JP2008004868A - Superconducting coil, and quenching prevention method thereof - Google Patents

Superconducting coil, and quenching prevention method thereof Download PDF

Info

Publication number
JP2008004868A
JP2008004868A JP2006175094A JP2006175094A JP2008004868A JP 2008004868 A JP2008004868 A JP 2008004868A JP 2006175094 A JP2006175094 A JP 2006175094A JP 2006175094 A JP2006175094 A JP 2006175094A JP 2008004868 A JP2008004868 A JP 2008004868A
Authority
JP
Japan
Prior art keywords
pair
flange portions
flange
superconducting coil
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006175094A
Other languages
Japanese (ja)
Other versions
JP4813986B2 (en
Inventor
Masatoshi Yoshikawa
正敏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006175094A priority Critical patent/JP4813986B2/en
Publication of JP2008004868A publication Critical patent/JP2008004868A/en
Application granted granted Critical
Publication of JP4813986B2 publication Critical patent/JP4813986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting coil capable of suppressing occurrence of quenching phenomena while suppressing early degradation of components. <P>SOLUTION: The superconducting coil is constituted to be excited at a very low temperature. It comprises a spool 10 including a cylindrical axis 11, and a pair of flanges 12 and 13 radially extended from both ends, in axial direction of the axis 11, a superconducting wire material 20 which is wound in coil on the outer periphery of the axis 11, and a reinforcing material 30 bridged between the flanges 12 and 13 so as to bridge outer peripheries 12b and 13b of the pair of flanges 12 and 13. The reinforcing material 30 has such thermal shrinkage coefficient that is higher than that of the superconducting wire material 20, and so shrinks as to displace the outer peripheries 12b and 13b of the pair of flanges 12 and 13 to approach each other, at a very low temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、極低温下で励磁される超電導コイルおよび超電導コイルのクエンチ防止方法に関し、特に、軸方向両端にフランジ部を有する略円筒状の巻枠に超電導線材を螺旋状に巻回して構成される超電導コイルおよび超電導コイルのクエンチ防止方法に関するものである。   The present invention relates to a superconducting coil excited at a cryogenic temperature and a method for preventing quenching of a superconducting coil, and in particular, is configured by spirally winding a superconducting wire around a substantially cylindrical winding frame having flange portions at both axial ends. The present invention relates to a superconducting coil and a method for preventing quenching of a superconducting coil.

従来、強磁界を発生させる超電導コイルは、円筒状の軸部とこの軸部の軸方向両端から径外方向に延設されるフランジ部とを有する巻枠に超電導線材を螺旋状に巻回することにより構成されており、極低温(約4.2K以下)に冷却した状態で通電することにより励磁されるようになっている。   Conventionally, a superconducting coil that generates a strong magnetic field spirally winds a superconducting wire around a winding frame having a cylindrical shaft portion and a flange portion extending radially outward from both axial ends of the shaft portion. And is excited by energization in a state of being cooled to a very low temperature (about 4.2 K or less).

ところで、励磁状態の超電導コイルでは、通電電流と自ら発した磁界との相互作用により超電導線材(ここでは、巻回状態にある超電導線材の集合体)を超電導コイルの径方向に膨らませようとするフープ力が当該超電導線材に作用する。これにより、超電導線材が微小変位するので、その変位部分で摩擦熱が生じ、クエンチ現象が発生する場合があるという不都合がある。   By the way, in a superconducting coil in an excited state, a hoop that attempts to expand a superconducting wire (in this case, a collection of superconducting wires in a wound state) in the radial direction of the superconducting coil by the interaction between an energizing current and a magnetic field generated by itself. Force acts on the superconducting wire. Thereby, since the superconducting wire is slightly displaced, there is a disadvantage that frictional heat is generated at the displaced portion and a quench phenomenon may occur.

そこで、上記不都合を解消するために、超電導線材を超電導コイルの軸方向に圧縮する力を当該超電導線材に付与することで、超電導線材を微小変位し難くし、クエンチ現象を抑制する技術が提案されている。例えば、特許文献1には、巻枠に軸方向の引張荷重を加えた状態で超電導線材を巻回し、巻回後に上記軸方向の引張荷重を解除することにより、励磁前に巻枠から超電導線材に十分な大きさの軸方向の圧縮力を作用させるように構成された超電導コイルが開示されている。
特開平5−182819号公報
Therefore, in order to eliminate the above inconvenience, a technique has been proposed in which the superconducting wire is made to be hard to be displaced minutely by applying a force to compress the superconducting wire in the axial direction of the superconducting coil, thereby suppressing the quench phenomenon. ing. For example, Patent Document 1 discloses that a superconducting wire is wound from a winding frame before excitation by winding the superconducting wire in a state where an axial tensile load is applied to the winding frame, and releasing the axial tensile load after winding. A superconducting coil configured to apply a sufficiently large axial compressive force is disclosed.
JP-A-5-182819

しかしながら、上記特許文献1では、励磁状態の超電導コイルにおける超電導線材の微小変位を抑制するために、励磁前に超電導線材に十分な大きさの圧縮力を作用させるように構成したので、巻枠や超電導線材に常時大きな負荷が加わることになる。その結果、構成部材の早期劣化を招く虞があるという問題点がある。   However, in the above-mentioned Patent Document 1, in order to suppress a small displacement of the superconducting wire in the superconducting coil in an excited state, it is configured to apply a sufficiently large compressive force to the superconducting wire before excitation. A large load is always applied to the superconducting wire. As a result, there exists a problem that there exists a possibility of causing the early deterioration of a structural member.

この発明は、上記のような課題を解決するためになされたものであり、構成部材の早期劣化を抑制しつつクエンチ現象の発生を抑えることが可能な超電導コイルおよび超電導コイルのクエンチ防止方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a superconducting coil and a method for preventing quenching of a superconducting coil capable of suppressing the occurrence of a quench phenomenon while suppressing early deterioration of components. The purpose is to do.

上記目的を達成するために、この発明の請求項1に記載の超電導コイルは、極低温下で励磁される超電導コイルであって、円筒状の軸部と、前記軸部の軸方向両端から径外方向に延設される一対のフランジ部とを含む巻枠と、前記軸部の外周に螺旋状に巻回される超電導線材と、前記一対のフランジ部の外周縁部位同士を橋絡するように前記フランジ部間に架設される補強材とを備え、前記補強材は、前記超電導線材の熱収縮率よりも大きい熱収縮率を有しており、極低温下で前記一対のフランジ部の外周縁部位を互いに近接する方向に変位させるように収縮することを特徴とする。   In order to achieve the above object, a superconducting coil according to claim 1 of the present invention is a superconducting coil excited at a cryogenic temperature, and has a cylindrical shaft portion and a diameter from both axial ends of the shaft portion. A winding frame including a pair of flange portions extending outward, a superconducting wire spirally wound around the outer periphery of the shaft portion, and an outer peripheral edge portion of the pair of flange portions so as to bridge each other And a reinforcing material installed between the flange portions, the reinforcing material has a heat shrinkage rate larger than that of the superconducting wire, and the outside of the pair of flange portions at an extremely low temperature. The peripheral part is contracted so as to be displaced in a direction approaching each other.

なお、上記フランジ部の外周縁部位は、フランジ部の外周縁の上面、外周縁の下面または外周面を示している。   In addition, the outer periphery part of the said flange part has shown the upper surface of the outer periphery of the flange part, the lower surface or outer peripheral surface of an outer periphery.

この請求項1に記載の超電導コイルでは、上記のように、一対のフランジ部の外周縁部位同士を超電導線材の熱収縮率よりも大きい熱収縮率の補強材で橋絡し、この補強材を、極低温下で一対のフランジ部の外周縁部位を互いに近接する方向に変位させるように収縮させるように構成することによって、冷却時に補強材を超電導線材よりも軸方向に大きく収縮させることができるので、一対のフランジ部の外周縁部位を、対応する超電導線材の外周部を軸方向外側から挟み込むように互いに近接させることができる。これにより、超電導線材の外周部にフランジ部による圧縮力を十分に作用させることができるので、超電導線材の外周部の微小変位を抑制することができる。その結果、クエンチ現象の発生を抑制して超電導コイルを安定して励磁させることができる。しかも、請求項1に記載の超電導コイルでは、超電導線材の微小変位を十分に抑制可能な大きさの圧縮力を冷却時の熱収縮差によって積極的に作用させる構成となっているため、従来のように励磁前の段階、すなわち、常温下で行われる例えば超電導コイルの輸送や設置の段階から巻枠および超電導線材に大きな圧縮力を加える必要がない。これにより、前記圧縮力の負荷による構成部材の早期劣化を抑制することができる。   In the superconducting coil according to claim 1, as described above, the outer peripheral edge portions of the pair of flange portions are bridged with a reinforcing material having a thermal contraction rate larger than that of the superconducting wire, and the reinforcing material is By constructing the outer peripheral edge portions of the pair of flange portions so as to be displaced toward each other at a cryogenic temperature, the reinforcing material can be contracted more in the axial direction than the superconducting wire during cooling. Therefore, the outer peripheral edge part of a pair of flange part can mutually be adjoined so that the outer peripheral part of a corresponding superconducting wire may be pinched | interposed from an axial direction outer side. Thereby, since the compressive force by a flange part can fully be acted on the outer peripheral part of a superconducting wire, the micro displacement of the outer peripheral part of a superconducting wire can be suppressed. As a result, the occurrence of the quench phenomenon can be suppressed and the superconducting coil can be stably excited. In addition, the superconducting coil according to claim 1 has a configuration in which a compressive force of a size capable of sufficiently suppressing a minute displacement of the superconducting wire is positively acted on by a heat shrinkage difference during cooling. Thus, it is not necessary to apply a large compressive force to the winding frame and the superconducting wire from the stage before excitation, that is, the stage of transporting and installing the superconducting coil performed at room temperature. Thereby, the early deterioration of the structural member by the load of the said compressive force can be suppressed.

上記請求項1に記載の超電導コイルにおいて、好ましくは、前記補強材は、前記一対のフランジ部に対して軸方向に略無負荷となる状態で前記フランジ部間に架設されている(請求項2)。このように、冷却前の段階で、補強材を、一対のフランジ部に対して軸方向に略無負荷となる状態でこれらフランジ部間に架設することによって、冷却時以外に巻枠および超電導線材に負荷が加わることがほぼなくなるので、構成部材の早期劣化をより一層抑制することができる。   In the superconducting coil according to the first aspect, preferably, the reinforcing member is provided between the flange portions in a state of being substantially unloaded in the axial direction with respect to the pair of flange portions. ). In this way, at the stage before cooling, the reinforcing material is laid between the flange portions in a state of being substantially unloaded in the axial direction with respect to the pair of flange portions, so that the winding frame and the superconducting wire are not used during cooling. Since almost no load is applied to the component, early deterioration of the constituent members can be further suppressed.

上記請求項1または2に記載の超電導コイルにおいて、好ましくは、前記補強材は、前記フランジ部の外径と略等しい内径を有する円筒部を含み、前記円筒部は、前記一対のフランジ部の外周縁部位同士を全周に亘って橋絡するように前記フランジ部間に架設されている(請求項3)。このように構成すれば、冷却時に、超電導線材の外周部に全周に亘ってフランジ部による圧縮力を十分に作用させることができるので、超電導線材の外周部の微小変位をより確実に抑制することができる。これにより、クエンチ現象の発生をさらに抑制することができる。   The superconducting coil according to claim 1 or 2, wherein the reinforcing member preferably includes a cylindrical portion having an inner diameter substantially equal to an outer diameter of the flange portion, and the cylindrical portion is an outer portion of the pair of flange portions. It is constructed between the said flange parts so that a peripheral part may be bridged over a perimeter (Claim 3). If comprised in this way, the compressive force by a flange part can fully be made to act on the outer peripheral part of a superconducting wire at the time of cooling, Therefore The micro displacement of the outer peripheral part of a superconducting wire is suppressed more reliably. be able to. Thereby, generation | occurrence | production of the quench phenomenon can further be suppressed.

上記請求項3に記載の超電導コイルにおいて、好ましくは、前記補強材は、前記円筒部の軸方向両端から径内方向に延設されて前記巻枠の一対のフランジ部を軸方向両外側から挟み込むように前記フランジ部に隣接して配される一対の補強材側フランジ部を含み、極低温下で前記一対の補強材側フランジ部を前記巻枠の各フランジ部に当接させて前記一対のフランジ部を互いに近接する方向に変位させるように収縮する(請求項4)。このように構成すれば、冷却時に、一対のフランジ部の外周縁部位を含む比較的広範囲な領域を互いに近接させることができるので、超電導線材の外周部を含む比較的広範囲な領域にフランジ部による圧縮力を作用させることができる。これにより、超電導線材の微小変位を広範囲に亘って抑制することができる。   In the superconducting coil according to claim 3, preferably, the reinforcing member extends radially inward from both axial ends of the cylindrical portion and sandwiches the pair of flange portions of the winding frame from both axial outer sides. A pair of reinforcing material side flange portions arranged adjacent to the flange portion, and the pair of reinforcing material side flange portions are brought into contact with the flange portions of the winding frame at a cryogenic temperature. The flange portions are contracted so as to be displaced in directions close to each other. If comprised in this way, since a comparatively wide area | region including the outer peripheral part of a pair of flange part can mutually be adjoined at the time of cooling, a flange part is made into the comparatively wide area | region including the outer peripheral part of a superconducting wire. A compressive force can be applied. Thereby, the micro displacement of a superconducting wire can be suppressed over a wide range.

上記請求項1または2に記載の超電導コイルにおいて、好ましくは、前記補強材は、複数の板材であり、前記板材は、それぞれ、前記一対のフランジ部の外周縁部位同士を部分的に橋絡するように前記フランジ部間に架設される橋絡部を含んでいる(請求項5)。このように補強材を複数の板材で構成すれば、各板材を巻枠の径方向外側からフランジ部に取り付けることができるので、補強材の取付作業を簡便化することができる。   In the superconducting coil according to claim 1 or 2, preferably, the reinforcing member is a plurality of plate members, and each of the plate members partially bridges the outer peripheral edge portions of the pair of flange portions. Thus, a bridging portion constructed between the flange portions is included. Thus, if a reinforcing material is comprised with a some board | plate material, since each board | plate material can be attached to a flange part from the radial direction outer side of a winding frame, the attachment operation | work of a reinforcing material can be simplified.

上記請求項5に記載の超電導コイルにおいて、好ましくは、前記板材は、それぞれ、前記橋絡部の軸方向両端から径内方向に延設されて前記巻枠の一対のフランジ部を軸方向両外側から挟み込むように前記フランジ部に隣接して配される一対の折曲げ部を含み、極低温下で前記一対の折曲げ部を前記巻枠の各フランジ部に当接させて前記一対のフランジ部を互いに近接する方向に変位させるように収縮する(請求項6)。このように構成すれば、冷却時に、一対のフランジ部の外周縁部位を含む比較的広範囲な領域を互いに近接させることができるので、超電導線材の外周部を含む比較的広範囲な領域にフランジ部による圧縮力を作用させることができる。これにより、超電導線材の微小変位を広範囲に亘って抑制することができる。   In the superconducting coil according to claim 5, preferably, each of the plate members extends radially inward from both axial ends of the bridging portion, and the pair of flange portions of the winding frame are disposed on both outer sides in the axial direction. A pair of bent portions disposed adjacent to the flange portion so as to be sandwiched between the pair of flange portions, and the pair of bent portions are brought into contact with the flange portions of the winding frame at an extremely low temperature. Are contracted so as to be displaced in directions close to each other. If comprised in this way, since a comparatively wide area | region including the outer peripheral part of a pair of flange part can mutually be adjoined at the time of cooling, a flange part is made into the comparatively wide area | region including the outer peripheral part of a superconducting wire. A compressive force can be applied. Thereby, the micro displacement of a superconducting wire can be suppressed over a wide range.

上記請求項1〜6のいずれか一項に記載の超電導コイルにおいて、好ましくは、前記超電導線材は、NbTi、NbSnおよびNbAlからなるグループより選択される材料を含み、前記補強材は、アルミニウム、アルミニウム合金およびステンレス鋼からなるグループより選択される材料を含んでいる(請求項7)。このような材料からなる超電導線材および補強材を用いれば、容易に、補強材の熱収縮率を超電導線材の熱収縮率よりも大きくすることができる。 In the superconducting coil according to any one of claims 1 to 6, preferably, the superconducting wire includes a material selected from the group consisting of NbTi, Nb 3 Sn, and Nb 3 Al, and the reinforcing material is And a material selected from the group consisting of aluminum, aluminum alloys and stainless steel. If a superconducting wire and a reinforcing material made of such materials are used, the heat shrinkage rate of the reinforcing material can be easily made larger than the heat shrinkage rate of the superconducting wire.

上記請求項1〜7のいずれか一項に記載の超電導コイルにおいて、好ましくは、前記補強材は、前記巻枠の熱収縮率以上の熱収縮率を有している(請求項8)。このように構成すれば、冷却時に補強材を巻枠以上に軸方向に大きく収縮させることができるので、一対のフランジ部が、その外周縁部位が内周縁部位に比べて軸方向により離間するように反り返るのを防止しつつ、超電導線材の外周部に内周部以上にフランジ部による圧縮力を作用させることができる。これにより、超電導線材の外周部の微小変位を十分に抑制することができる。   In the superconducting coil according to any one of claims 1 to 7, preferably, the reinforcing material has a thermal contraction rate equal to or higher than a thermal contraction rate of the winding frame (claim 8). If comprised in this way, since a reinforcing material can be shrink | contracted greatly in an axial direction more than a winding frame at the time of cooling, a pair of flange parts are spaced apart by the axial direction compared with an inner peripheral part. It is possible to apply a compressive force due to the flange portion to the outer peripheral portion of the superconducting wire more than the inner peripheral portion while preventing warping. Thereby, the micro displacement of the outer peripheral part of a superconducting wire can be fully suppressed.

この発明の請求項9に記載の超電導コイルのクエンチ防止方法は、極低温下で励磁される超電導コイルのクエンチ防止方法であって、円筒状の軸部と、前記軸部の軸方向両端から径外方向に延設される一対のフランジ部とを含む巻枠を準備する工程と、前記軸部の外周に超電導線材を螺旋状に巻回する工程と、前記超電導線材の熱収縮率よりも大きい熱収縮率を有する補強材を準備する工程と、前記補強材を、前記一対のフランジ部の外周縁部位同士を橋絡するように前記フランジ部間に架設する工程と、前記補強材が、極低温下で前記一対のフランジ部の外周縁部位を互いに近接する方向に変位させるように収縮する工程とを備えることを特徴とする。   A quenching prevention method for a superconducting coil according to claim 9 of the present invention is a quenching prevention method for a superconducting coil excited at a cryogenic temperature, and includes a cylindrical shaft portion and a diameter from both axial ends of the shaft portion. A step of preparing a winding frame including a pair of flange portions extending outward, a step of spirally winding a superconducting wire around the outer periphery of the shaft, and a thermal contraction rate of the superconducting wire A step of preparing a reinforcing material having a heat shrinkage rate, a step of laying the reinforcing material between the flange portions so as to bridge outer peripheral edge portions of the pair of flange portions, and the reinforcing material And a step of contracting so as to displace the outer peripheral edge portions of the pair of flange portions in directions close to each other at a low temperature.

この請求項9に記載の超電導コイルのクエンチ防止方法では、一対のフランジ部の外周縁部位同士を超電導線材の熱収縮率よりも大きい熱収縮率の補強材で橋絡し、この補強材を、極低温下で一対のフランジ部の外周縁部位を互いに近接する方向に変位させるように収縮させることによって、冷却時に補強材を超電導線材よりも軸方向に大きく収縮させることができるので、一対のフランジ部の外周縁部位を、対応する超電導線材の外周部を軸方向外側から挟み込むように互いに近接させることができる。これにより、超電導線材の外周部にフランジ部による圧縮力を十分に作用させることができるので、超電導線材の外周部の微小変位を抑制することができる。その結果、クエンチ現象の発生を抑制して超電導コイルを安定して励磁させることができる。しかも、請求項9に記載の超電導コイルのクエンチ防止方法では、超電導線材の微小変位を十分に抑制可能な大きさの圧縮力を冷却時の熱収縮差によって積極的に作用させているため、従来のように励磁前の段階、すなわち、常温下で行われる例えば超電導コイルの輸送や設置の段階から巻枠および超電導線材に大きな圧縮力を加える必要がない。これにより、前記圧縮力の負荷による構成部材の早期劣化を抑制することができる。   In the method for preventing quenching of the superconducting coil according to claim 9, the outer peripheral edge portions of the pair of flange portions are bridged with a reinforcing material having a thermal contraction rate larger than that of the superconducting wire, and the reinforcing material is By contracting the outer peripheral edge portions of the pair of flange portions in a direction close to each other at a cryogenic temperature, the reinforcing material can be contracted more in the axial direction than the superconducting wire during cooling. The outer peripheral edge portions of the portions can be brought close to each other so as to sandwich the outer peripheral portion of the corresponding superconducting wire from the outside in the axial direction. Thereby, since the compressive force by a flange part can fully be acted on the outer peripheral part of a superconducting wire, the micro displacement of the outer peripheral part of a superconducting wire can be suppressed. As a result, the occurrence of the quench phenomenon can be suppressed and the superconducting coil can be stably excited. In addition, in the method for preventing quenching of the superconducting coil according to claim 9, since the compressive force that can sufficiently suppress the micro displacement of the superconducting wire is made to act positively by the difference in thermal contraction during cooling, Thus, it is not necessary to apply a large compressive force to the winding frame and the superconducting wire from the stage before excitation, that is, the stage of transport and installation of the superconducting coil, which is performed at room temperature. Thereby, the early deterioration of the structural member by the load of the said compressive force can be suppressed.

上記請求項9に記載の超電導コイルのクエンチ防止方法において、好ましくは、前記補強材を前記フランジ部間に架設する工程は、前記一対のフランジ部に対して軸方向に略無負荷となる状態で前記フランジ部間に前記補強材を架設する工程を含んでいる(請求項10)。このように、冷却前の段階で、補強材を、一対のフランジ部に対して軸方向に略無負荷となる状態でこれらフランジ部間に架設することによって、冷却時以外に巻枠および超電導線材に負荷が加わることがほぼなくなるので、構成部材の早期劣化をより一層抑制することができる。   In the method for preventing quenching of a superconducting coil according to claim 9, preferably, the step of laying the reinforcing member between the flange portions is in a state in which there is substantially no load in the axial direction with respect to the pair of flange portions. A step of laying the reinforcing material between the flange portions (claim 10); In this way, at the stage before cooling, the reinforcing material is laid between the flange portions in a state of being substantially unloaded in the axial direction with respect to the pair of flange portions, so that the winding frame and the superconducting wire are not used during cooling. Since almost no load is applied to the component, early deterioration of the constituent members can be further suppressed.

この発明の超電導コイルおよび超電導コイルのクエンチ防止方法によれば、冷却時に補強材を超電導線材よりも軸方向に大きく収縮させることができるので、一対のフランジ部の外周縁部位を、対応する超電導線材の外周部を軸方向外側から挟み込むように互いに近接させることができる。これにより、超電導線材の外周部にフランジ部による圧縮力を十分に作用させることができるので、超電導線材の外周部の微小変位を抑制することができる。その結果、クエンチ現象の発生を抑制して超電導コイルを安定して励磁させることができる。しかも、本発明の超電導コイルおよび超電導コイルのクエンチ防止方法では、超電導線材の微小変位を十分に抑制可能な大きさの圧縮力を冷却時の熱収縮差によって積極的に作用させているため、従来のように励磁前の段階、すなわち、常温下で行われる例えば超電導コイルの輸送や設置の段階から巻枠および超電導線材に大きな圧縮力を加える必要がない。これにより、前記圧縮力の負荷による構成部材の早期劣化を抑制することができる。   According to the superconducting coil and the method of preventing quenching of the superconducting coil of the present invention, the reinforcing material can be contracted more in the axial direction than the superconducting wire during cooling. The outer peripheral portions of the two can be brought close to each other so as to be sandwiched from the outside in the axial direction. Thereby, since the compressive force by a flange part can fully be acted on the outer peripheral part of a superconducting wire, the micro displacement of the outer peripheral part of a superconducting wire can be suppressed. As a result, the occurrence of the quench phenomenon can be suppressed and the superconducting coil can be stably excited. Moreover, in the superconducting coil and the method for preventing quenching of the superconducting coil according to the present invention, since the compressive force capable of sufficiently suppressing the minute displacement of the superconducting wire is made to act positively by the heat shrinkage difference during cooling, Thus, it is not necessary to apply a large compressive force to the winding frame and the superconducting wire from the stage before excitation, that is, the stage of transport and installation of the superconducting coil, which is performed at room temperature. Thereby, the early deterioration of the structural member by the load of the said compressive force can be suppressed.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明の第1実施形態による超電導コイルの全体構成を示した正面断面図であり、図2は、図1に示した超電導コイルの平面図である。また、図3は、図1に示した超電導コイルを極低温に冷却した状態を示した正面断面図である。まず、図1および図2を参照して、本発明の第1実施形態による超電導コイルの全体構成について説明する。
(First embodiment)
FIG. 1 is a front sectional view showing the overall configuration of the superconducting coil according to the first embodiment of the present invention, and FIG. 2 is a plan view of the superconducting coil shown in FIG. FIG. 3 is a front sectional view showing a state where the superconducting coil shown in FIG. 1 is cooled to a cryogenic temperature. First, with reference to FIG. 1 and FIG. 2, the whole structure of the superconducting coil by 1st Embodiment of this invention is demonstrated.

第1実施形態の超電導コイルは、極低温(約4.2K以下)に冷却した状態で通電することにより励磁されるように構成されている。この超電導コイルは、図1に示すように、アルミニウム合金からなる巻枠10と、NbTiからなる超電導線材20とを備えている。   The superconducting coil of the first embodiment is configured to be excited by energizing in a state cooled to a cryogenic temperature (about 4.2 K or less). As shown in FIG. 1, the superconducting coil includes a winding frame 10 made of an aluminum alloy and a superconducting wire 20 made of NbTi.

巻枠10は、円筒状の軸部11と、軸部11の軸方向両端から径外方向に延びるように設けられた一対のフランジ部12,13とを含んでいる。フランジ部12(13)は、当該フランジ部12(13)の内周縁部位に相当する内周部12a(13a)と、当該フランジ部12(13)の外周縁部位に相当する外周部12b(13b)とを有しており、内周部12a(13a)において軸部11の軸方向端部に連設されている。   The reel 10 includes a cylindrical shaft portion 11 and a pair of flange portions 12 and 13 provided so as to extend radially outward from both axial ends of the shaft portion 11. The flange portion 12 (13) includes an inner peripheral portion 12a (13a) corresponding to the inner peripheral portion of the flange portion 12 (13) and an outer peripheral portion 12b (13b) corresponding to the outer peripheral portion of the flange portion 12 (13). And is connected to the axial end of the shaft portion 11 in the inner peripheral portion 12a (13a).

なお、アルミニウム合金からなる巻枠10の室温から約4.2Kの極低温までの熱収縮率は、約0.4%である。また、巻枠10の材料としては、上記アルミニウム合金以外のステンレス鋼等を挙げることができる。そして、ステンレス鋼からなる巻枠10の室温から約4.2Kの極低温までの熱収縮率は、約0.3%である。   The thermal contraction rate of the reel 10 made of an aluminum alloy from room temperature to an extremely low temperature of about 4.2 K is about 0.4%. Examples of the material of the reel 10 include stainless steel other than the aluminum alloy. The thermal shrinkage rate of the reel 10 made of stainless steel from room temperature to an extremely low temperature of about 4.2 K is about 0.3%.

超電導線材20は、軸部11の外周に螺旋状(またはソレノイド状)に巻回されている。なお、本実施形態の超電導線材20は、巻回状態にある超電導線材の集合体を示している。この超電導線材20の室温から約4.2Kの極低温までの熱収縮率は、約0.2〜0.3%である。なお、超電導線材20の材料としては、上記NbTi以外のNbSnおよびNbAl等を挙げることができる。 The superconducting wire 20 is wound around the outer periphery of the shaft portion 11 in a spiral shape (or a solenoid shape). In addition, the superconducting wire 20 of this embodiment has shown the aggregate | assembly of the superconducting wire in a winding state. The thermal contraction rate of this superconducting wire 20 from room temperature to an extremely low temperature of about 4.2 K is about 0.2 to 0.3%. As the material of the superconducting wire 20 can include a Nb 3 Sn and Nb 3 Al or the like other than the above NbTi.

ここで、第1実施形態の超電導コイルは、図1および図2に示すように、アルミニウム合金からなる補強材30をさらに備えている。   Here, as shown in FIGS. 1 and 2, the superconducting coil of the first embodiment further includes a reinforcing member 30 made of an aluminum alloy.

補強材30は、フランジ部12,13の外径と略等しい内径の円筒部31を含んでいる。この円筒部31は、一対のフランジ部12,13に対して軸方向に略無負荷となる状態で一対のフランジ部12,13の外周部12b,13b同士、詳しくはフランジ部12,13の外周面同士を全周に亘って橋絡するようにフランジ部12,13の間に架設されている。すなわち、一対のフランジ部12,13の間隔がほとんど変化することのないように補強材30の巻枠10への取付が行われるようになっている。   The reinforcing member 30 includes a cylindrical portion 31 having an inner diameter substantially equal to the outer diameter of the flange portions 12 and 13. The cylindrical portion 31 is in a state of being substantially unloaded in the axial direction with respect to the pair of flange portions 12 and 13, and the outer peripheral portions 12 b and 13 b of the pair of flange portions 12 and 13, specifically the outer periphery of the flange portions 12 and 13. It spans between the flange parts 12 and 13 so that surfaces may bridge over the perimeter. That is, the reinforcing member 30 is attached to the winding frame 10 so that the distance between the pair of flange portions 12 and 13 hardly changes.

なお、アルミニウム合金からなる補強材30の室温から約4.2Kの極低温までの熱収縮率は、上記巻枠10の熱収縮率と略等しい約0.4%である。また、補強材30の材料としては、上記アルミニウム合金以外のアルミニウム、ステンレス鋼、銅、銅合金、チタン、チタン合金およびFRP(Fiberglass Reinforced Plastics)樹脂等を挙げることができる。   The heat shrinkage rate of the reinforcing material 30 made of an aluminum alloy from room temperature to an extremely low temperature of about 4.2 K is about 0.4%, which is substantially equal to the heat shrinkage rate of the winding frame 10. Examples of the material of the reinforcing material 30 include aluminum other than the aluminum alloy, stainless steel, copper, copper alloy, titanium, titanium alloy, and FRP (Fiberglass Reinforced Plastics) resin.

上記構成の超電導コイルのクエンチ防止方法としては、まず、円筒状の軸部11と、軸部11の軸方向両端から径外方向に延設される一対のフランジ部12,13とを含むアルミニウム合金からなる巻枠10を準備する。そして、巻枠10の軸部11の外周にNbTiからなる超電導線材20を巻回する。   As a method for preventing quenching of a superconducting coil having the above-described configuration, first, an aluminum alloy including a cylindrical shaft portion 11 and a pair of flange portions 12 and 13 extending radially outward from both axial ends of the shaft portion 11. A reel 10 is prepared. Then, a superconducting wire 20 made of NbTi is wound around the outer periphery of the shaft portion 11 of the winding frame 10.

次に、超電導線材20の熱収縮率よりも大きい熱収縮率を有するアルミニウム合金からなる補強材30を準備する。そして、補強材30を、一対のフランジ部12,13に対して軸方向に略無負荷となる状態で一対のフランジ部12,13の外周部12b,13b同士を橋絡するようにフランジ部12,13の間に架設する。詳細には、円筒部31の軸方向両端の内周面をフランジ部12,13の外周面(外周部12b,13b)に溶接することによって補強材30を巻枠10に取り付けている。本実施形態では、補強材30の円筒部31が一対のフランジ部12,13に対して軸方向に略無負荷となる状態でフランジ部12,13の間に架設されているため、補強材30の巻枠10への取付に際して、一対のフランジ部12,13の間隔がほとんど変化することがない。なお、補強材30を例えばネジ等の締結部材を用いて巻枠10に取り付けてもよい。以上のようにして超電導コイルを組み立てる。   Next, a reinforcing member 30 made of an aluminum alloy having a thermal contraction rate larger than that of the superconducting wire 20 is prepared. Then, the flange portion 12 is formed so that the outer peripheral portions 12b and 13b of the pair of flange portions 12 and 13 are bridged with each other in a state in which the reinforcing member 30 is substantially unloaded in the axial direction with respect to the pair of flange portions 12 and 13. , 13 between. Specifically, the reinforcing member 30 is attached to the reel 10 by welding the inner peripheral surfaces of both ends in the axial direction of the cylindrical portion 31 to the outer peripheral surfaces (outer peripheral portions 12 b and 13 b) of the flange portions 12 and 13. In the present embodiment, since the cylindrical portion 31 of the reinforcing member 30 is installed between the flange portions 12 and 13 in a state of being substantially unloaded in the axial direction with respect to the pair of flange portions 12 and 13, the reinforcing member 30. When attaching to the reel 10, the distance between the pair of flange portions 12 and 13 hardly changes. The reinforcing member 30 may be attached to the winding frame 10 using a fastening member such as a screw. The superconducting coil is assembled as described above.

そして、この超電導コイルを極低温に冷却して通電し励磁状態にすると、図3に示すように、通電電流と自ら発した磁界との相互作用により超電導線材20にフープ力Aが作用する。これにより、超電導線材20が径方向に膨らむ。   When the superconducting coil is cooled to a very low temperature and energized to be excited, a hoop force A acts on the superconducting wire 20 due to the interaction between the energizing current and the magnetic field generated by itself as shown in FIG. Thereby, the superconducting wire 20 swells in the radial direction.

また、極低温に冷却すると、巻枠10、超電導線材20および補強材30が各構成材料の熱収縮率にしたがって収縮する。ここで、本実施形態では、補強材30の熱収縮率が、巻枠10の熱収縮率と略等しく、かつ超電導線材20の熱収縮率よりも大きくなるように構成されている。このため、冷却時に、巻枠10および補強材30が、超電導線材20よりも大きく収縮することとなる。   Moreover, when it cools to cryogenic temperature, the winding frame 10, the superconducting wire 20, and the reinforcing material 30 contract according to the thermal contraction rate of each constituent material. Here, in this embodiment, the thermal contraction rate of the reinforcing member 30 is configured to be substantially equal to the thermal contraction rate of the winding frame 10 and larger than the thermal contraction rate of the superconducting wire 20. For this reason, at the time of cooling, the winding frame 10 and the reinforcing material 30 contract more largely than the superconducting wire 20.

そして、一対のフランジ部12,13の内周部12a,13aが軸部11の熱収縮に引っ張られることで超電導線材20を挟み込むように互いに近接する方向に変位する。また、補強材30が一対のフランジ部12,13の外周部12b,13b同士を橋絡するようにフランジ部12,13間に架設されていることから、一対のフランジ部12,13の外周部12b,13bが補強材30の熱収縮に引っ張られることで超電導線材20を挟み込むように互いに近接する方向に変位する。これにより、図3に示すように、巻枠10の軸部11の熱収縮による矢印a方向の引張り力により、フランジ部12,13の内周部12a,13aが超電導線材20の内周部に十分な大きさの圧縮力Bを付与するとともに、補強材30の熱収縮による矢印a方向の引張り力により、フランジ部12,13の外周部12b,13bが超電導線材20の外周部に十分な大きさの圧縮力Cを付与している。   And the inner peripheral parts 12a and 13a of a pair of flange parts 12 and 13 are displaced in the direction which mutually adjoins so that the superconducting wire 20 may be pinched | interposed by being pulled by the thermal contraction of the axial part 11. FIG. Further, since the reinforcing material 30 is installed between the flange portions 12 and 13 so as to bridge the outer peripheral portions 12b and 13b of the pair of flange portions 12 and 13, the outer peripheral portions of the pair of flange portions 12 and 13 When 12b and 13b are pulled by the thermal contraction of the reinforcing member 30, the superconducting wire 20 is displaced so as to be close to each other. As a result, as shown in FIG. 3, the inner peripheral portions 12 a and 13 a of the flange portions 12 and 13 are brought into contact with the inner peripheral portion of the superconducting wire 20 by the tensile force in the direction of arrow a due to the thermal contraction of the shaft portion 11 of the reel 10. While applying a sufficiently large compressive force B, the outer peripheral portions 12b and 13b of the flange portions 12 and 13 are sufficiently large on the outer peripheral portion of the superconducting wire 20 due to the tensile force in the direction of arrow a due to the thermal contraction of the reinforcing member 30. A compressive force C is applied.

例えば図7に示す補強材30を具備していない超電導コイルでは、巻枠110の軸部111の熱収縮による矢印a方向の引張り力のみによって、超電導線材120にフランジ部112,113からの軸方向の圧縮力を作用させる構成であるので、フランジ部112,113の内周部112a,113aが超電導線材120に十分な大きさの圧縮力Bを付与可能である一方、フランジ部112,113の外周部112b,113bが超電導線材120に付与する圧縮力C´が上記圧縮力Bに対して小さくなる。従って、フランジ部112,113の外周部112b,113bが超電導線材120に十分な大きさの圧縮力を付与することができないので、超電導線材120のうちフランジ部112,113の外周部112b,113bに挟み込まれる部分の極低温下での微小変位を抑制するのが困難である。   For example, in the superconducting coil that does not include the reinforcing member 30 shown in FIG. 7, the axial direction from the flange portions 112 and 113 to the superconducting wire 120 is only caused by the tensile force in the direction of arrow a due to the thermal contraction of the shaft portion 111 of the winding frame 110. Since the inner peripheral portions 112a and 113a of the flange portions 112 and 113 can apply a sufficiently large compressive force B to the superconducting wire 120, the outer periphery of the flange portions 112 and 113 can be applied. The compressive force C ′ applied to the superconducting wire 120 by the portions 112b and 113b is smaller than the compressive force B. Therefore, since the outer peripheral portions 112b and 113b of the flange portions 112 and 113 cannot apply a sufficiently large compressive force to the superconducting wire 120, the outer peripheral portions 112b and 113b of the flange portions 112 and 113 of the superconducting wire 120 are applied. It is difficult to suppress minute displacements at extremely low temperatures in the sandwiched portion.

これに対して、本実施形態では、上述のように極低温で巻枠10の軸部11および補強材30の円筒部31が矢印a方向に十分に収縮するので、巻枠10のフランジ部12,13の内周部12a,13aおよび外周部12b,13bが超電導線材20に十分な大きさの圧縮力B,Cを付与することができる。これにより、超電導線材20の極低温下での微小変位を十分に抑制し、クエンチ現象の発生を抑制することが可能である。   On the other hand, in the present embodiment, the shaft portion 11 of the winding frame 10 and the cylindrical portion 31 of the reinforcing member 30 are sufficiently contracted in the direction of arrow a at a very low temperature as described above. , 13 and the outer peripheral portions 12b, 13b can apply a sufficiently large compressive force B, C to the superconducting wire 20. Thereby, it is possible to sufficiently suppress the minute displacement of the superconducting wire 20 at a cryogenic temperature and to suppress the occurrence of the quench phenomenon.

なお、ステンレス鋼からなる巻枠10を用いた場合には、補強材30の熱収縮率が巻枠10の熱収縮率よりも大きくなる。このように構成すれば、冷却時に補強材30を巻枠10以上に軸方向に大きく収縮させることができるので、一対のフランジ部12,13が、その外周部12b,13bが内周部12a,13aに比べて軸方向により離間するように反り返るのを防止しつつ、超電導線材20の外周部に内周部以上にフランジ部12,13による圧縮力を作用させることができる。これにより、超電導線材20の外周部の微小変位を十分に抑制することができる。   In addition, when the winding frame 10 made of stainless steel is used, the thermal shrinkage rate of the reinforcing member 30 is larger than the thermal shrinkage rate of the winding frame 10. If comprised in this way, since the reinforcing material 30 can be greatly shrunk in the axial direction more than the reel 10 at the time of cooling, the pair of flange portions 12 and 13 have their outer peripheral portions 12b and 13b as inner peripheral portions 12a and 12a, respectively. Compared with 13a, the compressive force by the flange parts 12 and 13 can be made to act on the outer peripheral part of the superconducting wire 20 more than an inner peripheral part, preventing it curving so that it may space apart in the axial direction. Thereby, the minute displacement of the outer peripheral part of the superconducting wire 20 can be sufficiently suppressed.

第1実施形態では、上記のように、一対のフランジ部12,13の外周部12b,13b同士を超電導線材20の熱収縮率よりも大きい熱収縮率の補強材30で橋絡し、この補強材30を、極低温下で一対のフランジ部12,13の外周部12b,13bを互いに近接する方向に変位させるように収縮させることによって、冷却時に補強材30を超電導線材20よりも軸方向に大きく収縮させることができるので、一対のフランジ部12,13の外周部12b,13bを、対応する超電導線材20の外周部を軸方向外側から挟み込むように互いに近接させることができる。これにより、超電導線材20の外周部にフランジ部12,13による圧縮力B,Cを十分に作用させることができるので、超電導線材20の外周部の微小変位を抑制することができる。その結果、クエンチ現象の発生を抑制して超電導コイルを安定して励磁させることができる。しかも、第1実施形態の超電導コイルでは、超電導線材20の微小変位を十分に抑制可能な大きさの圧縮力B,Cを冷却時の熱収縮差によって積極的に作用させているため、従来のように励磁前の段階、すなわち、常温下で行われる例えば超電導コイルの輸送や設置の段階から巻枠10および超電導線材20に大きな圧縮力を加える必要がない。これにより、前記圧縮力の負荷による構成部材の早期劣化を抑制することができる。   In the first embodiment, as described above, the outer peripheral portions 12b and 13b of the pair of flange portions 12 and 13 are bridged with the reinforcing material 30 having a thermal contraction rate larger than that of the superconducting wire 20, and this reinforcement is performed. By contracting the material 30 so as to displace the outer peripheral portions 12b and 13b of the pair of flange portions 12 and 13 in a direction close to each other at a cryogenic temperature, the reinforcing material 30 is more axial than the superconducting wire 20 during cooling. Since it can shrink | contract greatly, the outer peripheral parts 12b and 13b of a pair of flange parts 12 and 13 can be mutually adjoined so that the outer peripheral part of the corresponding superconducting wire 20 may be pinched | interposed from an axial direction outer side. Thereby, since the compressive force B and C by the flange parts 12 and 13 can fully be made to act on the outer peripheral part of the superconducting wire 20, the micro displacement of the outer peripheral part of the superconducting wire 20 can be suppressed. As a result, the occurrence of the quench phenomenon can be suppressed and the superconducting coil can be stably excited. Moreover, in the superconducting coil of the first embodiment, since the compressive forces B and C having a magnitude capable of sufficiently suppressing the minute displacement of the superconducting wire 20 are positively acted on by the heat shrinkage difference during cooling, Thus, it is not necessary to apply a large compressive force to the reel 10 and the superconducting wire 20 from the stage before excitation, that is, for example, the stage of transport and installation of the superconducting coil performed at room temperature. Thereby, the early deterioration of the structural member by the load of the said compressive force can be suppressed.

また、第1実施形態では、冷却前の段階で、補強材30を、一対のフランジ部12,13に対して軸方向に略無負荷となる状態でこれらフランジ部12,13間に架設することによって、冷却時以外に巻枠10および超電導線材20に負荷が加わることがほぼなくなるので、構成部材の早期劣化をより一層抑制することができる。   In the first embodiment, the reinforcing member 30 is installed between the flange portions 12 and 13 in a state of being substantially unloaded in the axial direction with respect to the pair of flange portions 12 and 13 in a stage before cooling. As a result, almost no load is applied to the winding frame 10 and the superconducting wire 20 except during cooling, so that early deterioration of the constituent members can be further suppressed.

また、第1実施形態では、上記のように、フランジ部12,13の外径と略等しい内径の円筒部31を、一対のフランジ部12,13の外周部12b,13b同士を全周に亘って橋絡するようにフランジ部12,13間に架設することによって、冷却時に、超電導線材20の外周部に全周に亘ってフランジ部12,13による圧縮力を十分に作用させることができるので、超電導線材20の外周部の微小変位をより確実に抑制することができる。これにより、クエンチ現象の発生をさらに抑制することができる。   Moreover, in 1st Embodiment, as above-mentioned, the cylindrical part 31 of an internal diameter substantially equal to the outer diameter of the flange parts 12 and 13 is used for the outer peripheral parts 12b and 13b of a pair of flange parts 12 and 13 over a perimeter. By laying between the flange portions 12 and 13 so as to bridge, the compression force by the flange portions 12 and 13 can be sufficiently applied to the outer peripheral portion of the superconducting wire 20 over the entire circumference at the time of cooling. Moreover, the minute displacement of the outer peripheral portion of the superconducting wire 20 can be more reliably suppressed. Thereby, generation | occurrence | production of the quench phenomenon can further be suppressed.

(第2実施形態)
図4は、本発明の第2実施形態による超電導コイルの全体構成を示した正面断面図である。
(Second Embodiment)
FIG. 4 is a front sectional view showing the overall configuration of the superconducting coil according to the second embodiment of the present invention.

この第2実施形態の超電導コイルは、図4に示すように、上記第1実施形態とは異なる構成の補強材40を備えている。補強材40は、第1実施形態の円筒部31と略同様の構成の円筒部41と、円筒部41の軸方向両端から径内方向に延びるように設けられた一対の補強材側フランジ部42,43とを含んでいる。   As shown in FIG. 4, the superconducting coil of the second embodiment includes a reinforcing member 40 having a configuration different from that of the first embodiment. The reinforcing member 40 includes a cylindrical portion 41 having substantially the same configuration as the cylindrical portion 31 of the first embodiment, and a pair of reinforcing-material-side flange portions 42 provided so as to extend radially inward from both axial ends of the cylindrical portion 41. , 43.

補強材側フランジ部42,43は、巻枠10の一対のフランジ部12,13を軸方向外側から挟み込むように該フランジ部12,13の軸方向外側、つまりフランジ部12の上面側およびフランジ部13の下面側に隣接して配されており、極低温下で一対のフランジ部12,13を互いに近接する方向に変位させるように収縮する。   The reinforcing material side flange portions 42 and 43 are axially outside of the flange portions 12 and 13, that is, the upper surface side of the flange portion 12 and the flange portion so as to sandwich the pair of flange portions 12 and 13 of the winding frame 10 from the outside in the axial direction. It arrange | positions adjacent to the lower surface side of 13, and shrink | contracts so that a pair of flange parts 12 and 13 may be displaced to the mutually adjacent direction under cryogenic temperature.

第2実施形態では、上記のように、極低温下で巻枠10の各フランジ部12,13に当接して一対のフランジ部12,13を互いに近接する方向に変位させるように収縮する一対の補強材側フランジ部42,43を円筒部41の軸方向両端から径内方向に延設することによって、冷却時に、フランジ部12の外周縁の上面(外周部12b)を含む比較的広範囲な領域と、フランジ部13の外周縁の下面(外周部13b)を含む比較的広範囲な領域とを互いに近接させることができるので、超電導線材20の外周部を含む比較的広範囲な領域にフランジ部12,13による圧縮力を作用させることができる。これにより、超電導線材20の微小変位を広範囲に亘って抑制することができる。   In the second embodiment, as described above, a pair of contractions are brought into contact with the flange portions 12 and 13 of the winding frame 10 at a cryogenic temperature so as to displace the pair of flange portions 12 and 13 in directions close to each other. By extending the reinforcing-material-side flange portions 42 and 43 radially inward from both axial ends of the cylindrical portion 41, a relatively wide area including the upper surface (outer peripheral portion 12b) of the outer peripheral edge of the flange portion 12 during cooling. And a relatively wide area including the lower surface (outer peripheral part 13 b) of the outer peripheral edge of the flange part 13, the flange part 12, and a relatively wide area including the outer peripheral part of the superconducting wire 20 can be brought close to each other. The compression force by 13 can be applied. Thereby, the micro displacement of the superconducting wire 20 can be suppressed over a wide range.

(第3実施形態)
図5は、本発明の第3実施形態による超電導コイルの全体構成を示した正面断面図である。
(Third embodiment)
FIG. 5 is a front sectional view showing the overall configuration of the superconducting coil according to the third embodiment of the present invention.

この第3実施形態の超電導コイルは、図5に示すように、上記第1および第2実施形態の構成とは異なり、補強材として巻枠10の周囲に等間隔で配設される複数(本実施形態では8つ)の板材50を備えている。板材50は、それぞれ、橋絡部51を含んでおり、各橋絡部51は、一対のフランジ部12,13の外周部12b,13b同士を部分的に橋絡するようにフランジ部12,13の間に架設されている。   As shown in FIG. 5, the superconducting coil of the third embodiment differs from the configurations of the first and second embodiments described above in that a plurality of (conventional) coils disposed at equal intervals around the reel 10 as a reinforcing material. In the embodiment, eight plate members 50 are provided. Each of the plate members 50 includes a bridging portion 51, and each bridging portion 51 has flange portions 12, 13 so as to partially bridge the outer peripheral portions 12 b, 13 b of the pair of flange portions 12, 13. It is erected between.

この構成の超電導コイルでは、組立時に、各板材50を一対のフランジ部12,13の外周部12b,13b同士を橋絡するように巻枠10の径方向外側からフランジ部12,13に取り付けることとなる。   In the superconducting coil having this configuration, at the time of assembly, each plate member 50 is attached to the flange portions 12 and 13 from the radially outer side of the winding frame 10 so as to bridge the outer peripheral portions 12b and 13b of the pair of flange portions 12 and 13. It becomes.

第3実施形態では、上記のように、補強材として複数の板材50を用いたので、各板材50の橋絡部51を巻枠10の径方向外側からフランジ部12,13に取り付けることができるので、補強材のフランジ部12,13への取付作業を簡便化することができる。   In the third embodiment, as described above, since the plurality of plate members 50 are used as the reinforcing members, the bridging portions 51 of the respective plate members 50 can be attached to the flange portions 12 and 13 from the outside in the radial direction of the winding frame 10. Therefore, the attachment work to the flange parts 12 and 13 of a reinforcing material can be simplified.

なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is shown not by the above description of the embodiments but by the scope of claims for patent, and further includes all modifications within the meaning and scope equivalent to the scope of claims for patent.

例えば、上記第1実施形態では、補強材30をフランジ部12,13の外周面に取り付けてフランジ部12,13の径方向外側に配する例について示したが、これに限らず、図6に示すように、補強材30をフランジ部12,13によって挟み込まれるようにフランジ部12の外周縁の下面(外周部12b)とフランジ部13の外周縁の上面(外周部13b)との間に取り付けてもよい。   For example, in the said 1st Embodiment, although the reinforcement material 30 was attached to the outer peripheral surface of the flange parts 12 and 13 and was shown about the example distribute | arranged to the radial direction outer side of the flange parts 12 and 13, not only this but FIG. As shown, the reinforcing member 30 is attached between the lower surface (outer peripheral portion 12b) of the outer peripheral edge of the flange portion 12 and the upper surface (outer peripheral portion 13b) of the outer peripheral edge of the flange portion 13 so as to be sandwiched between the flange portions 12 and 13. May be.

また、上記第3実施形態では、板材50を橋絡部51のみからなる構成としたが、これに限らず、板材50が、橋絡部51の軸方向両端から径内方向に延びるように設けられた一対の折曲げ部をさらに含む構成としてもよい。このように構成すれば、冷却時に、一対のフランジ部12,13の外周部12b,13bを含む比較的広範囲な領域を互いに近接させることができるので、超電導線材20の外周部を含む比較的広範囲な領域にフランジ部12,13による圧縮力を作用させることができる。これにより、超電導線材20の微小変位を広範囲に亘って抑制することができる。   Moreover, in the said 3rd Embodiment, although the board | plate material 50 was set as the structure which consists only of the bridging part 51, it is not restricted to this, The board | plate material 50 is provided so that it may extend in the radial direction from the axial direction both ends of the bridging part 51. It is good also as a structure further including a pair of bent part. If comprised in this way, since the comparatively wide area | region including the outer peripheral parts 12b and 13b of a pair of flange parts 12 and 13 can be mutually adjoined at the time of cooling, it is comparatively wide including the outer peripheral part of the superconducting wire 20. The compressive force by the flange parts 12 and 13 can be made to act on an area | region. Thereby, the minute displacement of the superconducting wire 20 can be suppressed over a wide range.

本発明の第1実施形態による超電導コイルの全体構成を示した正面断面図である。It is the front sectional view showing the whole superconducting coil composition by a 1st embodiment of the present invention. 図1に示した超電導コイルの平面図である。It is a top view of the superconducting coil shown in FIG. 図1に示した超電導コイルを極低温に冷却した状態を示した正面断面図である。It is front sectional drawing which showed the state which cooled the superconducting coil shown in FIG. 1 to cryogenic temperature. 本発明の第2実施形態による超電導コイルの全体構成を示した正面断面図である。It is front sectional drawing which showed the whole structure of the superconducting coil by 2nd Embodiment of this invention. 本発明の第3実施形態による超電導コイルの全体構成を示した正面断面図である。It is front sectional drawing which showed the whole structure of the superconducting coil by 3rd Embodiment of this invention. 本発明の変形例による超電導コイルの平面図である。It is a top view of the superconducting coil by the modification of this invention. 比較例による超電導コイルを極低温に冷却した状態を示した正面断面図である。It is front sectional drawing which showed the state which cooled the superconducting coil by a comparative example to cryogenic temperature.

符号の説明Explanation of symbols

10 巻枠
11 軸部
12,13 フランジ部
12b,13b 外周部(外周縁部位)
20 超電導線材
30,40 補強材
31,41 円筒部
42,43 補強材側フランジ部
50 板材(補強材)
51 橋絡部
10 reel 11 shaft part 12, 13 flange part 12b, 13b outer peripheral part (outer peripheral part)
20 Superconducting wire 30, 40 Reinforcing material 31, 41 Cylindrical portion 42, 43 Reinforcing material side flange 50 Plate material (reinforcing material)
51 Bridge

Claims (10)

極低温下で励磁される超電導コイルであって、
円筒状の軸部と、前記軸部の軸方向両端から径外方向に延設される一対のフランジ部とを含む巻枠と、
前記軸部の外周に螺旋状に巻回される超電導線材と、
前記一対のフランジ部の外周縁部位同士を橋絡するように前記フランジ部間に架設される補強材とを備え、
前記補強材は、前記超電導線材の熱収縮率よりも大きい熱収縮率を有しており、極低温下で前記一対のフランジ部の外周縁部位を互いに近接する方向に変位させるように収縮することを特徴とする超電導コイル。
A superconducting coil excited at a cryogenic temperature,
A winding frame including a cylindrical shaft portion and a pair of flange portions extending radially outward from both axial ends of the shaft portion;
A superconducting wire wound spirally around the outer periphery of the shaft portion;
A reinforcing material provided between the flange portions so as to bridge the outer peripheral edge portions of the pair of flange portions;
The reinforcing material has a thermal contraction rate larger than that of the superconducting wire, and contracts so as to displace the outer peripheral edge portions of the pair of flange portions toward each other at an extremely low temperature. Superconducting coil characterized by
前記補強材は、前記一対のフランジ部に対して軸方向に略無負荷となる状態で前記フランジ部間に架設されていることを特徴とする請求項1に記載の超電導コイル。   2. The superconducting coil according to claim 1, wherein the reinforcing member is provided between the flange portions so as to be substantially unloaded in the axial direction with respect to the pair of flange portions. 前記補強材は、前記フランジ部の外径と略等しい内径を有する円筒部を含み、
前記円筒部は、前記一対のフランジ部の外周縁部位同士を全周に亘って橋絡するように前記フランジ部間に架設されていることを特徴とする請求項1または2に記載の超電導コイル。
The reinforcing material includes a cylindrical portion having an inner diameter substantially equal to the outer diameter of the flange portion,
3. The superconducting coil according to claim 1, wherein the cylindrical portion is constructed between the flange portions so as to bridge the outer peripheral edge portions of the pair of flange portions over the entire circumference. 4. .
前記補強材は、前記円筒部の軸方向両端から径内方向に延設されて前記巻枠の一対のフランジ部を軸方向両外側から挟み込むように前記フランジ部に隣接して配される一対の補強材側フランジ部を含み、極低温下で前記一対の補強材側フランジ部を前記巻枠の各フランジ部に当接させて前記一対のフランジ部を互いに近接する方向に変位させるように収縮することを特徴とする請求項3に記載の超電導コイル。   The reinforcing member extends radially inward from both axial ends of the cylindrical portion and is disposed adjacent to the flange portion so as to sandwich the pair of flange portions of the winding frame from both axial outer sides. It includes a reinforcing material side flange portion, and contracts so that the pair of reinforcing material side flange portions are brought into contact with the flange portions of the winding frame and displaced in a direction approaching each other at an extremely low temperature. The superconducting coil according to claim 3. 前記補強材は、複数の板材であり、
前記板材は、それぞれ、前記一対のフランジ部の外周縁部位同士を部分的に橋絡するように前記フランジ部間に架設される橋絡部を含むことを特徴とする請求項1または2に記載の超電導コイル。
The reinforcing material is a plurality of plate materials,
The said board | plate material is respectively included in the bridge part constructed between the said flange parts so that the outer-periphery edge parts of a pair of said flange parts may be partially bridged. Superconducting coil.
前記板材は、それぞれ、前記橋絡部の軸方向両端から径内方向に延設されて前記巻枠の一対のフランジ部を軸方向両外側から挟み込むように前記フランジ部に隣接して配される一対の折曲げ部を含み、極低温下で前記一対の折曲げ部を前記巻枠の各フランジ部に当接させて前記一対のフランジ部を互いに近接する方向に変位させるように収縮することを特徴とする請求項5に記載の超電導コイル。   Each of the plate members is disposed adjacent to the flange portion so as to extend radially inward from both axial ends of the bridging portion and sandwich the pair of flange portions of the winding frame from both outer sides in the axial direction. Including a pair of bent portions, and contracting the pair of bent portions against each flange portion of the winding frame so as to displace the pair of flange portions in directions close to each other at an extremely low temperature. The superconducting coil according to claim 5, wherein 前記超電導線材は、NbTi、NbSnおよびNbAlからなるグループより選択される材料を含み、
前記補強材は、アルミニウム、アルミニウム合金およびステンレス鋼からなるグループより選択される材料を含むことを特徴とする請求項1〜6のいずれか一項に記載の超電導コイル。
The superconducting wire includes a material selected from the group consisting of NbTi, Nb 3 Sn and Nb 3 Al,
The superconducting coil according to any one of claims 1 to 6, wherein the reinforcing material includes a material selected from the group consisting of aluminum, an aluminum alloy, and stainless steel.
前記補強材は、前記巻枠の熱収縮率以上の熱収縮率を有していることを特徴とする請求項1〜7のいずれか一項に記載の超電導コイル。   The superconducting coil according to any one of claims 1 to 7, wherein the reinforcing material has a thermal contraction rate equal to or higher than a thermal contraction rate of the winding frame. 極低温下で励磁される超電導コイルのクエンチ防止方法であって、
円筒状の軸部と、前記軸部の軸方向両端から径外方向に延設される一対のフランジ部とを含む巻枠を準備する工程と、
前記軸部の外周に超電導線材を螺旋状に巻回する工程と、
前記超電導線材の熱収縮率よりも大きい熱収縮率を有する補強材を準備する工程と、
前記補強材を、前記一対のフランジ部の外周縁部位同士を橋絡するように前記フランジ部間に架設する工程と、
前記補強材が、極低温下で前記一対のフランジ部の外周縁部位を互いに近接する方向に変位させるように収縮する工程とを備えることを特徴とする超電導コイルのクエンチ防止方法。
A method for preventing quenching of a superconducting coil excited at a cryogenic temperature,
Preparing a reel including a cylindrical shaft portion and a pair of flange portions extending radially outward from both axial ends of the shaft portion;
A step of spirally winding a superconducting wire around the outer periphery of the shaft portion;
Preparing a reinforcing material having a thermal contraction rate larger than the thermal contraction rate of the superconducting wire;
Laying the reinforcing member between the flange portions so as to bridge the outer peripheral edge portions of the pair of flange portions;
A method for preventing quenching of a superconducting coil, comprising: a step of contracting the reinforcing material so as to displace outer peripheral edge portions of the pair of flange portions in a direction close to each other at a cryogenic temperature.
前記補強材を前記フランジ部間に架設する工程は、前記一対のフランジ部に対して軸方向に略無負荷となる状態で前記フランジ部間に前記補強材を架設する工程を含むことを特徴とする請求項9に記載の超電導コイルのクエンチ防止方法。   The step of laying the reinforcing material between the flange portions includes the step of laying the reinforcing material between the flange portions in a state of being substantially unloaded in the axial direction with respect to the pair of flange portions. The method for preventing quenching of a superconducting coil according to claim 9.
JP2006175094A 2006-06-26 2006-06-26 Superconducting coil and method for preventing quenching of superconducting coil Expired - Fee Related JP4813986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175094A JP4813986B2 (en) 2006-06-26 2006-06-26 Superconducting coil and method for preventing quenching of superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175094A JP4813986B2 (en) 2006-06-26 2006-06-26 Superconducting coil and method for preventing quenching of superconducting coil

Publications (2)

Publication Number Publication Date
JP2008004868A true JP2008004868A (en) 2008-01-10
JP4813986B2 JP4813986B2 (en) 2011-11-09

Family

ID=39008991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175094A Expired - Fee Related JP4813986B2 (en) 2006-06-26 2006-06-26 Superconducting coil and method for preventing quenching of superconducting coil

Country Status (1)

Country Link
JP (1) JP4813986B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
JP2015176990A (en) * 2014-03-14 2015-10-05 株式会社東芝 Superconducting coil device
JP2016140399A (en) * 2015-01-30 2016-08-08 株式会社日立製作所 Superconducting magnet and magnetic resonance imaging apparatus
WO2020017708A1 (en) * 2018-07-17 2020-01-23 한국전기연구원 Fault current limiting type smart superconducting wound cable structure and method for manufacturing same, and superconducting wound cable structure-based current limiter-combined power transfer device
JP2020021901A (en) * 2018-08-03 2020-02-06 住友重機械工業株式会社 Superconducting electromagnet
JP2022041937A (en) * 2020-08-31 2022-03-11 ブルーカー スウィッツァーランド アー・ゲー Reinforcement of superconducting electromagnetic coil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247004A (en) * 1988-08-01 1990-02-16 Harold L Botiller Device and method of manufacturing ready-made concrete product
JPH05182819A (en) * 1992-01-06 1993-07-23 Hitachi Cable Ltd Manufacture of superconducting coil
JPH09102414A (en) * 1995-10-06 1997-04-15 Kobe Steel Ltd Superconducting coil
JPH09120911A (en) * 1995-10-26 1997-05-06 Hitachi Cable Ltd Superconducting magnet
JPH09148120A (en) * 1995-11-27 1997-06-06 Kobe Steel Ltd Superconductive magnet and its manufacturing method
JPH09148122A (en) * 1995-11-24 1997-06-06 Kobe Steel Ltd Superconductive switch for conduction cooling superconductive magnet
JP2005100683A (en) * 2003-09-22 2005-04-14 Nippon Steel Corp Oxide superconductor energizing element

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247004A (en) * 1988-08-01 1990-02-16 Harold L Botiller Device and method of manufacturing ready-made concrete product
JPH05182819A (en) * 1992-01-06 1993-07-23 Hitachi Cable Ltd Manufacture of superconducting coil
JPH09102414A (en) * 1995-10-06 1997-04-15 Kobe Steel Ltd Superconducting coil
JPH09120911A (en) * 1995-10-26 1997-05-06 Hitachi Cable Ltd Superconducting magnet
JPH09148122A (en) * 1995-11-24 1997-06-06 Kobe Steel Ltd Superconductive switch for conduction cooling superconductive magnet
JPH09148120A (en) * 1995-11-27 1997-06-06 Kobe Steel Ltd Superconductive magnet and its manufacturing method
JP2005100683A (en) * 2003-09-22 2005-04-14 Nippon Steel Corp Oxide superconductor energizing element

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013877A (en) * 2012-03-26 2014-01-23 Chubu Electric Power Co Inc Superconductive pancake coil, and method of manufacturing the same
JP2015176990A (en) * 2014-03-14 2015-10-05 株式会社東芝 Superconducting coil device
JP2016140399A (en) * 2015-01-30 2016-08-08 株式会社日立製作所 Superconducting magnet and magnetic resonance imaging apparatus
WO2020017708A1 (en) * 2018-07-17 2020-01-23 한국전기연구원 Fault current limiting type smart superconducting wound cable structure and method for manufacturing same, and superconducting wound cable structure-based current limiter-combined power transfer device
KR20200008739A (en) * 2018-07-17 2020-01-29 한국전기연구원 Smart superconducting cable winding body for power transmission & fault current limit and production method thereof and power supply equipment used for a fault current limiter based on smart superconducting cable winding body
KR102167824B1 (en) * 2018-07-17 2020-10-20 한국전기연구원 Smart superconducting cable winding body for power transmission & fault current limit and production method thereof and power supply equipment used for a fault current limiter based on smart superconducting cable winding body
JP2020021901A (en) * 2018-08-03 2020-02-06 住友重機械工業株式会社 Superconducting electromagnet
JP7209489B2 (en) 2018-08-03 2023-01-20 住友重機械工業株式会社 superconducting electromagnet
JP2022041937A (en) * 2020-08-31 2022-03-11 ブルーカー スウィッツァーランド アー・ゲー Reinforcement of superconducting electromagnetic coil
US11506736B2 (en) 2020-08-31 2022-11-22 Bruker Switzerland Ag Reinforcement of a superconducting magnet coil
JP7189290B2 (en) 2020-08-31 2022-12-13 ブルーカー スウィッツァーランド アー・ゲー Reinforcement of superconducting electromagnetic coils

Also Published As

Publication number Publication date
JP4813986B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4813986B2 (en) Superconducting coil and method for preventing quenching of superconducting coil
US6398154B1 (en) Reel having deforming engagement of core to flange
JPS61180088A (en) Composite device
JP6567451B2 (en) Superconducting coil and superconducting coil manufacturing method
US20060253057A1 (en) Buckling restrained structural brace assembly
WO2013102509A1 (en) Structurally self-supporting superconducting magnet
JP2006196375A (en) Melting snow overhead wire
JP2010113919A (en) Superconducting tape wire and method of manufacturing the same, and superconducting coil
JP2008071789A (en) Superconducting coil
JP2008311526A (en) Superconductive coil, and quench prevention method of superconductive coil
US7432628B2 (en) Generator and method of manufacturing same
GB2362183A (en) Method of reinforcing structures
JP2010118384A (en) Coil winding frame for transformer and transformer using same
JP5161744B2 (en) Superconducting coil
JP2010045176A (en) Superconducting magnet
JP2007053211A (en) Superconducting magnet
JP5511003B2 (en) Superconducting coil and manufacturing method thereof
JP2003303718A (en) Transformer
JP2011066309A (en) Superconductive coil, and method of operating the same
JPH06267734A (en) Superconductive coil equipment
WO2012123711A1 (en) Cylindrical electromagnet comprising annular coils attached by their radially outer surfaces to an outer mechanical support structure
JPH0464164B2 (en)
JP2011171625A (en) Superconducting coil
JPH09148123A (en) Superconductive coil
JP2010182714A (en) Superconducting coil and method of forming magnetic field

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees