JPH0442511A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPH0442511A
JPH0442511A JP15065690A JP15065690A JPH0442511A JP H0442511 A JPH0442511 A JP H0442511A JP 15065690 A JP15065690 A JP 15065690A JP 15065690 A JP15065690 A JP 15065690A JP H0442511 A JPH0442511 A JP H0442511A
Authority
JP
Japan
Prior art keywords
support
helium
shaft support
container
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15065690A
Other languages
Japanese (ja)
Inventor
Koichi Nakaya
中屋 浩一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15065690A priority Critical patent/JPH0442511A/en
Publication of JPH0442511A publication Critical patent/JPH0442511A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a superconducting magnet which reduces penetration of heat and helium evaporating amount by providing a shaft support only at one of axial front and rear sides of a cylindrical helium vessel and a vacuum vessel, and providing a service port near the support. CONSTITUTION:Shaft supports 6 are provided only at the axial front sides of a helium vessel 3, a radiation shield 4, and a vacuum vessel 5, and a load support 7 is provided only at the side having o shaft support 6. A service port 8 is provided near the support 6. Heat to be nenetrated through the support 6 is reduced to about 1/2. Since the port 8 is provided near the support 6, even if the vessel 3 is moved to the support 6 from the position 3a of the helium vessel before cooling, the vessels are not damaged, and positional deviations of electrodes are reduced to increase reliability.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は核磁気共鳴画像診断装置や、磁気浮上列車や、
単結晶引上装置等に用いる超電導マグネットに関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention is applicable to nuclear magnetic resonance imaging diagnostic equipment, magnetic levitation trains,
This invention relates to superconducting magnets used in single crystal pulling devices, etc.

(従来の技術) 第3図に従来の超電導マグネットの斜視図を示し、第4
図に第3図のA−A線に沿う矢視縦断面図を示す。
(Prior art) Fig. 3 shows a perspective view of a conventional superconducting magnet, and Fig. 4 shows a perspective view of a conventional superconducting magnet.
The figure shows a vertical cross-sectional view taken along line A-A in FIG. 3.

これらの図において、(1)は超電導線を円筒状に巻回
して成るコイルであり、(2)はコイルを浸す液体ヘリ
ウムである。(3)はコイル(1)と液体ヘリウム(2
)を収納するヘリウム容器である。
In these figures, (1) is a coil formed by winding a superconducting wire into a cylindrical shape, and (2) is liquid helium in which the coil is immersed. (3) is coil (1) and liquid helium (2
) is a helium container that stores.

(4)はヘリウム容器(3)を覆う輻射シールドである
。(5)は上記(1)〜(4)で示すもの全てを収納す
る真空容器である。この真空容器(5)には、液体ヘリ
ウム(2)の注液口や、電流リード(10)の挿入口等
を有するサービスポート(8)が付いている。
(4) is a radiation shield covering the helium container (3). (5) is a vacuum container that houses all of the items shown in (1) to (4) above. The vacuum container (5) is provided with a service port (8) having a liquid helium (2) injection port, a current lead (10) insertion port, and the like.

ヘリウム容器(3)は真空容器(5)から荷重サポート
(7)により吊り下げられている。真空容器(5)と輻
射シールド(4)間、輻射シールド(4)とヘリウム容
器(3)間の円筒状容器の軸方向前後は、軸サポート(
6)により固定されている。軸サポート(6)や荷重サ
ポート(7)は、高荷重に耐え、かつ熱絶縁性の良好な
繊維強化プラスチック棒等が用いられている。ヘリウム
容器(3)は外部の熱侵入を荷重サポート(7)や軸サ
ポート(8)から受けていた。
The helium container (3) is suspended from the vacuum container (5) by a load support (7). Axial supports (
6). The shaft support (6) and the load support (7) are made of fiber-reinforced plastic rods that can withstand high loads and have good thermal insulation properties. The helium container (3) received external heat intrusion from the load support (7) and shaft support (8).

又、軸サポート(6)は輸送時等におけるへりつム容器
(3)の振れ止め等のために使用されていた。
Further, the shaft support (6) was used to prevent the helium container (3) from swaying during transportation.

(発明が解決しようとする課題) 次に従来技術の課題について述べる。(Problem to be solved by the invention) Next, problems with the conventional technology will be described.

上記の従来構成によれば、軸サポート(6)は円筒状容
器の軸方向の前、後両側に取付けていたため、部品点数
が多くなる欠点があった。そして、軸サポート(B)か
ら伝わってくる外部からの侵入熱により液体ヘリウム(
2)の蒸発量が多かった。
According to the above-mentioned conventional structure, since the shaft support (6) is attached to both the front and rear sides of the cylindrical container in the axial direction, there is a drawback that the number of parts increases. Liquid helium (
2) The amount of evaporation was large.

また、液体ヘリウム(2)にて、ヘリウム容器(3)を
冷却されることで線膨張係数に従って、全体が収縮され
、軸方向の電極(9)のずれがあった。
Furthermore, when the helium container (3) was cooled with liquid helium (2), the entire structure was contracted according to the coefficient of linear expansion, and the electrode (9) was displaced in the axial direction.

そのため、液体ヘリウム注液口や電流リード挿入口等を
有するサービスポート(8)の挿入口を、電流リード(
10)が挿入できるように大きくしなくてはならなかっ
た。
Therefore, the insertion port of the service port (8), which has a liquid helium injection port, a current lead insertion port, etc., should be connected to the current lead (
10) had to be made large enough to be inserted.

又、サービスポート(8)の挿入口を大きくすることに
よる外部からの熱侵入も多くなり、液体ヘリウム(2)
の蒸発量も多くなっていた。本発明は軸サポート(8)
からの熱侵入を低減し、ヘリウム蒸発量の少ない超電導
マグネットを提供することを目的とする。
Also, by enlarging the insertion port of the service port (8), more heat enters from the outside, and liquid helium (2)
The amount of evaporation also increased. The present invention is a shaft support (8)
The purpose of the present invention is to provide a superconducting magnet that reduces heat intrusion from the helium and has a small amount of helium evaporation.

[発明の構成] (課題を解決するための手段) 以上のような問題点を解決するために、本発明において
は円筒状ヘリウム容器と真空容器との軸方向の前、後の
いずれか一方だけに軸サポートを設け、サービスポート
を軸サポート寄りに設ける。
[Structure of the Invention] (Means for Solving the Problems) In order to solve the above-mentioned problems, in the present invention, only one of the front and rear in the axial direction of the cylindrical helium container and the vacuum container is connected. A shaft support is provided on the shaft support, and a service port is provided near the shaft support.

(作 用) このように構成すると、円筒状容器の軸方向前、後のい
ずれか一方だけに軸サポートを設けた為、ヘリウム容器
への軸サポートを伝わってくる熱侵入の影響が少なくて
すむ。
(Function) With this configuration, since the shaft support is provided only at either the front or rear of the cylindrical container in the axial direction, the influence of heat entering the helium container through the shaft support can be reduced. .

従って、その分だけ液体ヘリウムの蒸発量が少なくなる
Therefore, the amount of evaporation of liquid helium decreases accordingly.

そして、サービスポートを軸サポート寄りに設けたから
、冷却による各容器の損傷が少なくなり、また電極の位
置ずれが少なくて信頼性を増す。
Furthermore, since the service port is provided closer to the shaft support, damage to each container due to cooling is reduced, and there is less misalignment of the electrodes, increasing reliability.

(実施例) 以下本発明の一実施例を第1図および第2図を参照して
説明する。
(Example) An example of the present invention will be described below with reference to FIGS. 1 and 2.

第1図に本発明の超電導マグネットの縦断面図(従来例
の第4図に相当する部分)を示す。第1図、第2図にお
いて、従来例として示した第3図および第4図と同一部
分には同一符号を付して説明を省略する。
FIG. 1 shows a longitudinal cross-sectional view of the superconducting magnet of the present invention (a portion corresponding to FIG. 4 of the conventional example). In FIGS. 1 and 2, the same parts as those in FIGS. 3 and 4 shown as conventional examples are given the same reference numerals, and the explanation thereof will be omitted.

この実施例においては、軸サポート(6)をヘリウム容
器(3)と、輻射シールド(4)と真空容器(5)の軸
方向の前側(第1図および第2図では左側)だけに設け
る。そして、荷重サポート(7)は軸サポート(6)の
無い側(第1図および第2図の右側)だけに設ける。ま
た、注液口(符号付せず)や、電流リード(10)を挿
入するサービスポート(8)を軸サポート(6)に近い
方に設ける。(11)はコイル励磁用の電源であって、
電極(9)を介してコイル(1)に接続する。
In this embodiment, the shaft support (6) is provided only on the axially front side (left side in FIGS. 1 and 2) of the helium container (3), the radiation shield (4) and the vacuum container (5). The load support (7) is provided only on the side without the shaft support (6) (the right side in FIGS. 1 and 2). Furthermore, a service port (8) into which a liquid injection port (not numbered) and a current lead (10) are inserted is provided near the shaft support (6). (11) is a power source for coil excitation,
Connect to the coil (1) via the electrode (9).

次に上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

上記のような構成にすると、軸サポート(6)を片側だ
けに設けたからヘリウム容器(3)への軸サポート(6
)を伝わってくる熱侵入は約1/2に減少する。そして
サービスポート(8)を軸サポート(6)の在る方へ近
づけて設けたから第2図に示すように、ヘリウム容器(
3)が2点鎖線で示した冷却前のヘリウム容器位置(3
a)より軸サポート(6)の在る方へ移動しても各容器
が損傷を受けることがない。また、サービスポート(8
)を軸サポート(6)の在る方へ近づけたから電極の位
置ずれが少なくて信頼性を増す。さらにまた、軸サポー
ト(B)の一方を無くしたから、その軸サポートの取付
けをやめた取付範囲だけ超電導マグネットの全長を短か
くできるため、小形化、軽量化を実現できる。
With the above configuration, since the shaft support (6) is provided only on one side, the shaft support (6) to the helium container (3) is
) is reduced by about 1/2. Since the service port (8) was placed close to the shaft support (6), the helium container (
3) is the position of the helium container before cooling indicated by the two-dot chain line (3).
a) Each container is not damaged even if it is moved toward the shaft support (6). In addition, the service port (8
) is moved closer to the shaft support (6), so there is less displacement of the electrodes and reliability is increased. Furthermore, since one of the shaft supports (B) is eliminated, the total length of the superconducting magnet can be shortened by the area where the shaft support is no longer attached, which makes it possible to achieve a reduction in size and weight.

[発明の効果] 以上説明したように本発明によれば軸サポトを円筒状容
器の前、後のいずれか一方に設けたことにより軸サポー
トから伝わってくる外部からの熱侵入が少ないため液体
ヘリウムの蒸発量も少なくできる。そして、サービスポ
ートを軸サポト寄りに設けたから、冷却による各容器の
損傷が少なくなりまた電極の位置ずれが少なくて信頼性
を増す。また、軸サポートの一方の取付けをやめた取付
範囲だけ超電導マグネットの全長を短かくできるため、
小形化、軽量化した超電導マグネットが得られる。
[Effects of the Invention] As explained above, according to the present invention, since the shaft support is provided at either the front or the rear of the cylindrical container, there is less heat intrusion from the outside transmitted from the shaft support, so that liquid helium The amount of evaporation can also be reduced. Furthermore, since the service port is provided closer to the shaft support, damage to each container due to cooling is reduced, and there is less displacement of the electrodes, increasing reliability. In addition, the total length of the superconducting magnet can be shortened by the mounting range where one side of the shaft support is not mounted.
A superconducting magnet that is smaller and lighter can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の超電導マグネットの一実施例を示す断
面図、第2図は第1図のヘリウム容器の収縮状態を示す
縦断面図、第3図は従来のマグネットを示す斜視図、第
4図は第3図のA−A線に沿う矢視縦断面図である。 1・・・コイル、      2・・・液体ヘリウム、
3・・・ヘリウム容器、  5・・・真空容器、6・・
・軸サポート。 代理人 弁理士 大 胡 典 夫
FIG. 1 is a sectional view showing an embodiment of the superconducting magnet of the present invention, FIG. 2 is a longitudinal sectional view showing the helium container in FIG. 1 in a contracted state, and FIG. 3 is a perspective view showing a conventional magnet. FIG. 4 is a longitudinal sectional view taken along line A-A in FIG. 3. 1... Coil, 2... Liquid helium,
3... Helium container, 5... Vacuum container, 6...
・Axis support. Agent Patent Attorney Norio Ogo

Claims (1)

【特許請求の範囲】[Claims]  超電導コイルと、それを収納したヘリウム容器と、ヘ
リウム容器を収納した真空容器とを有する超電導マグネ
ットにおいて、前記各容器の軸方向のいずれか一方だけ
に軸サポートを設け、サービスポートを軸サポート寄り
に設けたことを特徴とする超電導マグネット。
In a superconducting magnet having a superconducting coil, a helium container housing the superconducting coil, and a vacuum container housing the helium container, a shaft support is provided in only one of the axial directions of each container, and the service port is moved closer to the shaft support. A superconducting magnet characterized by:
JP15065690A 1990-06-08 1990-06-08 Superconducting magnet Pending JPH0442511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15065690A JPH0442511A (en) 1990-06-08 1990-06-08 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15065690A JPH0442511A (en) 1990-06-08 1990-06-08 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPH0442511A true JPH0442511A (en) 1992-02-13

Family

ID=15501619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15065690A Pending JPH0442511A (en) 1990-06-08 1990-06-08 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPH0442511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122403A1 (en) * 2010-03-30 2011-10-06 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
JP2011228465A (en) * 2010-04-20 2011-11-10 Japan Superconductor Technology Inc Superconducting magnet device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122403A1 (en) * 2010-03-30 2011-10-06 ジャパンスーパーコンダクタテクノロジー株式会社 Superconducting magnet device
JP2011228465A (en) * 2010-04-20 2011-11-10 Japan Superconductor Technology Inc Superconducting magnet device

Similar Documents

Publication Publication Date Title
US5532663A (en) Support structure for a superconducting coil
JP5219420B2 (en) A cryostat having a cryogenic vessel supported within an external vacuum vessel
US4968961A (en) Superconducting magnet assembly with suppressed leakage magnetic field
US5672921A (en) Superconducting field winding assemblage for an electrical machine
US7741738B2 (en) Machine comprising a rotor and a superconducting rotor winding
JPH09187440A (en) Open type magnetic resonance imaging magnet
US5045826A (en) Actively shielded magnetic resonance magnet without cryogens
US5696476A (en) Open architecture magnetic resonance imaging superconducting magnet assembly
JP2006253718A (en) Superconducting electromagnet for use in mri system
US20050062473A1 (en) Cryogen-free high temperature superconducting magnet with thermal reservoir
US4599592A (en) Device for holding the housing of a superconducting magnet winding
JPS6118349A (en) Rotor of superconductive rotary electric machine
EP0805545A1 (en) Superconducting field winding assemblage for an electrical machine
GB2299673A (en) MRI magnet with flared opening
JP3824412B2 (en) Superconducting magnet device for crystal pulling device
JPH0442511A (en) Superconducting magnet
JPH09308222A (en) Field winding assembly
EP0460601B1 (en) Superconducting magnet apparatus having circulating path for coolant
JP2588284B2 (en) Superconductive magnet
US5691678A (en) Electromagnets
JP2569165B2 (en) Superconducting magnet for nuclear magnetic resonance imaging equipment
JPH0510335Y2 (en)
JPH01262605A (en) Superconductive magnet device
EP0805546B1 (en) Support structure for a superconducting coil
JPH03174706A (en) Superconductive coil device, nuclear fusion reactor including the same and energy storage apparatus