JP5161744B2 - Superconducting coil - Google Patents

Superconducting coil Download PDF

Info

Publication number
JP5161744B2
JP5161744B2 JP2008307336A JP2008307336A JP5161744B2 JP 5161744 B2 JP5161744 B2 JP 5161744B2 JP 2008307336 A JP2008307336 A JP 2008307336A JP 2008307336 A JP2008307336 A JP 2008307336A JP 5161744 B2 JP5161744 B2 JP 5161744B2
Authority
JP
Japan
Prior art keywords
coil
outer body
body portion
body part
superconducting coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008307336A
Other languages
Japanese (ja)
Other versions
JP2010135377A (en
Inventor
信吾 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008307336A priority Critical patent/JP5161744B2/en
Publication of JP2010135377A publication Critical patent/JP2010135377A/en
Application granted granted Critical
Publication of JP5161744B2 publication Critical patent/JP5161744B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超電導コイルに関する。   The present invention relates to a superconducting coil.

従来、胴部とこの胴部の軸方向両端から径外方向に延びる一対のフランジ部とを含む巻枠と、それら一対のフランジ部の間に挟まれる領域で胴部の周囲にソレノイド状に巻回された超電導線材からなるコイル部とを備えた超電導コイルが知られている。   Conventionally, a winding frame including a body part and a pair of flange parts extending radially outward from both ends in the axial direction of the body part, and a solenoid wound around the body part in an area sandwiched between the pair of flange parts. 2. Description of the Related Art A superconducting coil including a coil portion made of a rotated superconducting wire is known.

この超電導コイルでは、巻線後に当該コイルを含浸材に含浸して部材同士を接着することで、励磁運転中の超電導線材の微小変位を抑制し、その微小変位に起因するクエンチの発生を防止している。   In this superconducting coil, the coil is impregnated with an impregnating material after winding, and the members are bonded to each other, thereby suppressing the minute displacement of the superconducting wire during excitation operation and preventing the occurrence of quenching due to the minute displacement. ing.

ところで、上記のような含浸型の超電導コイルにおけるクエンチの一因として、含浸材で接着された部材同士の励磁中の剥離が挙げられる。この剥離は、励磁されたコイル部に作用する電磁力により巻枠とコイル部との間の面圧(接触圧)が下がり両者間の含浸材が割れることによって起こる。   By the way, as a cause of quenching in the above-described impregnation type superconducting coil, peeling during excitation of members bonded with an impregnating material can be cited. This peeling occurs when the surface pressure (contact pressure) between the winding frame and the coil portion is lowered by the electromagnetic force acting on the excited coil portion, and the impregnating material between the two is cracked.

そこで、特許文献1には、胴部とフランジ部とに分解可能に構成された巻枠を備え、励磁前に当該巻枠を分解してコイルから取り外すことで、巻枠とコイル部との接触が無くなるようにした超電導磁石が開示されている。この超電導磁石では、巻枠とコイル部との間の剥離が発生せず、この剥離によるクエンチが防止される。
特開平2−134802号公報
Therefore, Patent Document 1 includes a winding frame that is configured to be disassembled into a body portion and a flange portion, and disassembles the winding frame and removes it from the coil before excitation, so that the contact between the winding frame and the coil portion is achieved. There is disclosed a superconducting magnet that eliminates the problem. In this superconducting magnet, separation between the winding frame and the coil portion does not occur, and quenching due to this separation is prevented.
JP-A-2-134802

しかし、特許文献1の磁石では、励磁前に巻枠を分解して取り外す作業や、コイル部を支持するための別の支持体を取り付ける作業を行う必要があるので、それらの作業の分だけ当該磁石の組立てが煩雑になるという問題がある。   However, in the magnet of Patent Document 1, it is necessary to disassemble and remove the winding frame before excitation and to attach another support for supporting the coil portion. There is a problem that the assembly of the magnet becomes complicated.

本発明は、上記のような課題を解決するためになされたものであり、組立てが容易でかつクエンチを抑制することが可能な超電導コイルを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a superconducting coil that can be easily assembled and can suppress quenching.

本願発明者は、含浸材に含浸された超電導コイルでは、当該コイルが完全に励磁された高磁場状態での運転中に巻枠とコイル部とが剥離した場合には、その剥離によって高いエネルギーが放出されることからクエンチが容易に発生する一方、励磁中であっても励磁初期段階の低磁場状態であれば、クエンチする臨界温度が高く、マージンが大きいので、冷却中あるいは比較的低磁場の励磁初期段階までに巻枠とコイル部とを剥離させることによって、クエンチの発生を十分に抑えることができるのではないかと考えた。そして、上記のような剥離を促す手段としては、当該コイルを運転温度まで冷却する間に巻枠とコイル部との間に作用する面圧(接触圧)を下げることが考えられ、そのためには、巻枠の線膨張率をコイル部の線膨張率よりも大きくすることが考えられる。しかし、その場合、巻枠の軸方向両端のフランジ部とコイル部との間の面圧が上がってしまう。このようなことから、本願発明者は、コイルを運転温度まで冷却する間に巻枠とコイル部との間に作用する径方向の面圧および軸方向の面圧をともに下げることが可能な構成の超電導コイルを提案する。   The inventor of the present application, in the case of a superconducting coil impregnated with an impregnating material, when the coil is peeled off during the operation in a high magnetic field state in which the coil is completely excited, high energy is generated by the peeling. While quenching occurs easily because of the release, if the magnetic field is in the initial stage of excitation even during excitation, the critical temperature for quenching is high and the margin is large. It was thought that the occurrence of quenching could be sufficiently suppressed by separating the winding frame and the coil portion by the initial stage of excitation. As a means for promoting the above-described peeling, it is conceivable to reduce the surface pressure (contact pressure) acting between the winding frame and the coil portion while the coil is cooled to the operating temperature. It is conceivable to make the linear expansion coefficient of the winding frame larger than the linear expansion coefficient of the coil portion. However, in that case, the surface pressure between the flange portions and the coil portions at both ends in the axial direction of the winding frame increases. For this reason, the inventor of the present application can reduce both the radial surface pressure and the axial surface pressure acting between the winding frame and the coil portion while cooling the coil to the operating temperature. A superconducting coil is proposed.

そこで、本発明の請求項1に記載の超電導コイルは、胴部とこの胴部の軸方向両端から径外方向に延びて互いに対向する一対のフランジ部とを含む巻枠と、前記一対のフランジ部の間に挟まれる領域で前記胴部の周囲にソレノイド状に巻回された超電導線材からなるコイル部とを備え、巻線状態で含浸材に含浸される超電導コイルであって、前記胴部は、円筒状に形成されて前記コイル部の内周に隣接する外側胴部と、この外側胴部の径方向内側に当該径方向の隙間をおいて設けられるとともに、軸方向に延びて前記一対のフランジ部に連結される内側胴部とを含み、前記外側胴部は、前記コイル部の線膨張率よりも大きい線膨張率の材料からなり、所定の運転温度に至るまで冷却されることにより前記隙間の範囲で径方向に収縮するとともに前記内側胴部とは独立して軸方向に収縮するように配置され、前記内側胴部は、前記コイル部の線膨張率よりも小さい線膨張率の材料からなり、前記運転温度に至るまでの冷却による前記外側胴部の軸方向の収縮にかかわらず前記一対のフランジ部同士の間隔を当該コイル部の軸方向の寸法よりも大きな間隔に保つことを特徴とする。   Accordingly, a superconducting coil according to claim 1 of the present invention includes a winding frame including a body portion and a pair of flange portions extending radially outward from both axial ends of the body portion and facing each other, and the pair of flanges. A superconducting coil that is impregnated with an impregnating material in a winding state, the coil portion comprising a coil made of a superconducting wire wound in a solenoid shape around the body in a region sandwiched between parts, Is formed in a cylindrical shape and adjacent to the inner periphery of the coil part, and is provided with a radial gap on the radially inner side of the outer trunk part, and extends in the axial direction to extend the pair. The outer body is made of a material having a linear expansion coefficient larger than the linear expansion coefficient of the coil part, and is cooled to a predetermined operating temperature. It shrinks in the radial direction within the gap. Arranged so as to contract in the axial direction independently of the inner body part, the inner body part is made of a material having a linear expansion coefficient smaller than the linear expansion coefficient of the coil part, and reaches the operating temperature. Regardless of the contraction of the outer body portion in the axial direction due to cooling, the distance between the pair of flange portions is kept larger than the dimension in the axial direction of the coil portion.

この請求項1に記載の超電導コイルによれば、当該コイルが運転温度まで冷却される間に巻枠とコイル部との間に作用する径方向の面圧および軸方向の面圧がともに下がる。つまり、この超電導コイルでは、上記のように、巻枠の胴部を、コイル部の内周に隣接する外側胴部と、この外側胴部の径方向内側で軸方向に延びて一対のフランジ部に連結される内側胴部とで構成した。そして、外側胴部をコイル部の線膨張率よりも大きい線膨張率の材料で形成したので、冷却による外側胴部の径内方向への熱収縮量がコイル部の径内方向への熱収縮量よりも大きくなり、当該コイルの運転温度への冷却によって外側胴部とコイル部との間に作用する径方向の面圧が下がる。また、内側胴部をコイル部の線膨張率よりも小さい線膨張率の材料で形成したので、冷却による内側胴部の軸方向の熱収縮量よりもコイル部の軸方向の熱収縮量が大きくなり、当該コイルを運転温度まで冷却することにより各フランジ部とコイル部との間に作用する軸方向の面圧が下がる。これにより、運転温度への冷却中あるいは冷却完了後の比較的低磁場の励磁初期段階で巻枠とコイル部とが容易に剥離する。そして、一度割れた含浸材は再接着することがないので、当該コイルが完全に励磁された高磁場状態での運転中に巻枠とコイル部とが剥離するのを防ぐことができ、その剥離に起因するクエンチの発生を抑えることができる。   According to the superconducting coil of the first aspect, both the radial surface pressure and the axial surface pressure acting between the winding frame and the coil portion are lowered while the coil is cooled to the operating temperature. That is, in this superconducting coil, as described above, the body portion of the winding frame has an outer body portion adjacent to the inner periphery of the coil portion, and a pair of flange portions extending in the axial direction radially inward of the outer body portion. And an inner body part connected to the body. Since the outer body portion is made of a material having a linear expansion coefficient larger than the linear expansion coefficient of the coil portion, the amount of heat shrinkage in the radially inward direction of the outer body portion due to cooling is reduced by the heat shrinkage in the radially inward direction of the coil portion. The surface pressure in the radial direction acting between the outer body portion and the coil portion is reduced by cooling the coil to the operating temperature. Further, since the inner body portion is made of a material having a linear expansion coefficient smaller than that of the coil portion, the amount of thermal contraction in the axial direction of the coil portion is larger than the amount of heat shrinkage in the axial direction of the inner body portion due to cooling. Thus, the axial surface pressure acting between each flange portion and the coil portion is reduced by cooling the coil to the operating temperature. As a result, the winding frame and the coil part easily peel off at the initial stage of excitation of a relatively low magnetic field during cooling to the operating temperature or after completion of cooling. And since the impregnated material once cracked does not re-adhere, it is possible to prevent the reel and coil part from peeling off during operation in a high magnetic field state where the coil is completely excited. Generation | occurrence | production of the quench resulting from can be suppressed.

また、本発明の請求項1に記載の超電導コイルでは、上記構成の巻枠でコイル部を支持したまま冷却・励磁されることによりクエンチ抑制の効果が得られる。従って、従来のように巻枠の取外し等の作業が伴う場合に比べて、当該コイルの組立てが容易である。   Moreover, in the superconducting coil according to claim 1 of the present invention, an effect of quench suppression can be obtained by cooling and exciting the coil portion supported by the winding frame having the above configuration. Therefore, it is easier to assemble the coil as compared with the conventional case where a work such as removal of the winding frame is involved.

請求項2に記載の超電導コイルは、上記請求項1に記載の超電導コイルにおいて、前記コイル部の超電導線材がNbTiからなり、前記外側胴部がアルミニウムからなり、前記内側胴部がステンレス鋼からなることを特徴とする。   The superconducting coil according to claim 2 is the superconducting coil according to claim 1, wherein the superconducting wire of the coil part is made of NbTi, the outer body part is made of aluminum, and the inner body part is made of stainless steel. It is characterized by that.

超電導コイルの各部位を上記のような材料で構成すれば、巻枠とコイル部との間に作用する径方向の面圧および軸方向の面圧の両方が当該コイルを運転温度まで冷却する間に容易に下がるようになる。   If each part of the superconducting coil is made of the material as described above, both the radial surface pressure and the axial surface pressure acting between the winding frame and the coil portion cool the coil to the operating temperature. To come down easily.

請求項3に記載の超電導コイルは、上記請求項1または2に記載の超電導コイルにおいて、前記外側胴部と前記内側胴部との間に配され、両胴部の互いに対向する部位にそれぞれ接触して前記外側胴部を前記内側胴部との間に前記隙間をもつように当該内側胴部に対して位置決めする一方で、前記運転温度に至るまで冷却されることにより径内方向へ変位して前記外側胴部の径方向の収縮を許容するスペーサを備えることを特徴とする。   The superconducting coil according to claim 3 is the superconducting coil according to claim 1 or 2, wherein the superconducting coil is arranged between the outer body part and the inner body part, and contacts the mutually opposite parts of both body parts. The outer body portion is positioned with respect to the inner body portion so as to have the gap between the inner body portion and the outer body portion. And a spacer that allows the outer body portion to contract in the radial direction.

このようなスペーサであれば、外側胴部と内側胴部との間の隙間を容易に確保することができ、かつ、外側胴部を冷却時に前記隙間の範囲で径方向に収縮させることができる。   With such a spacer, it is possible to easily secure a gap between the outer body part and the inner body part, and to shrink the outer body part in the radial direction within the gap during cooling. .

請求項4に記載の超電導コイルは、上記請求項3に記載の超電導コイルにおいて、前記スペーサが、前記外側胴部の線膨張率以上の線膨張率の材料からなることを特徴とする。   The superconducting coil according to claim 4 is the superconducting coil according to claim 3, wherein the spacer is made of a material having a linear expansion coefficient equal to or higher than the linear expansion coefficient of the outer body portion.

スペーサを上記材料で構成すれば、冷却によるスペーサの径内方向への熱収縮量が外側胴部の径内方向への熱収縮量以上になるので、冷却による外側胴部の径内方向への熱収縮を確実に許容することができるようになる。   If the spacer is made of the above material, the amount of thermal shrinkage in the radial direction of the spacer due to cooling is equal to or greater than the amount of thermal contraction in the radial direction of the outer body, so Heat shrinkage can be reliably allowed.

本発明の超電導コイルは、その組立てが容易でかつクエンチを抑制することができるようになっている。   The superconducting coil of the present invention can be easily assembled and can suppress quenching.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態による超電導コイルの正面断面図である。また、図2は、運転温度まで冷却された状態の超電導コイルの正面断面図である。まず、本発明の一実施形態による超電導コイル1の構成について説明する。   FIG. 1 is a front sectional view of a superconducting coil according to an embodiment of the present invention. FIG. 2 is a front sectional view of the superconducting coil in a state cooled to the operating temperature. First, the configuration of the superconducting coil 1 according to an embodiment of the present invention will be described.

本実施形態の超電導コイル1は、所定の運転温度(約4K)まで冷却された状態で励磁されることにより高磁場を発生するように構成されている。   The superconducting coil 1 of the present embodiment is configured to generate a high magnetic field by being excited while being cooled to a predetermined operating temperature (about 4K).

この超電導コイル1は、図1に示すように、巻枠10と、コイル部20とを備えている。なお、図中の符号Rは当該超電導コイル1の軸心を示している。   As shown in FIG. 1, the superconducting coil 1 includes a winding frame 10 and a coil portion 20. In addition, the code | symbol R in a figure has shown the axial center of the said superconducting coil 1. FIG.

また、超電導コイル1は、冷却前に巻線状態でエポキシ等の含浸材に含浸されるようになっている。これにより、コイル部20を構成する超電導線材60が励磁運転中に微小変位することが抑えられ、その微小変位に起因するクエンチの発生が防止される。   The superconducting coil 1 is impregnated with an impregnating material such as epoxy in a wound state before cooling. Thereby, it is suppressed that the superconducting wire 60 constituting the coil unit 20 is slightly displaced during the excitation operation, and the occurrence of quenching due to the minute displacement is prevented.

巻枠10は、胴部30と、この胴部30の軸方向両端から径外方向に延びて互いに対向する一対のフランジ部41,42とを含んでいる。   The winding frame 10 includes a body portion 30 and a pair of flange portions 41 and 42 that extend radially outward from both axial ends of the body portion 30 and face each other.

ここで、本実施形態の巻枠10の胴部30は、円筒状の外側胴部31と、この外側胴部31の径方向内側に当該径方向の隙間Dをおいて設けられる円筒状の内側胴部32と、両胴部31,32の間に配される上下一対のリング状のスペーサ33とで構成されている。   Here, the body part 30 of the reel 10 of the present embodiment includes a cylindrical outer body part 31 and a cylindrical inner part provided with a radial gap D on the radially inner side of the outer body part 31. The body portion 32 and a pair of upper and lower ring-shaped spacers 33 disposed between the body portions 31 and 32 are configured.

外側胴部31は、その外周がコイル部20の内周に隣接している。つまり、前記コイル部20は、超電導線材60を一対のフランジ部41,42の間に挟まれる領域で外側胴部31の周囲にソレノイド状にかつ径方向に複数層に亘って積層されるように巻回することにより形成されている。   The outer periphery of the outer body portion 31 is adjacent to the inner periphery of the coil portion 20. That is, the coil part 20 is laminated in a solenoid shape and a plurality of layers in the radial direction around the outer body part 31 in a region where the superconducting wire 60 is sandwiched between the pair of flange parts 41 and 42. It is formed by winding.

また、外側胴部31は、運転温度に至るまで冷却されることにより前記隙間Dの範囲で径方向に収縮するとともに内側胴部32とは独立して軸方向に収縮する。   Further, the outer body part 31 contracts in the radial direction within the gap D by being cooled to the operating temperature, and contracts in the axial direction independently of the inner body part 32.

そして、外側胴部31は、コイル部20の線膨張率よりも大きい線膨張率の材料から形成されている。これにより、冷却による外側胴部31の径内方向への熱収縮量がコイル部20の径内方向への熱収縮量よりも大きくなり、当該超電導コイル1を運転温度まで冷却した状態では、外側胴部31とコイル部20との間での径方向の面圧が下がる。   And the outer side trunk | drum 31 is formed from the material of the linear expansion coefficient larger than the linear expansion coefficient of the coil part 20. As shown in FIG. As a result, the amount of heat shrinkage in the radially inward direction of the outer body portion 31 due to cooling becomes larger than the amount of heat shrinkage in the radially inward direction of the coil portion 20, and in the state where the superconducting coil 1 is cooled to the operating temperature, The surface pressure in the radial direction between the trunk portion 31 and the coil portion 20 decreases.

内側胴部32は、外側胴部31と同心となるように設けられ、かつ軸方向に延びて一対のフランジ部41,42に連結されている。   The inner trunk portion 32 is provided so as to be concentric with the outer trunk portion 31 and extends in the axial direction and is connected to the pair of flange portions 41 and 42.

この内側胴部32は、運転温度に至るまでの冷却による外側胴部31の軸方向の収縮にかかわらず一対のフランジ部41,42同士の間隔をコイル部20の軸方向の寸法よりも大きな間隔に保っている。   The inner body portion 32 has an interval between the pair of flange portions 41 and 42 larger than the axial dimension of the coil portion 20 regardless of the axial contraction of the outer body portion 31 due to cooling to the operating temperature. It keeps in.

そして、内側胴部32は、コイル部20の線膨張率よりも小さい線膨張率の材料から形成されている。これにより、冷却による内側胴部32の軸方向の熱収縮量よりもコイル部20の軸方向の熱収縮量が大きくなり、当該超電導コイル1を運転温度まで冷却した状態では、各フランジ部41,42とコイル部20との間での軸方向の面圧が下がる。   The inner body portion 32 is formed of a material having a linear expansion coefficient smaller than that of the coil unit 20. Thereby, the amount of thermal contraction in the axial direction of the coil portion 20 becomes larger than the amount of thermal contraction in the axial direction of the inner body portion 32 due to cooling, and in a state where the superconducting coil 1 is cooled to the operating temperature, each flange portion 41, The surface pressure in the axial direction between 42 and the coil part 20 decreases.

各スペーサ33は、互いに対向する外側胴部31の外周と内側胴部32の内周とにそれぞれ接触しており、外側胴部31を内側胴部32との間に前記隙間Dをもつような状態で当該内側胴部32に対して位置決めする機能を有している。これにより、冷却前の状態では、スペーサ33によって外側胴部31のがたつきが抑えられるので、外側胴部31の外周に超電導線材60を安定して巻回することができる。   Each spacer 33 is in contact with the outer periphery of the outer body part 31 and the inner periphery of the inner body part 32 facing each other, and the gap D is provided between the outer body part 31 and the inner body part 32. It has a function of positioning with respect to the inner body portion 32 in a state. Thereby, in the state before cooling, rattling of the outer trunk 31 is suppressed by the spacer 33, so that the superconducting wire 60 can be stably wound around the outer circumference of the outer trunk 31.

また、各スペーサ33は、外側胴部31の線膨張率以上の線膨張率の材料から形成されており、運転温度まで冷却される間に径内方向に変位することで外側胴部31の径内方向への熱収縮を許容するようになっている。   Each spacer 33 is made of a material having a linear expansion coefficient equal to or higher than the linear expansion coefficient of the outer body portion 31 and is displaced in the radially inward direction while being cooled to the operating temperature, whereby the diameter of the outer body portion 31 is increased. Heat shrinkage in the inward direction is allowed.

また、内側胴部32と上側のフランジ部41とは、複数のネジ50で互いに固定されている。そして、当該コイル1の組立て時等には、フランジ部41を内側胴部32から離脱させ、この状態で外側胴部31および一対のスペーサ33の装着が行われる。なお、内側胴部32と下側のフランジ部42とは、図示しない接続手段により互いに固定されている。   In addition, the inner body portion 32 and the upper flange portion 41 are fixed to each other with a plurality of screws 50. When the coil 1 is assembled, the flange portion 41 is detached from the inner body portion 32, and the outer body portion 31 and the pair of spacers 33 are attached in this state. The inner body portion 32 and the lower flange portion 42 are fixed to each other by connection means (not shown).

このような超電導コイル1の各構成部材の好ましい組合せとして、例えば、コイル部20の超電導線材60がNbTiからなり、外側胴部31がアルミニウムからなり、内側胴部32およびフランジ部41,42がステンレス鋼からなり、スペーサ33がテフロン(登録商標)からなることが挙げられる。なお、上記例以外にも、例えば、超電導線材60をNbSnで構成したり、外側胴部31を黄銅、アクリル樹脂、ナイロン、テフロン(登録商標)等で構成したり、スペーサ33をアクリル樹脂、ナイロン等で構成することも可能であり、前述の各部材の線膨張率同士の関係を満たす範囲で適宜変更可能である。 As a preferable combination of each component of such a superconducting coil 1, for example, the superconducting wire 60 of the coil part 20 is made of NbTi, the outer body part 31 is made of aluminum, and the inner body part 32 and the flange parts 41 and 42 are made of stainless steel. It is made of steel and the spacer 33 is made of Teflon (registered trademark). In addition to the above example, for example, the superconducting wire 60 is made of Nb 3 Sn, the outer body 31 is made of brass, acrylic resin, nylon, Teflon (registered trademark), or the like, and the spacer 33 is made of acrylic resin. Further, it can be made of nylon or the like, and can be appropriately changed within a range satisfying the relationship between the linear expansion coefficients of the respective members.

また、含浸材が外側胴部31の内側にも浸入することから、外側胴部31の径内方向への収縮を阻害しないために、含浸材の線膨張率は外側胴部31の線膨張率よりも大きいことが好ましい。なお、含浸材に用いられるエポキシ等の樹脂の線膨張率は、外側胴部31の上記材料よりも一般に高くなっている。   In addition, since the impregnating material also enters the inside of the outer body portion 31, the linear expansion coefficient of the impregnating material is the linear expansion coefficient of the outer body portion 31 in order not to inhibit the shrinkage of the outer body portion 31 in the radially inward direction. Is preferably larger. The linear expansion coefficient of the resin such as epoxy used for the impregnating material is generally higher than that of the material for the outer body portion 31.

次に、上記構成の超電導コイル1の形成工程から運転工程までを説明する。   Next, the process from the formation process of the superconducting coil 1 having the above configuration to the operation process will be described.

まず、外側胴部31を、下側のフランジ部42と接続状態にある内側胴部32に対してその軸方向外側(上側)から移動させ、内側胴部32と同心となるように内側胴部32の径方向外側に配置する。そして、一対のスペーサ33を内側胴部32と外側胴部31との間に押し込んでセットする。これにより、外側胴部31が内側胴部32に対して隙間Dをもった状態で位置決めされる。その後、複数のネジ50を用いて上側のフランジ部41を内側胴部32に固定し、これによって巻枠10を形成する。   First, the outer body part 31 is moved from the outer side in the axial direction (upper side) with respect to the inner body part 32 connected to the lower flange part 42, and the inner body part is concentric with the inner body part 32. 32 is arranged outside in the radial direction. Then, the pair of spacers 33 are pushed and set between the inner trunk portion 32 and the outer trunk portion 31. As a result, the outer body 31 is positioned with a gap D with respect to the inner body 32. Thereafter, the upper flange portion 41 is fixed to the inner body portion 32 using a plurality of screws 50, thereby forming the winding frame 10.

そして、このようにして形成された巻枠10の外側胴部31の外周に、超電導線材60をソレノイド状にかつ径方向に複数層に亘って積層されるように巻回してコイル部20を形成する。これにより超電導コイル1が形成される。   Then, the coil part 20 is formed by winding the superconducting wire 60 on the outer periphery of the outer body 31 of the winding frame 10 formed in this manner so as to be laminated in a solenoid shape and in a plurality of layers in the radial direction. To do. Thereby, the superconducting coil 1 is formed.

そして、上記超電導コイル1は、含浸材に含浸された後、所定の運転温度まで冷却され、極低温下で励磁運転される。   The superconducting coil 1 is impregnated with an impregnating material, then cooled to a predetermined operating temperature, and excited at an extremely low temperature.

本実施形態の超電導コイル1では、その冷却中すなわち前記運転温度に達するまでの間に、巻枠10とコイル部20との間に作用する径方向の面圧および軸方向の面圧がともに下がり、これによって両者10,20が剥離する。   In the superconducting coil 1 of the present embodiment, during the cooling, that is, until the operating temperature is reached, both the radial surface pressure and the axial surface pressure acting between the winding frame 10 and the coil portion 20 decrease. Thereby, both 10 and 20 peel.

すなわち、図2に示すように、外側胴部31とコイル部20との間の含浸材に割れが発生して外側胴部31とコイル部20とが剥離する(図2のd1参照)。また、上側のフランジ部41とコイル部20との間の含浸材に割れが発生してフランジ部41とコイル部20とが剥離する(図2のd2参照)。   That is, as shown in FIG. 2, the impregnating material between the outer body part 31 and the coil part 20 is cracked, and the outer body part 31 and the coil part 20 are separated (see d1 in FIG. 2). Moreover, a crack generate | occur | produces in the impregnation material between the upper flange part 41 and the coil part 20, and the flange part 41 and the coil part 20 peel (refer d2 of FIG. 2).

仮に、冷却中に巻枠10とコイル部20とが剥離しなくても、両者間の面圧は十分に低下しているので、励磁初期段階の比較的弱い電磁力で両者10,20は剥離する。従って、当該超電導コイル1が完全に励磁された高磁場状態での運転中に両者10,20の剥離が起こらない。   Even if the winding frame 10 and the coil part 20 do not peel off during cooling, the surface pressure between them is sufficiently reduced, so that both the parts 10 and 20 are peeled off by a relatively weak electromagnetic force at the initial stage of excitation. To do. Therefore, the peeling of both 10 and 20 does not occur during operation in a high magnetic field state where the superconducting coil 1 is completely excited.

本実施形態の超電導コイル1によれば、上記のように、運転温度への冷却中あるいは冷却完了後の比較的低磁場の励磁初期段階で巻枠10とコイル部20とが容易に剥離する。そして、一度割れた含浸材は再接着することがないので、当該コイル1が完全に励磁された高磁場状態での運転中に巻枠10とコイル部20とが剥離するのを防ぐことができ、その剥離に起因するクエンチの発生を抑えることができる。   According to the superconducting coil 1 of the present embodiment, as described above, the winding frame 10 and the coil portion 20 are easily separated at the initial stage of excitation of a relatively low magnetic field during cooling to the operating temperature or after completion of cooling. And since the impregnated material once cracked does not re-adhere, it is possible to prevent the reel 10 and the coil part 20 from peeling off during operation in a high magnetic field state where the coil 1 is completely excited. The occurrence of quenching due to the peeling can be suppressed.

また、本実施形態の超電導コイル1では、上記構成の巻枠10でコイル部20を支持したまま冷却・励磁されることによりクエンチ抑制の効果が得られる。従って、従来のように巻枠の取外し等の作業が伴う場合に比べて、当該コイル1の組立てが容易である。   Moreover, in the superconducting coil 1 of this embodiment, the quench suppression effect is acquired by being cooled and excited while supporting the coil part 20 with the winding frame 10 of the said structure. Accordingly, the coil 1 can be easily assembled as compared with the conventional case where the work such as the removal of the winding frame is involved.

また、本実施形態の超電導コイル1では、上記のように、NbTiからなる超電導線材60、アルミニウムからなる外側胴部31、ステンレス鋼からなる内側胴部32を用いたので、巻枠10とコイル部20との間に作用する径方向の面圧および軸方向の面圧の両方が当該コイル1を運転温度まで冷却する間に容易に下がるようになる。   In the superconducting coil 1 of the present embodiment, as described above, the superconducting wire 60 made of NbTi, the outer body 31 made of aluminum, and the inner body 32 made of stainless steel are used. Both the radial surface pressure and the axial surface pressure acting between the coil 20 and the coil 20 are easily lowered while the coil 1 is cooled to the operating temperature.

また、本実施形態の超電導コイル1によれば、スペーサ33によって、外側胴部31と内側胴部32との間の隙間Dを容易に確保することができ、かつ、外側胴部32を冷却時に前記隙間Dの範囲で径方向に収縮させることができる。   Further, according to the superconducting coil 1 of the present embodiment, the spacer 33 can easily ensure the gap D between the outer trunk portion 31 and the inner trunk portion 32, and the outer trunk portion 32 can be cooled during cooling. In the range of the gap D, it can be contracted in the radial direction.

また、本実施形態の超電導コイル1では、上記のように、外側胴部31の線膨張率以上の線膨張率の材料からなるスペーサ33を用いることによって、冷却によるスペーサ33の径内方向への熱収縮量が外側胴部31の径内方向への熱収縮量以上になるので、冷却による外側胴部31の径内方向への熱収縮を確実に許容することができるようになる。   Further, in the superconducting coil 1 of the present embodiment, as described above, the spacer 33 made of a material having a linear expansion coefficient equal to or higher than the linear expansion coefficient of the outer body portion 31 is used, so that the spacer 33 is radially inwardly cooled. Since the amount of heat shrinkage is equal to or greater than the amount of heat shrinkage in the radially inward direction of the outer body 31, the heat shrinkage in the radially inward direction of the outer body 31 due to cooling can be reliably allowed.

次に、具体的な材料や厚み等の寸法が設定された実施例による超電導コイルについて、上記の効果が得られるか、すなわち運転温度まで冷却される間に剥離が発生するかを検証する。なお、本実施例の超電導コイルにおいても上記実施形態と同一符号を用いて説明する。   Next, it is verified whether the superconducting coil according to the embodiment in which dimensions such as specific materials and thicknesses are set can obtain the above-described effect, that is, whether peeling occurs during cooling to the operating temperature. The superconducting coil of this example will also be described using the same reference numerals as in the above embodiment.

以下では、超電導コイル1を所定の運転温度(約4K)まで冷却したときの当該超電導コイル1の巻枠10とコイル部20との間の面圧を求め、両者間に作用する引っ張り応力を求める。そして、その引っ張り応力と含浸材の接着力(接着強度)との大きさを比較することにより前記検証を行う。   Below, the surface pressure between the winding frame 10 and the coil part 20 of the superconducting coil 1 when the superconducting coil 1 is cooled to a predetermined operating temperature (about 4 K) is obtained, and the tensile stress acting between the two is obtained. . And the said verification is performed by comparing the magnitude | size of the tensile stress and the adhesive force (adhesion strength) of an impregnation material.

この実施例の超電導コイル1では、外側胴部31をアルミニウムで形成し、内側胴部32および一対のフランジ部41,42をステンレス鋼で形成し、コイル部20の超電導線材60をNbTiで形成した。また、含浸材はエポキシとした。なお、本実施例の超電導コイル1では、スペーサ33は省略されている。   In the superconducting coil 1 of this embodiment, the outer body portion 31 is formed of aluminum, the inner body portion 32 and the pair of flange portions 41 and 42 are formed of stainless steel, and the superconducting wire 60 of the coil portion 20 is formed of NbTi. . The impregnation material was epoxy. In the superconducting coil 1 of this embodiment, the spacer 33 is omitted.

そして、内側胴部32の内半径を58mm、厚みを7mmとし、外側胴部31の内半径を70mm、厚みを5mmとした。   The inner radius of the inner trunk portion 32 was 58 mm and the thickness was 7 mm, and the inner radius of the outer trunk portion 31 was 70 mm and the thickness was 5 mm.

そして、前記外側胴部31に、前記NbTiからなる超電導線材60をその厚みが20mmとなるまで巻回してコイル部20を形成した。   And the coil part 20 was formed by winding the said superconducting wire 60 which consists of said NbTi to the said outer side trunk | drum 31, until the thickness became 20 mm.

また、各材料の物性値を以下に示す。   Moreover, the physical property value of each material is shown below.

常温(293K)から運転温度(4K)までの間の平均線膨張率は、アルミニウムが1.44×10−5で、ステンレス鋼が1.06×10−5で、コイル部20が1.18×10−5(なお、コイル部20の線膨張率は、Nb−45Tiが92%、絶縁材が8%とし、絶縁材の線膨張率はテフロン(登録商標)と同じであるとして計算した。)で、エポキシが3.98×10−5である。 The average linear expansion coefficient from room temperature (293K) to the operating temperature (4K) is 1.44 × 10 −5 for aluminum, 1.06 × 10 −5 for stainless steel, and 1.18 for coil portion 20. × 10 −5 (Note that the linear expansion coefficient of the coil part 20 was calculated assuming that Nb-45Ti was 92% and the insulating material was 8%, and that the linear expansion coefficient of the insulating material was the same as that of Teflon (registered trademark). ) And the epoxy is 3.98 × 10 −5 .

また、ヤング率は、アルミニウムが80GPaで、ステンレス鋼が200GPaで、コイル部20が76GPa(なお、コイル部20のヤング率は、NbTiが92%、絶縁材が8%とし、絶縁材のヤング率はテフロン(登録商標)と同じであるとして計算した。)で、エポキシが28GPaである。また、前記全ての材料のポアソン比は0.34とした。   The Young's modulus is 80 GPa for aluminum, 200 GPa for stainless steel, and 76 GPa for the coil portion 20 (note that the Young's modulus for the coil portion 20 is 92% for NbTi and 8% for the insulating material. Was calculated to be the same as Teflon (registered trademark)), and the epoxy was 28 GPa. The Poisson's ratio of all the materials was 0.34.

このような構成の超電導コイル1を常温(293K)から運転温度(4K)まで冷却した時の外側胴部31とコイル部20との間に作用する面圧は、約−10MPaとなる。これは、外側胴部31とコイル部20とに互いに離間する方向の10MPaの引っ張り応力が作用していることを示している。   The surface pressure acting between the outer body portion 31 and the coil portion 20 when the superconducting coil 1 having such a configuration is cooled from the normal temperature (293K) to the operating temperature (4K) is about −10 MPa. This indicates that a tensile stress of 10 MPa in a direction away from each other acts on the outer body portion 31 and the coil portion 20.

そして、エポキシ含浸材の一般的な接着力が約9MPaであることから、両者31,20間に作用する引っ張り応力が含浸材の接着力を上回ることがわかった。   And since the general adhesive force of the epoxy impregnation material was about 9 MPa, it turned out that the tensile stress which acts between both 31 and 20 exceeds the adhesive force of an impregnation material.

従って、本実施例の超電導コイル1を運転温度まで冷却すると、外側胴部31とコイル部20との間の含浸材が両者間に作用する引っ張り応力に耐えられずに割れ、これによって両者31,20が剥離することがわかった。   Therefore, when the superconducting coil 1 of the present embodiment is cooled to the operating temperature, the impregnating material between the outer body portion 31 and the coil portion 20 breaks without being able to withstand the tensile stress acting between the two, thereby 20 was found to peel.

また、本実施例の超電導コイル1を常温から運転温度まで冷却した時のフランジ部41とコイル部20との間に作用する面圧は、約−10MPaとなる。これは、フランジ部41とコイル部20とに互いに離間する方向の10MPaの引っ張り応力が作用していることを示している。   Moreover, the surface pressure which acts between the flange part 41 and the coil part 20 when the superconducting coil 1 of this embodiment is cooled from room temperature to the operating temperature is about −10 MPa. This shows that a tensile stress of 10 MPa in a direction away from each other acts on the flange portion 41 and the coil portion 20.

このことから、両者41,20間に作用する引っ張り応力が含浸材の接着力を上回ることがわかった。   From this, it was found that the tensile stress acting between both 41 and 20 exceeds the adhesive strength of the impregnating material.

従って、本実施例の超電導コイル1を運転温度まで冷却すると、フランジ部41とコイル部20との間の含浸材が両者間に作用する引っ張り応力に耐えられずに割れ、これによって両者41,20が剥離することがわかった。   Therefore, when the superconducting coil 1 of the present embodiment is cooled to the operating temperature, the impregnating material between the flange portion 41 and the coil portion 20 breaks without being able to withstand the tensile stress acting between them, thereby both 41 and 20. Was found to peel.

以上のことから、本実施例の超電導コイル1では、巻枠10とコイル部20とが径方向および軸方向の両方で同時に剥離し、励磁中の両者10,20の剥離が十分に防がれることがわかった。   From the above, in the superconducting coil 1 of the present embodiment, the winding frame 10 and the coil portion 20 are peeled simultaneously in both the radial direction and the axial direction, and the peeling of the both 10 and 20 during excitation is sufficiently prevented. I understood it.

なお、上記実施形態では、一対のスペーサ33を内側胴部32と外側胴部31との間に配するによって外側胴部31の位置決めを行ったが、これに限らず、外側胴部31をピン等でフランジ部41,42に固定することにより当該外側胴部31の位置決めを行い、冷却前に当該ピンを抜き取ることによって、外側胴部31の径方向の熱収縮を可能とする構成であってもよい。   In the above embodiment, the outer body 31 is positioned by arranging the pair of spacers 33 between the inner body 32 and the outer body 31. However, the present invention is not limited to this, and the outer body 31 is pinned. The outer body 31 is positioned by fixing it to the flange portions 41, 42 with the like, and the pin is removed before cooling, thereby allowing the outer body 31 to be thermally contracted in the radial direction. Also good.

また、上記実施形態では、円筒状の内側胴部32で一対のフランジ部41,42同士を連結する構成を示したが、これに限らず、周方向に延びる複数の円弧状部材(内側胴部)を、周方向に互いに隙間をあけながら配置し、各円弧状部材の軸方向両端を一対のフランジ部41,42にそれぞれ接続する構成であってもよい。   Moreover, in the said embodiment, although the structure which connects a pair of flange parts 41 and 42 with the cylindrical inner trunk | drum 32 was shown, it is not restricted to this, The several circular-arc-shaped member (inner trunk | drum which extends in the circumferential direction) ) May be arranged with a gap therebetween in the circumferential direction, and both ends of each arcuate member in the axial direction may be connected to the pair of flange portions 41 and 42, respectively.

また、コイル部20と少なくとも一方のフランジ部41(42)との間に、冷却によってコイル部20よりも大きく軸方向に熱収縮するように構成されたスペーサを設けてもよい。これにより、冷却によってフランジ部41(42)とコイル部20との間の面圧がより大きく低下し、両者が確実に剥離するようになる。   Further, a spacer may be provided between the coil portion 20 and at least one flange portion 41 (42) so as to be thermally contracted in the axial direction larger than the coil portion 20 by cooling. Thereby, the surface pressure between the flange part 41 (42) and the coil part 20 falls more largely by cooling, and both come to peel reliably.

本発明の一実施形態による超電導コイルの構成を示した正面断面図である。It is front sectional drawing which showed the structure of the superconducting coil by one Embodiment of this invention. 運転温度まで冷却された状態の超電導コイルの正面断面図である。It is front sectional drawing of the superconducting coil in the state cooled to the operating temperature.

符号の説明Explanation of symbols

1 超電導コイル
10 巻枠
20 コイル部
30 胴部
31 外側胴部
32 内側胴部
33 スペーサ
41,42 フランジ部
60 超電導線材
D 隙間
DESCRIPTION OF SYMBOLS 1 Superconducting coil 10 Winding frame 20 Coil part 30 Trunk part 31 Outer trunk part 32 Inner trunk part 33 Spacer 41, 42 Flange part 60 Superconducting wire D Clearance

Claims (4)

胴部とこの胴部の軸方向両端から径外方向に延びて互いに対向する一対のフランジ部とを含む巻枠と、前記一対のフランジ部の間に挟まれる領域で前記胴部の周囲にソレノイド状に巻回された超電導線材からなるコイル部とを備え、巻線状態で含浸材に含浸される超電導コイルであって、
前記胴部は、円筒状に形成されて前記コイル部の内周に隣接する外側胴部と、この外側胴部の径方向内側に当該径方向の隙間をおいて設けられるとともに、軸方向に延びて前記一対のフランジ部に連結される内側胴部とを含み、
前記外側胴部は、前記コイル部の線膨張率よりも大きい線膨張率の材料からなり、所定の運転温度に至るまで冷却されることにより前記隙間の範囲で径方向に収縮するとともに前記内側胴部とは独立して軸方向に収縮するように配置され、
前記内側胴部は、前記コイル部の線膨張率よりも小さい線膨張率の材料からなり、前記運転温度に至るまでの冷却による前記外側胴部の軸方向の収縮にかかわらず前記一対のフランジ部同士の間隔を当該コイル部の軸方向の寸法よりも大きな間隔に保つことを特徴とする超電導コイル。
A winding frame including a body portion and a pair of flange portions extending radially outward from both axial ends of the body portion and facing each other, and a solenoid around the body portion in a region sandwiched between the pair of flange portions A superconducting coil that is impregnated with an impregnating material in a winding state.
The body portion is formed in a cylindrical shape and is provided with an outer body portion adjacent to the inner periphery of the coil portion, and a radial gap on the radially inner side of the outer body portion, and extends in the axial direction. And an inner trunk portion connected to the pair of flange portions,
The outer body portion is made of a material having a linear expansion coefficient larger than the linear expansion coefficient of the coil section, and is cooled to a predetermined operating temperature, thereby contracting in a radial direction within the gap and the inner body Arranged to contract in the axial direction independently of the part,
The inner body part is made of a material having a linear expansion coefficient smaller than that of the coil part, and the pair of flange parts regardless of the axial contraction of the outer body part due to cooling to the operating temperature. A superconducting coil characterized in that the distance between them is kept larger than the axial dimension of the coil portion.
前記コイル部の超電導線材がNbTiからなり、
前記外側胴部がアルミニウムからなり、
前記内側胴部がステンレス鋼からなることを特徴とする請求項1に記載の超電導コイル。
The superconducting wire of the coil portion is made of NbTi,
The outer body is made of aluminum;
The superconducting coil according to claim 1, wherein the inner body portion is made of stainless steel.
前記外側胴部と前記内側胴部との間に配され、両胴部の互いに対向する部位にそれぞれ接触して前記外側胴部を前記内側胴部との間に前記隙間をもつように当該内側胴部に対して位置決めする一方で、前記運転温度に至るまで冷却されることにより径内方向へ変位して前記外側胴部の径方向の収縮を許容するスペーサを備えることを特徴とする請求項1または2に記載の超電導コイル。   The inner body is arranged between the outer body part and the inner body part so that the outer body part is in contact with the mutually facing portions of the two body parts and the outer body part has the gap between the inner body part and the inner body part. A spacer is provided, which is positioned with respect to the body portion, and is displaced to a radially inward direction by being cooled to the operating temperature to allow a contraction in a radial direction of the outer body portion. The superconducting coil according to 1 or 2. 前記スペーサが、前記外側胴部の線膨張率以上の線膨張率の材料からなることを特徴とする請求項3に記載の超電導コイル。   The superconducting coil according to claim 3, wherein the spacer is made of a material having a linear expansion coefficient equal to or higher than that of the outer body part.
JP2008307336A 2008-12-02 2008-12-02 Superconducting coil Expired - Fee Related JP5161744B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008307336A JP5161744B2 (en) 2008-12-02 2008-12-02 Superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008307336A JP5161744B2 (en) 2008-12-02 2008-12-02 Superconducting coil

Publications (2)

Publication Number Publication Date
JP2010135377A JP2010135377A (en) 2010-06-17
JP5161744B2 true JP5161744B2 (en) 2013-03-13

Family

ID=42346410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008307336A Expired - Fee Related JP5161744B2 (en) 2008-12-02 2008-12-02 Superconducting coil

Country Status (1)

Country Link
JP (1) JP5161744B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036841A (en) * 2011-08-08 2013-02-21 Sumitomo Electric Ind Ltd Method for testing cable core for superconductive cable
JP5696942B2 (en) * 2011-08-08 2015-04-08 住友電気工業株式会社 Test method for cable core for superconducting cable

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727816B2 (en) * 1985-07-10 1995-03-29 株式会社日立製作所 Superconducting coil
JPH02270307A (en) * 1989-04-11 1990-11-05 Fuji Electric Co Ltd Winding method of superconducting coil
JPH0590909U (en) * 1992-05-14 1993-12-10 昭和電線電纜株式会社 Superconducting coil
JPH065419A (en) * 1992-06-24 1994-01-14 Fuji Electric Co Ltd Spool of superconducting magnet
JPH08172013A (en) * 1994-10-04 1996-07-02 Toshiba Corp Superconducting coil, its manufacture, and superconducting wire
JPH09102414A (en) * 1995-10-06 1997-04-15 Kobe Steel Ltd Superconducting coil
JP2008071789A (en) * 2006-09-12 2008-03-27 Kobe Steel Ltd Superconducting coil

Also Published As

Publication number Publication date
JP2010135377A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5806344B2 (en) Superconducting electromagnet having a coil coupled to a support structure
JP5955451B2 (en) Embedded magnet type rotor, embedded magnet type rotating electrical machine, and manufacturing method of embedded magnet type rotor
JP2010040895A (en) Method of manufacturing reactor
JP5534712B2 (en) High temperature superconducting pancake coil and high temperature superconducting coil
US10424427B2 (en) Superconducting coil
JP5161744B2 (en) Superconducting coil
JP6567451B2 (en) Superconducting coil and superconducting coil manufacturing method
JP5687504B2 (en) Superconducting coil device
JP2007060889A (en) Permanent magnet type motor
JP4813986B2 (en) Superconducting coil and method for preventing quenching of superconducting coil
JP2008071789A (en) Superconducting coil
JP4788377B2 (en) Superconducting coil
CN101331664A (en) Rotor of an electrical machine, in particular of a motor, and method for producing a rotor
US20060097606A1 (en) Generator and method of manufacturing same
JP2007028849A (en) Permanent magnet type motor
JP2014165383A (en) Superconducting coil and method for manufacturing the same
JP5511003B2 (en) Superconducting coil and manufacturing method thereof
JP2017195695A (en) Method of manufacturing rotor and rotor
JP2010148225A (en) Rotating electric machine
JP2011066309A (en) Superconductive coil, and method of operating the same
JP7184883B2 (en) Electromagnet for MRI with mechanical support structure
JP2008086172A (en) Shrink-fit ring and motor stator
JP2007221925A (en) Concentrated winding motor
JP2011171625A (en) Superconducting coil
JP7438882B2 (en) Stacked high temperature superconducting coil device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees