JP5921874B2 - Superconducting coil for power induction equipment - Google Patents

Superconducting coil for power induction equipment Download PDF

Info

Publication number
JP5921874B2
JP5921874B2 JP2011281523A JP2011281523A JP5921874B2 JP 5921874 B2 JP5921874 B2 JP 5921874B2 JP 2011281523 A JP2011281523 A JP 2011281523A JP 2011281523 A JP2011281523 A JP 2011281523A JP 5921874 B2 JP5921874 B2 JP 5921874B2
Authority
JP
Japan
Prior art keywords
coil
superconducting
cooling duct
liquid nitrogen
winding frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011281523A
Other languages
Japanese (ja)
Other versions
JP2013131689A (en
Inventor
林 秀美
秀美 林
洋 岡元
洋 岡元
敬昭 坊野
敬昭 坊野
章 富岡
章 富岡
修平 各務
修平 各務
雅行 今野
雅行 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2011281523A priority Critical patent/JP5921874B2/en
Publication of JP2013131689A publication Critical patent/JP2013131689A/en
Application granted granted Critical
Publication of JP5921874B2 publication Critical patent/JP5921874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

本発明は、液体窒素を冷媒として、その冷媒中に浸漬して冷却するようにした超電導限流器,超電導変圧器などの電力用誘導機器に適用する縦置き形の超電導コイルに関する。   The present invention relates to a vertical superconducting coil applied to a power induction device such as a superconducting fault current limiter or a superconducting transformer which is cooled by immersing liquid nitrogen in the refrigerant.

昨今では、液体窒素温度(大気圧下での沸点:77K)以上で超電導の臨界温度をもつ高温酸化物超電導体の出現に伴い、この高温超電導線材を使用して構成した頭記の超電導誘導機器を液体窒素の冷媒中に浸漬して冷却し、通電中に超電導線材を臨界温度以下に保持するようにした超電導機器,およびその冷却システムの開発が進んでいる。   Recently, with the advent of high-temperature oxide superconductors having a superconducting critical temperature above the liquid nitrogen temperature (boiling point under atmospheric pressure: 77K), the superconducting induction equipment described above is constructed using this high-temperature superconducting wire. Development of a superconducting device and a cooling system for the superconducting wire that keeps the superconducting wire below the critical temperature while energized is cooled by immersing it in a liquid nitrogen refrigerant.

次に、超電導変圧器を例に、そのコイル導体に前記した高温超電導線材を用いた超電導コイル,および超電導変圧器の従来構造例を図4〜図6に示し、また超電導機器を冷却する液体窒素冷却システムの一例を図7に示す。   Next, taking a superconducting transformer as an example, a superconducting coil using the above-described high-temperature superconducting wire as its coil conductor, and conventional structural examples of the superconducting transformer are shown in FIGS. 4 to 6, and liquid nitrogen for cooling the superconducting equipment is shown. An example of the cooling system is shown in FIG.

まず、図4,および図5(b),(c)は、従来技術の例として特許文献1,特許文献2に開示されている超電導コイルの構成図であり、各図において1は変圧器の鉄心、2は低圧コイル層、3は低圧コイル層2の外周側に配置した高圧コイル層であり、低圧コイル層2,高圧コイル層3は鉄心1の脚部(縦向き)を包囲して同心配置し、各コイル層の間には後述のように液体窒素などの冷媒を通流して極低温に冷却し、その超電導コイルを臨界温度以下の超電導状態に維持して運転するようにしている。   First, FIG. 4 and FIG. 5B and FIG. 5C are configuration diagrams of superconducting coils disclosed in Patent Document 1 and Patent Document 2 as examples of the prior art. In each figure, 1 is a transformer. An iron core, 2 is a low voltage coil layer, 3 is a high voltage coil layer disposed on the outer peripheral side of the low voltage coil layer 2, and the low voltage coil layer 2 and the high voltage coil layer 3 surround the legs (vertical direction) of the iron core 1 and are concentric. As will be described later, a refrigerant such as liquid nitrogen is passed between the coil layers and cooled to an extremely low temperature, and the superconducting coil is maintained in a superconducting state below the critical temperature for operation.

ここで、従来技術による超電導コイルは、図5(a)〜(c)で示すようにFRPなどの絶縁材で作られた円筒状の巻枠4の外周面側に前記の高温酸化物超電導体で作られた超電導線材5を巻回して構成している。また、現在開発が進められている高温超電導線材は、厚さ0.1mm,幅5mm程度のテープ状であることから、この超電導線材5のテ
ープ幅寸法に合わせて巻枠4の外周面には螺旋状のコイル溝4aをあらかじめ加工しておき、このコイル溝4aに沿って超電導線材5を一条,ないし複数条重ねて溝内に巻回した上で、さらに超電導線材5の外周面にガラスバインドテープ6、あるいは常温導電体の金属テープを巻き付け、過電流が流れた際に超電導線材5に加わる半径方向の電磁力を外周側から支持するようにしている。また、巻枠4の外周面上には前記の螺旋状コイル溝4aと交差するよう縦軸方向に延在する冷却ダクト4bを周上に分散形成し、この冷却ダクト4bに液体窒素を通流して超電導線材5の通電に伴う発熱を内径側から除熱するようにしている(例えば、特許文献1、特許文献2参照)。
Here, as shown in FIGS. 5A to 5C, the superconducting coil according to the prior art has a high temperature oxide superconductor on the outer peripheral surface side of a cylindrical winding frame 4 made of an insulating material such as FRP. The superconducting wire 5 made of is wound and configured. Further, the high-temperature superconducting wire that is currently being developed is in the form of a tape having a thickness of about 0.1 mm and a width of about 5 mm. Therefore, on the outer peripheral surface of the reel 4 in accordance with the tape width dimension of the superconducting wire 5. A spiral coil groove 4a is processed in advance, and one or a plurality of superconducting wire 5 is wound along the coil groove 4a in the groove, and then glass-bound on the outer peripheral surface of the superconducting wire 5 A tape 6 or a metal tape of a normal temperature conductor is wound to support the electromagnetic force in the radial direction applied to the superconducting wire 5 when an overcurrent flows from the outer peripheral side. A cooling duct 4b extending in the vertical axis direction is formed on the outer peripheral surface of the winding frame 4 so as to intersect with the spiral coil groove 4a, and liquid nitrogen is passed through the cooling duct 4b. Thus, heat generated by energizing the superconducting wire 5 is removed from the inner diameter side (see, for example, Patent Document 1 and Patent Document 2).

また、図6で示すように超電導変圧器のコイル組立体は、前記の低圧コイル層2を内側,高圧コイル層3を外側に配置して各コイル層の巻枠4をその上下に配したコイル支持部材(円盤状フランジ)7の間に挟持し、かつ低圧コイル層2と高圧コイル層3との間に所定の絶縁距離dを設定した上で、上下のコイル支持部材7の間を図示されてないスタッドボルトで締結して支持するようにしている。なお、図6の構成例では低圧コイル層を2層,高圧コイル層3を4層に分けて多重円筒形構成としている。また、図には表してないが、前記のコイル支持部材7にはそのフランジ板面に冷媒通過穴を適宜に分散穿孔しておき、コイル組立体を冷媒容器に収容して液体窒素中に浸漬した状態で、冷媒容器内で対流する液体窒素が各コイル層間に通流するようにしている。   Further, as shown in FIG. 6, the coil assembly of the superconducting transformer is a coil in which the low voltage coil layer 2 is arranged on the inside and the high voltage coil layer 3 is arranged on the outside, and the winding frames 4 of the respective coil layers are arranged above and below the coil layer. The gap between the upper and lower coil support members 7 is shown in the figure while being sandwiched between the support members (disk-shaped flanges) 7 and a predetermined insulation distance d is set between the low voltage coil layer 2 and the high voltage coil layer 3. It is designed to be supported by fastening it with stud bolts that are not. In the configuration example of FIG. 6, the low-voltage coil layer is divided into two layers, and the high-voltage coil layer 3 is divided into four layers to form a multiple cylinder configuration. Although not shown in the figure, the coil support member 7 has a through hole for the coolant appropriately distributed on the flange plate surface, and the coil assembly is housed in a refrigerant container and immersed in liquid nitrogen. In this state, liquid nitrogen that convects in the refrigerant container flows between the coil layers.

次に、液体窒素を冷媒として超電導変圧器などの超伝導機器を冷却する液体窒素冷却システムの一例(例えば、非特許文献1参照)を図7に示す。この冷却システムは、超伝導誘導機器8(例えば、超電導変圧器)を収容した冷媒容器(クライオスタット)9と、極低温冷凍機10を装備した冷凍機ユニット11とに分けた上で、送液ポンプ12,送液管路13を介して冷凍機ユニット11に収容した液体窒素14を冷媒容器9との間に循環送流し、超伝導誘導機器8の運転時には通電に伴う熱負荷を液体窒素14で除熱するようしている。また、この冷凍機ユニット11では、極低温冷凍機10により液体窒素14をサブクール状態の過冷却液体窒素(例えば、65K)に冷却した上で、冷媒容器9に送液するようにしている。なお、図中の8aは超電導機器のコイルに接続して容器外方に引出した電流リード(ブッシング)、14aは液体窒素14の液面上のガス空間を満たしている窒素ガスである。   Next, FIG. 7 shows an example of a liquid nitrogen cooling system that cools superconducting equipment such as a superconducting transformer using liquid nitrogen as a refrigerant (see, for example, Non-Patent Document 1). This cooling system is divided into a refrigerant container (cryostat) 9 containing a superconducting induction device 8 (for example, a superconducting transformer) and a refrigerator unit 11 equipped with a cryogenic refrigerator 10, and then a liquid feed pump 12. The liquid nitrogen 14 accommodated in the refrigerator unit 11 is circulated and sent to and from the refrigerant container 9 via the liquid supply conduit 13, and the heat load associated with energization is operated by the liquid nitrogen 14 during operation of the superconducting induction device 8. I try to remove heat. In the refrigerator unit 11, the liquid nitrogen 14 is cooled to subcooled supercooled liquid nitrogen (for example, 65 K) by the cryogenic refrigerator 10, and then sent to the refrigerant container 9. In the drawing, 8a is a current lead (bushing) connected to the coil of the superconducting device and drawn out of the container, and 14a is nitrogen gas filling the gas space on the liquid surface of the liquid nitrogen 14.

前記のように液体窒素中に浸漬して使用する超電導機器(超電導変圧器)の定常運転状態では、超電導コイルが臨界温度以下の超電導状態に保持されるので、超電導線はジュール発熱せず液体窒素温度と同程度の温度を保持する。しかしながら、励磁突入や短絡事故発生などにより超電導コイルに想定を超える過大な電流が流れた場合は、臨界電流を超えて超電導から常電導状態に転移(クエンチ)して超電導線材に抵抗が生じ、そのジュール発熱によって超電導線材の温度が急激に上昇するようになる。   In the normal operation state of the superconducting equipment (superconducting transformer) used by being immersed in liquid nitrogen as described above, the superconducting coil is maintained in the superconducting state below the critical temperature, so the superconducting wire does not generate Joule heat and is in liquid nitrogen. Keep the same temperature as the temperature. However, if an excessive current exceeding the expected value flows in the superconducting coil due to an excitation rush or a short circuit accident, the superconducting wire rod becomes resistive by causing a transition from the superconducting state to the normal conducting state (quenching) exceeding the critical current. The temperature of the superconducting wire suddenly rises due to Joule heat generation.

このために、冷媒にサブクール状態の過冷却液体窒素を用いたとしても、超電導線材の表面に接する部分では液体窒素が沸点(77K)を超え、液体窒素中に沸騰が生成して気泡が発生することが想定される。この場合に、液体窒素は元来良好な絶縁媒体であるが、気化することでその絶縁耐力が大きく低下することから、超電導機器を収容した冷媒容器(接地電位)内で超電導コイルの周域、および高圧/低圧コイル層の層間に多量の気泡が発生した状態になると、超電導コイル,高圧/低圧コイル層の層間,および電流リードなどに対する耐電圧が低下して絶縁破壊を引き起こすおそれがある。   For this reason, even when subcooled supercooled liquid nitrogen is used as the refrigerant, the liquid nitrogen exceeds the boiling point (77 K) at the portion in contact with the surface of the superconducting wire, and boiling occurs in the liquid nitrogen to generate bubbles. It is assumed that In this case, liquid nitrogen is originally a good insulating medium, but since its dielectric strength is greatly reduced by vaporization, the surrounding area of the superconducting coil in the refrigerant container (ground potential) containing the superconducting equipment, If a large amount of bubbles are generated between the high-voltage / low-voltage coil layers, the withstand voltage against the superconducting coil, the high-voltage / low-voltage coil layers, the current leads, etc. may be reduced, causing dielectric breakdown.

そこで、超電導機器の稼働中に過電流の通電により液体窒素中に発生した気泡を速やかに消滅させて所定の絶縁性能を保持するための対策として、冷媒容器内に発生した気泡を積極的に回収して容器外に排出する、あるいは容器内を浮上する気泡を捕集するような気泡消滅手段を備えた超電導機器装置が知られている(例えば、特許文献3参照)。   Therefore, as a measure to quickly eliminate the bubbles generated in the liquid nitrogen due to overcurrent during operation of the superconducting equipment and maintain the specified insulation performance, the bubbles generated in the refrigerant container are actively collected. Then, a superconducting device apparatus is known that is equipped with a bubble extinguishing means that discharges out of the container or collects bubbles that float inside the container (see, for example, Patent Document 3).

特開2000−133515号公報(図10、図11)JP 2000-133515 A (FIGS. 10 and 11) 特開2001−244108号公報(図1)JP 2001-244108 A (FIG. 1) 特開2007−273740号公報JP 2007-273740 A

吉田 茂、他1名、"大気圧過冷却液体窒素を用いた冷却システム"、図3、[online]、太陽日酸技報 No.23(2004)、[平成23年11月1日検索]、インターネット<URL: http://www.tn-sanso-giho.com/pdf/23/16.pdf>Shigeru Yoshida and one other, "Cooling System Using Atmospheric Pressure Supercooled Liquid Nitrogen", Fig. 3, [online], Taiyo-Nikko Technical Report No. 23 (2004), [Searched on November 1, 2011] Internet <URL: http://www.tn-sanso-giho.com/pdf/23/16.pdf>

ところで、近年では配電変電所クラスの容量を持つ変圧器、例えば高圧側電圧が66〜77KV、低圧側電圧が6.6〜6.9KV、変圧器容量が数MVA〜数十MVAにもおよぶ大容量の超電導変圧器の開発が進められている。ここで、液体窒素の絶縁性能は、油入変圧器の絶縁油と同程度であるが、液体窒素中に気泡が存在すると絶縁性能は著しく低下することから、超電導変圧器を浸漬した液体窒素中に気泡が発生するのを極力抑制するために、一般的には液体窒素を66K〜70K程度のサブクール状態に過冷却して超電導コイルを冷却するようにしている。   By the way, in recent years, a transformer having a capacity of a distribution substation class, for example, a high-voltage side voltage of 66 to 77 KV, a low-voltage side voltage of 6.6 to 6.9 KV, and a transformer capacity of several MVA to several tens of MVA Development of superconducting transformers with capacity is underway. Here, the insulation performance of liquid nitrogen is similar to the insulation oil of oil-filled transformers, but if there are bubbles in the liquid nitrogen, the insulation performance will be significantly reduced, so in the liquid nitrogen in which the superconducting transformer is immersed. In order to suppress the generation of bubbles as much as possible, in general, the superconducting coil is cooled by supercooling liquid nitrogen to a subcooling state of about 66K to 70K.

しかしながら、励磁突入や短絡事故発生などに起因する過電流通電により、超電導コイルが超電導から常電導状態に転移した場合には、超電導コイルを冷却する冷媒として前記のようにサブクール状態の液体窒素を用い、さらに特許文献3に開示されているような気泡消滅手段を併用したとしても、先記のように超電導線材のジュール発熱により高温度に上昇した超電導コイルからの伝熱を受けて液体窒素中に気泡が発生するようになり、また前記の気泡消滅手段(特許文献3)も実用的にはその能力に限界があって気泡発生に起因する超電導機器の絶縁性能低下を根本的に防ぐ解決策にはならない。   However, when the superconducting coil is changed from the superconducting state to the normal conducting state due to the overcurrent energization caused by the inrush of excitation or the occurrence of a short-circuit accident, the subcooled liquid nitrogen is used as the refrigerant for cooling the superconducting coil as described above. Furthermore, even if the bubble extinguishing means disclosed in Patent Document 3 is used in combination, the heat conduction from the superconducting coil raised to a high temperature by Joule heat generation of the superconducting wire as described above is received in the liquid nitrogen. Bubbles are generated, and the above-mentioned bubble extinguishing means (Patent Document 3) is also practically limited in its ability to fundamentally prevent deterioration of the insulation performance of superconducting equipment due to bubble generation. Must not.

また、図6に示した超電導変圧器のコイル組立体のように、低圧コイル層2,高圧コイル層3の巻枠4その上下に配した円盤状のコイル支持部材7で支持した構成では、次のような問題も生じる。すなわち、高温超電導線材5の発熱に伴ってコイル層の外周面に連続して発生した気泡が液体窒素中を拡散しながら浮上移動する過程で、巻枠4の上端側に配したコイル支持部材7のフランジ下面側に到達して低圧コイル層2と高圧コイル層3との間に気泡のブリッジを形成するような状態になると、低圧コイル層2と高圧コイル層3と間にあらかじめ所定の絶縁距離dを設定したとしても、この気泡ブリッジを通じて層間の耐電圧が低下して絶縁破壊が生じる懸念がある。 Further, as in the coil assembly of the superconducting transformer shown in FIG. 6, in the configuration supported by the disk-shaped coil support members 7 arranged above and below the winding frames 4 of the low voltage coil layer 2 and the high voltage coil layer 3, Such a problem also occurs. That is, the coil support member 7 disposed on the upper end side of the winding frame 4 in the process in which bubbles continuously generated on the outer peripheral surface of the coil layer accompanying the heat generation of the high-temperature superconducting wire 5 float and move in liquid nitrogen. previously prescribed isolation between becomes a state as to form a bridge of the bubble, the low voltage coil layer 2 and the high voltage coil layer 3 between the low-pressure coil layer 2 and the high voltage coil layer 3 and reaches the lower flange surface side of the Even if the distance d is set, there is a concern that the withstand voltage between the layers is lowered through the bubble bridge, causing dielectric breakdown.

なお、発明者等が図5の超電導コイルを模擬してサブクール状態の液体窒素に浸漬したコイルモデルについて、超電導コイルに短絡電流を模擬した過電流を流した際に液体窒素中に発生する気泡の挙動を高速カメラで観察したところによれば、過電流の通電開始直後から超電導線材の表面に接する部分に液体窒素の沸騰が生成して気泡が連続的に発生し、この気泡が超電導コイルの巻枠外周面に沿って上方に浮上していく様子が観察されている。   Regarding the coil model in which the inventors simulated the superconducting coil of FIG. 5 and immersed in liquid nitrogen in a subcooled state, bubbles generated in liquid nitrogen when an overcurrent simulating a short-circuit current was passed through the superconducting coil. According to observation of the behavior with a high-speed camera, boil of liquid nitrogen is generated at the part in contact with the surface of the superconducting wire immediately after the start of overcurrent, and bubbles are continuously generated. It has been observed that it floats upward along the outer peripheral surface of the frame.

この場合に、超電導コイルの下部,あるいは中部に巻回されている超電導線材の表面に発生した気泡は、液体窒素中に浮上移動する途上で再液化して消滅するようになるが、巻枠の上部域に巻回されている超電導線材の表面部位に発生した気泡は再液化する以前に巻枠の上端まで達して周囲に流出することが確認されている。   In this case, the bubbles generated on the surface of the superconducting wire wound around the lower or middle part of the superconducting coil are liquefied and disappeared while floating on the liquid nitrogen. It has been confirmed that bubbles generated at the surface portion of the superconducting wire wound around the upper region reach the upper end of the winding frame and flow out to the surroundings before being reliquefied.

そこで、本発明は、液体窒素中に浸漬して冷却する超電導変圧器などの電力用誘導機器に適用する超電導コイルについて、液体窒素による高い除熱,冷却性能を確保しつつ、超電導コイルの外周面側に気泡が発生するのを極力抑制して過大電流の通電時でも気泡に起因する絶縁耐力の低下を確実に防止して所定の絶縁性能を保持できるように改良した電力用誘導機器の超電導コイルを提供することを目的とする。   Therefore, the present invention relates to a superconducting coil applied to a power induction device such as a superconducting transformer that is immersed in liquid nitrogen to cool it, while ensuring high heat removal and cooling performance with liquid nitrogen, and the outer peripheral surface of the superconducting coil. Superconducting coil for power induction equipment improved so that the generation of bubbles on the side is suppressed as much as possible to prevent the decrease in dielectric strength caused by bubbles even when energized with an excessive current and to maintain a predetermined insulation performance The purpose is to provide.

前記目的を達成するために、本発明によれば、液体窒素を冷媒として該冷媒に浸漬され冷却される電力用誘導機器の超電導コイルであって、絶縁材からなる円筒状巻枠の外径側周面に螺旋状のコイル溝が形成され、該コイル溝に沿ってその溝内にテープ状の高温超電導線材が巻回されたものにおいて、
前記の螺旋状コイル溝に沿ってその内径側に、該コイル溝より狭小な溝幅に設定された螺旋状の冷却ダクトを有し、前記超電導線材を包含して前記巻枠の外周面域を密閉状に覆うように気液不透過性の絶縁テープが巻枠周面に巻装され、前記螺旋状の冷却ダクトは、上下両端を円筒状巻枠の上下端面に開放して外方に連通している(請求項1)。
In order to achieve the above object, according to the present invention, a superconducting coil of a power induction device that is immersed and cooled in liquid nitrogen as a refrigerant, the outer diameter side of a cylindrical winding frame made of an insulating material A spiral coil groove is formed on the peripheral surface, and a tape-like high-temperature superconducting wire is wound in the groove along the coil groove.
A spiral cooling duct having a narrower groove width than the coil groove is formed on the inner diameter side along the spiral coil groove, and the outer peripheral surface area of the winding frame is included including the superconducting wire. Gas-liquid impervious insulating tape is wound around the winding frame so as to cover hermetically, and the spiral cooling duct opens to the upper and lower ends of the cylindrical winding frame and communicates outward. are (claim 1).

また、本発明は前記構成を基本として、超電導コイルを次記のような態様で構成することもできる。
(1)円筒状巻枠の外径側には、前記の螺旋状コイル溝および冷却ダクトと交差して巻枠の縦軸方向に延在する冷却ダクトが巻枠の周上に分散して形成されている(請求項2)。
(2)前記縦軸方向の冷却ダクトは、冷媒通路の上下両端が開口して前記液体窒素が冷却ダクト内を流入、流出可能に構成されている(請求項3)。
(3)前記螺旋状の冷却ダクトと前記縦軸方向の冷却ダクトとが連通している(請求項4)。
(4)前記縦軸方向の冷却ダクトは、前記螺旋状の冷却ダクトよりも深さが大である(請求項5)。
Further, according to the present invention, the superconducting coil can be configured in the following manner based on the above configuration.
(1) On the outer diameter side of the cylindrical winding frame, cooling ducts extending in the longitudinal direction of the winding frame intersecting with the helical coil groove and the cooling duct are dispersed on the circumference of the winding frame. is (claim 2).
(2) The cooling duct in the vertical axis direction is configured such that the upper and lower ends of the refrigerant passage are open so that the liquid nitrogen can flow into and out of the cooling duct .
(3) The spiral cooling duct and the longitudinal cooling duct communicate with each other (claim 4).
(4) The cooling duct in the longitudinal axis direction has a depth larger than that of the spiral cooling duct .

前記構成になる超電導コイルによれば、液体窒素による高い除熱,冷却性能を確保しつつ、超電導コイルの外周面側に液体窒素の気泡が発生するのを極力抑制して過大電流の通電時でも絶縁耐力の低下を防止して高い絶縁性能を確保することができる。すなわち、
(1)螺旋状コイル溝に沿ってその内径側に、該コイル溝より狭小な溝幅に設定した螺旋状の冷却ダクトを形成するとともに、前記超電導線材を包含して前記巻枠の外周面域を密閉状に覆うように、半硬化状のエポキシ樹脂を含浸させた絶縁テープを巻枠の周面に巻装して熱硬化処理を施すことにより、巻枠の螺旋状コイル溝に沿ってその溝内に巻回した超電導線材は、前記コイル溝の内径側に沿って形成した螺旋状の冷却ダクトに通流する液体窒素との間で熱交換して除熱,冷却される。一方、前記コイル溝に沿って巻回した超電導線材を含めて巻枠の外周面域が、エポキシ樹脂を含浸,硬化させた気液不透過性の絶縁テープで密閉状に覆われているので、超電導線材の外周側が液体窒素に接することがなく、かつこの絶縁テープが断熱層となってコイル外周面側には気泡の発生が抑制される。
According to the superconducting coil configured as described above, while ensuring high heat removal and cooling performance with liquid nitrogen, the occurrence of liquid nitrogen bubbles on the outer peripheral surface side of the superconducting coil is suppressed as much as possible, even when an excessive current is applied. It is possible to ensure high insulation performance by preventing a decrease in dielectric strength. That is,
(1) A spiral cooling duct having a narrower groove width than the coil groove is formed on the inner diameter side along the spiral coil groove, and the outer peripheral surface area of the winding frame includes the superconducting wire. The insulating tape impregnated with a semi-cured epoxy resin is wound around the peripheral surface of the winding frame so as to cover it in a hermetically sealed manner and subjected to a thermosetting treatment, so that the spiral tape groove along the winding frame The superconducting wire wound in the groove is subjected to heat exchange with liquid nitrogen flowing through a helical cooling duct formed along the inner diameter side of the coil groove, and the heat is removed and cooled. On the other hand, since the outer peripheral surface area of the winding frame including the superconducting wire wound along the coil groove is covered with a gas-liquid impermeable insulating tape impregnated and cured with an epoxy resin, The outer peripheral side of the superconducting wire does not come into contact with liquid nitrogen, and this insulating tape serves as a heat insulating layer to suppress the generation of bubbles on the outer peripheral surface side of the coil.

したがって、短絡事故時などによる過電流の通電を想定しても、ジュール発熱した超電導線材はその内径側の冷却ダクトを通流する液体窒素と熱交換して効果的に除熱,冷却されるので、絶縁テープで覆われたコイル層の外周面側では気泡の発生が抑止される。なお、過電流の値によっては前記冷却ダクトを通流する液体窒素中に気泡が発生することも予測されるが、この冷却ダクトは巻枠とその外周面に巻装した絶縁テープで密閉状に覆われているので、冷却ダクト内に発生した気泡が超電導コイルの外周面側に漏出することがなく、かつ気泡は螺旋状の冷却ダクト内を上方に浮上移動する途上でダクト内を通流する液体窒素で冷却されるので、巻枠の上端に達する以前に殆どが再液化して消滅する。これにより、超電導コイルとして所定の絶縁性能を保持できる。
(2)また、前記の螺旋状冷却ダクトに加えて円筒状巻枠には、前記の螺旋状コイル溝および冷却ダクトと交差して巻枠の縦軸方向に延在する冷却ダクトを巻枠の周上に分散形成した上で、巻枠の周面を絶縁テープで密閉状に覆ったことにより、巻枠に巻回した超電導線材はその内周側に形成した周方向,および軸方向に延在する双方の冷却ダクトに通流する液体窒素と直接熱交換して除熱,冷却されることになる。したがって、この構成では超電導線材とこれに接して通流する液体窒素との間の熱伝達面積が大きくなるので、過電流の通電時に発熱した超電導線材を高い効率で冷却できるとともに、螺旋方向の冷却ダクトと交差する縦軸方向の冷却ダクトを追加形成することで冷却ダクトに通流する液体窒素の流れ性も向上する。
(3)さらに、前記巻枠の上端側には、その周面に巻回した超電導線材の上端からさらに上方に延在する延長部を形成し、かつ該延長部の軸方長距離を100mm以上,200
mm以下に設定することにより、超電導線材との熱交換により発生した気泡が前記冷却ダ
クト内を浮上移動する過程で再液化するための十分な距離を確保できる。これにより、冷却ダクト内に発生した気泡は巻枠の上端まで浮上到達する以前にダクト内で確実に再液化するようになるので、気泡が超電導コイルの巻枠上端から周囲の液体窒素中に流出するのを防止して絶縁性能に及ぼす影響が回避される。
(4)そのほか、超電導コイルを冷却する冷媒にサブクール状態の液体窒素(例えば、66K)を使用することで、飽和液体窒素(77K)と比べて超電導線材の臨界電流が高まるほか、過電流の通電に伴う気泡の発生も少なくなる。
Therefore, even if an overcurrent is energized due to a short circuit accident, etc., the superconducting wire that generates Joule heat is effectively removed and cooled by exchanging heat with liquid nitrogen flowing through the cooling duct on the inner diameter side. On the outer peripheral surface side of the coil layer covered with the insulating tape, the generation of bubbles is suppressed. Depending on the value of the overcurrent, it is predicted that bubbles will be generated in the liquid nitrogen flowing through the cooling duct, but this cooling duct is hermetically sealed with an insulating tape wound around the reel and its outer peripheral surface. Since it is covered, bubbles generated in the cooling duct do not leak to the outer peripheral surface side of the superconducting coil, and the bubbles flow through the duct on the way to rise upward in the spiral cooling duct. Since it is cooled with liquid nitrogen, most of it reliquefies and disappears before reaching the upper end of the reel. Thereby, a predetermined insulation performance can be maintained as a superconducting coil.
(2) Further, in addition to the helical cooling duct, the cylindrical winding frame includes a cooling duct extending in the longitudinal direction of the winding frame so as to intersect the helical coil groove and the cooling duct. The superconducting wire wound around the winding frame extends in the circumferential direction and the axial direction formed on the inner circumference side by covering the circumferential surface of the winding frame with an insulating tape in a hermetically sealed manner. Heat is removed and cooled by directly exchanging heat with liquid nitrogen flowing through both existing cooling ducts. Therefore, in this configuration, since the heat transfer area between the superconducting wire and the liquid nitrogen flowing in contact with the superconducting wire becomes large, the superconducting wire that generates heat when energized with overcurrent can be cooled with high efficiency, and cooling in the spiral direction can be performed. By additionally forming a longitudinal cooling duct intersecting the duct, the flowability of liquid nitrogen flowing through the cooling duct is also improved.
(3) Furthermore, an extension portion extending further upward from the upper end of the superconducting wire wound on the peripheral surface is formed on the upper end side of the winding frame, and the axial long distance of the extension portion is 100 mm or more. , 200
By setting it to mm or less, it is possible to secure a sufficient distance for air bubbles generated by heat exchange with the superconducting wire to be liquefied in the process of rising and moving in the cooling duct. As a result, the bubbles generated in the cooling duct are surely reliquefied in the duct before reaching the upper end of the reel, so that the bubbles flow out from the upper end of the superconducting coil into the surrounding liquid nitrogen. This prevents the influence on the insulation performance.
(4) In addition, the use of subcooled liquid nitrogen (for example, 66K) as a refrigerant for cooling the superconducting coil increases the critical current of the superconducting wire compared to saturated liquid nitrogen (77K), and overcurrent energization. The generation of bubbles associated with is reduced.

本発明の第1実施例に係わる超電導コイルの略示構成図であって、(a)はコイル一部の横断面図、(b)は(a)の縦断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic block diagram of the superconducting coil concerning 1st Example of this invention, Comprising: (a) is a cross-sectional view of a part of coil, (b) is a longitudinal cross-sectional view of (a). 本発明の第2実施例に係わる超電導コイルの略示構成図であって、(a)はコイル一部の横断面図、(b),(c)はそれぞれ(a)における矢視A−A,B−Bの縦断面図である。It is the schematic block diagram of the superconducting coil concerning 2nd Example of this invention, Comprising: (a) is a cross-sectional view of a part of coil, (b), (c) is an arrow AA in (a), respectively. , BB longitudinal sectional view. 本発明の第3実施例に係わる超電導コイルの巻枠上端側部分の縦断面図である。It is a longitudinal cross-sectional view of the winding frame upper end side part of the superconducting coil concerning 3rd Example of this invention. 超電導変圧器を対象とした超電導コイルの略示配置図である。It is a schematic arrangement drawing of a superconducting coil for a superconducting transformer. 図4における高圧コイル層,低圧コイル層の従来例の構成,配置図であって、(a)は巻枠の略示外形図、(b)は巻枠に超電導線材を巻回した状態の縦断面図、(c)は(b)の横断面図である。It is a structure and arrangement | positioning figure of the prior art example of the high voltage | pressure coil layer in FIG. 4, and a low voltage | pressure coil layer, (a) is a schematic outline drawing of a winding frame, (b) is a longitudinal section of the state which wound the superconducting wire around the winding frame FIG. 5C is a cross-sectional view of FIG. 従来例の超電導変圧器における高圧コイル層,低圧コイル層の組立構造を表す略示縦断面図である。It is a schematic longitudinal cross-sectional view showing the assembly structure of the high voltage | pressure coil layer and low voltage coil layer in the superconducting transformer of a prior art example. 超電導コイル,超電導変圧器に適用する液体窒素冷却システムのシステムフロー図である。It is a system flow figure of a liquid nitrogen cooling system applied to a superconducting coil and a superconducting transformer.

以下、この発明による電力用誘導機器の超電導コイルの実施の形態を図1〜図3に示す各実施例に基づいて説明する。なお、実施例の図中で図5に対応する同一部材には同じ符号を付してその説明は省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of superconducting coils for power induction devices according to the present invention will be described below based on the respective embodiments shown in FIGS. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the same member corresponding to FIG. 5, and the description is abbreviate | omitted.

先ず、本発明の第1実施例に係わる超電導コイルの構成を図1(a),(b)に示す。この実施例においては、FRPなどの絶縁材で作られた円筒状の巻枠4には、その外周面に図4で示した従来構造と同様な螺旋状のコイル溝4aを加工して超電導線材5を巻回するようにするとともに、螺旋状コイル溝4aに沿ってその内径側には、該コイル溝4aより狭小な溝幅に設定した螺旋状の冷却ダクト4cを刻設形成している。なお、図示例では、前記のコイル溝4aに8本の超電導線材5を4重×2列に並べて巻回するようにしているが、超電導線材5の本数,配列はこれに限定されるものではない。また、図示してないが前記の螺旋状冷却ダクト4cは、その上下両端を円筒状巻枠4の上下端面に開放して外方に連通するようにしている。   First, FIGS. 1A and 1B show the configuration of a superconducting coil according to the first embodiment of the present invention. In this embodiment, the cylindrical winding frame 4 made of an insulating material such as FRP has a spiral coil groove 4a similar to the conventional structure shown in FIG. 5 is wound, and along the spiral coil groove 4a, a spiral cooling duct 4c having a narrower groove width than the coil groove 4a is formed on the inner diameter side. In the illustrated example, the eight superconducting wires 5 are wound in the quadruple × 2 rows in the coil groove 4a. However, the number and arrangement of the superconducting wires 5 are not limited thereto. Absent. Moreover, although not shown in figure, the said helical cooling duct 4c is open | released to the upper-lower-end surface of the cylindrical winding frame 4 so that the upper and lower ends may communicate outside.

そして、前記コイル溝4aに沿って巻枠4に超電導線材5を巻回した上で、この超電導線材5を包含して巻枠4の外周面全域を密閉状に覆うように、樹脂を含浸させた気液不透過性の絶縁テープ15を巻枠4の周面に巻き付けて超電導コイルを構成している。   Then, after winding the superconducting wire 5 around the winding frame 4 along the coil groove 4a, the resin is impregnated so as to include the superconducting wire 5 and cover the entire outer peripheral surface of the winding frame 4 in a sealed manner. The gas-liquid impermeable insulating tape 15 is wound around the peripheral surface of the winding frame 4 to constitute a superconducting coil.

ここで、前記の絶縁テープ15は、引張強度の高いガラス繊維で編んだクロスに半硬化状のエポキシ樹脂を含浸させたプリプレグテープを巻枠4に巻き付けて熱硬化処理するようにしている。この絶縁テープ15は液体,気体の透過性はなく、かつ高い断熱性も有し、また超電導線材5に働く半径方向の電磁力を保持するバインドテープの役目も果たしている。   Here, the insulating tape 15 is formed by winding a prepreg tape impregnated with a semi-cured epoxy resin around a cloth knitted with glass fiber having high tensile strength around the winding frame 4 and heat-treating it. This insulating tape 15 has no liquid and gas permeability, has high heat insulating properties, and also serves as a bind tape that retains a radial electromagnetic force acting on the superconducting wire 5.

そして、上記構成のコイル組立体を図7に示した液体窒素冷却システムの冷媒容器に収納して液体窒素に浸漬した通電状態では、巻枠4の螺旋状コイル溝4aに巻回した超電導線材5は、前記コイル溝4aの内径側に沿って形成した螺旋状の冷却ダクト4cに通流する液体窒素により除熱,冷却される。一方、コイル溝4aに沿って巻回した超電導線材5を含めて巻枠4の外周面域は、エポキシ樹脂を含浸,硬化させた気液不透過性の絶縁テープ15で密閉状に覆われていているので超電導線材5の外周側が液体窒素に接することがなく、かつこの絶縁テープ15が断熱層となってコイル外周面側には気泡の発生が抑制される。   In the energized state in which the coil assembly configured as described above is housed in the refrigerant container of the liquid nitrogen cooling system shown in FIG. 7 and immersed in liquid nitrogen, the superconducting wire 5 wound around the spiral coil groove 4a of the winding frame 4 is used. The heat is removed and cooled by liquid nitrogen flowing through a spiral cooling duct 4c formed along the inner diameter side of the coil groove 4a. On the other hand, the outer peripheral surface area of the winding frame 4 including the superconducting wire 5 wound along the coil groove 4a is hermetically covered with a gas-liquid impermeable insulating tape 15 impregnated and cured with an epoxy resin. Therefore, the outer peripheral side of the superconducting wire 5 is not in contact with liquid nitrogen, and the insulating tape 15 serves as a heat insulating layer to suppress the generation of bubbles on the coil outer peripheral surface side.

したがって、短絡事故時などによる過電流の通電を想定しても、ジュール発熱した超電導線材5はその内径側の冷却ダクト4cを通流する液体窒素と熱交換して効果的に除熱,冷却されるので、絶縁テープ15で覆われたコイル層の外周面側には気泡の発生が抑止される。なお、この場合に過電流の値によっては前記冷却ダクト4cを通流する液体窒素中に気泡が発生することも予測されるが、この冷却ダクト4cは巻枠4とその外周面に巻装した絶縁テープ15で密閉状に覆われているので、冷却ダクト内に発生した気泡が超電導コイルの外周面側に漏出することがなく、かつ気泡は螺旋状の冷却ダクト4c内を上方に浮上移動する途上でダクト内を通流する液体窒素で冷却されるので、巻枠4の上端に達する以前に殆どが再液化して消滅する。したがって、超電導コイルを浸漬した液体窒素中に気泡が発生することが抑止され、これにより所定の絶縁性能を保持できる。また、この場合に超電導コイルを浸漬する冷媒として、サブクール状態に過冷却した液体窒素(例えば66K)を用いることにより、冷却性能がより一層向上する。   Therefore, even if energization of an overcurrent due to a short circuit accident or the like is assumed, the Joule-heated superconducting wire 5 is effectively removed and cooled by exchanging heat with liquid nitrogen flowing through the cooling duct 4c on the inner diameter side. Therefore, the generation of air bubbles is suppressed on the outer peripheral surface side of the coil layer covered with the insulating tape 15. In this case, depending on the value of the overcurrent, it is predicted that bubbles are generated in the liquid nitrogen flowing through the cooling duct 4c. However, the cooling duct 4c is wound around the reel 4 and its outer peripheral surface. Since the insulating tape 15 is hermetically covered, the bubbles generated in the cooling duct do not leak to the outer peripheral surface side of the superconducting coil, and the bubbles move upward in the spiral cooling duct 4c. Since it is cooled by liquid nitrogen flowing through the duct on the way, most of it is liquefied again and disappears before reaching the upper end of the reel 4. Accordingly, the generation of bubbles in the liquid nitrogen in which the superconducting coil is immersed is suppressed, and thereby predetermined insulation performance can be maintained. In this case, the cooling performance is further improved by using liquid nitrogen (for example, 66 K) that is supercooled in a subcooled state as the refrigerant in which the superconducting coil is immersed.

次に本発明の請求項3に係わる実施例の構成を図2(a)〜(c)に示す。この実施例では、円筒状巻枠4の外径側に先記の実施例1で述べた螺旋状のコイル溝4a,および冷却ダクト4cのほかに、前記の螺旋状コイル溝4a,および冷却ダクト4cと交差して巻枠4の縦軸方向に延在する冷却ダクト4bを巻枠4の周上に分散して形成した上で、さらに実施例1と同様に巻枠4の外周面に絶縁テープ15で密閉状に巻き付けて超電導コイルを構成している。なお、縦軸方向の冷却ダクト4bは、その溝深さが螺旋状のコイル溝4aと冷却ダクト4cよりも大で、かつその冷媒通路の上下両端が巻枠4の上下端面に開口して液体窒素が冷却ダクト内を自由に流入,流出するようにしている。   Next, the construction of an embodiment according to claim 3 of the present invention is shown in FIGS. In this embodiment, in addition to the spiral coil groove 4a and the cooling duct 4c described in the first embodiment on the outer diameter side of the cylindrical winding frame 4, the spiral coil groove 4a and the cooling duct described above. A cooling duct 4b that intersects 4c and extends in the longitudinal axis direction of the reel 4 is formed in a distributed manner on the circumference of the reel 4, and further insulated from the outer periphery of the reel 4 as in the first embodiment. A superconducting coil is configured by being wound in a sealed state with a tape 15. The longitudinal cooling duct 4b has a groove depth larger than that of the spiral coil groove 4a and the cooling duct 4c, and the upper and lower ends of the refrigerant passage are open to the upper and lower end surfaces of the winding frame 4 to form a liquid. Nitrogen freely flows in and out of the cooling duct.

この構成によれば、巻枠4のコイル溝4aに沿って巻回した超電導線材5は、その内周側に形成した縦軸方向,および螺旋方向の双方の冷却ダクト4bと4cに通流する液体窒素と熱交換して冷却されるようになる。   According to this configuration, the superconducting wire 5 wound along the coil groove 4a of the winding frame 4 flows through both the cooling ducts 4b and 4c in the longitudinal and spiral directions formed on the inner peripheral side thereof. It is cooled by exchanging heat with liquid nitrogen.

これにより、先記の実施例1と比べて超電導線材5と冷却ダクトを通流する液体窒素との間の熱伝達面積が大きくなるので、過電流の通電で発熱した超電導線材5を効率よく冷却できる。また、螺旋状の冷却ダクト4cに交差,連通する縦軸方向の冷却ダクト4bを巻枠4の周上に分散して追加形成することで、超電導線材5に沿って形成した螺旋状の冷却ダクト4cを通流する液体窒素の流れもさらに向上する。   As a result, the heat transfer area between the superconducting wire 5 and the liquid nitrogen flowing through the cooling duct is increased as compared with the first embodiment, so that the superconducting wire 5 that generates heat due to overcurrent conduction can be efficiently cooled. it can. In addition, a longitudinal cooling duct 4b that intersects and communicates with the spiral cooling duct 4c is additionally formed by dispersing it on the circumference of the winding frame 4, thereby forming a spiral cooling duct formed along the superconducting wire 5. The flow of liquid nitrogen flowing through 4c is further improved.

次に、本発明の請求項4に係わる実施例を図3で説明する。図3は、本発明の第3実施例に係わる超電導コイルの巻枠上端側部分における縦軸方向の冷却ダクトが配設されている周方向位置での縦断面図であって、先記実施例2に示した超電導コイルに対して、巻枠の上端側に該巻枠の周面に巻回した超電導線材の巻回域上端からさらに上方に延在する延長部を形成した構成を示すものである。   Next, an embodiment according to claim 4 of the present invention will be described with reference to FIG. FIG. 3 is a longitudinal sectional view at a circumferential position where a cooling duct in the vertical axis direction is arranged at the upper end portion of the winding frame of the superconducting coil according to the third embodiment of the present invention. In the superconducting coil shown in Fig. 2, an extension is formed on the upper end side of the winding frame that extends further upward from the upper end of the winding area of the superconducting wire wound around the peripheral surface of the winding frame. is there.

先記実施例2に示した超電導コイルでは、巻枠4の軸方向に沿った下部,ないし中央部にて超電導線材5との熱交換により冷却ダクト4b,4cに発生した気泡はダクト内を上方に浮上移動する途上で再液化され、巻枠4の上方に気泡が流出することはないが、超電導コイルに通電する過電流の電流値によっては、巻枠4の上部に巻回されている超電導線材5との熱交換で発生した気泡は、再液化される以前に巻枠4の上端に達して超電導コイルの上方に流出する懸念がある。   In the superconducting coil shown in Example 2, the bubbles generated in the cooling ducts 4b and 4c due to heat exchange with the superconducting wire 5 at the lower part or the central part of the winding frame 4 in the axial direction move upward in the duct. The superconducting material is reliquefied on the way to the surface of the coil and does not flow out of the upper part of the winding frame 4, but depending on the value of the overcurrent applied to the superconducting coil, There is a concern that the bubbles generated by heat exchange with the wire 5 reach the upper end of the winding frame 4 and flow out above the superconducting coil before being liquefied again.

そこで、この実施例3においては、円筒状巻枠4の上端側に、該巻枠4に巻回した超電導線材5の巻回域上端からさらに上方に延在する延長部4dを形成し、かつこの延長部4dには軸方向の長さが100mm以上,200mm以下である距離Lを設定するように
している。
Therefore, in Example 3, an extension 4d extending further upward from the upper end of the winding area of the superconducting wire 5 wound around the winding frame 4 is formed on the upper end side of the cylindrical winding frame 4, and A distance L having an axial length of 100 mm or more and 200 mm or less is set for the extension 4d.

この構成により、巻枠4の上部に巻回されている超電導線材5の伝熱を受けて冷却ダクト内に発生した気泡に対しても、その気泡発生地点と巻枠4の上端との間には気泡を再液化するための十分な距離が確保される。したがって、前記冷却ダクト4b,4cの冷媒通路中に発生した気泡は、その発生地点の位置(巻枠4の上部,中部,下部)に左右されることなく、冷却ダクト中に発生した気泡は全て巻枠4の上端に到達する以前に再液化して消滅するようになる。   With this configuration, even with respect to the bubbles generated in the cooling duct due to the heat conduction of the superconducting wire 5 wound around the upper portion of the winding frame 4, it is between the bubble generation point and the upper end of the winding frame 4. Ensures a sufficient distance to reliquefy the bubbles. Therefore, the bubbles generated in the cooling passages of the cooling ducts 4b and 4c are not affected by the position of the generation point (upper, middle and lower portions of the reel 4), and all the bubbles generated in the cooling duct are all affected. Before reaching the upper end of the reel 4, it reliquefies and disappears.

なお、発明者等が、超電導コイルをサブクール状態の液体窒素に浸漬したコイルモデルについて、超電導コイルに短絡電流を模擬した過電流を流した際に液体窒素中に発生する気泡の挙動を観察した実験では、液体窒素中に発生した気泡はその発生地点から上方に大凡60mm程度の距離を浮上移動すると再液化して殆ど消滅することが検証されて
いる。そこで、前記のように円筒状巻枠4の上端側に延長部4dを形成した上で、該延長部4dの軸方向長さ距離Lを前記実験で検証した距離60mmよりも長い距離(100
〜200mm)を設定しておけば、過電流の通電でジュール発熱した超電導線材5からの
伝熱を受けて前記の冷却ダクト4b,4c内に発生した気泡を、巻枠4の上端に到達する以前に全て再液化させて消滅することができる。また、その延長部4dの距離Lを最大でも200mm以下に抑えて設定することで、容量が数MVAの超電導変圧器(全体高
さが5m以上にも及ぶ)に対しても、その超電導コイルの巻枠高さ寸法を僅か延長するだけで、その巻枠4に形成した冷却ダクト内に発生した気泡がコイル上方の液体窒素中に流出するのを確実に防止して高い絶縁性能を確保できてその効果は極めて大である。
In addition, regarding the coil model in which the inventors immersed a superconducting coil in liquid nitrogen in a subcooled state, an experiment was conducted to observe the behavior of bubbles generated in liquid nitrogen when an overcurrent simulating a short-circuit current was passed through the superconducting coil. Then, it has been verified that bubbles generated in liquid nitrogen re-liquefy and almost disappear when they move upwardly by a distance of about 60 mm from the generation point. Therefore, after forming the extension 4d on the upper end side of the cylindrical winding frame 4 as described above, the axial length distance L of the extension 4d is longer than the distance 60 mm verified in the experiment (100
If set to 200 mm), the bubbles generated in the cooling ducts 4b and 4c upon receiving heat transfer from the superconducting wire 5 that has generated Joule heat due to overcurrent application reach the upper end of the reel 4. All can be liquefied before and disappear. In addition, by setting the distance L of the extension 4d to 200 mm or less at the maximum, even for a superconducting transformer with a capacity of several MVA (overall height of 5 m or more), the superconducting coil By slightly extending the height of the reel, it is possible to reliably prevent bubbles generated in the cooling duct formed in the reel 4 from flowing into the liquid nitrogen above the coil, thereby ensuring high insulation performance. The effect is extremely large.

1 変圧器鉄心
2 低圧コイル層
3 高圧コイル層
4 巻枠
4a コイル溝
4b 縦軸方向の冷却ダクト
4c 螺旋状の冷却ダクト
4d 巻枠の延長部
5 高温超電導線材
7 コイル支持部材
14 液体窒素
15 絶縁テープ
L 延長部の長さ距離
DESCRIPTION OF SYMBOLS 1 Transformer iron core 2 Low voltage coil layer 3 High voltage coil layer 4 Winding frame 4a Coil groove 4b Longitudinal cooling duct 4c Spiral cooling duct 4d Extension part of winding frame 5 High temperature superconducting wire 7 Coil support member 14 Liquid nitrogen 15 Insulation Tape L Extension length distance

Claims (5)

液体窒素を冷媒として該冷媒に浸漬され冷却される電力用誘導機器の超電導コイルであって、絶縁材からなる円筒状巻枠の外径側周面に螺旋状のコイル溝形成され、該コイル溝に沿ってその溝内にテープ状の高温超電導線材巻回されたものにおいて、
前記の螺旋状コイル溝に沿ってその内径側に、該コイル溝より狭小な溝幅に設定された螺旋状の冷却ダクトを有し、前記超電導線材を包含して前記巻枠の外周面域を密閉状に覆うように気液不透過性の絶縁テープ巻枠周面に巻装され、
前記螺旋状の冷却ダクトは、上下両端を円筒状巻枠の上下端面に開放して外方に連通していることを特徴とする電力用誘導機器の超電導コイル。
Liquid nitrogen to a superconducting coil of the inductive devices for power that will be immersed in the refrigerant as the refrigerant cooling spiral coil grooves are formed on the outer diameter side circumferential surface of a cylindrical bobbin made of an insulating material, the coil in that tape-shaped high-temperature superconducting wire is wound into the groove along the groove,
On its inner diameter side along said helical coil groove has a helical cooling duct which is set to narrow the groove width than the coil groove, the outer circumferential surface region of the winding frame encompasses said superconducting wire A gas-liquid impermeable insulating tape is wound around the winding frame so as to cover hermetically ,
A superconducting coil of a power induction device, wherein the spiral cooling duct has an upper and lower ends opened to upper and lower end surfaces of a cylindrical winding frame and communicates outward .
請求項1に記載の超電導コイルにおいて、円筒状巻枠の外径側には、前記の螺旋状コイル溝および冷却ダクトと交差して巻枠の縦軸方向に延在する冷却ダクト巻枠の周上に分散して形成されていることを特徴とする電力用誘導機器の超電導コイル。 A superconducting coil according to claim 1, the outer diameter side of the cylindrical bobbin, the cooling ducts extending in the longitudinal direction of the helical coil groove and a cooling duct and intersecting the winding frame of the winding frame A superconducting coil for a power induction device, characterized in that the coil is distributed on the circumference. 請求項2に記載の超電導コイルにおいて、前記縦軸方向の冷却ダクトは、冷媒通路の上下両端が開口して前記液体窒素が冷却ダクト内を流入、流出可能に構成されていることを特徴とする電力用誘導機器の超電導コイル。  3. The superconducting coil according to claim 2, wherein the cooling duct in the longitudinal axis direction is configured such that the upper and lower ends of the refrigerant passage are opened so that the liquid nitrogen can flow into and out of the cooling duct. Superconducting coil for power induction equipment. 請求項2または3に記載の超電導コイルにおいて、前記螺旋状の冷却ダクトと前記縦軸方向の冷却ダクトとが連通していることを特徴とする電力用誘導機器の超電導コイル。  4. The superconducting coil according to claim 2, wherein the helical cooling duct communicates with the cooling duct in the longitudinal direction. 請求項2から4のいずれか1項に記載の超電導コイルにおいて、前記縦軸方向の冷却ダクトは、前記螺旋状の冷却ダクトよりも深さが大であることを特徴とする電力用誘導機器の超電導コイル。5. The superconducting coil according to claim 2, wherein the longitudinal cooling duct has a depth greater than that of the spiral cooling duct. Superconducting coil.
JP2011281523A 2011-12-22 2011-12-22 Superconducting coil for power induction equipment Active JP5921874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011281523A JP5921874B2 (en) 2011-12-22 2011-12-22 Superconducting coil for power induction equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011281523A JP5921874B2 (en) 2011-12-22 2011-12-22 Superconducting coil for power induction equipment

Publications (2)

Publication Number Publication Date
JP2013131689A JP2013131689A (en) 2013-07-04
JP5921874B2 true JP5921874B2 (en) 2016-05-24

Family

ID=48909012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011281523A Active JP5921874B2 (en) 2011-12-22 2011-12-22 Superconducting coil for power induction equipment

Country Status (1)

Country Link
JP (1) JP5921874B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113223766A (en) * 2021-05-17 2021-08-06 柳玉军 Fireproof cable
CN114121399B (en) * 2021-11-25 2022-09-20 浙江大学 Superconducting magnet cooling system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476920A (en) * 1987-05-18 1989-03-23 Tetsuya Ogushi Apparatus utilizing superconductivity
JP2871906B2 (en) * 1991-08-09 1999-03-17 古河電気工業株式会社 How to fix the electromagnet winding connection
JPH0794317A (en) * 1993-05-18 1995-04-07 Hitachi Ltd Superconducting coil device
JPH08107013A (en) * 1994-10-05 1996-04-23 Hitachi Ltd A.c. superconductive coil device and its manufacture
JP3208069B2 (en) * 1996-08-14 2001-09-10 大陽東洋酸素株式会社 Superconducting member cooling device
JP3840819B2 (en) * 1998-10-27 2006-11-01 富士電機システムズ株式会社 Superconducting coil for induction equipment
DE102005029151B4 (en) * 2005-06-23 2008-08-07 Bruker Biospin Ag Cryostat arrangement with cryocooler

Also Published As

Publication number Publication date
JP2013131689A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
US7345858B2 (en) Resistive superconducting fault current limiter
US20020018327A1 (en) Multi-winding fault-current limiter coil with flux shaper and cooling for use in an electrical power transmission/distribution application
JP2007158292A (en) Resistive superconducting fault current limiter
US4682134A (en) Conical, unimpregnated winding for MR magnets
US20070200654A1 (en) Non-Inductive Winding Wire-Type Solenoid Bobbin
JP5921874B2 (en) Superconducting coil for power induction equipment
JP2006203154A (en) Superconducting pulse coil, and superconducting device and superconducting power storage using same
JP5921875B2 (en) Superconducting coils for power induction devices and power induction devices
WO2017193984A1 (en) High temperature superconducting winding for saturated iron-core superconducting current limiter
JP6012170B2 (en) Superconducting coil and superconducting transformer
KR100742499B1 (en) Core of magentic shield type superconducting cable and superconducting cable having the same
US11527885B2 (en) Superconducting fault current limiter
JP6491331B2 (en) Superconducting coil using partially insulated winding and method of manufacturing superconducting coil
EP3062319B1 (en) Transformer for reducing eddy current losses of coil
JP3840819B2 (en) Superconducting coil for induction equipment
JP2022133593A (en) Superconducting electromagnet device and cooling method for superconducting electromagnet device
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
JP2011124252A (en) Iron-core superconducting reactor including gap
KR100777182B1 (en) High temperature superconducting power cable
JP2001244108A (en) Superconducting coil of induction apparatus
JP3147577B2 (en) Superconducting magnet
Wojtasiewicz The Concept of Cooling System for HTS Winding due to the Power Losses in Superconducting Transformer.
JP2607822B2 (en) Superconducting current limiter
KR102213910B1 (en) Insulation structure for super-conducting power apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160413

R150 Certificate of patent or registration of utility model

Ref document number: 5921874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250