JP6012170B2 - Superconducting coil and superconducting transformer - Google Patents

Superconducting coil and superconducting transformer Download PDF

Info

Publication number
JP6012170B2
JP6012170B2 JP2011266859A JP2011266859A JP6012170B2 JP 6012170 B2 JP6012170 B2 JP 6012170B2 JP 2011266859 A JP2011266859 A JP 2011266859A JP 2011266859 A JP2011266859 A JP 2011266859A JP 6012170 B2 JP6012170 B2 JP 6012170B2
Authority
JP
Japan
Prior art keywords
superconducting
coil
tape
voltage coil
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011266859A
Other languages
Japanese (ja)
Other versions
JP2013120777A (en
Inventor
章 富岡
章 富岡
敬昭 坊野
敬昭 坊野
修平 各務
修平 各務
雅行 今野
雅行 今野
洋 岡元
洋 岡元
林 秀美
秀美 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kyushu Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kyushu Electric Power Co Inc
Priority to JP2011266859A priority Critical patent/JP6012170B2/en
Publication of JP2013120777A publication Critical patent/JP2013120777A/en
Application granted granted Critical
Publication of JP6012170B2 publication Critical patent/JP6012170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

本発明は、超電導限流器,超電導変圧器などの超電導誘導機器を対象に、液体窒素を冷媒としてその冷媒中に浸漬して冷却するようにした超電導コイル,およびその超電導コイルで構成した超電導変圧器に関する。   The present invention is directed to a superconducting induction device such as a superconducting current limiting device and a superconducting transformer, and a superconducting transformer composed of a superconducting coil which is cooled by immersing liquid nitrogen as a refrigerant in the refrigerant, and the superconducting coil. Related to the vessel.

昨今では、液体窒素温度(大気圧下での沸点:77K)以上で超電導の臨界温度をもつ高温酸化物超電導体の出現に伴い、この高温超電導線材を使用して構成した前記の超電導誘導機器を液体窒素の冷媒中に浸漬して冷却し、通電中に超電導線材を臨界温度以下に保持するようにした超電導機器,およびその冷却システムの開発が進んでいる。   Recently, with the advent of high-temperature oxide superconductors having a superconducting critical temperature above the liquid nitrogen temperature (boiling point under atmospheric pressure: 77K), the superconducting induction device constructed using this high-temperature superconducting wire is used. The development of superconducting equipment that cools by immersing it in a liquid nitrogen refrigerant and keeps the superconducting wire below the critical temperature during energization, and its cooling system are progressing.

次に、超電導変圧器を例に、そのコイル導体に高温超電導線材を用いた超電導コイル,および超電導変圧器の従来構造を図4〜図6に示し、また超電導機器を冷却する液体窒素冷却システムの一例を図7に示す。   Next, taking a superconducting transformer as an example, a conventional structure of a superconducting coil using a high-temperature superconducting wire as its coil conductor and a superconducting transformer is shown in FIGS. 4 to 6, and a liquid nitrogen cooling system for cooling superconducting equipment is shown. An example is shown in FIG.

まず、図4,および図5(a),(b)は、従来技術例として特許文献1に開示されている超電導コイルの略示構成図であり、各図において1は変圧器の鉄心、2は低圧コイル層、3は低圧コイル層2の外周側に対向配置した高圧コイル層であり、低圧コイル層2,高圧コイル層3は鉄心1の脚部(縦向き)を包囲して内外周に同心配置し、各コイル層の間には後述のように液体窒素などの冷媒を通流して極低温に冷却し、その超電導コイルを臨界温度以下の超電導状態に維持して運転するようにしている。なお、図示例では低圧コイル層2を一層、高圧コイル層3を内外二層のコイル層3aと3bに分けて構成している。   4 and 5 (a) and 5 (b) are schematic configuration diagrams of a superconducting coil disclosed in Patent Document 1 as a prior art example. In each figure, 1 is an iron core of a transformer, 2 Is a high voltage coil layer disposed opposite to the outer peripheral side of the low voltage coil layer 2, and the low voltage coil layer 2 and the high voltage coil layer 3 surround the leg portion (vertical direction) of the iron core 1 on the inner and outer periphery. As described later, a concentric arrangement is used, and a coolant such as liquid nitrogen is passed between the coil layers to cool to a very low temperature, and the superconducting coil is maintained in a superconducting state below the critical temperature for operation. . In the illustrated example, the low voltage coil layer 2 is divided into one layer, and the high voltage coil layer 3 is divided into two inner and outer coil layers 3a and 3b.

ここで、従来技術による超電導コイルは、図5(a),(b)で示すようにFRPなどの絶縁材で作られた円筒状の巻枠4の外周面側にテープ状の高温超電導線材5を螺旋状に巻回して構成している。この場合に、現在開発が進められている高温超電導線材(高温酸化物超電導体)5は、厚さ0.1mm,幅5mm程度のテープ状であることから、図示例では高温超電導線材5の幅寸法に合わせて巻枠4の外周面に螺旋状の溝4aを加工しておき、この溝4aに沿ってテープ状の超電導線材5を一条,ないし複数条に重ねて溝内に埋め込むように巻回して組立てている。また、超電導線材5の通電に伴う発熱を効率よく除熱するために、図示構造では巻枠4の外周面上に螺旋状溝4aと交差するよう周上に分散して軸方向に液体窒素が通流する冷却ダクト4bを形成している。   Here, the superconducting coil according to the prior art has a tape-like high-temperature superconducting wire 5 on the outer peripheral surface side of a cylindrical winding frame 4 made of an insulating material such as FRP as shown in FIGS. 5 (a) and 5 (b). Is wound in a spiral. In this case, the high-temperature superconducting wire (high-temperature oxide superconductor) 5 currently being developed is in the form of a tape having a thickness of about 0.1 mm and a width of about 5 mm. A spiral groove 4a is machined on the outer peripheral surface of the winding frame 4 in accordance with the dimensions, and the tape-like superconducting wire 5 is wound along the groove 4a so as to be embedded in one or more strips. Turned and assembled. In addition, in order to efficiently remove heat generated by energization of the superconducting wire 5, in the illustrated structure, liquid nitrogen is dispersed in the axial direction so as to cross the spiral groove 4 a on the outer peripheral surface of the winding frame 4. A cooling duct 4b that flows is formed.

また、前記の超電導コイルで低圧コイル層2,高圧コイル層3を構成した超電導変圧器では、図6で示すように各コイル層の巻枠4をその上下に配した円盤状のコイル支持部材6の間に挟持し、上下のコイル支持部材6の間を図示されてないスタッドボルトで締結して固定支持するようにしている。なお、この組立状態では、低圧コイル層2と高圧コイル層3との間に絶縁距離dを設定し、変圧器の仕様(%インピーダンスなど)に基づく所定の絶縁耐力(但し、液体窒素に浸漬されている条件)を確保するようにしている。なお、このコイル組立体を冷媒容器に収容して液体窒素中に浸漬した状態では、前記の円盤状コイル支持部材6が冷媒の対流を阻害しないように、コイル支持部材6の盤面には適宜に冷媒穴(不図示)を分散穿孔しておき、各コイル層間に沿って通流する液体窒素の対流の流れを確保するようにしている。   Further, in the superconducting transformer in which the low-voltage coil layer 2 and the high-voltage coil layer 3 are constituted by the superconducting coils, as shown in FIG. 6, the disk-shaped coil support member 6 in which the winding frames 4 of the respective coil layers are arranged on the upper and lower sides. The upper and lower coil support members 6 are fastened and fixedly supported by stud bolts (not shown). In this assembled state, an insulation distance d is set between the low voltage coil layer 2 and the high voltage coil layer 3, and a predetermined dielectric strength based on the transformer specifications (% impedance, etc.) (however, it is immersed in liquid nitrogen). Is ensured). In addition, in the state which this coil assembly was accommodated in the refrigerant | coolant container and immersed in liquid nitrogen, the disk surface of the coil support member 6 is suitably set so that the said disk shaped coil support member 6 may not inhibit the convection of a refrigerant | coolant. Refrigerant holes (not shown) are dispersed and perforated so as to ensure a convective flow of liquid nitrogen flowing along the coil layers.

次に、液体窒素を冷媒として超電導コイル,超電導変圧器などの超伝導機器を冷却する液体窒素冷却システムの一例(例えば、非特許文献1参照)を図7に示す。この冷却システムは、超伝導誘導機器7(例えば、超電導変圧器)を収容した冷媒容器(クライオスタット)8と、極低温冷凍機9を装備した冷凍機ユニット10とに分けた上で、送液ポンプ11,循環管路12を介して冷凍機ユニット10に収容した液体窒素13を冷媒容器8との間に循環送液し、超伝導誘導機器7の運転時には通電に伴う熱負荷を液体窒素13で除熱するようしている。なお、この冷凍機ユニット10では、極低温冷凍機9により液体窒素13をサブクール状態の過冷却液体窒素(例えば、65K)に冷却した上で、極低温容器8に送液するようにしている。また、図中の7aは超電導機器のコイルに接続して容器外方に引出した電流リード(ブッシング)、13aは液体窒素13の液面上のガス空間を満たしている窒素ガスである。   Next, FIG. 7 shows an example of a liquid nitrogen cooling system that cools superconducting equipment such as a superconducting coil and a superconducting transformer using liquid nitrogen as a refrigerant (see, for example, Non-Patent Document 1). This cooling system is divided into a refrigerant container (cryostat) 8 containing a superconducting induction device 7 (for example, a superconducting transformer) and a refrigerator unit 10 equipped with a cryogenic refrigerator 9, and then a liquid feed pump 11. Liquid nitrogen 13 accommodated in the refrigerator unit 10 is circulated between the refrigerant container 8 via the circulation line 12 and the heat load caused by energization is operated by the liquid nitrogen 13 when the superconducting induction device 7 is operated. I try to remove heat. In the refrigerator unit 10, the liquid nitrogen 13 is cooled to subcooled supercooled liquid nitrogen (for example, 65 K) by the cryogenic refrigerator 9, and then sent to the cryogenic container 8. In the figure, 7a is a current lead (bushing) connected to the coil of the superconducting device and drawn out of the container, and 13a is nitrogen gas filling the gas space on the liquid surface of the liquid nitrogen 13.

ところで、前記のようにサブクール状態の液体窒素中に浸漬して使用する超電導機器の定常運転状態では、超電導コイルが臨界温度以下の超電導状態に保持されるので、超電導線はジュール発熱せず液体窒素温度と同程度の温度を保持する。しかしながら、電気系統の事故(短絡)などにより超電導機器のコイルに想定を超える過大な電流が流れた場合は、臨界電流を超えて超電導から常電導状態に転移して高温超電導線材に抵抗が生じ、そのジュール発熱によって超電導線材の温度が急激に上昇するようになる。   By the way, in the normal operation state of the superconducting equipment used by being immersed in the liquid nitrogen in the subcooled state as described above, the superconducting coil is maintained in the superconducting state below the critical temperature, so the superconducting wire does not generate Joule heat and is in liquid nitrogen. Keep the same temperature as the temperature. However, if an excessive current exceeding the expected value flows in the coil of the superconducting device due to an electrical system accident (short circuit), etc., the critical current will be exceeded and the transition from the superconducting state to the normal conducting state will cause resistance to the high-temperature superconducting wire, Due to the Joule heat generation, the temperature of the superconducting wire rapidly increases.

この状態になると、高温に発熱した超電導線材からの伝熱を受けた液体窒素は沸点(77K)を超えて沸騰し、液体窒素中に気泡が発生する。この場合に、液体窒素は元来良好な絶縁媒体であるが、気化することでその絶縁耐力が大きく低下することから、超電導機器を収容した冷媒容器(接地電位)内に多量の気泡が滞留した状態になると、超電導コイル,電流リードなどの耐電圧が低下して絶縁破壊を引き起こすおそれがある。   If it will be in this state, the liquid nitrogen which received the heat transfer from the superconducting wire which generated heat at a high temperature will boil beyond the boiling point (77K), and bubbles will be generated in the liquid nitrogen. In this case, liquid nitrogen is originally a good insulating medium, but since its dielectric strength is greatly reduced by vaporization, a large amount of air bubbles stays in the refrigerant container (ground potential) containing the superconducting device. When this occurs, the withstand voltage of superconducting coils, current leads, etc. may decrease, causing dielectric breakdown.

そこで、超電導機器の稼働中に冷媒である液体窒素の沸騰で発生した気泡を速やかに消滅させて所定の絶縁性能を保持するための対策として、気泡を積極的に回収して容器外に排出する、あるいは容器内で捕集するなどの気泡消滅手段を備えた超電導装置が知られている(例えば、特許文献2参照)。   Therefore, as a measure to quickly extinguish bubbles generated by the boiling of liquid nitrogen, which is a refrigerant during operation of superconducting equipment, and maintain a predetermined insulation performance, the bubbles are actively collected and discharged out of the container. Alternatively, there is known a superconducting device provided with bubble extinguishing means such as collecting in a container (for example, see Patent Document 2).

特開2001−244108号公報(図3、図5、図6)Japanese Patent Laid-Open No. 2001-244108 (FIGS. 3, 5, and 6) 特開2007−273740号公報JP 2007-273740 A

吉田 茂、他1名、"大気圧過冷却液体窒素を用いた冷却システム"、図3、[online]、太陽日酸技報 No.23(2004)、[平成23年11月1日検索]、インターネット<URL:http://www.tn-sanso-giho.com/pdf/23/16.pdf>Shigeru Yoshida and one other, "Cooling System Using Atmospheric Pressure Supercooled Liquid Nitrogen", Fig. 3, [online], Taiyo-Nikko Technical Report No. 23 (2004), [Searched on November 1, 2011] , Internet <URL: http://www.tn-sanso-giho.com/pdf/23/16.pdf>

ところで、先述のように超電導コイルを冷却する冷媒としてサブクール状態の液体窒素を用い、さらに先記の特許文献2に開示されているような気泡消滅手段を備えたとしても、電力系統の事故などに起因する過電流の通電により、超電導コイルの高温超電導線材が超電導から常電導状態に転移した場合には、ジュール発熱により高温度に上昇した超電導コイルからの伝熱を受けて液体窒素中に気泡が発生することが避けられず、また前記の気泡消滅手段も実用的にはその能力限界があって気泡発生に起因する超電導機器の絶縁耐力低下を防止する根本的な解決策にはならない。   By the way, even if the subcooled liquid nitrogen is used as the coolant for cooling the superconducting coil as described above, and the bubble extinguishing means as disclosed in the above-mentioned Patent Document 2 is further provided, an accident in the power system, etc. When the high-temperature superconducting wire of the superconducting coil changes from superconducting to normal conducting due to the overcurrent caused by the current, bubbles are generated in the liquid nitrogen due to heat transfer from the superconducting coil that has risen to a high temperature due to Joule heating. Inevitably, the above-mentioned bubble extinguishing means is also practically limited in its capability and is not a fundamental solution for preventing a decrease in the dielectric strength of superconducting equipment due to the generation of bubbles.

そのほか、図6に示した超電導変圧器のように、低圧コイル層2,高圧コイル層3の巻枠4の上端をその上側に配した円盤状のコイル支持部材6で支持した組立構造では、高温超電導線材5の発熱に伴う沸騰により発生した気泡が液体窒素中を拡散しながら浮上移動してコイル支持部材6の下面側に滞留するようになると、先記のように低圧コイル層2と高圧コイル層3との間に所定の絶縁距離dを設定したとしても、層間の耐電圧が低下して絶縁破壊を引き起こす懸念がある。   In addition, in the assembly structure in which the upper ends of the winding frames 4 of the low-voltage coil layer 2 and the high-voltage coil layer 3 are supported by a disk-shaped coil support member 6 disposed on the upper side, as in the superconducting transformer shown in FIG. When bubbles generated by boiling accompanying the heat generation of the superconducting wire 5 float and move while diffusing in the liquid nitrogen and stay on the lower surface side of the coil support member 6, the low voltage coil layer 2 and the high voltage coil as described above Even if a predetermined insulation distance d is set between the layer 3 and the layer 3, there is a concern that the withstand voltage between the layers may be reduced to cause dielectric breakdown.

なお、発明者等が図5に示した超電導コイルを模擬してサブクール状態の液体窒素に浸漬したモデルについて、超電導コイルに短絡電流を模擬した過電流を流した際に液体窒素中に発生する気泡の挙動を高速カメラにより観察したところによれば、過電流の通電開始直後から液体窒素に接するテープ状の高温超電導線材の表面に沸騰が生じ気泡が連続的に発生して上方に浮上移動するのが観察され、また、高温超電導線材の表面に発生する気泡は図5の巻枠4に形成した冷媒ダクト溝4bの周辺に多く発生することが確認された。これは、テープ状の高温超電導線材の表,裏両面に液体窒素が直接接しているため、その伝熱界面における熱流束が多くなるからと推測される。   Regarding the model in which the inventors simulated the superconducting coil shown in FIG. 5 and immersed in liquid nitrogen in a subcooled state, bubbles generated in liquid nitrogen when an overcurrent simulating a short-circuit current was passed through the superconducting coil. According to the observation of this behavior with a high-speed camera, boiling occurs on the surface of the tape-like high-temperature superconducting wire in contact with liquid nitrogen immediately after the start of overcurrent energization, and bubbles are continuously generated and moved upward. Further, it was confirmed that a large number of bubbles generated on the surface of the high-temperature superconducting wire were generated around the refrigerant duct groove 4b formed in the winding frame 4 of FIG. This is presumably because the heat flux at the heat transfer interface increases because liquid nitrogen is in direct contact with both the front and back surfaces of the tape-like high-temperature superconducting wire.

そこで、本発明は前記した気泡挙動の観察結果を基に、液体窒素中に浸漬して冷却する超電導コイル,超電導変圧器について、過大な電流通電に起因して超電導線材が超電導から常電導状態に転移した場合でも、液体窒素の気泡発生を極力抑制して所定の絶縁特性を保持できるように改良した超電導コイル,およびその超電導コイルを用いて構成した超電導変圧器を提供することを目的とする。   Therefore, the present invention is based on the observation results of the bubble behavior described above, and the superconducting coil and the superconducting transformer cooled by being immersed in liquid nitrogen are changed from the superconducting wire to the normal conducting state due to excessive current conduction. It is an object of the present invention to provide a superconducting coil improved so that the generation of liquid nitrogen bubbles can be suppressed as much as possible to maintain a predetermined insulating characteristic even when the transition is made, and a superconducting transformer configured using the superconducting coil.

前記の目的を達成するために、本発明によれば、テープ状の高温超電導線材が円筒状巻枠の外周面に巻回された構成になり、液体窒素を冷媒として該冷媒に浸漬され冷却される超電導コイルにおいて、
円筒状巻枠の外周面には高温超電導線材のテープ幅に相応した螺旋状の溝が形成され、コイル内径側では前記超電導線材のテープ面が該螺旋状溝に沿って巻回されるとともに、コイルの外径側では超電導線材のテープ面が外側から覆われるように絶縁テープで被覆されていて、
前記巻枠の周面上に冷媒が通流する冷却ダクトが形成されておらず、前記超電導線材の表、裏両テープ面および側面に前記冷媒が直接触れないように前記テープ面が隔離されたものとし(請求項1)、具体的には次記のような態様で構成することができる。
(1)前記絶縁テープが、前記螺旋状の溝内に埋め込まれている(請求項2)。
(2)前記絶縁テープは、ガラスクロスに半硬化状のエポキシ樹脂を含浸させたプリプレグテープで前記超電導線材のテープ面を外側から覆った後に熱硬化処理が施されたものである(請求項3)。
In order to achieve the above object, according to the present invention, a tape-shaped high-temperature superconducting wire is wound around the outer peripheral surface of a cylindrical winding frame, and is cooled by being immersed in the refrigerant using liquid nitrogen as a refrigerant. In the superconducting coil
A spiral groove corresponding to the tape width of the high-temperature superconducting wire is formed on the outer peripheral surface of the cylindrical winding frame, and the tape surface of the superconducting wire is wound along the spiral groove on the inner diameter side of the coil. The outer diameter side of the coil is covered with insulating tape so that the tape surface of the superconducting wire is covered from the outside,
The cooling duct through which the refrigerant flows is not formed on the peripheral surface of the winding frame, and the tape surface is isolated so that the refrigerant does not directly touch the front, back both tape surfaces and side surfaces of the superconducting wire . Specifically, it can be configured in the following manner.
(1) The insulating tape is embedded in the spiral groove (claim 2).
(2) The insulating tape is obtained by applying a thermosetting treatment after covering the tape surface of the superconducting wire from the outside with a prepreg tape in which a glass cloth is impregnated with a semi-cured epoxy resin. ).

一方、前記の超電導コイルを用いて構成した低圧コイル層と高圧コイル層とが内外周に間隔を隔てて鉄心脚部の外側に同心配置され、各コイル層の巻枠が上下に配された円盤状のコイル支持部材の間に支持され冷媒中に浸漬配置された超電導変圧器において、
内周側の低圧コイル層と外周側の高圧コイル層との間に、絶縁材の円筒状隔壁になる気泡拡散防止用のバリア層が高圧コイル層と比して相対的に低圧コイル層の周面に接近して配置され、該バリア層と高圧コイル層との間に高圧コイル/低圧コイル間の絶縁耐力に対応する所定の絶縁距離が設定されているとよい(請求項4)。
On the other hand, a disk in which a low-voltage coil layer and a high-voltage coil layer configured using the superconducting coil are concentrically arranged on the outer side of the iron core leg with an interval between the inner and outer circumferences, and the winding frames of the respective coil layers are arranged vertically. In the superconducting transformer supported between the coil-shaped coil support members and placed in the refrigerant,
Between the low voltage coil layer on the inner peripheral side and the high voltage coil layer on the outer peripheral side, a barrier layer for preventing bubble diffusion that becomes a cylindrical partition wall of the insulating material is relatively disposed around the low voltage coil layer as compared with the high voltage coil layer. A predetermined insulation distance corresponding to the dielectric strength between the high voltage coil and the low voltage coil may be set between the barrier layer and the high voltage coil layer .

また、前記の超電導変圧器において、前記低圧コイル層、前記高圧コイル層の巻枠は、前記超電導線材の巻回域上端からの長さが巻回域下端からの長さよりも長くなるように上方に延長された延長部を有するとよい(請求項5)。
また、前記延長部の軸方向長さが少なくとも60mm以上に設定されているとよい(請求項6)。
In the superconducting transformer, the winding frames of the low-voltage coil layer and the high-voltage coil layer are arranged so that the length from the upper end of the winding area of the superconducting wire is longer than the length from the lower end of the winding area. It is good to have the extension part extended in (claim 5).
Moreover, it is good for the axial direction length of the said extension part to be set to at least 60 mm or more (Claim 6).

前記構成になる超電導コイル,超電導変圧器によれば、液体窒素の気泡発生を極力抑制して所定の絶縁性能を保持することができる。すなわち、
(1)超電導線材のテープ面をその内径側では巻枠の周面に重ねて巻き付けるとともに、コイルの外径側では超電導線材のテープ面を外側から覆うように絶縁テープを被覆して超電導線材のテープ面が前記冷媒に直接触れないよう隔離することにより、超電導線材と液体窒素とが直接接する伝熱面積が極小となり、かつ超電導線材の外周テープ面に被覆した絶縁テープ(低熱伝導率)が伝熱抵抗体となって、液体窒素との間の伝熱が低くなる。したがって、過大な電流通電に起因して超電導線材が超電導から常電導状態に転移した場合でも、液体窒素の気泡発生を極力抑制して超電導コイルの絶縁特性低下を防ぐことができる。
(2)ここで、超電導線材をコイルの巻枠周面に形成した螺旋状溝に沿ってその溝内に埋め込むように巻回した上で、その外周側のテープ面を絶縁テープで覆うことにより、超電導線材と液体窒素との接触面積をさらに縮小して気泡発生をより効果的に抑制するとともに、コイルターン相互間の絶縁耐力も向上する。
(3)そのほか、高温超電導線材のテープ面に被覆する絶縁テープとして、高引張強度を有するバインドテープ、例えば高引張強度を有するガラスクロステープに半硬化状のエポキシ樹脂などを含浸させたプリプレグを採用することにより、過電流の通電時に超電導線材に作用する電磁力に対して超電導コイルを径方向に支持することができ、さらに超電導コイルを冷却する冷媒にサブクール状態の液体窒素(例えば、66K)を使用することで、飽和液体窒素(77K)と比べて超電導線材の臨界電流が高まるほか、気泡の発生も少なくなる。
According to the superconducting coil and the superconducting transformer configured as described above, it is possible to suppress the generation of bubbles of liquid nitrogen as much as possible and maintain a predetermined insulating performance. That is,
(1) While superposing the tape surface of the superconducting wire on the inner diameter side of the coil on the peripheral surface of the winding frame, the outer diameter side of the coil is covered with an insulating tape so as to cover the tape surface of the superconducting wire from the outside. By isolating the tape surface so that it does not come into direct contact with the refrigerant, the heat transfer area where the superconducting wire and liquid nitrogen are in direct contact with each other is minimized, and the insulating tape (low thermal conductivity) coated on the outer peripheral tape surface of the superconducting wire is transferred. It becomes a thermal resistor, and the heat transfer between liquid nitrogen becomes low. Therefore, even when the superconducting wire transitions from the superconducting state to the normal conducting state due to excessive current flow, the generation of liquid nitrogen bubbles can be suppressed as much as possible to prevent deterioration of the insulating characteristics of the superconducting coil.
(2) Here, the superconducting wire is wound so as to be embedded in the groove along the spiral groove formed on the peripheral surface of the coil, and then the outer peripheral tape surface is covered with an insulating tape. Further, the contact area between the superconducting wire and liquid nitrogen is further reduced to more effectively suppress the generation of bubbles, and the dielectric strength between coil turns is also improved.
(3) In addition, a binding tape having a high tensile strength, such as a glass cloth tape having a high tensile strength, impregnated with a semi-cured epoxy resin, etc. is used as an insulating tape to cover the tape surface of the high-temperature superconducting wire. By doing so, the superconducting coil can be supported in the radial direction against the electromagnetic force acting on the superconducting wire when energized with an overcurrent, and subcooled liquid nitrogen (for example, 66K) is used as a coolant for cooling the superconducting coil. By using it, the critical current of the superconducting wire is increased as compared with saturated liquid nitrogen (77K), and the generation of bubbles is reduced.

一方、前記の超電導コイルで構成した超電導変圧器において、その低圧コイル層と高圧コイル層との間に絶縁材の円筒状隔壁になる気泡拡散防止用のバリア層を低圧コイル層の周面に接近して配置した上で、該バリア層と高圧コイル層との間には高圧コイル/低圧コイル間の絶縁耐力に対応する所定の絶縁距離を設定した本発明の構成によれば、
過電流の通電により常電導状態に転移した高温超電導線材のジュール発熱を受けて液体窒素中に気泡が発生したとしても、低圧コイル層の周面に発生した気泡は前記バリア層に阻まれて高圧コイル層の方に拡散することがなく、気泡はバリア層と低圧コイル層の外周面との間の細隙に閉じ込められてそのまま上方へ浮上移動するだけである。しかも、バリア層と高圧コイル層との間にはあらかじめ所定の絶縁距離が設定されているので、高圧コイル層/低圧コイル層間の絶縁耐力を確保して超電導変圧器の仕様で定められた絶縁特性を保持できる。
On the other hand, in the superconducting transformer constituted by the superconducting coil, a barrier layer for preventing bubble diffusion, which becomes a cylindrical partition wall of insulating material between the low voltage coil layer and the high voltage coil layer, approaches the peripheral surface of the low voltage coil layer. According to the configuration of the present invention, a predetermined insulation distance corresponding to the dielectric strength between the high voltage coil / low voltage coil is set between the barrier layer and the high voltage coil layer.
Even if bubbles are generated in the liquid nitrogen due to Joule heating of the high-temperature superconducting wire that has transitioned to the normal conducting state due to the overcurrent, the bubbles generated on the peripheral surface of the low-pressure coil layer are blocked by the barrier layer. The bubbles do not diffuse toward the coil layer, and the bubbles are confined in the gap between the barrier layer and the outer peripheral surface of the low-voltage coil layer, and just float and move upward. In addition, since a predetermined insulation distance is set in advance between the barrier layer and the high voltage coil layer, the insulation characteristics determined by the specifications of the superconducting transformer are ensured to ensure the dielectric strength between the high voltage coil layer and the low voltage coil layer. Can be held.

また、前記超電導変圧器における低圧コイル層,高圧コイル層の各層巻枠には、超電導線材の巻回域上端からさらに上方に延在する延長部を形成した上で、該延長部の軸方向長さを少なくとも60mm以上に設定することにより、過電流通電に伴う発熱により各
コイル層の巻枠に巻回した超電導線材の表面に気泡が発生したとしても、その気泡は前記延長部の周面に沿って上方へ浮上する移動途上で、上方に配した円盤状のコイル支持部材に到達する以前に周囲の液体窒素により冷却されて消滅するので絶縁特性への影響を回避できる。
In addition, in each layer winding frame of the low-voltage coil layer and the high-voltage coil layer in the superconducting transformer, an extension portion extending further upward from the upper end of the winding area of the superconducting wire is formed, and the axial length of the extension portion is By setting the thickness to at least 60 mm or more, even if bubbles are generated on the surface of the superconducting wire wound around the winding frame of each coil layer due to heat generation due to overcurrent conduction, the bubbles are formed on the peripheral surface of the extension portion. In the course of moving upward along the line, it is cooled by the surrounding liquid nitrogen and disappears before reaching the disk-shaped coil support member disposed above, so that the influence on the insulation characteristics can be avoided.

本発明の第1実施例に係わる超電導コイルの略示構成図であって、(a)はコイル全体の外形斜視図、(b)は(a)におけるコイル一部の拡大断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is the schematic block diagram of the superconducting coil concerning 1st Example of this invention, (a) is an external appearance perspective view of the whole coil, (b) is an expanded sectional view of a part of coil in (a). 本発明の第2実施例に係わる超電導コイルのコイル一部の拡大断面図である。It is an expanded sectional view of a part of coil of a superconducting coil concerning the 2nd example of the present invention. 本発明の実施例に係わる超電導変圧器のコイル層の組立構造を表す縦断面図である。It is a longitudinal cross-sectional view showing the assembly structure of the coil layer of the superconducting transformer concerning the Example of this invention. 超電導変圧器を対象とした超電導コイルの略示配置図である。It is a schematic arrangement drawing of a superconducting coil for a superconducting transformer. 図4における高圧コイル層,低圧コイル層の従来例の構成,配置図であって、(a)は縦断面図、(b)は(a)の横断面拡大図である。It is a structure and arrangement | positioning figure of the prior art example of the high voltage | pressure coil layer in FIG. 4, and a low voltage | pressure coil layer, Comprising: (a) is a longitudinal cross-sectional view, (b) is a cross-sectional enlarged view of (a). 図4に対応する超電導変圧器の従来における高圧コイル層,低圧コイル層の組立構造を表す縦断面図である。It is a longitudinal cross-sectional view showing the assembly structure of the conventional high voltage coil layer and low voltage coil layer of the superconducting transformer corresponding to FIG. 超電導コイル,超電導変圧器に適用する液体窒素冷却システムのシステムフロー図である。It is a system flow figure of a liquid nitrogen cooling system applied to a superconducting coil and a superconducting transformer.

以下、本発明による超電導コイル,および超電導変圧器の実施の形態を図1〜図3に示す実施例に基づいて説明する。なお、各実施例の図中において、図5,図6に対応する同一部材には同じ符号を付してその説明は省略する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a superconducting coil and a superconducting transformer according to the present invention will be described below based on examples shown in FIGS. In the drawings of the respective embodiments, the same members corresponding to those in FIGS. 5 and 6 are denoted by the same reference numerals and description thereof is omitted.

先ず、本発明の第1実施例に係わる超電導コイルの構成を図1(a),(b)に示す。この実施例においては、FRPなどの絶縁材で作られた円筒状の巻枠4に対してその外周面上に巻回したテープ状の高温超電導線材5は、そのコイル内径側のテープ面を巻枠4の周面に直接重ねて巻き付けるとともに、コイルの外径側では超電導線材5のテープ面を外側から覆うように絶縁テープ14を巻き付けて被覆し、周囲の液体窒素が超電導線材5の表,裏のテープ面に直接触れないように隔離している。なお、この超電導コイルは縦置配置として液体窒素の冷媒中に浸漬し、図中のOは円筒状巻枠4の軸中心を表している。なお、図示例では巻枠4に超電導線材5を一条巻しているが、複数条の線材を重ね巻きする場合もある。   First, FIGS. 1A and 1B show the configuration of a superconducting coil according to the first embodiment of the present invention. In this embodiment, a tape-shaped high-temperature superconducting wire 5 wound on the outer peripheral surface of a cylindrical winding frame 4 made of an insulating material such as FRP is wound on the tape inner surface of the coil. The coil 4 is wrapped directly on the peripheral surface of the frame 4 and covered with an insulating tape 14 so as to cover the tape surface of the superconducting wire 5 from the outside on the outer diameter side of the coil. It is isolated so that it does not touch the back tape surface directly. This superconducting coil is immersed in a liquid nitrogen refrigerant in a vertical arrangement, and O in the figure represents the axial center of the cylindrical winding frame 4. In the illustrated example, the superconducting wire 5 is wound around the winding frame 4, but a plurality of wires may be wound in layers.

ここで、前記の絶縁テープ14は、例えば高引張強度なガラスクロスのテープに半硬化状のエポキシ樹脂などを含浸させたプリプレグのガラスバインドテープを使用し、超電導線材5のテープ面に巻き付けた後に熱硬化処理を施して硬化させている。   Here, the insulating tape 14 is, for example, a prepreg glass binding tape in which a glass cloth tape with high tensile strength is impregnated with a semi-cured epoxy resin and wound around the tape surface of the superconducting wire 5. It is cured by applying a thermosetting treatment.

前記構成の超電導コイルによれば、通電中に液体窒素の気泡発生を極力抑制して所定の絶縁性能を保持することができる。すなわち、この超電導コイルを液体窒素中に浸漬した状態では、巻枠4の周面に巻き付けた超電導線材5の表,裏両テープ面が液体窒素と直接触れないよう隔離される。これにより、超電導線材5と液体窒素とが直接接する伝熱面積が極小となり、かつ超電導線材5の外周テープ面に被覆した低熱伝導率の絶縁テープ14が液体窒素との間の伝熱抵抗として働くので、過大な電流通電に起因して超電導線材が超電導から常電導状態に転移して超電導線材5がジュール発熱した場合でも、液体窒素の気泡発生を極力抑制することができる。   According to the superconducting coil having the above-described configuration, it is possible to maintain the predetermined insulation performance by suppressing the generation of liquid nitrogen bubbles as much as possible during energization. That is, when the superconducting coil is immersed in liquid nitrogen, the front and back tape surfaces of the superconducting wire 5 wound around the peripheral surface of the winding frame 4 are isolated so as not to come into direct contact with liquid nitrogen. As a result, the heat transfer area where the superconducting wire 5 and liquid nitrogen are in direct contact with each other is minimized, and the low thermal conductivity insulating tape 14 covered on the outer peripheral tape surface of the superconducting wire 5 serves as a heat transfer resistance between the superconducting wire 5 and liquid nitrogen. Therefore, even when the superconducting wire transitions from the superconducting state to the normal conducting state due to excessive current conduction and the superconducting wire 5 generates Joule heat, the generation of bubbles of liquid nitrogen can be suppressed as much as possible.

また、絶縁テープ14については、前記のように高引張強度を有するバインドテープを採用することで、過電流の通電時に超電導線材5に作用する電磁力に対して超電導コイルを径方向に支持することができる。さらに、超電導コイルを浸漬して冷却する冷媒として、サブクール状態の液体窒素(例えば、66K)を使用することにより、飽和液体窒素(77K)の使用と比べて臨界電流が高まるほか、気泡の発生も減少する。   Moreover, about the insulating tape 14, by using the bind tape having high tensile strength as described above, the superconducting coil is supported in the radial direction against the electromagnetic force acting on the superconducting wire 5 when energized with overcurrent. Can do. Furthermore, the use of subcooled liquid nitrogen (for example, 66K) as a coolant for immersing and cooling the superconducting coil increases the critical current compared to the use of saturated liquid nitrogen (77K), and also generates bubbles. Decrease.

なお、上記の気泡発生抑制効果は、超電導コイルのモデルについて発明者等が行った「気泡の挙動観察試験」でも検証されている。すなわち、この観察試験では超電導コイルの供試モデルとして、図5に示した従来例のコイル(絶縁テープ15無し)と、本発明を適用した実施例のコイルを用意し、各供試モデルのコイル導体に短絡電流を模擬した過大電流を通電して液体窒素中に発生する気泡の発生状況を観察したところ、実施例のコイルの場合、発生する気泡の平均直径,および発生数が大幅に低減し、過電流通電時間中の気泡発生量は体積比で約1/5以下に抑制できることが実証されている。   Note that the above-described bubble generation suppression effect is also verified in the “Bubble Behavior Observation Test” conducted by the inventors on a superconducting coil model. That is, in this observation test, as the test model of the superconducting coil, the conventional coil (without the insulating tape 15) shown in FIG. 5 and the coil of the embodiment to which the present invention is applied are prepared. When an excessive current simulating a short-circuit current was passed through a conductor and the occurrence of bubbles generated in liquid nitrogen was observed, the average diameter and number of bubbles generated were significantly reduced in the case of the coil of the example. It has been demonstrated that the amount of bubbles generated during the overcurrent energization time can be suppressed to about 1/5 or less in volume ratio.

次に本発明の請求項2に係わる第2実施例の構成を図2に示す。この実施例では、円筒状巻枠4の外周面上に、あらかじめ高温超電導線材5のテープ幅に相応した溝幅の螺旋状溝4aを刻設形成しておき、この螺旋状溝4aに沿ってその溝内に超電導線材5を埋め込むように巻回した上で、先記の実施例1と同様に外周側から絶縁テープ14を巻き付けて超電導線材5を覆うようにしている。   Next, FIG. 2 shows a configuration of a second embodiment according to claim 2 of the present invention. In this embodiment, a spiral groove 4a having a groove width corresponding to the tape width of the high-temperature superconducting wire 5 is formed in advance on the outer peripheral surface of the cylindrical winding frame 4, and along this spiral groove 4a. After winding so that the superconducting wire 5 is embedded in the groove, the insulating tape 14 is wound from the outer peripheral side so as to cover the superconducting wire 5 as in the first embodiment.

これにより、先記実施例1と同様に気泡発生を抑制するとともに、螺旋状溝4aの溝内に埋め込まれた超電導線材5は液体窒素との接触面積がさらに縮小して気泡発生の抑制効果が高まるほか、コイルターン相互間の沿面距離も増して絶縁耐力がさらに向上する。   As a result, the generation of bubbles is suppressed as in the first embodiment, and the superconducting wire 5 embedded in the groove of the spiral groove 4a further reduces the contact area with the liquid nitrogen and has the effect of suppressing the generation of bubbles. In addition to the increase, the creepage distance between the coil turns is increased and the dielectric strength is further improved.

次に、先記の超電導コイルを採用して構成した本発明の請求項5,6に対応する超電導変圧器の実施例を図3に基づいて説明する。   Next, an embodiment of a superconducting transformer corresponding to claims 5 and 6 of the present invention constructed by adopting the above-described superconducting coil will be described with reference to FIG.

この実施例の超電導変圧器は、図6に示した従来例の超電導変圧器と基本的に同様な組立構造であり、先記の第2実施例(図2参照)で述べた超電導コイルの構成になる低圧コイル層2と高圧コイル層3を内外周に間隔を隔てて鉄心脚部の外側に同心配置し、かつ各コイル層の巻枠4をその上下に配した円盤状のコイル支持部材6の間に支持した上で、このコイル組立体は図示の縦置姿勢で液体窒素の冷媒中に浸漬配置されている。   The superconducting transformer of this embodiment has an assembly structure basically similar to that of the conventional superconducting transformer shown in FIG. 6, and the configuration of the superconducting coil described in the second embodiment (see FIG. 2). A disk-shaped coil support member 6 in which the low-voltage coil layer 2 and the high-voltage coil layer 3 are concentrically arranged on the outer side of the iron core leg with an interval between the inner and outer circumferences, and the winding frames 4 of the respective coil layers are arranged on the upper and lower sides. The coil assembly is immersed in a liquid nitrogen refrigerant in the illustrated vertical position.

ここで、本発明により低圧コイル層2と高圧コイル層3との間には、絶縁材の円筒状隔壁になる気泡拡散防止用のバリア層15を低圧コイル層2の周面との間に5mm程度の
狭い間隙d1に接近して配置するとともに、該バリア層15と高圧コイル層3との間には高圧コイル/低圧コイル間の所要絶縁耐力に対応する絶縁距離d2を設定している。
Here, between the low voltage coil layer 2 and the high voltage coil layer 3 according to the present invention, a bubble diffusion preventing barrier layer 15 which becomes a cylindrical partition wall of an insulating material is provided between the peripheral surface of the low voltage coil layer 2 and 5 mm. An insulating distance d2 corresponding to the required dielectric strength between the high voltage coil and the low voltage coil is set between the barrier layer 15 and the high voltage coil layer 3 while being arranged close to the narrow gap d1.

この構成により、過電流の通電で常電導状態に転移した高温超電導線材5のジュール発熱を受けて液体窒素中に気泡が発生したとしても、低圧コイル層2の周面に発生した気泡は前記バリア層15に阻まれて高圧コイル層3の方に拡散することがなく、バリア層15と低圧コイル層2の外周面との間の狭い間隙に閉じ込められてそのまま上方へ浮上移動する。また、高圧コイル層3の円筒状巻枠4の内周面側には気泡が発生しないので、前記バリア層15と高圧コイル層3との間の間隔は気泡の無い液体窒素で満たされていて気泡の影響を受けることがない。しかも、バリア層15と高圧コイル層3(2層分割構造)の内周側に並ぶ高圧コイル層3aとの間にはあらかじめ所定の絶縁距離d2が設定されているので、低圧コイル層2と高圧コイル層3と間に所定の絶縁耐力を確保して超電導変圧器の仕様で定めた所定の絶縁特性を保持することができる。   With this configuration, even if bubbles are generated in the liquid nitrogen due to Joule heat generation of the high-temperature superconducting wire 5 that has transitioned to the normal conducting state due to overcurrent, the bubbles generated on the peripheral surface of the low-pressure coil layer 2 are It is blocked by the layer 15 and does not diffuse toward the high-voltage coil layer 3, and is confined in a narrow gap between the barrier layer 15 and the outer peripheral surface of the low-voltage coil layer 2 and floats and moves upward as it is. Further, since no bubbles are generated on the inner peripheral surface side of the cylindrical winding frame 4 of the high voltage coil layer 3, the space between the barrier layer 15 and the high voltage coil layer 3 is filled with liquid nitrogen without bubbles. Not affected by air bubbles. In addition, since a predetermined insulation distance d2 is set in advance between the barrier layer 15 and the high voltage coil layer 3a arranged on the inner peripheral side of the high voltage coil layer 3 (two-layer divided structure), the low voltage coil layer 2 and the high voltage coil layer 3a. A predetermined dielectric strength can be secured between the coil layer 3 and a predetermined insulation characteristic determined by the specifications of the superconducting transformer can be maintained.

なお、この場合に低圧コイル層2の外周面側に発生した気泡がバリア層15との間の細隙に滞留し、この気泡を介してバリア層15の電位が低圧コイル2の電位と略同電位になったとしても、前記のようにバリア層15と高圧コイル層3との間に所定の絶縁距離d2を設定しているので問題なく、また高圧コイル層3の各コイル層3a,3bの外周面に気泡が発生しても、高圧コイル層3の内周側に間隔d2を隔てて対峙する低圧コイル層2への影響は殆ど生じることはない。   In this case, bubbles generated on the outer peripheral surface side of the low-voltage coil layer 2 stay in a gap between the barrier layer 15 and the potential of the barrier layer 15 is substantially the same as the potential of the low-voltage coil 2 through the bubbles. Even when the potential is reached, there is no problem because the predetermined insulation distance d2 is set between the barrier layer 15 and the high-voltage coil layer 3 as described above, and the coil layers 3a and 3b of the high-voltage coil layer 3 have no problem. Even if bubbles are generated on the outer peripheral surface, there is hardly any influence on the low voltage coil layer 2 facing the inner peripheral side of the high voltage coil layer 3 with a gap d2.

さらに図示実施例では、前記低圧コイル層2,高圧コイル層3の巻枠4の上端側には、該巻枠4に巻回した超電導線材5の巻回域上端からさらに上方に延在する長さLの延長部を形成した上で、該延長部の軸方向長さLを少なくとも60mm以上に設定するよう
にしている。これにより、過電流の通電に伴い各コイル層の巻枠4に巻回した超電導線材5の表面に気泡が発生したとしても、その気泡は前記延長部の周面に沿って上方へ浮上移動する過程の途上で周囲の液体窒素(サブクール状態の液体窒素)で冷却され、その上方側に配した円盤状のコイル支持部材6に到達する以前には気泡が殆ど消滅するようになる。なお、この気泡が消滅に至る挙動は発明者等が行った先記の「気泡の挙動観察試験」でも確認されており、冷媒に液体窒素を使用した場合には、気泡の発生地点から消滅までにいたる距離は約60mmであることが実験的に検証されている。
Further, in the illustrated embodiment, on the upper end side of the winding frame 4 of the low voltage coil layer 2 and the high voltage coil layer 3, a length extending further upward from the upper end of the winding area of the superconducting wire 5 wound around the winding frame 4 is shown. After the extension portion having the length L is formed, the axial length L of the extension portion is set to at least 60 mm. As a result, even if bubbles are generated on the surface of the superconducting wire 5 wound around the winding frame 4 of each coil layer due to the overcurrent, the bubbles move upward along the peripheral surface of the extension. In the course of the process, the air is cooled with the surrounding liquid nitrogen (subcooled liquid nitrogen), and the bubbles almost disappear before reaching the disk-shaped coil support member 6 disposed on the upper side. In addition, the behavior until the bubbles disappear is also confirmed in the above-mentioned “Behavior Behavior Observation Test” conducted by the inventors, and when liquid nitrogen is used as the refrigerant, the bubbles are generated until the disappearance. It has been experimentally verified that the distance to this is about 60 mm.

したがって、前記のように各コイル層の巻枠4に対してその上端側に軸方向長さ60mm以上の延長部を形成しておくことにより、過電流の通電に伴いコイル層の外周面側に
発生して上方に浮上移動する気泡が、そのまま巻枠4の上端側に配した円盤状のコイル支持枠6の盤面に開口した冷媒対流用の冷媒穴を通り抜けてその上方に配置した電流リード7a(図7参照)などに付着してその絶縁性を損なうトラブル発生を未然に回避することができ、これにより超電導変圧器の稼働中の過電流通電により冷媒の液体窒素中に気泡が発生しても、その電気的な絶縁性能を保持することかできる。
Therefore, by forming an extension part with an axial length of 60 mm or more on the upper end side of the winding frame 4 of each coil layer as described above, the coil layer has an outer peripheral surface side with energization of overcurrent. The bubbles that are generated and floated upward pass through the refrigerant holes for refrigerant convection opened on the disk surface of the disk-shaped coil support frame 6 arranged on the upper end side of the winding frame 4 as they are, and are arranged above the current leads 7a. (See Fig. 7) and the like can be prevented from occurring troubles that impair the insulation, and bubbles are generated in the liquid nitrogen of the refrigerant due to overcurrent conduction during operation of the superconducting transformer. However, the electrical insulation performance can be maintained.

1 鉄心
2 低圧コイル層
3 高圧コイル層
4 巻枠
4a 螺旋状溝
5 高温超電導線材
6 コイル支持部材
8 冷媒容器
10 液体窒素冷却ユニット
13 液体窒素
14 絶縁テープ
15 バリア層
d2 バリア層/高圧コイル層間の絶縁距離
L 巻枠延長部の軸方向長さ
DESCRIPTION OF SYMBOLS 1 Iron core 2 Low voltage coil layer 3 High voltage coil layer 4 Winding frame 4a Spiral groove 5 High temperature superconducting wire 6 Coil support member 8 Refrigerant container 10 Liquid nitrogen cooling unit 13 Liquid nitrogen 14 Insulating tape 15 Barrier layer d2 Barrier layer / high voltage coil layer Insulation distance L Axial length of reel extension

Claims (6)

テープ状の高温超電導線材が円筒状巻枠の外周面に巻回された構成になり、液体窒素を冷媒として該冷媒に浸漬され冷却される超電導コイルにおいて、
円筒状巻枠の外周面には高温超電導線材のテープ幅に相応した螺旋状の溝が形成され、コイル内径側では前記超電導線材のテープ面が該螺旋状溝に沿って巻回されるとともに、コイルの外径側では超電導線材のテープ面が外側から覆われるように絶縁テープで被覆されていて、
前記巻枠の周面上に冷媒が通流する冷却ダクトが形成されておらず、前記超電導線材の表、裏両テープ面および側面に前記冷媒が直接触れないように前記テープ面が隔離されたことを特徴とする超電導コイル。
In a superconducting coil in which a tape-shaped high-temperature superconducting wire is wound around the outer peripheral surface of a cylindrical winding frame, and is cooled by being immersed in the refrigerant as liquid nitrogen,
A spiral groove corresponding to the tape width of the high-temperature superconducting wire is formed on the outer peripheral surface of the cylindrical winding frame, and the tape surface of the superconducting wire is wound along the spiral groove on the inner diameter side of the coil. The outer diameter side of the coil is covered with insulating tape so that the tape surface of the superconducting wire is covered from the outside,
The cooling duct through which the refrigerant flows is not formed on the peripheral surface of the winding frame, and the tape surface is isolated so that the refrigerant does not directly touch the front, back both tape surfaces and side surfaces of the superconducting wire . A superconducting coil characterized by that.
請求項1に記載の超電導コイルにおいて、前記絶縁テープが、前記螺旋状の溝内に埋め込まれていることを特徴とする超電導コイル。   2. The superconducting coil according to claim 1, wherein the insulating tape is embedded in the spiral groove. 請求項1または2に記載の超電導コイルにおいて、前記絶縁テープは、ガラスクロスに半硬化状のエポキシ樹脂を含浸させたプリプレグテープで前記超電導線材のテープ面を外側から覆った後に熱硬化処理が施されたものであることを特徴とする超電導コイル。   The superconducting coil according to claim 1 or 2, wherein the insulating tape is subjected to a thermosetting treatment after covering the tape surface of the superconducting wire from the outside with a prepreg tape in which a glass cloth is impregnated with a semi-cured epoxy resin. A superconducting coil characterized by being made. 請求項1から3のいずれか1項に記載の超電導コイルを用いて構成した低圧コイル層と高圧コイル層とが内外周に間隔を隔てて鉄心脚部の外側に同心配置され、各コイル層の巻枠が上下に配された円盤状のコイル支持部材の間に支持され冷媒中に浸漬配置された超電導変圧器において、
内周側の低圧コイル層と外周側の高圧コイル層との間に、絶縁材の円筒状隔壁になる気泡拡散防止用のバリア層が高圧コイル層と比して相対的に低圧コイル層の周面に接近して配置され、該バリア層と高圧コイル層との間に高圧コイル/低圧コイル間の絶縁耐力に対応する所定の絶縁距離が設定されていることを特徴とする超電導変圧器。
A low voltage coil layer and a high voltage coil layer configured using the superconducting coil according to any one of claims 1 to 3 are concentrically arranged on the outer side of the iron core leg with an interval between the inner and outer circumferences. In the superconducting transformer, which is supported between the disk-shaped coil support members arranged on the top and bottom and immersed in the refrigerant,
Between the low voltage coil layer on the inner peripheral side and the high voltage coil layer on the outer peripheral side, a barrier layer for preventing bubble diffusion that becomes a cylindrical partition wall of the insulating material is relatively disposed around the low voltage coil layer as compared with the high voltage coil layer. A superconducting transformer characterized in that a predetermined insulation distance corresponding to a dielectric strength between a high voltage coil and a low voltage coil is set between the barrier layer and the high voltage coil layer.
請求項4に記載の超電導変圧器において、前記低圧コイル層、前記高圧コイル層の巻枠は、前記超電導線材の巻回域上端からの長さが巻回域下端からの長さよりも長くなるように上方に延長された延長部を有することを特徴とする超電導変圧器。   5. The superconducting transformer according to claim 4, wherein the winding frame of the low voltage coil layer and the high voltage coil layer has a length from the upper end of the winding region of the superconducting wire longer than a length from the lower end of the winding region. And a superconducting transformer having an extension portion extending upward. 請求項5に記載の超電導変圧器において、前記延長部の軸方向長さが少なくとも60mm以上に設定されていることを特徴とする超電導変圧器。   6. The superconducting transformer according to claim 5, wherein an axial length of the extension is set to at least 60 mm or more.
JP2011266859A 2011-12-06 2011-12-06 Superconducting coil and superconducting transformer Active JP6012170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266859A JP6012170B2 (en) 2011-12-06 2011-12-06 Superconducting coil and superconducting transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266859A JP6012170B2 (en) 2011-12-06 2011-12-06 Superconducting coil and superconducting transformer

Publications (2)

Publication Number Publication Date
JP2013120777A JP2013120777A (en) 2013-06-17
JP6012170B2 true JP6012170B2 (en) 2016-10-25

Family

ID=48773305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266859A Active JP6012170B2 (en) 2011-12-06 2011-12-06 Superconducting coil and superconducting transformer

Country Status (1)

Country Link
JP (1) JP6012170B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102044872B1 (en) * 2017-10-19 2019-11-14 전남대학교산학협력단 Electromagnetic drive system for medical micro/nano robot using superconducting electromagnet
CN113076642B (en) * 2021-03-31 2022-10-14 上海超导科技股份有限公司 Method for customizing superconducting tape according to coil design, superconducting tape and coil

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6476920A (en) * 1987-05-18 1989-03-23 Tetsuya Ogushi Apparatus utilizing superconductivity
JPH0794317A (en) * 1993-05-18 1995-04-07 Hitachi Ltd Superconducting coil device
JPH08107013A (en) * 1994-10-05 1996-04-23 Hitachi Ltd A.c. superconductive coil device and its manufacture
JP3208069B2 (en) * 1996-08-14 2001-09-10 大陽東洋酸素株式会社 Superconducting member cooling device
JP2004259737A (en) * 2003-02-24 2004-09-16 Fuji Electric Systems Co Ltd Superconducting transformer
DE102005029151B4 (en) * 2005-06-23 2008-08-07 Bruker Biospin Ag Cryostat arrangement with cryocooler

Also Published As

Publication number Publication date
JP2013120777A (en) 2013-06-17

Similar Documents

Publication Publication Date Title
JP4620637B2 (en) Resistive superconducting fault current limiter
KR101004203B1 (en) Super-conductive cable
US8928441B2 (en) Liquid cooled magnetic component with indirect cooling for high frequency and high power applications
KR100706494B1 (en) Superconducting cable
EP3001431A1 (en) Device for a current limiter and a current limiter comprising said device
Kim et al. The characteristics of the normal-zone propagation of the HTS coils with inserted Cu tape instead of electrical insulation
JP5800018B2 (en) Current limiter
KR101665038B1 (en) electrically conductive material impregnated no-insulation superconducting coil and manufacturing apparatus of the same
JPH0523485B2 (en)
JP2018117042A (en) High-temperature superconducting permanent current switch and high-temperature superconducting magnet device
JP5055348B2 (en) Superconducting magnet
JP6012170B2 (en) Superconducting coil and superconducting transformer
JP2010277975A (en) Superconducting cable line
JP5921874B2 (en) Superconducting coil for power induction equipment
JP5921875B2 (en) Superconducting coils for power induction devices and power induction devices
JP6491331B2 (en) Superconducting coil using partially insulated winding and method of manufacturing superconducting coil
JP5741094B2 (en) Superconducting coil
Mussa et al. Thermal-quench behavior of non-insulated high-temperature superconducting (HTS) racetrack pancake coil with cooling channels through the epoxy surface
JP5910996B2 (en) Superconducting cable and method of manufacturing superconducting cable
KR100777182B1 (en) High temperature superconducting power cable
EP3553839A1 (en) Superconducting fault current limiter
JP2001244108A (en) Superconducting coil of induction apparatus
JP2013143474A (en) Superconducting magnet device and current lead for the same
JPS5948488B2 (en) Composite superconducting wire
JP4908338B2 (en) Heat generation prevention device for metal heat exchanger of superconducting transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160920

R150 Certificate of patent or registration of utility model

Ref document number: 6012170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250