JPH065419A - Spool of superconducting magnet - Google Patents

Spool of superconducting magnet

Info

Publication number
JPH065419A
JPH065419A JP16513192A JP16513192A JPH065419A JP H065419 A JPH065419 A JP H065419A JP 16513192 A JP16513192 A JP 16513192A JP 16513192 A JP16513192 A JP 16513192A JP H065419 A JPH065419 A JP H065419A
Authority
JP
Japan
Prior art keywords
diameter side
winding frame
outer diameter
superconducting
reel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16513192A
Other languages
Japanese (ja)
Inventor
Takaaki Bono
敬昭 坊野
Yukio Yasukawa
保川  幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP16513192A priority Critical patent/JPH065419A/en
Publication of JPH065419A publication Critical patent/JPH065419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To prevent a quench from being generated using a groove as a cooling hole and to increase the replenishing intervals of liquid helium. CONSTITUTION:A spool 1 is constituted into a double structure consisting of a spool 11 on inner diameter side, which is small in heat shrinkage factor and is made of a stainless steel, and a spool 12 on the outer diameter side, which is large in heat conductivity and is made of aluminum, and when a superconducting magnet is cooled to a cryogenic temperature, an inner-direction force necessary for preventing the generation of a quench is ensured by reducing the heat shrinkage of a superconducting coil 3 and even if one part of a superconducting wire 30 is exposed from liquid helium, the quench is hardly generated by improving a cooling effect to the wire 30 by cooling heat which is conducted through the spool 12. As the result, even if the helium is consumed and the liquid level of the helium is lowered to some degree, the lowering can be allowed. Thereby, the intervals between the replenishments of the liquid helium can be made long.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、核磁気共鳴診断装置
の超電導磁石のような、巻枠に超電導線を巻回してなる
超電導磁石の巻枠に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnet reel formed by winding a superconducting wire around a reel, such as a superconducting magnet of a nuclear magnetic resonance diagnostic apparatus.

【0002】[0002]

【従来の技術】超電導磁石が超電導状態を維持するため
には、温度、電流、発生磁束密度がそれぞれ臨界値値よ
り小さいことが条件であり、これら臨界値はそれぞれ臨
界温度、臨界電流、臨界磁束密度と呼ばれている。温
度、電流、発生磁束密度のいずれもがそれぞれの臨界値
以下にある場合に限り超電導状態が維持され、一つでも
臨界値を越えてると超電導状態から常電導状態へと転移
してしまう、いわゆるクエンチが発生する。クエンチが
発生すると超電導磁石に蓄積されていた磁気エネルギー
は常電導状態になった超電導線の抵抗によるジュール熱
として放出され、冷媒である高価な液体ヘリウムの大量
の蒸発を引き起こす。また、前述のジュール熱のために
超電導磁石を構成する超電導線の温度が上昇し、焼損す
る恐れもある。このような理由でクエンチは超電導磁石
にとって有害なものであることがよく知られている。
2. Description of the Related Art In order for a superconducting magnet to maintain a superconducting state, it is necessary that the temperature, the current and the generated magnetic flux density are smaller than their respective critical values. These critical values are the critical temperature, the critical current and the critical magnetic flux, respectively. It is called density. The superconducting state is maintained only when all of the temperature, the current, and the generated magnetic flux density are below their respective critical values, and even if one exceeds the critical value, the superconducting state transitions to the normal conducting state. Quench occurs. When the quench occurs, the magnetic energy stored in the superconducting magnet is released as Joule heat due to the resistance of the superconducting wire in the normal conducting state, causing a large amount of evaporation of expensive liquid helium as a refrigerant. In addition, the temperature of the superconducting wire forming the superconducting magnet may rise due to the Joule heat described above, and there is a risk of burning. For this reason, it is well known that quench is harmful to superconducting magnets.

【0003】クエンチ発生の原因として、磁束密度と励
磁電流との積に比例した電磁力が超電導線に生じて超電
導線が変位しその際の摩擦熱によって超電導線が加熱さ
れ臨界温度を越えてしまって局部的なクエンチが発生し
これが全超電導コイルに波及することが第1に上げられ
る。したがって、この電磁力による超電導線の変位を防
止するために、種々の対策が施されており、超電導線を
巻回する際にかける張力や超電導線を巻回して超電導コ
イルとする巻枠の構成も重要な要素である。
As a cause of quenching, an electromagnetic force proportional to the product of the magnetic flux density and the exciting current is generated in the superconducting wire, the superconducting wire is displaced, and the frictional heat at that time heats the superconducting wire to exceed the critical temperature. The first reason is that a local quench is generated and propagates to all superconducting coils. Therefore, in order to prevent the displacement of the superconducting wire due to this electromagnetic force, various measures have been taken, and the tension applied when winding the superconducting wire and the structure of the winding frame for winding the superconducting wire into a superconducting coil. Is also an important factor.

【0004】図5は従来の超電導磁石の断面図である。
この図において、巻枠100は円筒部101、上部のつ
ば102及び下部のつば103からなっていて、超電導
線30は図示のように円筒部101、つば102,10
3で囲まれた空間に巻回される。超電導線30には張力
をかけながら所定の層数と巻数で巻回されて超電導コイ
ル3を形成する。つば102と103との間の図の上下
方向の距離が1層の巻数を、つば101,102の半径
方向突出寸法が層数を決めることになり、超電導コイル
3の巻数はこの1層当たりの巻数と層数の積になる。
FIG. 5 is a sectional view of a conventional superconducting magnet.
In this figure, the bobbin 100 comprises a cylindrical portion 101, an upper collar 102 and a lower collar 103, and the superconducting wire 30 has the cylindrical portion 101, the collars 102, 10 as shown.
It is wound in the space surrounded by 3. The superconducting wire 30 is wound with a predetermined number of layers and turns while applying tension to form the superconducting coil 3. The distance between the collars 102 and 103 in the vertical direction in the drawing determines the number of turns of one layer, and the radial protrusion size of the collars 101 and 102 determines the number of layers. The number of turns of the superconducting coil 3 is per layer. It is the product of the number of turns and the number of layers.

【0005】超電導線30は前述のように張力を掛けな
がら巻回されるで巻枠100を収縮させようとする図示
の内向力Ft が働く。一方、超電導磁石を励磁すると、
超電導コイル3に流れる電流によって磁束が発生し、超
電導線30ごとの磁束密度と電流との積に比例した電磁
力が個々の超電導線30に発生しその総合力としての外
向力Fe が図示のように前述の内向力Ft に対して逆向
きにかかる。
The superconducting wire 30 is wound while tension is applied as described above, and the inward force Ft shown in the drawing tends to contract the winding frame 100. On the other hand, when a superconducting magnet is excited,
A magnetic flux is generated by the current flowing in the superconducting coil 3, and an electromagnetic force proportional to the product of the magnetic flux density and the current of each superconducting wire 30 is generated in each superconducting wire 30 and the outward force Fe as the total force is shown in the figure. Is applied in the opposite direction to the above-mentioned inward force Ft.

【0006】外向力Fe が、内向力Ft よりも大きくな
ると超電導線30が浮き上がることになるので不安定に
なって変位し易くなり、前述のクエンチが発生しやすく
なる。したがって、クエンチを防止するための手段の一
つとして、この内向力Ft を大きくすることがある。最
大内向力Ftmは超電導線3の引っ張り強度と巻枠100
の強度により決定される。即ち、過大な張力で軟弱な超
電導線を巻回するとこの張力による内向力Ft の殆どは
巻枠100が負担することになって巻枠100が変形
し、磁場の分布が歪み、精度の高い磁場が得られなくな
る恐れがあるなどの問題が生ずる。
When the outward force Fe becomes larger than the inward force Ft, the superconducting wire 30 is lifted up, so that it becomes unstable and easily displaced, and the above-mentioned quenching easily occurs. Therefore, as one of the means for preventing the quench, the inward force Ft may be increased. The maximum inward force Ftm is the tensile strength of the superconducting wire 3 and the reel 100.
Is determined by the strength of. That is, when a soft superconducting wire is wound with excessive tension, the winding frame 100 bears most of the inward force Ft due to this tension, and the winding frame 100 is deformed, and the distribution of the magnetic field is distorted. There is a problem that there is a risk of not being able to obtain.

【0007】巻枠100として使用できる材料は、極低
温中で所要の許容応力を確保することと非磁性体である
ことなどの条件から、銅、アルミニウムとその合金、ス
テンレス鋼及びチタンに限定される。ステンレス鋼は非
磁性鋼に限定される。実際には、強度や加工性、低価格
性からアルミニウムとステンレス鋼が多く採用される。
The material that can be used as the bobbin 100 is limited to copper, aluminum and its alloys, stainless steel and titanium because of the requirements such as ensuring the required allowable stress at extremely low temperatures and being a non-magnetic material. It Stainless steel is limited to non-magnetic steel. In practice, aluminum and stainless steel are often used because of their strength, workability, and low cost.

【0008】アルミニウムは比較的柔軟な材料であり、
これを使用した巻枠100では超電導線30の引っ張り
強度以下の巻回時張力でも巻枠100の機械強度によっ
て最大内向力Ftmが決まってしまうことから、最大内向
力Ftmは巻枠100の内径や肉厚などの寸法によって決
まる。一方、ステンレス鋼は比較的強固な材料であり、
充分強固な巻枠100の製作が容易なので、最大内向力
Ftmは超電導線30の引っ張り強度によって決まる。
Aluminum is a relatively flexible material,
In the reel 100 using this, the maximum inward force Ftm is determined by the mechanical strength of the reel 100 even with a winding tension less than the tensile strength of the superconducting wire 30. Determined by dimensions such as wall thickness. On the other hand, stainless steel is a relatively strong material,
The maximum inward force Ftm is determined by the tensile strength of the superconducting wire 30 because it is easy to manufacture the winding frame 100 that is sufficiently strong.

【0009】また、冷却による熱収縮を考慮すると、ア
ルミニウムは超電導線より冷却による収縮量が大きいの
が一般的であり、ステンレス鋼は超電導線より冷却によ
る熱収縮が小さいのが一般的である。つまり、超電導磁
石を液体ヘリウムにより冷却したとき、巻枠100がア
ルミニウムの場合、内向力Ft は熱収縮差により減少す
る方向にあり、巻枠100がステンレス鋼の場合、内向
力Ft は逆に増加する方向にある。
In consideration of heat shrinkage due to cooling, aluminum generally has a larger shrinkage due to cooling than superconducting wires, and stainless steel generally has a smaller heat shrinkage due to cooling than superconducting wires. That is, when the superconducting magnet is cooled by liquid helium, the inward force Ft tends to decrease due to the difference in thermal contraction when the reel 100 is aluminum, and the inward force Ft increases conversely when the reel 100 is stainless steel. There is a direction to do.

【0010】以上の理由から、超電導線30の変位に起
因するクエンチを防止するという目的からすれば、巻枠
の材料としてステンレス鋼が適していると言える。とこ
ろで、近年実用化されているMRI装置や磁気浮上列車
などに使用されている超電導磁石は、極低温中における
超電導線の抵抗が実質的に零であるという特長を利用し
て、外部からの電圧印加をせず短絡状態で半永久的に電
流を流すいわゆる永久電流モードで運転される。永久電
流モードの利点は、前述のように電源による通電を必要
とせず、冷媒である液体ヘリウムの補充を定期的に行え
ば長期にわたって安定した高磁場が得られることにあ
る。したがって、永久電流モードの特長であるメンテナ
ンスフリーという利点を最大限生かすには、液体ヘリウ
ムの補充間隔を長くすることが必要になる。
From the above reasons, it can be said that stainless steel is suitable as the material of the reel for the purpose of preventing quenching due to displacement of the superconducting wire 30. By the way, the superconducting magnets used in MRI devices and magnetic levitation trains which have been put into practical use in recent years utilize the feature that the resistance of the superconducting wire at cryogenic temperature is substantially zero, and It is operated in a so-called permanent current mode in which a current is semi-permanently applied in a short-circuited state without applying voltage. The advantage of the persistent current mode is that it does not require energization by a power source as described above, and that a stable high magnetic field can be obtained for a long period of time by periodically replenishing liquid helium as a refrigerant. Therefore, in order to take full advantage of the maintenance-free advantage of the permanent current mode, it is necessary to lengthen the replenishment interval of liquid helium.

【0011】前述した液体ヘリウム補充間隔を長くする
ためには、当然超電導コイル3を収納して液体ヘリウム
を浸漬した極低温容器への熱侵入を極力低減する構成が
要求されるとともに、液面の低下に対して超電導線の安
定した冷却の維持による液体ヘリウムの大きな許容消費
量を確保することが必要である。図6は超電導磁石の液
体ヘリウム4の液面41が低下し、超電導磁石の一部が
露出した状況での冷却熱の流れ51,52を示す断面図
である。この図において、液面41の下にある超電導線
30は液体ヘリウム4により冷却され、液体ヘリウムの
蒸発温度である4.2Kに保持される。一方、露出した
超電導線30は液面41の低下とともに温度が上昇する
が、巻枠100の下部から円筒部101やつば102を
介する熱伝導による冷却熱51と、露出しない超電導線
3からこれに隣接する超電導線30を順次伝わって上に
上がる冷却熱52との両方の流れにより冷却される。
In order to lengthen the liquid helium replenishment interval described above, it is of course necessary to accommodate the superconducting coil 3 and minimize the heat penetration into the cryogenic container in which the liquid helium is immersed, and at the same time, the liquid surface It is necessary to secure a large allowable consumption of liquid helium by maintaining stable cooling of the superconducting wire against deterioration. FIG. 6 is a cross-sectional view showing cooling heat flows 51 and 52 when the liquid surface 41 of the liquid helium 4 of the superconducting magnet is lowered and a part of the superconducting magnet is exposed. In this figure, the superconducting wire 30 below the liquid surface 41 is cooled by the liquid helium 4 and kept at 4.2K which is the evaporation temperature of the liquid helium. On the other hand, the temperature of the exposed superconducting wire 30 rises as the liquid level 41 lowers, but the cooling heat 51 due to heat conduction from the lower part of the winding frame 100 through the cylindrical portion 101 and the collar 102 and the unexposed superconducting wire 3 from this to It is cooled by both the flow of the cooling heat 52 which is sequentially transmitted through the adjacent superconducting wires 30 and goes up.

【0012】前述した巻枠材料の中でアルミニウムの
4.2Kにおける熱伝導率はステンレス鋼のそれに比べ
て100倍以上あり、巻枠100がアルミ合金製ならば
超電導線30が露出しても巻枠100の一部が液面下に
あればある程度露出部分の温度上昇を低く抑えることが
できる。一方、ステンレス鋼製の巻枠のの場合、巻枠1
00が液面41から露出すると、熱伝導率が小さいため
に露出部の温度が上昇し僅かな露出にかかわらず超電導
線30の温度が上昇し臨界温度を越えてクエンチを誘発
してしまう。つまり、巻枠100がステンレス鋼の場
合、通電中のクエンチを防止するためには巻線が露出し
ないように頻度高く液体ヘリウム4を補充する必要があ
り、巻枠100がアルミニウムの場合にはある程度超電
導線30が露出しても安定した冷却の維持が可能であ
る。
Among the bobbin materials mentioned above, the thermal conductivity of aluminum at 4.2K is 100 times or more that of stainless steel. If the bobbin 100 is made of an aluminum alloy, even if the superconducting wire 30 is exposed, it is wound. If a part of the frame 100 is below the liquid surface, the temperature rise of the exposed part can be suppressed to some extent low. On the other hand, in the case of a stainless steel reel, the reel 1
When 00 is exposed from the liquid surface 41, the temperature of the exposed portion rises because the thermal conductivity is small, and the temperature of the superconducting wire 30 rises regardless of a slight exposure to exceed the critical temperature and induce quenching. That is, when the reel 100 is made of stainless steel, it is necessary to replenish the liquid helium 4 frequently so that the winding is not exposed in order to prevent quenching during energization. Even if the superconducting wire 30 is exposed, stable cooling can be maintained.

【0013】以上の理由から、液体ヘリウムの補充間隔
を長くするという目的からは巻枠の100材料としてア
ルミニウムが適していると言える。
From the above reasons, it can be said that aluminum is suitable as the material of the reel 100 for the purpose of increasing the replenishment interval of liquid helium.

【0014】[0014]

【発明が解決しようとする課題】前述のように、超電導
磁石の巻枠材を決定する場合、超電導線の変位に起因し
たクエンチを防止するという意味ではステンレス鋼が適
している。一方で、超電導磁石の安定した冷却を維持
し、液体ヘリウムの補充間隔を長くするためには巻枠材
としてアルミニウムが適していて、互いに矛盾してお
り、クエンチを防止ししかも液体ヘリウム補充間隔を長
くする両方の目的を達成するのに適した巻枠材がないと
いう問題がある。
As described above, when determining the bobbin material of the superconducting magnet, stainless steel is suitable in the sense of preventing quenching due to displacement of the superconducting wire. On the other hand, in order to maintain stable cooling of the superconducting magnet and to lengthen the liquid helium replenishment interval, aluminum is suitable as the reel material, which contradicts each other, prevents quenching, and keeps the liquid helium replenishment interval. There is a problem that there is no suitable reel material to achieve both the purposes of lengthening.

【0015】この発明の目的はこのような問題を解決
し、クエンチを防止ししかも液体ヘリウム補充間隔を長
くすることのできる超電導磁石の巻枠を提供することに
ある。
An object of the present invention is to solve the above problems, and to provide a reel of a superconducting magnet capable of preventing quenching and extending the refilling interval of liquid helium.

【0016】[0016]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、超電導線が巻回されて超電導コ
イルを形成する超電導磁石の巻枠が内径側巻枠と外径側
巻枠とからなり、前記内径側巻枠が熱収縮率の小さな材
料からなり、前記外径側巻枠が熱伝導率の高い材料から
なるものとし、内径側巻枠の材料がステンレス鋼であ
り、外径側巻枠の材料がアルミニウムであるものとし、
また、外径側巻枠内径側の面を少なくとも内面の一部と
した所定の数の冷却孔を設けてなるものとし、また、内
径側巻枠の外径面に軸方向に沿って溝を設けて冷却孔を
形成してなるものとし、また、外径側巻枠の内径面に軸
方向に沿って溝を設けて冷却孔を形成してなるものとす
る。
In order to solve the above-mentioned problems, according to the present invention, a bobbin of a superconducting magnet in which a superconducting wire is wound to form a superconducting coil is provided with an inner-diameter side bobbin and an outer-diameter side bobbin. Consisting of a frame, the inner diameter side reel is made of a material having a small heat shrinkage, the outer diameter side reel is made of a material having a high thermal conductivity, the material of the inner diameter side reel is stainless steel, The material of the outer diameter side winding frame is aluminum,
Further, a predetermined number of cooling holes are provided with the surface on the inner diameter side of the outer diameter side winding frame as at least a part of the inner surface, and a groove is formed along the axial direction on the outer diameter surface of the inner diameter side winding frame. The cooling holes are provided to form the cooling holes, and the cooling holes are formed by providing grooves on the inner diameter surface of the outer diameter side winding frame along the axial direction.

【0017】[0017]

【作用】この発明の構成において、巻枠を同軸で互いに
密着した内径側巻枠と外径側巻枠とで構成し、内径側巻
枠を熱収縮率の小さい材料で構成して極低温に冷却され
たときに超電導線や外側巻枠の熱収縮を抑制して超電導
線の内向力を確保し、外径側巻枠を熱伝導率の高い材料
で構成して液体冷媒が減少して超電導線の一部が液体冷
媒から露出したときにも外径側巻枠は下部が液体冷媒に
よって冷却され熱伝導率が良いことから液体冷媒から露
出した部分でも充分低温を維持し超電導線を冷却するこ
とから、露出した超電導線がクエンチを起こす可能性が
小さくなる。また、内径側巻枠の材料としては極低温で
も所要の機械的強度を維持する必要からステンレス鋼又
はチタンが実用になるが、ステンレス鋼を採用すること
によりより安価になり、外径側巻枠の材料は銅又はアル
ミニウムが実用になるが、加工性と重量の点でアルミニ
ウムの方が適している。また、外径側巻枠を冷却する冷
却孔を設けて外径側巻枠と冷媒との接触面積を増大する
ことで冷媒の液面から露出した部分も充分冷却されるよ
うになることによって秋面から露出した超電導線の冷却
がより確実になる。冷却孔として、内側巻枠の外周面に
軸方向に沿った溝を設ける構成でも、外側巻枠の内周面
に軸方向に沿った溝を設ける構成でもよく、軸方向に貫
通孔を設けるよりも容易に冷却孔を設けることができ
る。
In the structure of the present invention, the bobbin is composed of the inner diameter side bobbin and the outer diameter side bobbin which are coaxially and closely adhered to each other, and the inner diameter side bobbin is made of a material having a small heat shrinkage ratio to achieve extremely low temperature. When cooled, it suppresses thermal contraction of the superconducting wire and the outer winding frame to secure the inward force of the superconducting wire, and the outer diameter side winding frame is made of a material with high thermal conductivity to reduce liquid refrigerant and superconductivity. Even when a part of the wire is exposed from the liquid refrigerant, the lower part of the outer diameter side winding frame is cooled by the liquid refrigerant and the thermal conductivity is good, so that even the part exposed from the liquid refrigerant maintains a sufficiently low temperature to cool the superconducting wire. Therefore, the exposed superconducting wire is less likely to be quenched. Also, as the material for the inner diameter side reel, stainless steel or titanium is practically used because it is necessary to maintain the required mechanical strength even at extremely low temperatures, but the use of stainless steel makes it cheaper and the outer diameter side reel is Copper or aluminum is practically used as the material, but aluminum is more suitable in terms of workability and weight. In addition, by providing cooling holes for cooling the outer diameter side reel to increase the contact area between the outer diameter side reel and the refrigerant, the portion exposed from the liquid surface of the refrigerant can be sufficiently cooled and fall. Cooling of the superconducting wire exposed from the surface becomes more reliable. As the cooling holes, a groove may be provided on the outer peripheral surface of the inner winding frame along the axial direction, or a groove may be provided on the inner peripheral surface of the outer winding frame along the axial direction. Also, the cooling holes can be easily provided.

【0018】[0018]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す超電導磁石の断面図であ
る。この図において、巻枠1は内径側巻枠11と外径側
巻枠12とからなっていて、内径側巻枠11はステンレ
ス鋼製、外径側巻枠12はアルミニウム製である。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a sectional view of a superconducting magnet showing an embodiment of the present invention. In this figure, the bobbin 1 comprises an inner diameter side bobbin 11 and an outer diameter side bobbin 12, wherein the inner diameter side bobbin 11 is made of stainless steel and the outer diameter side bobbin 12 is made of aluminum.

【0019】ステンレス鋼は、熱伝導率が小さい、許容
応力が大きい、熱収縮率が小さい、などの特徴があり、
内径側巻枠11に使用した場合に熱収縮率が小さいため
に、超電導線が超電導状態になるように液体ヘリウムに
漬けて極低温まで冷却したときに、外径側巻枠12や超
電導線の収縮による径寸法の短縮を抑制し、そのため
に、特に超電導線に引っ張り力が付加される。もともと
前述のように超電導線は張力をかけて内向力を付加する
巻回方法をっとっているのであるが、前述のような理由
によりこの内向力が極低温に冷却されることによって更
に大きくなる。したがって、所要の内向力を得るために
は巻回時の張力が小さくても良くなる。その代わり内径
側巻枠11は外径側巻枠12や超電導線3の内向力を負
担するのでこれに耐えるだけの強度を持っている必要が
ある。ステンレス鋼は前述のように許容応力が大きいの
でその必要性を充分満足する外径側巻枠12を製作する
のは容易である。
Stainless steel is characterized by a small thermal conductivity, a large allowable stress, and a small heat shrinkage ratio.
Since the heat shrinkage rate is small when used for the inner diameter side winding frame 11, when the superconducting wire is immersed in liquid helium so as to be in a superconducting state and cooled to an extremely low temperature, the outer diameter side winding frame 12 and the superconducting wire The reduction of the diametrical dimension due to the contraction is suppressed, and for this reason, the pulling force is applied especially to the superconducting wire. Originally, as described above, the superconducting wire has a winding method in which tension is applied to apply an inward force, but due to the reason described above, this inward force is further increased by cooling to an extremely low temperature. . Therefore, in order to obtain the required inward force, the tension at the time of winding may be small. Instead, the inner diameter side bobbin 11 bears the inward force of the outer diameter side bobbin 12 and the superconducting wire 3, and therefore must have a strength sufficient to withstand this. Since stainless steel has a large allowable stress as described above, it is easy to manufacture the outer diameter side winding frame 12 that sufficiently satisfies the need.

【0020】アルミニウムは、軽量、熱伝導率が大き
い、加工性が良いなどの特徴があり、巻枠材としては銅
よりも多く使用される。従来のアルミニウム製の巻枠の
場合、機械的強度を確保するために高純度のアルミニウ
ムではなく、これよりも数倍許容応力の大きな、例えば
JIS規格でA5803と呼ばれるマンガンやマグネシ
ウムを1%乃至数%混入したアルミニウム合金が使用さ
れる。したがって、外径側巻枠12として従来と同じア
ルミニウム合金を使用しても差し支えないが、内向力
は内径側巻枠11が負担すること、外径側巻枠12と
しては熱伝導率がより大きいことが望ましい、などの理
由によって単なるアルミニウムを使用することもでき
る。
Aluminum is characterized by its light weight, high thermal conductivity, and good workability, and is used more as a reel material than copper. In the case of a conventional aluminum reel, it is not high-purity aluminum in order to secure mechanical strength, but has a permissible stress several times larger than this, for example, manganese or magnesium called A5803 in JIS is 1% to several percent. % Aluminum alloy is used. Therefore, although the same aluminum alloy as the conventional one may be used as the outer diameter side winding frame 12, the inner diameter side winding frame 11 bears the inward force, and the outer diameter side winding frame 12 has a larger thermal conductivity. It is also possible to simply use aluminum for reasons such as desirable.

【0021】超電導磁石を製作するのは次の手順によ
る。 内径側巻枠11に外径側巻枠12をはめ込んで巻枠1
を形成する。このとき、はめ込む作業が困難にならない
程度の隙間が生ずる程度に内径側巻枠11の外径寸法と
外径側巻枠12の内径寸法を設定する。このままでは互
いに固定されないので、巻枠1を巻線機に装着する場合
には外径側巻枠12を内径側巻枠11に固定する何らか
の方法が必要である。 巻枠1を巻線機に取付ける。 巻線機によって巻枠1を回転させ超電導線3を前述の
ように張力をかけながら所定の巻数巻回する。このとき
の張力は前述のように極低温に冷却されたときに付加さ
れる内向力を考慮して適性に設定する。 巻枠1とこれに巻回された超電導コイル3とが一体に
なったものをを巻数機から外す。 図示しない極低温容器に収納し冷却して最終的に液体
ヘリウムに漬けた状態にする。このとき、外径側巻枠1
2や超電導線30が内径側巻枠11よりも大きく収縮す
るので内径側巻枠11と外径側巻枠12との間の隙間が
なくなって巻枠1として一体化される。
The superconducting magnet is manufactured by the following procedure. The outer diameter side bobbin 12 is fitted into the inner diameter side bobbin 11 to form the reel 1
To form. At this time, the outer diameter dimension of the inner diameter side winding frame 11 and the inner diameter dimension of the outer diameter side winding frame 12 are set so that a gap is generated to such an extent that the fitting work is not difficult. Since they are not fixed to each other as they are, some method of fixing the outer diameter side winding frame 12 to the inner diameter side winding frame 11 is required when mounting the winding frame 1 on the winding machine. Attach the reel 1 to the winding machine. The winding frame 1 is rotated by the winding machine, and the superconducting wire 3 is wound a predetermined number of times while applying tension as described above. The tension at this time is set to an appropriate value in consideration of the inward force applied when cooled to an extremely low temperature as described above. The one in which the winding frame 1 and the superconducting coil 3 wound around this are integrated is removed from the winding machine. It is stored in a cryogenic container (not shown), cooled, and finally immersed in liquid helium. At this time, the outer diameter side reel 1
2 and the superconducting wire 30 shrink more largely than the inner diameter side bobbin 11, so that the gap between the inner diameter side bobbin 11 and the outer diameter side bobbin 12 disappears to be integrated as the bobbin 1.

【0022】図2は図1とは別のこの発明の実施例を示
す超電導磁石の断面図であり、図1と異なるのはボルト
20で内径側巻枠11と外径側巻枠12とを固定した点
であり、ボルト20の貫通孔を設ける点で図1の外径側
巻枠12とこの図の外径側巻枠12とは異なることにな
るが混乱あ生ずることはないので同じ符号を付してあ
り、同じように、内径側巻枠11もボルト20のための
ボルト穴が設けられる点が図1の内径側巻枠11とは異
なるがこの場合も同じ符号を付してある。
FIG. 2 is a cross-sectional view of a superconducting magnet showing an embodiment of the present invention different from that of FIG. 1. The difference from FIG. 1 is that the inner diameter side winding frame 11 and the outer diameter side winding frame 12 are connected by bolts 20. This is a fixed point, and the outer diameter side winding frame 12 of FIG. 1 is different from the outer diameter side winding frame 12 of this figure in that a through hole for the bolt 20 is provided, but the same reference numeral is used because no confusion occurs. Similarly, the inner diameter side winding frame 11 is different from the inner diameter side winding frame 11 of FIG. 1 in that bolt holes for the bolts 20 are provided, but in this case as well, the same reference numerals are attached. .

【0023】ボルト20は複数本を周方向に等配に設け
てあり、このボルト20で締付けることによって、巻回
作業時に内径側巻枠11が空回りしないよう固定する。
図3は図1のA−A断面図である。この図において、外
径側巻枠12の内面に6つの溝が等配に設けられて冷却
孔6を構成していおり、この中に液体ヘリウム6が満た
されて外径側巻枠12の冷却効果を上げている。この冷
却孔6がないと、図1や図2で判るように上部が液面4
1から露出したときには外径側巻枠12の液体ヘリウム
4と接触する部分は下部のつば123の一部だけにな
り、円筒部121の内面は内径側巻枠11の円筒部11
1に覆われて液体ヘリウム4に接触しないので図6に示
す冷却熱51の流れが不十分になる。冷却孔6はこのよ
うな問題を解決するものである。
A plurality of bolts 20 are provided equidistantly in the circumferential direction, and by tightening the bolts 20, the inner diameter side winding frame 11 is fixed so as not to idle during the winding operation.
FIG. 3 is a sectional view taken along line AA of FIG. In this figure, six grooves are equidistantly provided on the inner surface of the outer diameter side winding frame 12 to form cooling holes 6, and the liquid helium 6 is filled therein to cool the outer diameter side winding frame 12. It is effective. If these cooling holes 6 are not provided, the upper surface is the liquid level 4 as can be seen in FIGS.
When exposed from 1, the portion of the outer diameter side reel 12 that contacts the liquid helium 4 is only a part of the lower collar 123, and the inner surface of the cylindrical portion 121 is the cylindrical portion 11 of the inner diameter side reel 11.
Since it is covered with 1 and does not contact the liquid helium 4, the flow of the cooling heat 51 shown in FIG. 6 becomes insufficient. The cooling hole 6 solves such a problem.

【0024】図4は図3とは異なる冷却孔の構成を示す
図4と同じ位置での断面図であり、図3と異なる点は、
冷却孔6Aを内径側巻枠11Aに外径面に設けた点であ
り、この点で図3の内径側巻枠11と異なり、外径側巻
枠12Aも冷却孔6が設けられていないという点で図3
の外径側巻枠12とは異なる。冷却孔の構成として図3
の冷却孔6とと図4の冷却溝6Aとの構成の優劣は一概
には言えない。図3の構成の利点は冷却孔6を構成する
4面のうち3面が冷却の対象となる外径側巻枠12に接
しているので冷却効果が大きいという点であり、代わり
外に径側巻枠12の機械的強度が低下するという欠点が
ある。一方、図4の構成では冷却孔6Aの4面のうち1
面しか外径側巻枠12と接触していないので冷却孔6A
が冷却孔6と同数でその断面形状も同様ならば冷却効果
が3分の1になるという欠点、及び内径側巻枠11Aの
機械的強度が低下するという欠点がある。両方とも機械
的強度の低下はそれぞれの円筒部111又は121の肉
厚を大きくすることで対処できるのでそれほど大きな問
題ではない。前述のように機械的強度は内径側巻枠11
又は11Aにその殆どを負担させるので、外径側巻枠1
2又は12Aの機械的強度について多くを期待する必要
がないことから、図3のように外径側巻枠12に冷却孔
6を設ける方がより良いとも考えられるがそれほど大き
な差がある訳ではなく、個々の超電導磁石に最適の構成
を採用すればよい。
FIG. 4 is a cross-sectional view showing the structure of the cooling holes different from that of FIG. 3 at the same position as in FIG. 4. The difference from FIG.
This is that the cooling hole 6A is provided on the outer diameter surface of the inner diameter side winding frame 11A, and in this respect, unlike the inner diameter side winding frame 11 of FIG. 3, the outer diameter side winding frame 12A is also not provided with the cooling hole 6. Figure 3 in dots
Is different from the outer diameter side winding frame 12. Figure 3 shows the structure of the cooling holes.
The superiority and inferiority of the configuration of the cooling hole 6 of FIG. 4 and the cooling groove 6A of FIG. The advantage of the configuration of FIG. 3 is that three of the four faces forming the cooling hole 6 are in contact with the outer diameter side winding frame 12 to be cooled, so that the cooling effect is large. There is a drawback that the mechanical strength of the reel 12 is reduced. On the other hand, in the configuration of FIG. 4, one of the four surfaces of the cooling hole 6A is
Since only the surface is in contact with the outer diameter side winding frame 12, the cooling hole 6A
If there are the same number of cooling holes 6 and the same cross-sectional shape, the cooling effect will be one-third, and the mechanical strength of the inner diameter side winding frame 11A will be reduced. In both cases, the decrease in mechanical strength can be dealt with by increasing the wall thickness of the respective cylindrical portion 111 or 121, and is therefore not a serious problem. As described above, the mechanical strength is the inner diameter side bobbin 11
Or, since most of 11A is loaded, the outer diameter side bobbin 1
Since it is not necessary to expect much about the mechanical strength of 2 or 12A, it may be better to provide the cooling holes 6 in the outer diameter side winding frame 12 as shown in FIG. 3, but there is not such a big difference. Instead, the optimum configuration may be adopted for each superconducting magnet.

【0025】冷却孔6又は6Aは内径側巻枠11又は1
1Aと外径側巻枠12又は12Aに挟まれて冷却孔を構
成する。この代わりに、外径側巻枠12の断面内に直接
貫通孔を設ける構成でもよい。この場合は加工性から冷
却孔の断面は円形になるが、貫通孔を設けるよりも内面
又は外面に溝を設ける方が加工が容易である。加工性の
点からは内径面に溝を設ける図3に比べて外径面に溝を
設ける図4の方が加工性が良いと言える。これら冷却孔
を形成する方法についても個々に最適なものを選定する
ことになる。なお、ボルト20による固定は一時的なも
ので、超電導線3が巻回されること及び極低温に冷却さ
れることによって外径側巻枠12が収縮して内径側巻枠
11と密着するとボルト20はなくてもよいものであ
る。したがって、一時的な固定方法としてボルト20と
は異なる構成を採用することもできる。また、外径側巻
枠12に直接回転力を与えることのできる巻線機を使用
することによって内径側巻枠11との固定を省略するこ
ともできる。更に、内径側巻枠11との組み合わを前述
のように超電導線3の巻回作業の前ではなく、後にして
超電導線3が巻回された外径側巻枠12と内径側巻枠1
1を組み合わせる方法を採用することもできる。この場
合、超電導線3を巻回したことによる外径側巻枠12の
収縮分が超電導線3の内向力の付加分を減ずることにな
り、また、内径側巻枠11との密着の程度を減ずること
になることを事前に考慮しておく必要がある。
The cooling hole 6 or 6A is provided on the inner diameter side winding frame 11 or 1.
It is sandwiched between 1A and the outer diameter side winding frame 12 or 12A to form a cooling hole. Alternatively, the through hole may be directly provided in the cross section of the outer diameter side winding frame 12. In this case, the cooling hole has a circular cross section because of workability, but it is easier to work by providing the groove on the inner surface or the outer surface than by providing the through hole. From the viewpoint of workability, it can be said that the workability in FIG. 4 in which the groove is formed on the outer diameter surface is better than that in FIG. As for the method of forming these cooling holes, the optimum one will be selected individually. The fixing with the bolt 20 is temporary, and when the superconducting wire 3 is wound and cooled to an extremely low temperature, the outer diameter side winding frame 12 contracts and comes into close contact with the inner diameter side winding frame 11, so that the bolt is fixed. 20 is optional. Therefore, a structure different from the bolt 20 can be adopted as a temporary fixing method. Further, by using a winding machine that can directly apply a rotational force to the outer diameter side winding frame 12, the fixing to the inner diameter side winding frame 11 can be omitted. Furthermore, as described above, the combination with the inner diameter side bobbin 11 is performed not before the winding operation of the superconducting wire 3 but after the superconducting wire 3 is wound.
It is also possible to adopt a method of combining 1. In this case, the amount of contraction of the outer diameter side winding frame 12 due to the winding of the superconducting wire 3 reduces the added amount of the inward force of the superconducting wire 3, and the degree of close contact with the inner diameter side winding frame 11 is reduced. It is necessary to consider beforehand that it will be reduced.

【0026】[0026]

【発明の効果】この発明は前述のように、巻枠を内径側
巻枠と外径側巻枠との二重構造とし、内径側巻枠を熱収
縮率の小さい材料にして極低温に冷却されたときに超電
導線や外側巻枠の熱収縮を抑制して超電導線の内向力を
確保し、外径側巻枠を熱伝導率の高い材料にして、液体
冷媒が減少して超電導線の一部が液面から露出して冷却
効果が低減したときにも、外径側巻枠は下部が液体冷媒
によって冷却され熱伝導率が良いことから液体媒体から
露出した部分でも充分低温を維持し超電導線を冷却する
ことから、露出した超電導線がクエンチを起こしにくく
なり、その結果、液体冷媒の許容消費量を大きくするこ
とができることになり1回当たりの液体冷媒の補充量を
大きくして補充の間隔を長くすることができ保守が容易
になるという効果が得られる。また、内径側巻枠の材料
としてステンレス鋼が安価でしかも許容応力も高く、外
径側巻枠の材料としてはアルミニウムが加工性と重量の
点で適している。また、外径側巻枠を冷却する冷却用孔
を周方向に分布して設けて外径側巻枠と液体冷媒との接
触面積を大きくして液面から露出した部分も充分冷却さ
れるようにすることによって、露出した超電導線の冷却
をより確実に行うことができる。冷却孔として、内側巻
枠の外周面に軸方向に沿った溝を設ける構成でも、外側
巻枠の内周面に軸方向に沿った溝を設ける構成でもよ
く、軸方向に貫通孔を設けるよりも冷却孔の形成が容易
である。
As described above, according to the present invention, the bobbin has the double structure of the inner diameter side winding frame and the outer diameter side winding frame, and the inner diameter side winding frame is made of a material having a small heat shrinkage rate and cooled to an extremely low temperature. When heat is applied, the heat shrinkage of the superconducting wire and the outer winding frame is suppressed to secure the inward force of the superconducting wire, and the outer diameter side winding frame is made of a material with high thermal conductivity. Even when a part of the outer diameter side winding frame is exposed from the liquid surface and the cooling effect is reduced, the lower part of the outer diameter side winding frame is cooled by the liquid refrigerant and the thermal conductivity is good. Since the superconducting wire is cooled, the exposed superconducting wire is less likely to be quenched, and as a result, the allowable consumption of the liquid refrigerant can be increased, and the replenishment amount of the liquid refrigerant per one time is increased to replenish it. The effect of being able to lengthen the intervals of the Obtained. Further, stainless steel is inexpensive as the material of the inner diameter side bobbin and has a high allowable stress, and aluminum is suitable as the material of the outer diameter side bobbin in terms of workability and weight. Further, cooling holes for cooling the outer diameter side winding frame are provided in a circumferential distribution to increase the contact area between the outer diameter side winding frame and the liquid refrigerant so that the portion exposed from the liquid surface is also sufficiently cooled. By doing so, the exposed superconducting wire can be cooled more reliably. As the cooling holes, a groove may be provided on the outer peripheral surface of the inner winding frame along the axial direction, or a groove may be provided on the inner peripheral surface of the outer winding frame along the axial direction. Also, it is easy to form cooling holes.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す超電導磁石の断面図FIG. 1 is a sectional view of a superconducting magnet showing an embodiment of the present invention.

【図2】図1とは別のこの発明の実施例を示す超電導磁
石の断面図
FIG. 2 is a sectional view of a superconducting magnet showing an embodiment of the present invention different from that of FIG.

【図3】図1のA−A断面図3 is a sectional view taken along the line AA of FIG.

【図4】図3とは異なる冷却孔の構成を示す図4と同じ
位置での断面図
4 is a cross-sectional view at the same position as in FIG. 4 showing a configuration of cooling holes different from that in FIG.

【図5】従来の超電導磁石の断面図FIG. 5 is a sectional view of a conventional superconducting magnet.

【図6】図5の超電導磁石の一部が露出しているときの
冷却熱の流れを示す断面図
6 is a cross-sectional view showing the flow of cooling heat when a part of the superconducting magnet shown in FIG. 5 is exposed.

【符号の説明】[Explanation of symbols]

1 巻枠 11 内径側巻枠 11A 内径側巻枠 111 円筒部 112 つば 12 外径側巻枠 12A 外径側巻枠 121 円筒部 122 つば 123 つば 3 超電導コイル 30 超電導線 4 液体ヘリウム(液体冷媒) 41 液面 6 冷却孔 6A 冷却孔 1 reel 11 inner diameter side reel 11A inner diameter side reel 111 cylinder part 112 collar 12 outer diameter side reel 12A outer diameter reel 121 cylinder part 122 collar 123 collar 3 superconducting coil 30 superconducting wire 4 liquid helium (liquid refrigerant) 41 Liquid level 6 Cooling hole 6A Cooling hole

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】超電導線が巻回されて超電導コイルを形成
する超電導磁石の巻枠が内径側巻枠と外径側巻枠とから
なり、前記内径側巻枠が熱収縮率の小さな材料からな
り、前記外径側巻枠が熱伝導率の高い材料からなること
を特徴とする超電導磁石の巻枠。
1. A winding frame of a superconducting magnet, which forms a superconducting coil by winding a superconducting wire, comprises an inner diameter side winding frame and an outer diameter side winding frame, and the inner diameter side winding frame is made of a material having a small heat shrinkage ratio. The outer diameter side reel is made of a material having a high thermal conductivity, and the reel is a superconducting magnet reel.
【請求項2】内径側巻枠の材料がステンレス鋼であり、
外径側巻枠の材料がアルミニウムであることを特徴とす
る請求項1記載の超電導磁石の巻枠。
2. The material of the inner diameter side bobbin is stainless steel,
The superconducting magnet reel according to claim 1, wherein the material of the outer diameter reel is aluminum.
【請求項3】外径側巻枠内径側の面を少なくとも内面の
一部とした所定の数の冷却孔を設けてなることを特徴と
する請求項1又は2記載の超電導磁石の巻枠。
3. The bobbin for a superconducting magnet according to claim 1 or 2, wherein a predetermined number of cooling holes are provided with at least a part of the inner surface of the outer diameter side winding frame being the inner surface.
【請求項4】内径側巻枠の外径面に軸方向に沿って溝を
設けて冷却孔を形成してなることを特徴とする請求項3
記載の超電導磁石の巻枠。
4. The cooling hole is formed by providing a groove along the axial direction on the outer diameter surface of the inner diameter side winding frame.
Winding frame of the superconducting magnet described.
【請求項5】外径側巻枠の内径面に軸方向に沿って溝を
設けて冷却孔を形成してなることを特徴とする請求項3
記載の超電導磁石の巻枠。
5. A cooling hole is formed by providing a groove along the axial direction on the inner diameter surface of the outer diameter side winding frame.
Winding frame of the superconducting magnet described.
JP16513192A 1992-06-24 1992-06-24 Spool of superconducting magnet Pending JPH065419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16513192A JPH065419A (en) 1992-06-24 1992-06-24 Spool of superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16513192A JPH065419A (en) 1992-06-24 1992-06-24 Spool of superconducting magnet

Publications (1)

Publication Number Publication Date
JPH065419A true JPH065419A (en) 1994-01-14

Family

ID=15806493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16513192A Pending JPH065419A (en) 1992-06-24 1992-06-24 Spool of superconducting magnet

Country Status (1)

Country Link
JP (1) JPH065419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116956A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Superconducting magnet for mri
JP2010135377A (en) * 2008-12-02 2010-06-17 Kobe Steel Ltd Superconductive coil
JP2012523257A (en) * 2009-04-09 2012-10-04 シーメンス アクチエンゲゼルシヤフト Superconducting magnetic coils with different heat transfer regions
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil
JP2022026976A (en) * 2020-07-31 2022-02-10 株式会社東芝 Laminated high-temperature superconducting coil device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116956A (en) * 2003-10-10 2005-04-28 Hitachi Ltd Superconducting magnet for mri
JP2010135377A (en) * 2008-12-02 2010-06-17 Kobe Steel Ltd Superconductive coil
JP2012523257A (en) * 2009-04-09 2012-10-04 シーメンス アクチエンゲゼルシヤフト Superconducting magnetic coils with different heat transfer regions
JP2013539338A (en) * 2010-09-06 2013-10-17 シーメンス アクチエンゲゼルシヤフト High temperature superconductor (HTS) coil
KR20130138231A (en) * 2010-09-06 2013-12-18 지멘스 악티엔게젤샤프트 High-temperature superconductor (hts) coil
US9048015B2 (en) 2010-09-06 2015-06-02 Siemens Aktiengesellschaft High-temperature superconductor (HTS) coil
JP2022026976A (en) * 2020-07-31 2022-02-10 株式会社東芝 Laminated high-temperature superconducting coil device

Similar Documents

Publication Publication Date Title
JP2009188065A (en) Superconductive device
US20110218111A1 (en) High temperature superconducting parallel conductors, high temperature superconducting coil using the same, and high temperature superconducting magnet
US20080312089A1 (en) Superconducting Cable
JPH065419A (en) Spool of superconducting magnet
US5404122A (en) Superconducting coil apparatus with a quenching prevention means
JP2010098267A (en) Superconducting coil device
JP2015028912A (en) Superconductive wire rod and superconductive coil using the same
JPH0529137A (en) Superconducting electromagnet
US20110034337A1 (en) Superconductive current limiter with magnetic field triggering
WO2022185568A1 (en) Superconductive electromagnet device and method for cooling superconductive electromagnet device
JP5921875B2 (en) Superconducting coils for power induction devices and power induction devices
JP2013219196A (en) Superconducting coil device and manufacturing method of the same
JPWO2019229923A1 (en) Superconducting magnet
JP5921874B2 (en) Superconducting coil for power induction equipment
WO2019198266A1 (en) Superconducting magnet device
JP2011155096A (en) Superconducting electromagnet device
JP2013120777A (en) Superconducting coil and superconducting transformer
JPH10116721A (en) Superconducting bulk body magnet
JPH1145807A (en) Superconducting magnet device
JP7346091B2 (en) Persistent current switch, superconducting magnet device, and operating method of superconducting magnet device
JPH09148123A (en) Superconductive coil
JPH06302430A (en) Superconducting magnet
JPH09139309A (en) Superconductive coil
JPH07142773A (en) Superconducting electromagnet
JP2607822B2 (en) Superconducting current limiter