することを防止している。さらに、フレキシブ
ル接続とすることにより、冷却容器16に対する冷凍機
48の取り付け位置精度の許容範囲が大きくできるの
で、組立て作業も容易となる。さらに、上記第1、第2
の実施例では、冷却容器として冷媒槽を構成部品として
いたが、本変形例では冷凍機48で直接に超電導コイル
10を冷却する伝導冷却方式を採用したので、冷媒槽が
不要となったので、冷却容器の構造が簡素になると共
に、冷媒槽のスペースが不要になるので磁石装置全体の
外径も小型化する。
FIG. 6 shows a modification of FIG.
A flexible pipe 5 is used to connect the connecting portion between the cooling vessel 8 and the cooling vessel 16.
By tying at 0a, the vibration of the refrigerator 48 is prevented from being transmitted to the superconducting coil. Furthermore, the flexible connection allows the mounting position accuracy of the refrigerator 48 with respect to the cooling vessel 16 to be increased in an allowable range, thereby facilitating the assembling work. In addition, the first and second
In the embodiment of the present invention, the cooling vessel was used as a cooling vessel as a component, but in this modification, a conduction cooling system in which the superconducting coil 10 was directly cooled by the refrigerator 48 was adopted. The structure of the cooling container is simplified, and the space for the refrigerant tank is not required, so that the outer diameter of the entire magnet device is reduced.

【0026】[0026]

【発明の効果】以上説明したように、上下一対の超電導
コイルから成る超電導磁石装置の漏洩磁場抑制用上下一
対の磁性プレートを支持する磁性材柱と超電導コイルを
収容する同じく上下一対の冷却容器を連結する連結管の
位置を均一磁場空間の中心から見て互いに重なり合うよ
うな方位でかつ被検者を挿入する方向の奥側に偏った位
置に配設し、かつ超電導コイルを冷却する冷凍機を上側
の磁性材プレート上であってかつ磁性材柱から遠い前方
位置に配設することによって、被検者の開放感を高める
と共に、術者の被検者への側方からのアクセス性を向上
することが出来る。
As described above, in the superconducting magnet device composed of a pair of upper and lower superconducting coils, a magnetic material column for supporting a pair of upper and lower magnetic plates for suppressing a leakage magnetic field and a pair of upper and lower cooling containers for accommodating the superconducting coils are also provided. A refrigerator that cools the superconducting coil by arranging the connecting pipes in such a direction that they overlap each other when viewed from the center of the uniform magnetic field space and at a position deviated to the back side in the direction in which the subject is inserted. By arranging it on the upper magnetic material plate and at the front position far from the magnetic material column, it enhances the openness of the subject and improves the operator's accessibility to the subject from the side. You can do it.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の開放型超電導磁石装置の第1の実施例
の概略縦断面図。
FIG. 1 is a schematic longitudinal sectional view of a first embodiment of an open superconducting magnet device of the present invention.

【図2】図1の第1の実施例中の超電導コイル部の拡大
断面図。
FIG. 2 is an enlarged sectional view of a superconducting coil unit in the first embodiment of FIG.

【図3】図1の第1の実施例の概略横断面図。FIG. 3 is a schematic cross-sectional view of the first embodiment of FIG. 1;

【図4】本発明の開放型超電導磁石装置の第2の実施例
の概略縦断面図。
FIG. 4 is a schematic longitudinal sectional view of a second embodiment of the open superconducting magnet device of the present invention.

【図5】本発明の開放型超電導磁石装置の第3の実施例
の概略縦断面図。
FIG. 5 is a schematic longitudinal sectional view of a third embodiment of the open superconducting magnet device of the present invention.

【図6】図5の第3の実施例の変形例の概略縦断面図。FIG. 6 is a schematic longitudinal sectional view of a modification of the third embodiment of FIG. 5;

【符号の説明】[Explanation of symbols]

10 超電導コイル 12 超電導コイル 14 均一磁場空間 16 冷却容器 18 冷却容器 20 磁性材プレート 22 磁性材プレート 24 磁性材柱 26 磁性材柱 28 ポールピース突出部 30 ポールピース突出部 32 傾斜磁場コイル 34 傾斜磁場コイル 36 磁場均一度制御部材 38 磁場均一度制御部材 40 真空槽 42 冷媒槽 44 連結管 46 連結管 48 冷凍機 50 接続部 50a フレキシブル接続部 52 冷凍機支持部材 DESCRIPTION OF SYMBOLS 10 Superconducting coil 12 Superconducting coil 14 Uniform magnetic field space 16 Cooling container 18 Cooling container 20 Magnetic material plate 22 Magnetic material plate 24 Magnetic material column 26 Magnetic material column 28 Pole piece protrusion 30 Pole piece protrusion 32 Gradient field coil 34 Gradient field coil 36 Magnetic field uniformity control member 38 Magnetic field uniformity control member 40 Vacuum tank 42 Refrigerant tank 44 Connecting pipe 46 Connecting pipe 48 Refrigerator 50 Connecting part 50a Flexible connecting part 52 Refrigerator supporting member

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田山 芳英 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 本名 孝男 東京都千代田区内神田一丁目1番14号 株 式会社日立メディコ内 Fターム(参考) 4C096 AA01 AB36 AB42 AB47 CA02 CA16 CA32 CA36 CA51 CA53 CA70 4M114 AA02 AA25 AA27 AA31 BB04 CC03 CC11 DA02 DA07 DA12 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshihide Wadayama 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Within Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Takao Real Name 1-chome Uchikanda, Chiyoda-ku, Tokyo No. 1-14 F-term in Hitachi Medical Corporation (reference) 4C096 AA01 AB36 AB42 AB47 CA02 CA16 CA32 CA36 CA51 CA53 CA70 4M114 AA02 AA25 AA27 AA31 BB04 CC03 CC11 DA02 DA07 DA12

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 上下に対向して配設される一対の超電導
コイル、これを各々収容するドーナッツ形状の上下一対
の冷却容器、これら上下一対の冷却容器を少なくとも電
気的および熱的に連結する―あるい複数の連結管、これ
ら上下一対の冷却容器の上側および下側に配設した上下
一対の磁性材プレート、これら上下一対の磁性材プレー
トを磁気的および機械的に結合する磁性材柱および上記
上下一対の冷却容器中にそれを収容された上下一対の超
電導コイルを冷却する冷凍機を有する開放型超電導磁石
装置において、 上記冷凍機は、上記磁性材柱から遠い位置で上記上下一
対の磁性材プレート中の上側の磁性材プレート上に配設
され、上記上側磁性材プレートに形成した切り欠き部を
通して上記上下一対の冷却容器中の上側の冷却容器に結
合されていることを特徴とする開放型超電導磁石装置。
1. A pair of superconducting coils arranged vertically facing each other, a pair of upper and lower donut-shaped cooling containers accommodating the respective coils, and at least electrically and thermally connecting the pair of upper and lower cooling containers. A plurality of connecting pipes, a pair of upper and lower magnetic material plates disposed above and below the pair of upper and lower cooling vessels, a magnetic material column that magnetically and mechanically couples the pair of upper and lower magnetic material plates, and An open-type superconducting magnet device having a refrigerator that cools a pair of upper and lower superconducting coils housed in a pair of upper and lower cooling containers, wherein the refrigerator has the pair of upper and lower magnetic materials at a position far from the magnetic material column. The upper magnetic material plate is disposed on the upper magnetic material plate, and is coupled to the upper cooling container in the pair of upper and lower cooling containers through a cutout formed in the upper magnetic material plate. Open superconducting magnet apparatus characterized by being.
【請求項2】 上記冷凍機はそのピストンシリンダー軸
の方向が水平方向に対して傾斜するように上記上側の磁
性材プレート上に配設されていることを特徴とする請求
項1に記載の開放型超電導磁石装置。
2. The opening according to claim 1, wherein the refrigerator is disposed on the upper magnetic material plate such that a direction of a piston cylinder axis thereof is inclined with respect to a horizontal direction. Type superconducting magnet device.
【請求項3】 上下に対向して配設された一対の超電導
コイル、これらを各々収容するドーナッツ形状の上下一
対の冷却容器、これら上下一対の冷却容器を連結する―
あるい複数の連結管、これら上下一対の冷却容器の上側
および下側に配設した上下一対の磁性材プレート、これ
ら上下一対の磁性材プレートを磁気的および機械的に結
合する磁性材柱を有する開放型超電導磁石装置におい
て、 上記磁性材柱は、上記上下一対の超電導コイルによって
形成される被検者を挿入し、MRI撮影を行うための均
一磁場空間の中心から奥の方向に偏って配設されかつ上
記連結管も上記均一磁場の中心から見て上記磁性材柱の
配設方向とほぼ同じ方位に配設されかつ上記ドーナツ形
状の上下一対の冷却容器の外周部外側に配設されている
ことを特徴とする開放型超電導磁石装置。
3. A pair of upper and lower superconducting coils, a pair of upper and lower donut-shaped cooling containers accommodating these, and a pair of upper and lower cooling containers are connected.
Or a plurality of connecting pipes, a pair of upper and lower magnetic material plates disposed above and below the pair of upper and lower cooling vessels, and a magnetic material column for magnetically and mechanically coupling the pair of upper and lower magnetic material plates. In the open-type superconducting magnet device, the magnetic material column is disposed so as to be deflected in a depth direction from a center of a uniform magnetic field space for performing MRI imaging by inserting a subject formed by the pair of upper and lower superconducting coils. The connecting pipe is also disposed in substantially the same direction as the arrangement direction of the magnetic material columns when viewed from the center of the uniform magnetic field, and is disposed outside the outer periphery of the pair of upper and lower donut-shaped cooling vessels. An open-type superconducting magnet device, characterized in that:
【請求項4】 上記磁性材柱にはくぼみが形成され、上
記連結管の少なくとも一部が上記くぼみ中に配設されて
いることを特徴とする請求項1ないし3のいづれか1つ
に記載の開放型超電導磁石装置。
4. The method according to claim 1, wherein a recess is formed in the magnetic material column, and at least a part of the connecting pipe is disposed in the recess. Open superconducting magnet device.
【請求項5】 上下に対向して配設された一対の超電導
コイル、これらを各々収容するドーナッツ形状の上下一
対の冷却容器、これら上下一対の冷却容器を連結する―
あるい複数の連結管、これら上下一対の冷却容器の上側
および下側に配設した上下一対の磁性材プレート、これ
ら上下一対の磁性材プレートを磁気的および機械的に結
合する磁性材柱および上記上下一対の冷却容器中にそれ
ぞれ収容された上下一対の超電導コイルを冷却する冷凍
機を有する開放型超電導磁石装置において、 上記冷凍機は、上記磁性材柱から遠い位置で上記上下一
対の磁性材プレート中の上側の磁性材プレート上に配設
され、上記上側磁性材プレートに形成した切り欠き部を
通して上記上下一対の冷却容器中の上側の冷却容器に結
合されており、かつ上記磁性材柱は、上記上下一対の超
電導コイルによって形成される被検者を挿入しMRI撮
影を行うための均一磁場空間の中心から奥の方向に偏っ
て配設されかつ上記連結管は上記均一磁場空間の中心か
ら見て上記磁性材柱の配設方向とほぼ同じ方位に配設さ
れかつ上記ドーナッツ形状の上下一対の冷却容器の外周
部外側に配設されていることを特徴とする開放型超電導
磁石装置。
5. A pair of superconducting coils disposed vertically facing each other, a pair of upper and lower donut-shaped cooling containers accommodating these, and a pair of these upper and lower cooling containers are connected.
A plurality of connecting pipes, a pair of upper and lower magnetic material plates disposed above and below the pair of upper and lower cooling vessels, a magnetic material column that magnetically and mechanically couples the pair of upper and lower magnetic material plates, and An open-type superconducting magnet device having a refrigerator that cools a pair of upper and lower superconducting coils housed in a pair of upper and lower cooling vessels, respectively, wherein the refrigerator has the pair of upper and lower magnetic material plates at a position far from the magnetic material column. The upper magnetic material plate is disposed on the middle upper magnetic material plate, is coupled to the upper cooling container of the pair of upper and lower cooling containers through a cutout formed in the upper magnetic material plate, and the magnetic material column, The subject formed by the pair of upper and lower superconducting coils is disposed so as to be deviated in the depth direction from the center of the uniform magnetic field space for performing MRI imaging by inserting the subject, and the connecting pipe is When viewed from the center of the uniform magnetic field space, the magnetic material columns are disposed in substantially the same direction as the direction in which the magnetic material columns are disposed, and are disposed outside the outer periphery of the pair of upper and lower cooling vessels having the donut shape. Open superconducting magnet device.
【請求項6】 請求項1ないし5のいづれか1つに記載
の開放型超電導磁石装置を有することを特徴とするMR
I装置。 【0001】
6. An MR comprising the open superconducting magnet device according to claim 1. Description:
I device. [0001]
JP2000282719A 2000-09-18 2000-09-18 Superconducting magnet device and MRI device Expired - Fee Related JP4565721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000282719A JP4565721B2 (en) 2000-09-18 2000-09-18 Superconducting magnet device and MRI device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000282719A JP4565721B2 (en) 2000-09-18 2000-09-18 Superconducting magnet device and MRI device

Publications (3)

Publication Number Publication Date
JP2002093616A true JP2002093616A (en) 2002-03-29
JP2002093616A5 JP2002093616A5 (en) 2007-11-29
JP4565721B2 JP4565721B2 (en) 2010-10-20

Family

ID=18767178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000282719A Expired - Fee Related JP4565721B2 (en) 2000-09-18 2000-09-18 Superconducting magnet device and MRI device

Country Status (1)

Country Link
JP (1) JP4565721B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100407A (en) * 2004-09-28 2006-04-13 Aisin Seiki Co Ltd Superconducting device
CN102062843A (en) * 2010-11-23 2011-05-18 中国科学院电工研究所 Open type superconductivity MRI (magnetic resonance imaging) magnet system with iron core and capable of cancelling electromagnetic force by self
EP2400314A1 (en) * 2010-06-14 2011-12-28 Agilent Technologies U.K. Limited Superconducting magnet arrangement and method of mounting thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262605A (en) * 1988-04-14 1989-10-19 Toshiba Corp Superconductive magnet device
JPH07327961A (en) * 1994-06-10 1995-12-19 Applied Superconetics Inc Open access magnetic resonance image pickup device
JPH08168476A (en) * 1994-08-05 1996-07-02 General Electric Co <Ge> Overshoulder form magnetic resonance imaging magnet
JPH10135027A (en) * 1996-10-30 1998-05-22 Hitachi Medical Corp Superconducting magnet device
JPH10179546A (en) * 1996-12-26 1998-07-07 Hitachi Medical Corp Static magnetic field generation device
JPH11155831A (en) * 1997-12-01 1999-06-15 Hitachi Medical Corp Passive shield type superconductive magnet
JPH11243007A (en) * 1997-09-18 1999-09-07 General Electric Co <Ge> Superconducting magnet for magnetic resonance imaging
JP2000012325A (en) * 1998-06-26 2000-01-14 Mitsubishi Electric Corp Superconducting magnetic device
JP2000171112A (en) * 1998-12-04 2000-06-23 Kobe Steel Ltd Low-temperature apparatus
JP2001060509A (en) * 1999-08-24 2001-03-06 Mitsubishi Electric Corp Superconducting magnet device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262605A (en) * 1988-04-14 1989-10-19 Toshiba Corp Superconductive magnet device
JPH07327961A (en) * 1994-06-10 1995-12-19 Applied Superconetics Inc Open access magnetic resonance image pickup device
JPH08168476A (en) * 1994-08-05 1996-07-02 General Electric Co <Ge> Overshoulder form magnetic resonance imaging magnet
JPH10135027A (en) * 1996-10-30 1998-05-22 Hitachi Medical Corp Superconducting magnet device
JPH10179546A (en) * 1996-12-26 1998-07-07 Hitachi Medical Corp Static magnetic field generation device
JPH11243007A (en) * 1997-09-18 1999-09-07 General Electric Co <Ge> Superconducting magnet for magnetic resonance imaging
JPH11155831A (en) * 1997-12-01 1999-06-15 Hitachi Medical Corp Passive shield type superconductive magnet
JP2000012325A (en) * 1998-06-26 2000-01-14 Mitsubishi Electric Corp Superconducting magnetic device
JP2000171112A (en) * 1998-12-04 2000-06-23 Kobe Steel Ltd Low-temperature apparatus
JP2001060509A (en) * 1999-08-24 2001-03-06 Mitsubishi Electric Corp Superconducting magnet device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006100407A (en) * 2004-09-28 2006-04-13 Aisin Seiki Co Ltd Superconducting device
EP2400314A1 (en) * 2010-06-14 2011-12-28 Agilent Technologies U.K. Limited Superconducting magnet arrangement and method of mounting thereof
CN102062843A (en) * 2010-11-23 2011-05-18 中国科学院电工研究所 Open type superconductivity MRI (magnetic resonance imaging) magnet system with iron core and capable of cancelling electromagnetic force by self

Also Published As

Publication number Publication date
JP4565721B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP3711659B2 (en) Open magnetic resonance imaging magnet
EP0773565B1 (en) Cryogen-cooled open MRI superconductive magnet
US5936498A (en) Superconducting magnet apparatus and magnetic resonance imaging system using the same
JP3673556B2 (en) Open magnetic resonance imaging magnet with superconducting shield
US6154110A (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
US7714574B2 (en) Superconducting magnet with refrigerator and magnetic resonance imaging apparatus using the same
JP3663262B2 (en) Open magnetic resonance imaging magnet
JPH0838453A (en) Open type magnetic resonance imaging magnet
EP0971240B1 (en) Helium vessel for open architecture magnetic resonance imaging superconducting magnet
JP3711660B2 (en) Open magnetic resonance imaging magnet
EP0757256B1 (en) Open architecture magnetic resonance imaging superconducting magnet assembly
JP2001224571A (en) Open type superconductive magnetic and magnetic resonance imaging instrument using it
JP2001078982A (en) Open type magnet device
US6664876B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
EP0936290B1 (en) Superconducting magnet device for crystal pulling device
JP2002093616A (en) Open-type superconducting magnet device and magnetic resonance imaging equipment using the same
JP3871789B2 (en) Passive shield superconducting magnet
US6667676B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
JP4065747B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
JP3747981B2 (en) Magnetic resonance imaging system
JP4023703B2 (en) Magnetic resonance imaging system
JP2002052004A (en) Magnetic resonance imaging apparatus
JP2006141613A (en) Magnet system and magnetic resonance image diagnostic apparatus
JP2003220050A (en) High magnetic field open type magnetic resonance magnet wherein vibration is reduced
JP2006141614A (en) Magnet system, method of installing magnet system, and magnetic resonance image diagnostic apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees