JP2010098267A - Superconducting coil device - Google Patents

Superconducting coil device Download PDF

Info

Publication number
JP2010098267A
JP2010098267A JP2008270272A JP2008270272A JP2010098267A JP 2010098267 A JP2010098267 A JP 2010098267A JP 2008270272 A JP2008270272 A JP 2008270272A JP 2008270272 A JP2008270272 A JP 2008270272A JP 2010098267 A JP2010098267 A JP 2010098267A
Authority
JP
Japan
Prior art keywords
electrode
superconducting
coil
superconducting coil
superconducting wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008270272A
Other languages
Japanese (ja)
Inventor
Kengo Okura
健吾 大倉
Kozo Fujino
剛三 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2008270272A priority Critical patent/JP2010098267A/en
Publication of JP2010098267A publication Critical patent/JP2010098267A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superconducting coil device for suppressing heat generation at a connection between a superconducting coil and an electrode and for preventing the superconducting coil from producing a bending stress. <P>SOLUTION: The superconducting coil device includes: a superconducting coil wound with a tape-shaped superconducting wire material 5; a bobbin 3 having a body portion 3a disposed on the internal circumference of the superconducting coil and a flange portion 3b projecting from one end of the body portion in the axial direction; a first electrode 10 connected to an end portion of the superconducting wire material 5 of the superconducting coil; and a second electrode 11 integrated with the first electrode. The first electrode 10 is shaped to have a circular arc-shaped contact portion 20 extending in the circumferential direction along the end portion of the superconducting wire material of the superconducting coil and a fixing portion 21 for fixing to the flange portion 3b on one end side in the circumferential direction of the circular arc-shaped contact portion and projecting from the flange portion. The second electrode 11 is shaped to project outwardly from the flange 3b and have a connection with a power supply cable 6. The circular arc-shaped contact portion 20 of the first electrode is soldered to the end portion of the superconducting wire material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は超電導コイル装置に関し、詳しくは、テープ状の超電導線材をパンケーキ型コイルとした超電導コイル装置において、該コイルの超電導線材の端末と電極との接続構造を改良するものである。   The present invention relates to a superconducting coil device, and more specifically, in a superconducting coil device in which a tape-like superconducting wire is a pancake-type coil, the connection structure between the terminal of the superconducting wire of the coil and an electrode is improved.

超電導コイルを形成する超電導線材としては、高温酸化物系超電導線材や金属系超電導線材があり、線材形状としては、丸線形状とテープ状(帯状)の2種類がある。
テープ状の高温酸化物系超電導線材を巻回した超電導コイルとして、従来、特開平3−237097号公報が提案されている。
As the superconducting wire forming the superconducting coil, there are a high-temperature oxide superconducting wire and a metal superconducting wire, and there are two types of wire shapes, a round wire shape and a tape shape (band shape).
Japanese Patent Laid-Open No. 3-237097 has been proposed as a superconducting coil in which a tape-like high-temperature oxide superconducting wire is wound.

前記超電導コイルは図7に示すように、テープ状の超電導線材100の幅方向面100aをコイルの中心軸線Lと平行方向として巻回し、その内周端および外周端に、平板形状の幅Wと電極101と102とを接続している。
前記電極101、102は平板形状の銅板からなり、該電極と超電導線材100との接続は、半田付けでなされている。
As shown in FIG. 7, the superconducting coil is wound with the width direction surface 100a of the tape-shaped superconducting wire 100 parallel to the central axis L of the coil, and a flat plate width W and The electrodes 101 and 102 are connected.
The electrodes 101 and 102 are made of a flat copper plate, and the electrodes and the superconducting wire 100 are connected by soldering.

前記のように、電極101、102は平板形状とされているため、超電導線材100との接触面積は限られ、接触抵抗の低減に限界がある。そのため、大電流を超電導線材100に通電した場合に、電極101、102と超電導線材100との間に発熱が生じ、超電導線材100の温度が上昇する。
特に、超電導コイルの冷却機構として冷凍機冷却直冷方式を採用した場合、20Kで300Aレベルの大電流を流すため、電極との接続部での発熱を極力抑制する必要がある。 また、電極101、102を超電導線材100に半田付け作業する際に、電極101、102に力が加わり、電極101、102が取り付けられる領域の超電導線材100にねじり力が作用し、超電導線材が局部的に曲げ応力が働き、臨界電流の劣化を招きやすい問題もある。
As described above, since the electrodes 101 and 102 have a flat plate shape, the contact area with the superconducting wire 100 is limited, and there is a limit to the reduction of contact resistance. Therefore, when a large current is passed through the superconducting wire 100, heat is generated between the electrodes 101, 102 and the superconducting wire 100, and the temperature of the superconducting wire 100 rises.
In particular, when the refrigerator cooling direct cooling system is adopted as a cooling mechanism for the superconducting coil, a large current of 300A level is caused to flow at 20K, so that it is necessary to suppress heat generation at the connection portion with the electrode as much as possible. Further, when the electrodes 101 and 102 are soldered to the superconducting wire 100, a force is applied to the electrodes 101 and 102, and a torsional force acts on the superconducting wire 100 in the region where the electrodes 101 and 102 are attached. In particular, bending stress works and there is a problem that the critical current is likely to deteriorate.

特開平3−237097号公報JP-A-3-237097

本発明は前記問題に鑑みてなされたもので、超電導コイル装置において、超電導線材と電極との接続部に発熱が発生するのを抑制し、かつ、超電導線材に曲げが発生しないようにすることを課題としている。   The present invention has been made in view of the above problems, and in a superconducting coil device, it is possible to suppress generation of heat at a connection portion between a superconducting wire and an electrode and to prevent bending of the superconducting wire. It is an issue.

前記課題を解決するため、本発明は、
テープ状の超電導線材を巻回した超電導コイルと、
前記超電導コイルの内周に配置する胴部と、該胴部の軸線方向の一端より突設したフランジを備えたボビンと、
前記超電導コイルの超電導線材の端末部に接続される第1電極と、
前記第1電極と一体化する第2電極を備え、
前記第1電極は前記超電導コイルの超電導線材の端末部に沿って周方向に延在する円弧状接触部と、該円弧状接触部の周方向の一端側で前記ボビンのフランジに固定されると共に該フランジより突出させた固定部を有する形状とし、
前記第2電極は前記フランジより外方に突出すると共に、電源供給ケーブルとの接続部を有する形状とし、
前記第1電極の円弧状接触部を前記超電導線材の端末部に半田付けしていることを特徴とする超電導コイル装置を提供している。
In order to solve the above problems, the present invention provides:
A superconducting coil wound with a tape-shaped superconducting wire,
A body part disposed on the inner periphery of the superconducting coil, and a bobbin provided with a flange projecting from one end of the body part in the axial direction;
A first electrode connected to a terminal portion of the superconducting wire of the superconducting coil;
A second electrode integrated with the first electrode;
The first electrode is fixed to the flange of the bobbin at one end side in the circumferential direction of the arc-shaped contact portion extending in the circumferential direction along the terminal portion of the superconducting wire of the superconducting coil. It has a shape with a fixed part protruding from the flange,
The second electrode protrudes outward from the flange and has a shape having a connection with a power supply cable,
A superconducting coil device is provided, wherein an arc-shaped contact portion of the first electrode is soldered to a terminal portion of the superconducting wire.

前記第1電極と第2電極とは連続して形成した一体物としても良いし、別体としてもよい。別体とする場合は、第1電極の固定部を前記第2電極に重ね、ネジ固定している。   The first electrode and the second electrode may be formed as a continuous body or as separate bodies. In the case of a separate body, the fixing portion of the first electrode is overlapped with the second electrode and fixed with screws.

前記第1電極の厚さは前記超電導線材の幅と同等とし、前記円弧状接触部を超電導線材の全幅方向に半田付けで固着し、該超電導線材と半田付けする第1電極の円弧状態接触部の周方向長さは50〜200mm、面積は200mm2〜800mm2とし、かつ、該第1電極は前記固定部と反対側の円弧状接触部の先端は先細り形状のテーパ部を設けていることが好ましい。
また、第1電極と第2電極とを別体とする場合は、その接触面積は400mm2〜2000mm2としていることが好ましい。
The thickness of the first electrode is equal to the width of the superconducting wire, the arc-shaped contact portion is fixed by soldering in the entire width direction of the superconducting wire, and the arc-shaped contact portion of the first electrode to be soldered to the superconducting wire the circumferential length and 50 to 200 mm, an area of a 200mm 2 ~800mm 2, and it is the first electrode tip of the arc-shaped contact portion of the opposite side of the fixing part is provided with the tapered portion of the tapered shape Is preferred.
In the case of the first electrode and the second electrode and the separate body, the contact area is preferable that a 400mm 2 ~2000mm 2.

前記構成とした超電導コイル装置では、超電導線材と半田付けする第1電極に、超電導線材の端末部の曲率に添わせた曲率の円弧状接触部を設け、広い面積で超電導線材と第1電極とを半田付けで接続できる。該第1電極と第2電極とを別体とする場合は、広い面積で接触させ、該第2電極を電源供給ケーブルと接続していることにより、超電導線材と電極との接続部での接触抵抗の低減を図ることができ、発熱量を減少できる。
かつ、該第1電極に固定部を設けてボビンのフランジとネジ固定している。即ち、超電導線材との半田付け部分で電極を固定した従来と相違させ、超電導線材との半田付け部分は電気接続機能だけを持たせ、電極の固定はボビンのフランジとネジ固定することで行っている。これにより、第1電極を超電導線材に強固に半田付けで固定することなく、第1電極の取り付け強度を高めることができる。よって、超電導線材に第1電極との半田付け時にねじり力を作用して超電導線材が曲げられて、臨界電流の劣化が生じるのを防止できる。かつ、常時、電極により超電導線材に荷重がかかることを防止できるため、超電導コイルに通電した時にも、磁場と電流の相互作用によるローレンツ力に対しても変形することがなく、安定して通電できる。
In the superconducting coil device having the above-described configuration, the first electrode to be soldered to the superconducting wire is provided with an arc-shaped contact portion having a curvature that follows the curvature of the terminal portion of the superconducting wire, and the superconducting wire and the first electrode are formed over a wide area. Can be connected by soldering. When the first electrode and the second electrode are separated from each other, the contact is made at a connecting portion between the superconducting wire and the electrode by contacting the second electrode with a power supply cable in a wide area. Resistance can be reduced, and the amount of heat generated can be reduced.
In addition, a fixing portion is provided on the first electrode and fixed to the flange of the bobbin with screws. In other words, unlike the conventional case where the electrode is fixed at the soldered portion with the superconducting wire, the soldered portion with the superconducting wire has only an electrical connection function, and the electrode is fixed by fixing the bobbin flange and screws. Yes. Thereby, the attachment strength of the first electrode can be increased without firmly fixing the first electrode to the superconducting wire by soldering. Therefore, it is possible to prevent the superconducting wire from being bent due to a torsional force acting on the superconducting wire when soldered to the first electrode, and deterioration of the critical current. In addition, since it is possible to prevent a load from being applied to the superconducting wire by the electrode at all times, even when the superconducting coil is energized, it can be stably energized without being deformed by the Lorentz force due to the interaction between the magnetic field and the current. .

前記第2電極に設ける電源供給ケーブルとの接続部は、第1電極との連続側ではなく、反対面の裏面側にボルト穴を設け、前記電源供給ケーブルの先端に圧着したボルト止め端子にボルト締結している。かつ、該電源供給ケーブルはフレキシブルな編組線を用いることが好ましい。   The connection part with the power supply cable provided on the second electrode is not a continuous side with the first electrode, but a bolt hole is provided on the back surface side opposite to the first electrode, and a bolt is attached to a bolt terminal that is crimped to the tip of the power supply cable. It is concluded. The power supply cable is preferably a flexible braided wire.

前記超電導コイルはダブルパンケーキ型コイルとすると共に、複数のダブルパンケーキ型コイルを積層したスタックタイプとし、
前記ボビンの胴部は積層したダブルパンケーキ型コイルの内周に配置するスタック胴部とし、前記フランジは胴部の下端から突設し、最下層のダブルパンケーキ型コイルの下層コイル部の超電導線材の最外周の端末に前記第1電極を半田付けで接続していることが好ましい。
The superconducting coil is a double pancake type coil and a stack type in which a plurality of double pancake type coils are laminated,
The bobbin body is a stack body disposed on the inner periphery of the stacked double pancake coil, and the flange protrudes from the lower end of the body, and the superconductivity of the lower coil part of the bottom double pancake coil It is preferable that the first electrode is connected to a terminal on the outermost periphery of the wire by soldering.

前記のように、ダブルパンケーキ型コイルとすると、該コイルは上下に配置される第1コイル部と第2コイル部とが内周端で架け渡されて連続され、ダブルパンケーキ型コイルの接続端は最外周の端末部となる。かつ、該ダブルパンケーキ型コイルを積層したスタックタイプでは、積層したダブルパンケーキ型のコイル同士は最外周端をラップさせた半田付けで順次結線し、最下層のダブルパンケーキ型コイルの下部側の超電導線材の最外周の端末部を電源供給ケーブルと電極を介して接続している。
よって、本発明では、前記スタックタイプの超電導コイル装置において、最下層のダブルパンケーキ型コイルの下部側の超電導線材の最外周の端末部に前記第1電極を半田付けで接続し、該第1電極を第2電極と接続し、該第2電極を電源供給ケーブルと電極を介して接続している。
As described above, when the double pancake type coil is used, the first coil portion and the second coil portion arranged on the upper and lower sides of the coil are bridged at the inner peripheral end to be continuous, and the double pancake type coil is connected. The end is the outermost terminal portion. In addition, in the stack type in which the double pancake type coils are laminated, the laminated double pancake type coils are sequentially connected by soldering with the outermost peripheral ends wrapped, and the lower side of the lowermost double pancake type coil The terminal part on the outermost periphery of the superconducting wire is connected to the power supply cable via an electrode.
Therefore, according to the present invention, in the stack type superconducting coil device, the first electrode is connected by soldering to the outermost terminal portion of the superconducting wire on the lower side of the lowermost double pancake coil, The electrode is connected to the second electrode, and the second electrode is connected to the power supply cable via the electrode.

また、スタックタイプの超電導コイル装置では、前記ボビンの胴部は積層したダブルパンケーキ型コイルの内周に配置され、フランジは胴部の下端から突出し、積層したダブルパンケーキ型コイルの下端支持材となる。
該ボビンはステンレス等の強度を有する金属材で形成されていることが多いため、前記フランジに固定する第1電極とは絶縁する必要があるため、絶縁ライナーを介在して固定している。
Further, in the stack type superconducting coil device, the bobbin body is disposed on the inner periphery of the laminated double pancake type coil, the flange projects from the lower end of the body, and the lower end support material of the laminated double pancake type coil It becomes.
Since the bobbin is often formed of a metal material having strength such as stainless steel, it is necessary to insulate it from the first electrode fixed to the flange, and therefore the bobbin is fixed via an insulating liner.

なお、本発明は、前記ダブルパンケーキ型コイルを積層したスタックタイプの超電導コイル装置にかぎらず、特許文献1と同様なシングルパンケーキ型コイルとした場合においても適用可能である。   Note that the present invention is not limited to the stack type superconducting coil device in which the double pancake type coils are stacked, and can be applied to a single pancake type coil similar to that of Patent Document 1.

本発明で用いる超電導線材は高温酸化物系超電導線材とすることが好ましい。
該高温酸化物系超電導線材を超電導温度に冷却する冷却手段としては、冷凍機から突出させた冷熱伝導板を超電導コイルの超電導線材に直接に接触させる冷凍機冷却直冷方式を採用することが好ましい。
前記冷凍機冷却直冷方式を採用すると、20Kで300A〜500Aの大電流を流すため、超電導線材と電極との接続部での発熱を極力抑制する必要があり、前記した第1、第2電極を用いて超電導線材と接続することにより、発熱を抑制でき、前記冷凍機冷却直冷方式で超電導線材を冷却することができる。
The superconducting wire used in the present invention is preferably a high-temperature oxide-based superconducting wire.
As the cooling means for cooling the high-temperature oxide-based superconducting wire to a superconducting temperature, it is preferable to employ a refrigerator cooling direct cooling system in which a cold conductive plate protruding from the refrigerator is brought into direct contact with the superconducting wire of the superconducting coil. .
When the refrigerator direct cooling method is adopted, a large current of 300A to 500A flows at 20K. Therefore, it is necessary to suppress heat generation at the connection portion between the superconducting wire and the electrode as much as possible. The first and second electrodes described above By connecting to the superconducting wire using, heat generation can be suppressed, and the superconducting wire can be cooled by the refrigerator cooling direct cooling method.

前述したように、本発明の超電導コイル装置によれば、超電導線材と半田接続する第1電極を超電導線材の端末に沿った円弧状接触部を有する独特の形状としていることで、第1電極と超電導線材との半田付け面積を増大することができる。かつ、該第1電極と一体化して電源供給ケーブルと接続する第2電極をフランジより突出する広い面積としていることで、超電導線材と電極との電気接続部における発熱を低減することができる。
また、第1電極に固定部を設け、ボビンのフランジと固定しているため、超電導線材との半田付け固定部に電極による曲げ荷重がかかることを抑制できる。その結果、超電導コイルに曲げが生じるのを防止でき、通電時に臨界電流の劣化を阻止できる。
As described above, according to the superconducting coil device of the present invention, the first electrode that is solder-connected to the superconducting wire has a unique shape having an arc-shaped contact portion along the end of the superconducting wire. The soldering area with the superconducting wire can be increased. In addition, since the second electrode integrated with the first electrode and connected to the power supply cable has a wide area protruding from the flange, heat generation at the electrical connection portion between the superconducting wire and the electrode can be reduced.
Moreover, since the fixing portion is provided on the first electrode and is fixed to the flange of the bobbin, it is possible to suppress the bending load due to the electrode from being applied to the soldering fixing portion with the superconducting wire. As a result, bending of the superconducting coil can be prevented and deterioration of the critical current can be prevented during energization.

以下、本発明の超電導コイル装置の実施形態を図面を参照して詳述する。
図1乃至図3に第一実施形態を示す。
Hereinafter, embodiments of the superconducting coil device of the present invention will be described in detail with reference to the drawings.
1 to 3 show a first embodiment.

図1に概略的に示すように、超電導コイル装置1は、複数個のダブルパンケーキ型のコイル2を軸線方向に積層したスタックタイプとしている。該コイル2は高温酸化物系の超電導線材5を巻き付けて形成している。
超電導線材5は広幅面5aをコイル2の軸線方向Lと平行とし、エッジ面5bを軸線方向Lと直交方向として所要回転数(ターン数)を巻回している。
ダブルパンケーキ型のコイル2は下層の第1コイル部2aと上層の第2コイル部2bとは内周側で超電導線材5を架け渡して連続させている。
As schematically shown in FIG. 1, the superconducting coil device 1 is a stack type in which a plurality of double pancake type coils 2 are laminated in the axial direction. The coil 2 is formed by winding a high-temperature oxide-based superconducting wire 5.
The superconducting wire 5 is wound at a required rotational speed (number of turns) with the wide surface 5a parallel to the axial direction L of the coil 2 and the edge surface 5b orthogonal to the axial direction L.
In the double pancake-type coil 2, the lower first coil portion 2 a and the upper second coil portion 2 b are connected with a superconducting wire 5 on the inner peripheral side.

前記積層したダブルパンケーキ型のコイル2は、ステンレス製のボビン3に取り付けている。該ボビン3は積層したコイル2の内周に配置する円筒状の胴部3aと、該胴部3aの下端外周から突設するフランジ3bとを備えた形状としている。
前記積層するコイル2同士は、最外周の超電導線材5の端末部を引き出し、ラップさせて半田付けで結線している。
図2に示すように、積層するコイル2の最下層のコイル2−1がフランジ3b上に配置される。該最下層のコイル2−1の最外周の端末部2を電源供給ケーブル6と第1電極10と第2電極11とを介して接続している。積層するコイル2同士は、最外周の端末部2を順次結線して接続している。
前記第1電極10と第2電極11は別体とし、それぞれ銅板を打ち抜き加工して形成している。
The laminated double pancake type coil 2 is attached to a bobbin 3 made of stainless steel. The bobbin 3 has a shape including a cylindrical body portion 3a disposed on the inner periphery of the laminated coil 2 and a flange 3b protruding from the outer periphery of the lower end of the body portion 3a.
The coils 2 to be stacked are connected by soldering by pulling out the terminal portions of the superconducting wire 5 at the outermost periphery.
As shown in FIG. 2, the lowermost coil 2-1 of the coil 2 to be laminated is disposed on the flange 3b. The outermost terminal portion 2 of the lowermost coil 2-1 is connected via the power supply cable 6, the first electrode 10, and the second electrode 11. The coils 2 to be laminated are connected by sequentially connecting the outermost terminal portions 2.
The first electrode 10 and the second electrode 11 are separated and formed by punching a copper plate.

図2および図3に示すように、第1電極10の厚さt1はテープ状の超電導線材5の広幅部のwと略同等としている。
第1電極10は、超電導線材5の端末部に沿って周方向に延在する円弧状接触部20と、該円弧状接触部20の周方向の一端側に外径方向へ突出させた固定部21を設けた形状としている。
前記円弧状接触部20は内周面20aを超電導線材5の広幅面5aの幅方向全面に半田付けされる接触面とし、外周面20bはボビンのフランジ3bの径方向の中間に位置させ、フランジ3bの上面に搭載される大きさとしている。該円弧状接触部20の周方向の一端側には固定部21を連続して設け、他端側は外周面20bにテーパ面20cを設けて先細り形状としている。
As shown in FIGS. 2 and 3, the thickness t <b> 1 of the first electrode 10 is substantially equal to w of the wide portion of the tape-shaped superconducting wire 5.
The first electrode 10 has an arcuate contact portion 20 extending in the circumferential direction along the terminal portion of the superconducting wire 5 and a fixed portion protruding in the outer diameter direction on one end side in the circumferential direction of the arcuate contact portion 20. 21 is provided.
The arcuate contact portion 20 has an inner peripheral surface 20a as a contact surface that is soldered to the entire width direction of the wide surface 5a of the superconducting wire 5, and the outer peripheral surface 20b is located in the middle of the radial direction of the flange 3b of the bobbin. It is set as the magnitude | size mounted in the upper surface of 3b. The arcuate contact portion 20 is provided with a fixed portion 21 continuously at one end side in the circumferential direction, and the other end side is tapered by providing a tapered surface 20c on the outer peripheral surface 20b.

前記第1電極10の固定部21の内周面21aは、円弧状接触部20の内周面20aより僅かに外径位置に設け、該内周面21aと超電導線材5との間に隙間Cを設けている。 該固定部21は、ボビンのフランジ3bの外周面より外方へ突出させ、その径方向の一端側21bは直線状とする一方、他端側21cは円弧状接触部20の外周面20bより湾曲させて連続させている。
前記第1電極10の円弧状態接触部20の周方向長さは50〜200mmとし、内周面21aと超電導線材5と半田付けする内周面21aの面積は200〜800mm2としている。
The inner peripheral surface 21 a of the fixing portion 21 of the first electrode 10 is provided at a slightly outer diameter position from the inner peripheral surface 20 a of the arcuate contact portion 20, and a gap C is formed between the inner peripheral surface 21 a and the superconducting wire 5. Is provided. The fixing portion 21 protrudes outward from the outer peripheral surface of the flange 3b of the bobbin, and one end side 21b in the radial direction is linear, while the other end side 21c is curved from the outer peripheral surface 20b of the arcuate contact portion 20. Let them continue.
The circumferential length of the arc-shaped contact portion 20 of the first electrode 10 is 50 to 200 mm, and the area of the inner peripheral surface 21 a to be soldered to the inner peripheral surface 21 a and the superconducting wire 5 is 200 to 800 mm 2 .

前記固定部21の内周側はフランジ3b上に絶縁ライナー13を介して配置され、該配置部分にネジ穴21dを設け、絶縁ライナー13を介してフランジ3bとネジ25で固定している。また、フランジ3bより外方へ突出する外周側には第2電極11との固定用ネジ筒21eを設けている。   The inner peripheral side of the fixing portion 21 is arranged on the flange 3b via an insulating liner 13, and a screw hole 21d is provided in the arrangement portion, and is fixed with the flange 3b and the screw 25 via the insulating liner 13. A screw cylinder 21e for fixing to the second electrode 11 is provided on the outer peripheral side protruding outward from the flange 3b.

第2電極11は、その厚さt2をボビンのフランジ3bの厚さと同等とし、内周面11aをフランジ3bの外周面に添わせて配置している。図2に示すように、第2電極11の上面に第1電極10の固定部21の外周側部分を搭載し、該固定部21に設けた固定用ネジ筒21eと対応する位置にネジ穴11bを設け、ネジ26で第1電極10と第2電極11をネジ固定している。
さらに、第2電極11に電源接続用のボルト穴11cを設け、電源供給ケーブル6の端末に圧着接続した電源供給端子28とボルトで締結している。
The second electrode 11 has a thickness t2 equal to the thickness of the flange 3b of the bobbin, and the inner peripheral surface 11a is disposed along the outer peripheral surface of the flange 3b. As shown in FIG. 2, the outer peripheral portion of the fixing portion 21 of the first electrode 10 is mounted on the upper surface of the second electrode 11, and the screw hole 11 b is positioned at a position corresponding to the fixing screw cylinder 21 e provided on the fixing portion 21. The first electrode 10 and the second electrode 11 are fixed by screws 26 with screws.
Furthermore, the second electrode 11 is provided with a bolt hole 11c for power connection, and is fastened with a bolt to the power supply terminal 28 that is crimped to the end of the power supply cable 6.

前記第1電極10の固定部21とフランジ3bの上面の間および、フランジ3bの外周面と第2電極11の内周面との間に前記絶縁ライナー13を介在させ、第1、第2電極10、11とステンレス製のフランジ3bとの間を絶縁している。該絶縁ライナーは樹脂糸を強化繊維として用いた絶縁性の繊維強化樹脂シートで形成している。   The insulating liner 13 is interposed between the fixed portion 21 of the first electrode 10 and the upper surface of the flange 3b, and between the outer peripheral surface of the flange 3b and the inner peripheral surface of the second electrode 11, and the first and second electrodes 10 and 11 and the stainless steel flange 3b are insulated. The insulating liner is formed of an insulating fiber reinforced resin sheet using resin yarns as reinforcing fibers.

つぎに、超電導コイルへの第1電極10、第2電極11の接続方法を説明する。
超電導線材5を巻回して形成したダブルパンケーキ型のコイル2をボビン3のフランジ3b上で、胴部3aに外嵌して上下に積層し、スタックタイプの超電導コイル装置としている。積層したコイル2の最下層のコイル2−1とボビンのフランジ3bとの間に絶縁材(図示せず)を介設している。
Next, a method for connecting the first electrode 10 and the second electrode 11 to the superconducting coil will be described.
A double pancake-type coil 2 formed by winding the superconducting wire 5 is externally fitted to the body portion 3a on the flange 3b of the bobbin 3 and stacked vertically to form a stack type superconducting coil device. An insulating material (not shown) is interposed between the lowermost layer coil 2-1 of the laminated coil 2 and the bobbin flange 3b.

前記最下層のコイル2−1の最外周の端末部の超電導線材5と第1電極10との接続は、第1電極10の円弧状接触部20を内周面20aを超電導線材5の広幅面5aに半田Hで固着する。
該第1電極10の固定部21を絶縁ライナー13を介在させてフランジ3bの上面に配置し、ネジ25で締結し、第1電極10をフランジ3bに固定する。
The connection between the superconducting wire 5 and the first electrode 10 at the outermost end of the lowermost coil 2-1 is performed by connecting the arc-shaped contact portion 20 of the first electrode 10 with the inner peripheral surface 20a and the wide surface of the superconducting wire 5. 5a is fixed with solder H.
The fixing portion 21 of the first electrode 10 is disposed on the upper surface of the flange 3b with the insulating liner 13 interposed therebetween, and is fastened with a screw 25 to fix the first electrode 10 to the flange 3b.

前記フランジ3bの外周面に絶縁ライナー13を介在させて第2電極11を配置し、該第2電極11の上面に第1電極10の固定部21の外周側部分を配置し、ネジ26で固定する。
なお、第1電極10と第2電極11とは超電導コイル装置に取り付ける前に予めネジ26で固定して一体化させておいてもよい。その場合、ネジ固定ではなく溶接しておいてもよい。
The second electrode 11 is disposed on the outer peripheral surface of the flange 3b with the insulating liner 13 interposed therebetween, and the outer peripheral side portion of the fixing portion 21 of the first electrode 10 is disposed on the upper surface of the second electrode 11 and fixed with screws 26. To do.
Note that the first electrode 10 and the second electrode 11 may be fixed and integrated in advance with the screw 26 before being attached to the superconducting coil device. In that case, welding may be performed instead of screw fixing.

前記のように、第1電極10と第2電極11とからなる電極をコイル2の最外周の端末部に接続すると、第1電極10の円弧状接触部20と超電導線材5との接触面積を増大でき、かつ、第1電極10と第2電極11との接触面積を増大させることができる。
よって、超電導線材5と電源供給ケーブルとの接続部に介在させる電極と超電導線材5との間に発生する接触抵抗を軽減でき、大電流を超電導線材5に通電した時に生じる発熱量を大幅に低減できる。
また、第1電極10の取付強度はフランジ3bとネジ固定することで強度を保持しているため、超電導線材5に第1電極10との固定による負荷を発生させない。その結果、超電導線材5からなるコイル2にねじり力を作用させず、コイルの曲げ応力を低減でき、臨界電流を劣化させない。
As described above, when the electrode composed of the first electrode 10 and the second electrode 11 is connected to the terminal portion on the outermost periphery of the coil 2, the contact area between the arc-shaped contact portion 20 of the first electrode 10 and the superconducting wire 5 is increased. In addition, the contact area between the first electrode 10 and the second electrode 11 can be increased.
Therefore, the contact resistance generated between the superconducting wire 5 and the electrode interposed in the connection portion between the superconducting wire 5 and the power supply cable can be reduced, and the amount of heat generated when a large current is passed through the superconducting wire 5 is greatly reduced. it can.
In addition, since the mounting strength of the first electrode 10 is maintained by screwing to the flange 3b, a load due to the fixing of the first electrode 10 to the superconducting wire 5 is not generated. As a result, the torsional force is not applied to the coil 2 made of the superconducting wire 5, the bending stress of the coil can be reduced, and the critical current is not deteriorated.

図4に第二実施形態を示す。
第二実施形態は、第1電極と第2電極とを一体的に設けている点を第一実施形態と相違させている。
即ち、電極30は第1電極部10Aと第2電極部11Aとを段差を設けて連続的に形成している。該第1電極部10Aおよび第2電極部11Aの形状は第一実施形態の第1電極10、第2電極11と同一形状であるため、同一符号を付して説明を省略する。
FIG. 4 shows a second embodiment.
The second embodiment is different from the first embodiment in that the first electrode and the second electrode are integrally provided.
That is, the electrode 30 continuously forms the first electrode portion 10A and the second electrode portion 11A with a step. Since the shape of the first electrode portion 10A and the second electrode portion 11A is the same as that of the first electrode 10 and the second electrode 11 of the first embodiment, the same reference numerals are given and the description thereof is omitted.

図5に第二実施形態の変形例を示す。
該変形例の電極30Aは第1電極部10Bからフランジ3bの外方へ突出させた第2電極部11Bを同一厚さで連続的に突出させている。
他の構成は同一であるため、同一符号を付して説明を省略する。
FIG. 5 shows a modification of the second embodiment.
The electrode 30A of the modified example continuously protrudes the second electrode portion 11B protruding from the first electrode portion 10B to the outside of the flange 3b with the same thickness.
Since other configurations are the same, the same reference numerals are given and description thereof is omitted.

図6(A)(B)に第三実施形態を示す。
第三実施形態は、第一実施形態の超電導コイル装置1に、冷凍機冷却直冷方式の冷却機構を付設している。
該第三実施形態では、積層するダブルパンケーキ型のコイル2の間に円環形状とした冷熱伝導板40を介在させ、コイル2を形成する超電導線材5の全体を超電導温度に冷却している。前記冷却板40は冷凍機41のコールドヘッド42に他端を連結しており、超電導線材を直接に冷熱伝導板40で冷却している。該冷熱伝導板40は超電導コイル装置1を収容するケース(図示せず)内に前記冷凍機41側から突出させて、前記のようにコイルの層間に介在させている。
また、冷凍機41に接続した前記冷熱伝導板40のうちの下段の冷熱伝導板40−1は、図6(B)に示すように、その先端40−1aを第1電極10の円弧状接触固定部21に直接接触させている。
前記コイル2と第1、第2電極との接続形態および他の構成は第一実施形態と同様であるため、同一符号を付して説明を省略する。
6A and 6B show a third embodiment.
In the third embodiment, the superconducting coil device 1 of the first embodiment is provided with a refrigerator cooling direct cooling system.
In the third embodiment, a circular heat conduction plate 40 is interposed between the double pancake-type coils 2 to be laminated, and the entire superconducting wire 5 forming the coil 2 is cooled to the superconducting temperature. . The other end of the cooling plate 40 is connected to the cold head 42 of the refrigerator 41, and the superconducting wire is directly cooled by the cold heat conduction plate 40. The cold heat conductive plate 40 protrudes from the refrigerator 41 side in a case (not shown) for housing the superconducting coil device 1 and is interposed between the layers of the coils as described above.
Moreover, as shown in FIG. 6 (B), the lower heat conduction plate 40-1 of the cold heat conduction plate 40 connected to the refrigerator 41 has its tip 40-1a in an arcuate contact with the first electrode 10. The fixing unit 21 is in direct contact.
Since the connection form and other configurations of the coil 2 and the first and second electrodes are the same as those of the first embodiment, the same reference numerals are given and the description thereof is omitted.

前記のように、コイル2を高温酸化物系の超電導線材5で形成し、該超電導線材5を冷熱冷熱板40で直接冷却する冷却機構とすると、20Kで300Aの大電流を流すため、超電導線材5の発熱を極力抑制する必要がある。
よって、前記のように超電導線材5と電極との接続部での発熱を抑制する構成とすることで、冷凍機冷却直冷方式の冷却機構を採用することができる。
かつ、第1電極10と冷熱伝導板40とを接触させているため、第1電極10、第2電極11に微小な発熱が生じても、常時冷熱伝導板40と接触して冷却されているため、電極温度の上昇を防止できる。
該冷凍機冷却直冷方式の冷却機構は、超電導コイルを液体窒素を充填した冷却容器(クライオスタッド)に収容する冷却機構に対して、装置を簡単にすることが出来きる利点を有する。
As described above, when the coil 2 is formed of the high-temperature oxide-based superconducting wire 5 and the superconducting wire 5 is directly cooled by the cold / hot plate 40, a large current of 300A flows at 20K. It is necessary to suppress the heat generation of 5 as much as possible.
Therefore, the cooling mechanism of the refrigerator cooling direct cooling system can be employed by suppressing the heat generation at the connection portion between the superconducting wire 5 and the electrode as described above.
And since the 1st electrode 10 and the cooling-heat conduction board 40 are made to contact, even if a micro heat_generation | fever arises in the 1st electrode 10 and the 2nd electrode 11, it always contacts the cooling-heat conduction board 40 and is cooled. Therefore, an increase in electrode temperature can be prevented.
The cooling mechanism of the refrigerator cooling direct cooling system has an advantage that the apparatus can be simplified as compared with the cooling mechanism in which the superconducting coil is accommodated in a cooling container (cryo stud) filled with liquid nitrogen.

本発明の第一実施形態の超電導コイル装置の概略断面図である。It is a schematic sectional drawing of the superconducting coil apparatus of 1st embodiment of this invention. 第一実施形態の要部斜視図である。It is a principal part perspective view of 1st embodiment. 図2の分解斜視図である。FIG. 3 is an exploded perspective view of FIG. 2. 第二実施形態の斜視図である。It is a perspective view of a second embodiment. 第二実施形態の変形例の斜視図である。It is a perspective view of the modification of 2nd embodiment. (A)は第三実施形態の概略断面図、(B)は要部説明図である。(A) is a schematic sectional drawing of 3rd embodiment, (B) is principal part explanatory drawing. 従来例を示す斜視図である。It is a perspective view which shows a prior art example.

符号の説明Explanation of symbols

1 超電導コイル装置
2 ダブルパンケーキ型のコイル
3 ボビン
3a 胴部
3b フランジ
5 超電導線材
6 電源供給ケーブル
10 第1電極
11 第2電極
13 絶縁ライナー
20 円弧状接触部
21 固定部
DESCRIPTION OF SYMBOLS 1 Superconducting coil apparatus 2 Double pancake type coil 3 Bobbin 3a Body 3b Flange 5 Superconducting wire 6 Power supply cable 10 1st electrode 11 2nd electrode 13 Insulating liner 20 Arc-shaped contact part 21 Fixed part

Claims (4)

テープ状の超電導線材を巻回した超電導コイルと、
前記超電導コイルの内周に配置する胴部と、該胴部の軸線方向の一端より突設したフランジを備えたボビンと、
前記超電導コイルの超電導線材の端末部に接続される第1電極と、
前記第1電極と一体化する第2電極を備え、
前記第1電極は前記超電導コイルの超電導線材の端末部に沿って周方向に延在する円弧状接触部と、該円弧状接触部の周方向の一端側で前記ボビンのフランジに固定されると共に該フランジより突出させた固定部を有する形状とし、
前記第2電極は前記フランジより外方に突出すると共に、電源供給ケーブルとの接続部を有する形状とし、
前記第1電極の円弧状接触部を前記超電導線材の端末部に半田付けしていることを特徴とする超電導コイル装置。
A superconducting coil wound with a tape-shaped superconducting wire,
A body part disposed on the inner periphery of the superconducting coil, and a bobbin provided with a flange projecting from one end of the body part in the axial direction;
A first electrode connected to a terminal portion of the superconducting wire of the superconducting coil;
A second electrode integrated with the first electrode;
The first electrode is fixed to the flange of the bobbin at one end side in the circumferential direction of the arc-shaped contact portion extending in the circumferential direction along the terminal portion of the superconducting wire of the superconducting coil. It has a shape with a fixed part protruding from the flange,
The second electrode protrudes outward from the flange and has a shape having a connection with a power supply cable,
A superconducting coil device, wherein the arc-shaped contact portion of the first electrode is soldered to a terminal portion of the superconducting wire.
前記第1電極と第2電極とは別体とし、第1電極の固定部を前記第2電極に重ね、ネジ固定している請求項1に記載の超電導コイル装置。   The superconducting coil device according to claim 1, wherein the first electrode and the second electrode are separated from each other, and a fixing portion of the first electrode is overlapped with the second electrode and fixed with screws. 前記超電導コイルはダブルパンケーキ型コイルとすると共に、複数のダブルパンケーキ型コイルを積層したスタックタイプとし、
前記ボビンの胴部は積層したダブルパンケーキ型コイルの内周に配置するスタック胴部とし、前記フランジは胴部の下端から突設し、最下層のダブルパンケーキ型コイルの下層コイル部の超電導線材の最外周の端末に前記第1電極を半田付けで接続している請求項1または請求項2に記載の超電導コイル装置。
The superconducting coil is a double pancake type coil and a stack type in which a plurality of double pancake type coils are laminated,
The bobbin body is a stack body disposed on the inner periphery of the stacked double pancake coil, and the flange protrudes from the lower end of the body, and the superconductivity of the lower coil part of the bottom double pancake coil The superconducting coil device according to claim 1 or 2, wherein the first electrode is connected to a terminal on the outermost periphery of the wire by soldering.
前記積層したコイルの間に冷凍機に直接接続した冷熱伝導板を介在させ、冷凍機冷却直冷方式の冷却機構を付設している請求項3に記載の超電導コイル装置。   4. The superconducting coil device according to claim 3, wherein a cooling heat conduction plate directly connected to a refrigerator is interposed between the laminated coils, and a cooling mechanism of a refrigerator cooling direct cooling system is attached.
JP2008270272A 2008-10-20 2008-10-20 Superconducting coil device Pending JP2010098267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008270272A JP2010098267A (en) 2008-10-20 2008-10-20 Superconducting coil device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008270272A JP2010098267A (en) 2008-10-20 2008-10-20 Superconducting coil device

Publications (1)

Publication Number Publication Date
JP2010098267A true JP2010098267A (en) 2010-04-30

Family

ID=42259722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008270272A Pending JP2010098267A (en) 2008-10-20 2008-10-20 Superconducting coil device

Country Status (1)

Country Link
JP (1) JP2010098267A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248730A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2013089817A (en) * 2011-10-19 2013-05-13 Toshiba Corp Multilayer superconducting coil device and superconducting coil device
WO2016080524A1 (en) * 2014-11-21 2016-05-26 株式会社フジクラ Superconducting coil
JP2017010958A (en) * 2015-06-16 2017-01-12 株式会社東芝 Laminated superconducting coil device
KR101740793B1 (en) * 2015-06-10 2017-05-29 창원대학교 산학협력단 Method of manufacturing of superconducting coil and Superconducting coil the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161929A (en) * 1985-01-08 1986-07-22 Satoru Nawata Manufacture of copper foil coil
JPS62277048A (en) * 1986-05-23 1987-12-01 Toshiba Corp Manufacture of stator coil
JPH04188706A (en) * 1990-11-21 1992-07-07 Sumitomo Electric Ind Ltd Superconducting coil
JPH05326248A (en) * 1992-05-26 1993-12-10 Hitachi Ltd Joint structure of superconducting coil
JPH11186025A (en) * 1997-05-08 1999-07-09 Sumitomo Electric Ind Ltd Superconducting coil
JPH11340029A (en) * 1998-05-28 1999-12-10 Hitachi Ltd Oxide super-conducting coil
JP2000030929A (en) * 1998-07-14 2000-01-28 Hitachi Ltd Wire protection for oxide superconducting coil
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61161929A (en) * 1985-01-08 1986-07-22 Satoru Nawata Manufacture of copper foil coil
JPS62277048A (en) * 1986-05-23 1987-12-01 Toshiba Corp Manufacture of stator coil
JPH04188706A (en) * 1990-11-21 1992-07-07 Sumitomo Electric Ind Ltd Superconducting coil
JPH05326248A (en) * 1992-05-26 1993-12-10 Hitachi Ltd Joint structure of superconducting coil
JPH11186025A (en) * 1997-05-08 1999-07-09 Sumitomo Electric Ind Ltd Superconducting coil
JPH11340029A (en) * 1998-05-28 1999-12-10 Hitachi Ltd Oxide super-conducting coil
JP2000030929A (en) * 1998-07-14 2000-01-28 Hitachi Ltd Wire protection for oxide superconducting coil
JP2001244109A (en) * 2000-02-28 2001-09-07 Toshiba Corp High-temperature superconducting coil device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248731A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248726A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2012248730A (en) * 2011-05-30 2012-12-13 Sumitomo Electric Ind Ltd Superconductive coil and superconductive magnet
JP2013089817A (en) * 2011-10-19 2013-05-13 Toshiba Corp Multilayer superconducting coil device and superconducting coil device
WO2016080524A1 (en) * 2014-11-21 2016-05-26 株式会社フジクラ Superconducting coil
JPWO2016080524A1 (en) * 2014-11-21 2017-06-29 株式会社フジクラ Superconducting coil
US10249421B2 (en) 2014-11-21 2019-04-02 Fujikura Ltd. Superconducting coil
KR101740793B1 (en) * 2015-06-10 2017-05-29 창원대학교 산학협력단 Method of manufacturing of superconducting coil and Superconducting coil the same
JP2017010958A (en) * 2015-06-16 2017-01-12 株式会社東芝 Laminated superconducting coil device

Similar Documents

Publication Publication Date Title
JP2010098267A (en) Superconducting coil device
EP0207286B1 (en) Conical, unimpregnated winding for mr magnets
JP2008244249A (en) High-temperature superconducting coil
JP5879749B2 (en) Superconducting coil, superconducting magnet, and manufacturing method of superconducting coil
JP2009522743A (en) Superconducting cable
JP4374613B2 (en) Intermediate connection structure of superconducting cable
US20200365303A1 (en) Superconducting magnet apparatus
JP4853407B2 (en) Superconducting coil unit and superconducting equipment provided with the superconducting coil unit
JP2011040567A (en) Superconducting coil device and superconducting rotating machine comprising the same
JP2012038812A (en) Superconducting coil device
JP6180963B2 (en) High temperature superconducting coil
JP5268805B2 (en) Superconducting wire connection structure and superconducting coil device
JP4899983B2 (en) Superconducting coil and superconducting equipment provided with the superconducting coil
JP2009044013A (en) Superconducting coil unit and superconducting apparatus including the superconducting coil unit
JP4853406B2 (en) Superconducting coil unit and superconducting equipment provided with the superconducting coil unit
JP5449822B2 (en) Double pancake coil
JP2009246118A (en) Superconducting coil and method of manufacturing superconducting coil
JP4559834B2 (en) Manufacturing method of heat conductor
JP7420475B2 (en) Superconducting coils and superconducting devices
JP4181088B2 (en) Superconducting coil heat transfer structure and superconducting magnet
JP2014165304A (en) Superconducting apparatus
JP4687676B2 (en) Superconducting coil and superconducting equipment provided with the superconducting coil
JP2018186012A (en) Superconductive cable
JP2008060143A (en) Superconducting coil, and manufacturing method thereof
JP3120625B2 (en) Oxide superconducting conductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326