JP2020021577A - Polymer electrolyte fuel cell and manufacturing method of electrode - Google Patents

Polymer electrolyte fuel cell and manufacturing method of electrode Download PDF

Info

Publication number
JP2020021577A
JP2020021577A JP2018143106A JP2018143106A JP2020021577A JP 2020021577 A JP2020021577 A JP 2020021577A JP 2018143106 A JP2018143106 A JP 2018143106A JP 2018143106 A JP2018143106 A JP 2018143106A JP 2020021577 A JP2020021577 A JP 2020021577A
Authority
JP
Japan
Prior art keywords
fine powder
transition metal
electrode
alloy
metal fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018143106A
Other languages
Japanese (ja)
Other versions
JP7281158B2 (en
Inventor
正己 奥山
Masami Okuyama
正己 奥山
鈴木 健治
Kenji Suzuki
健治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Graviton KK
Original Assignee
Graviton KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Graviton KK filed Critical Graviton KK
Priority to JP2018143106A priority Critical patent/JP7281158B2/en
Publication of JP2020021577A publication Critical patent/JP2020021577A/en
Application granted granted Critical
Publication of JP7281158B2 publication Critical patent/JP7281158B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

To provide a polymer electrolyte fuel cell comprising a fuel electrode and an air electrode having a catalytic activity (catalysis) without using a platinum group element.SOLUTION: A fuel electrode 13A and an air electrode 14A of a polymer electrolyte fuel cell 10 are a carbon nanotube electrode 15A or a carbon nanohorn electrode 15B. Each of the electrodes 15A and 15B comprises: alloy fine particles of an alloy molded article obtained by compressing a mixture of transition metal fine powder obtained by uniformly mixing and dispersing transition metal powder of at least three kinds of transition metals selected from various kinds of transition metals, followed by burning; and aggregates of carbon nanotubes or carbon nanohorns. In the mixture of transition metal fine powder, at least three kinds of transition metals are selected from various kinds of transition metals so that a compound work function of work functions of at least three kinds of transition metals selected is approximated to a work function of the platinum group elements. In the electrodes 15A and 15B, alloy fine particles are carried on the surface of carbon nanotubes or the surface of carbon nanohorns.SELECTED DRAWING: Figure 3

Description

本発明は、複数のセルを有するセルスタックを備えた固体高分子形燃料電池に関するとともに、固体高分子形燃料電池のセルを形成する燃料極及び空気極の電極製造方法に関する。   The present invention relates to a polymer electrolyte fuel cell provided with a cell stack having a plurality of cells, and also relates to a method of manufacturing a fuel electrode and an air electrode forming cells of the polymer electrolyte fuel cell.

固体高分子電解質膜と、固体高分子電解質膜を両面から挟持するアノード電極及びカソード電極と、液体燃料を収容する燃料容器と、アノード電極とカソード電極との間に設けられる気液分離性多孔質体からなる燃料気化層と、燃料気化層を両面から挟持する有孔固定板とを有し、カソード電極側に配置した有孔固定板の開口率がアノード電極側に配置した有孔固定板の開口率よりも大きい個体高分子形燃料電池が開示されている(特許文献1参照)。   A solid polymer electrolyte membrane; an anode electrode and a cathode electrode sandwiching the solid polymer electrolyte membrane from both sides; a fuel container containing a liquid fuel; and a gas-liquid separating porous provided between the anode electrode and the cathode electrode. Having a fuel vaporization layer composed of a body and a perforated fixing plate sandwiching the fuel vaporization layer from both sides, wherein the aperture ratio of the perforated fixing plate disposed on the cathode electrode side is equal to that of the perforated fixing plate disposed on the anode electrode side. A polymer electrolyte fuel cell having a larger aperture ratio is disclosed (see Patent Document 1).

特開2011−222119号公報JP 2011-222119 A

前記特許文献1に開示の個体高分子形燃料電池のカソード電極及びアノード電極の作成方法は、以下のとおりである。炭素粒子に粒子径が3〜5nmの範囲にある白金微粒子を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、カソード電極用の触媒ペーストを作る。カソード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのカソード電極を作製する。次に、白金微粒子に替えて粒子径が3〜5nmの範囲にある白金(Pt)−ルテニウム(Ru)合金微粒子(Ruの割合は60at%)を重量比で55%担持させた触媒担持炭素微粒子を作り、その触媒担持炭素微粒子1gに5重量%ナフィオン溶液を適量加えて攪拌し、アノード電極用の触媒ペーストを作る。アノード電極用の触媒ペーストを基材としてのカーボンペーパー上に8mg/cmの量で塗布した後、乾燥させて4cm×4cmのアノード電極を作製する。 The method for producing the cathode electrode and the anode electrode of the solid polymer fuel cell disclosed in Patent Document 1 is as follows. A catalyst-supporting carbon fine particle in which 55% by weight of platinum fine particles having a particle diameter in the range of 3 to 5 nm is supported on the carbon particle, and an appropriate amount of a 5% by weight Nafion solution is added to 1 g of the catalyst-supporting carbon fine particle, followed by stirring. Make a catalyst paste for the cathode electrode. A catalyst paste for a cathode electrode is applied on carbon paper as a base material in an amount of 8 mg / cm 2 , and then dried to produce a 4 cm × 4 cm cathode electrode. Next, catalyst-loaded carbon fine particles carrying 55% by weight of platinum (Pt) -ruthenium (Ru) alloy fine particles (Ru ratio: 60 at%) having a particle diameter in the range of 3 to 5 nm instead of platinum fine particles. And an appropriate amount of a 5% by weight Nafion solution is added to 1 g of the catalyst-supporting carbon fine particles, followed by stirring to prepare a catalyst paste for an anode electrode. An anode electrode catalyst paste is applied on carbon paper as a base material in an amount of 8 mg / cm 2 , and then dried to produce a 4 cm × 4 cm anode electrode.

固体高分子形燃料電池の電極触媒として各種の白金担持カーボンが広く利用されている。しかし、白金族元素は、貴金属であり、その生産量に限りがある希少な資源であることから、その使用量を抑えることが求められている。さらに、今後の固体高分子形燃料電池の普及に向けて高価な白金以外の素材を利用した白金レス触媒を有する廉価な燃料極及び空気極の開発が求められている。   Various platinum-supported carbons are widely used as electrode catalysts for polymer electrolyte fuel cells. However, the platinum group element is a noble metal, and is a scarce resource with a limited production amount. Therefore, it is required to reduce the amount of the platinum group element used. Further, development of inexpensive fuel electrodes and air electrodes having a platinum-less catalyst using a material other than expensive platinum is required for the spread of polymer electrolyte fuel cells in the future.

本発明の目的は、白金族元素を利用することなく触媒活性(触媒作用)を有する燃料極及び空気極を備え、白金レスの燃料極及び空気極を使用して十分な電気を発電することができ、負荷に十分な電気エネルギーを供給することができる固体高分子形燃料電池を提供することにある。本発明の他の目的は、白金族元素を利用することなく、廉価に作ることができ、十分な触媒活性(触媒作用)を有する固体高分子形燃料電池の燃料極及び空気極を製造する電極製造方法を提供することにある。   An object of the present invention is to provide a fuel electrode and an air electrode having catalytic activity (catalysis) without using a platinum group element, and to generate sufficient electricity using a platinum-less fuel electrode and an air electrode. An object of the present invention is to provide a polymer electrolyte fuel cell capable of supplying sufficient electric energy to a load. Another object of the present invention is to provide an electrode for producing a fuel electrode and an air electrode of a polymer electrolyte fuel cell which can be manufactured at low cost without using a platinum group element and has sufficient catalytic activity (catalysis). It is to provide a manufacturing method.

前記課題を解決するための本発明の第1の前提は、複数のセルを有するセルスタックを備え、セルが、燃料極及び空気極と、燃料極と空気極との間に位置する電極接合体膜と、燃料極の外側と空気極の外側とに位置するセパレータとから形成された固体高分子形燃料電池である。   A first premise of the present invention for solving the above problem is that an electrode assembly including a cell stack having a plurality of cells, wherein the cells are located between a fuel electrode and an air electrode, and between the fuel electrode and the air electrode This is a polymer electrolyte fuel cell formed from a membrane and separators located outside the fuel electrode and outside the air electrode.

前記第1の前提における本発明の固体高分子形燃料電池の特徴は、燃料極及び空気極が、カーボンナノチューブ電極又はカーボンナノホーン電極であり、カーボンナノチューブ電極又はカーボンナノホーン電極が、各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物のアロイ微粒子と、カーボンナノチューブの凝集体又はカーボンナノホーンの凝集体とを含み、遷移金属微粉体混合物では、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択され、カーボンナノチューブ電極又はカーボンナノホーン電極では、アロイ微粒子がカーボンナノチューブの表面又はカーボンナノホーンの表面に担持されていることにある。   The feature of the polymer electrolyte fuel cell of the present invention on the first premise is that the fuel electrode and the air electrode are carbon nanotube electrodes or carbon nanohorn electrodes, and the carbon nanotube electrodes or carbon nanohorn electrodes are formed from various transition metals. A transition metal fine powder mixture obtained by uniformly mixing and dispersing transition metal fine powders of at least three kinds of selected transition metals is compressed, and then alloy fine particles of an alloy molded product which is baked, and aggregates of carbon nanotubes or carbon nanohorns are formed. The transition metal fine powder mixture, wherein at least three of the various transition metals are selected so that the composite work function of the work functions of the at least three selected transition metals is close to the work function of the platinum group element. Types of transition metals are selected, and for carbon nanotube electrodes or carbon nanohorn electrodes, In the Roy fine particles are carried on the surface or surfaces of the carbon nanohorn carbon nanotubes.

本発明の固体高分子形燃料電池の一例として、カーボンナノチューブの表面又はカーボンナノホーンの表面には、カーボンナノチューブ又はカーボンナノホーンの表面から外側へ向かって重なり合うアロイ微粒子によってアロイ微粒子積層ポーラス構造が形成され、固体高分子形燃料電池では、電極接合体膜とアロイ微粒子積層ポーラス構造とが隙間なく重なり合っている。   As an example of the polymer electrolyte fuel cell of the present invention, on the surface of the carbon nanotube or the surface of the carbon nanohorn, an alloy fine particle laminated porous structure is formed by alloy fine particles overlapping outward from the surface of the carbon nanotube or the carbon nanohorn, In the polymer electrolyte fuel cell, the electrode assembly membrane and the alloy fine particle laminated porous structure overlap without any gap.

本発明の固体高分子形燃料電池の他の一例としては、遷移金属微粉体の粒径が、10μm〜200μmの範囲にあり、カーボンナノチューブ電極又はカーボンナノホーン電極の厚み寸法が、0.03mm〜0.3mmの範囲にある。   As another example of the polymer electrolyte fuel cell of the present invention, the particle size of the transition metal fine powder is in the range of 10 μm to 200 μm, and the thickness of the carbon nanotube electrode or the carbon nanohorn electrode is 0.03 mm to 0 μm. 0.3 mm.

本発明の固体高分子形燃料電池の他の一例としては、遷移金属微粉体混合物が、Ni(ニッケル)の微粉体を主成分とし、遷移金属微粉体混合物では、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている。   In another example of the polymer electrolyte fuel cell according to the present invention, the transition metal fine powder mixture is mainly composed of Ni (nickel) fine powder, and the transition metal fine powder mixture excludes the work function of Ni and Ni. At least two other transition metals excluding Ni fine powder from various transition metals so that the composite work function with the work function of the other at least two transition metals approximates the work function of the platinum group element. Are selected.

本発明の固体高分子形燃料電池の他の一例としては、遷移金属微粉体混合物の全重量に対するNi(ニッケル)の微粉体の重量比が、30%〜50%の範囲にあり、Niの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が、20%〜50%の範囲にあり、Niの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が、3%〜20%の範囲にある。   As another example of the polymer electrolyte fuel cell according to the present invention, the weight ratio of the fine powder of Ni (nickel) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, The weight ratio of the transition metal fine powder of one transition metal excluding the powder to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and at least one other transition metal excluding the Ni fine powder. The weight ratio of the transition metal fine powder of the metal to the total weight of the transition metal fine powder mixture is in the range of 3% to 20%.

本発明の固体高分子形燃料電池の他の一例としては、遷移金属微粉体混合物が、Fe(鉄)の微粉体を主成分とし、遷移金属微粉体混合物では、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている。   As another example of the polymer electrolyte fuel cell of the present invention, the transition metal fine powder mixture is mainly composed of Fe (iron) fine powder, and the transition metal fine powder mixture excludes the work function of Fe and Fe. At least two other transition metals excluding the fine powder of Fe from various transition metals so that the work function of the transition metal and the work function of the other at least two transition metals are close to the work function of the platinum group element. Are selected.

本発明の固体高分子形燃料電池の他の一例としては、遷移金属微粉体混合物の全重量に対するFe(鉄)の微粉体の重量比が、30%〜50%の範囲にあり、Feの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が、20%〜50%の範囲にあり、Feの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が、3%〜20%の範囲にある。   As another example of the polymer electrolyte fuel cell according to the present invention, the weight ratio of the fine powder of Fe (iron) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%. The weight ratio of the transition metal fine powder of one type of transition metal excluding the powder to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and at least one other transition metal excluding the fine powder of Fe The weight ratio of the metal transition metal powder to the total weight of the transition metal powder mixture is in the range of 3% to 20%.

本発明の固体高分子形燃料電池の他の一例としては、遷移金属微粉体混合物が、Cu(銅)の微粉体を主成分とし、遷移金属微粉体混合物では、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている。   In another example of the polymer electrolyte fuel cell according to the present invention, the transition metal fine powder mixture mainly contains Cu (copper) fine powder, and the transition metal fine powder mixture excludes the work function of Cu and Cu. At least two other transition metals excluding the fine powder of Cu from various transition metals such that the work function of the other transition metals with the work function of the other at least two transition metals approximates the work function of the platinum group element. Are selected.

本発明の固体高分子形燃料電池の他の一例としては、遷移金属微粉体混合物の全重量に対するCu(銅)の微粉体の重量比が、30%〜50%の範囲にあり、Cuの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が、20%〜50%の範囲にあり、Cuの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が、3%〜20%の範囲にある。   As another example of the polymer electrolyte fuel cell of the present invention, the weight ratio of the fine powder of Cu (copper) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and the fine powder of Cu is used. The weight ratio of the transition metal fine powder of one type of transition metal excluding the powder to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and at least one other transition excluding the fine powder of Cu. The weight ratio of the metal transition metal fine powder to the total weight of the transition metal fine powder mixture is in the range of 3% to 20%.

本発明の固体高分子形燃料電池の他の一例として、アロイ成形物では、選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が遷移金属微粉体混合物の焼成時に溶融し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体が接合されている。   As another example of the polymer electrolyte fuel cell of the present invention, in an alloy molding, transition metal fine powder of at least two types of transition metals among the selected transition metals is melted during firing of the transition metal fine powder mixture. The transition metal fine powder of the transition metal is joined using the molten transition metal fine powder of the transition metal as a binder.

前記課題を解決するための本発明の第2の前提は、固体高分子形燃料電池の燃料極及び空気極として使用するカーボンナノチューブ電極又はカーボンナノホーンを製造する電極製造方法である。   A second premise of the present invention for solving the above problems is an electrode manufacturing method for manufacturing a carbon nanotube electrode or a carbon nanohorn used as a fuel electrode and an air electrode of a polymer electrolyte fuel cell.

前記第2の前提における本発明の電極製造方法の特徴は、電極製造方法が、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、遷移金属選択工程によって選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を作る遷移金属微粉体混合物作成工程と、遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を所定圧力で加圧して遷移金属微粉体圧縮物を作る遷移金属微粉体圧縮物作成工程と、遷移金属微粉体圧縮物作成工程によって作られた遷移金属微粉体圧縮物を所定温度で焼成してアロイ成形物を作るアロイ成形物作成工程と、カーボンナノチューブ又はカーボンナノホーンを生成し、アロイ成形物作成工程によって作られたアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を担持させるアロイ微粒子担持工程とを有することにある。   The feature of the electrode manufacturing method of the present invention on the second premise is that the electrode manufacturing method is such that the work function of at least three types of transition metals selected from various transition metals is close to the work function of a platinum group element. A transition metal selection step of selecting at least three types of transition metals from various transition metals, and a transition metal fine powder of at least three types of transition metals selected in the transition metal selection step. A transition metal fine powder mixture producing step of forming a dispersed transition metal fine powder mixture, and a transition of producing a transition metal fine powder compact by pressing the transition metal fine powder mixture produced by the transition metal fine powder mixture producing step at a predetermined pressure. An alloy for sintering the transition metal fine powder compact produced by the metal fine powder compact production process and the transition metal fine powder compact production process at a predetermined temperature to form an alloy molded product. Forming a molded article, generating carbon nanotubes or carbon nanohorns, evaporating the alloy molded article formed by the alloy molded article forming step, and supporting the alloy fine particles of the alloy molded article on the surface of the carbon nanotube or the surface of the carbon nanohorn. And a step of supporting an alloy fine particle.

本発明の固体高分子形燃料電池の電極製造方法の一例としては、アロイ微粒子担持工程が、カーボンナノチューブ又はカーボンナノホーンの生成と同時にアロイ成形物を蒸発させ、アロイ成形物のアロイ微粒子をカーボンナノチューブの表面又はカーボンナノホーンの表面に担持させる。   As an example of the method for producing an electrode of a polymer electrolyte fuel cell of the present invention, the alloy fine particle supporting step is to evaporate an alloy molded product simultaneously with the generation of carbon nanotubes or carbon nanohorns, and to convert the alloy fine particles of the alloy molded product into carbon nanotubes. It is supported on the surface or the surface of the carbon nanohorn.

本発明の固体高分子形燃料電池の電極製造方法の他の一例としては、遷移金属微粉体混合物作成工程が、遷移金属選択工程によって選択された少なくとも3種類の遷移金属を10μm〜200μmの粒径に微粉砕する。   As another example of the method for manufacturing an electrode of a polymer electrolyte fuel cell according to the present invention, the transition metal fine powder mixture preparing step includes the step of preparing at least three types of transition metals selected in the transition metal selection step with a particle size of 10 μm to 200 μm. Finely pulverize.

本発明の固体高分子形燃料電池の電極製造方法の他の一例としては、遷移金属微粉体圧縮物作成工程が、遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を500Mpa〜800Mpaの圧力で加圧して遷移金属微粉体圧縮物を作る。   As another example of the method for producing an electrode of a polymer electrolyte fuel cell according to the present invention, the transition metal fine powder compact production step is performed by using the transition metal fine powder mixture produced by the transition metal fine powder mixture production step at 500 Mpa to 800 Mpa. To produce a compressed transition metal fine powder.

本発明の固体高分子形燃料電池の電極製造方法の他の一例としては、アロイ成形物作成工程が、遷移金属選択工程によって選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体を溶融させる温度で遷移金属微粉体圧縮物を焼成し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体を接合する。   As another example of the method for producing an electrode of a polymer electrolyte fuel cell according to the present invention, an alloy molded article forming step includes a transition metal fine powder of at least two kinds of transition metals selected from the transition metals selected in the transition metal selecting step. The transition metal fine powder compact is fired at a temperature at which the body is melted, and the transition metal fine powder of the transition metal is joined using the transition metal fine powder of the molten transition metal as a binder.

本発明の固体高分子形燃料電池の電極製造方法の他の一例としては、アロイ微粒子担持工程が、カーボンナノチューブ電極又はカーボンナノホーン電極を0.03mm〜0.3mmの範囲の厚み寸法に成形し、カーボンナノチューブの表面又はカーボンナノホーンの表面から外側へ向かって重なり合うアロイ微粒子によってアロイ微粒子積層ポーラス構造を形成する。   As another example of the method for producing an electrode of a polymer electrolyte fuel cell of the present invention, the alloy fine particle supporting step comprises forming a carbon nanotube electrode or a carbon nanohorn electrode into a thickness dimension in a range of 0.03 mm to 0.3 mm, An alloy fine particle laminated porous structure is formed by alloy fine particles overlapping outward from the surface of the carbon nanotube or the surface of the carbon nanohorn.

本発明に係る固体高分子形燃料電池によれば、それに使用される燃料極及び空気極であるカーボンナノチューブ電極又はカーボンナノホーン電極が各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物のアロイ微粒子と、カーボンナノチューブの凝集体又はカーボンナノホーンの凝集体とを含み、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択され、アロイ微粒子がカーボンナノチューブの表面又はカーボンナノホーンの表面に担持されているから、カーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子を担持したカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができるとともに、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。固体高分子形燃料電池は、それに使用されるカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体から作られたアロイ微粒子(アロイ成形物)を利用し、高価な白金族元素が利用されていない白金レスであり、固体高分子形燃料電池を廉価に作ることができる。   According to the polymer electrolyte fuel cell according to the present invention, the carbon nanotube electrode or the carbon nanohorn electrode as the fuel electrode and the air electrode used therein is a transition metal of at least three kinds of transition metals selected from various transition metals. At least three selected types including alloy fine particles of an alloy molded product that is fired after compressing a transition metal fine powder mixture in which fine powders are uniformly mixed and dispersed, and an aggregate of carbon nanotubes or an aggregate of carbon nanohorns At least three types of transition metals are selected from various transition metals so that the composite work function of the work function of the transition metal approximates the work function of the platinum group element, and the alloy fine particles are formed on the surface of the carbon nanotube or on the carbon nanohorn. Since it is supported on the surface, the surface of the carbon nanotube or the surface of the carbon nanohorn A carbon nanotube electrode (fuel electrode and air electrode) or a carbon nanohorn electrode (fuel electrode and air electrode) carrying alloy fine particles on the surface thereof has substantially the same work function as a fuel electrode and an air electrode containing a platinum group element; Can exhibit substantially the same catalytic activity (catalysis) as the fuel electrode and the air electrode containing Pt, and generate sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or a carbon nanohorn electrode. In addition, sufficient electric energy can be supplied to the load connected to the polymer electrolyte fuel cell. In the polymer electrolyte fuel cell, the carbon nanotube electrode (fuel electrode and air electrode) or the carbon nanohorn electrode (fuel electrode and air electrode) used therein has at least three types of transition metals selected from various transition metals. Utilizing alloy fine particles (alloy molded product) made of metal fine powder, it is a platinum-less alloy that does not use expensive platinum group elements, and a polymer electrolyte fuel cell can be manufactured at low cost.

カーボンナノチューブ又はカーボンナノホーンの表面から外側へ向かって重なり合うアロイ微粒子によってアロイ微粒子積層ポーラス構造がカーボンナノチューブの表面又はカーボンナノホーンの表面に形成され、電極接合体膜とアロイ微粒子積層ポーラス構造とが隙間なく重なり合っている固体高分子形燃料電池は、カーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子積層ポーラス構造を形成することで、アロイ微粒子の比表面積を大きくすることができ、アロイ微粒子の触媒作用を十分に利用することができるとともに、アロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができるとともに、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The alloy fine particle laminated porous structure is formed on the surface of the carbon nanotube or the carbon nanohorn by the alloy fine particles overlapping outward from the surface of the carbon nanotube or the carbon nanohorn, and the electrode assembly film and the alloy fine particle laminated porous structure overlap without any gap. The polymer electrolyte fuel cell that is used can increase the specific surface area of the alloy fine particles by forming a porous structure of the alloy fine particles on the surface of the carbon nanotube or the surface of the carbon nanohorn, and sufficiently enhance the catalytic action of the alloy fine particles. And the carbon nanotube electrode (fuel electrode and air electrode) or the carbon nanohorn electrode (fuel electrode and air electrode) having the porous structure of the alloy fine particles are almost the same as the fuel electrode and air electrode containing a platinum group element. No A polymer electrolyte fuel cell using a platinum-free carbon nanotube electrode or carbon nanohorn electrode that has a function and can exhibit substantially the same catalytic activity (catalysis) as a fuel electrode and an air electrode containing a platinum group element. And sufficient electric energy can be supplied to a load connected to the polymer electrolyte fuel cell.

遷移金属微粉体の粒径が10μm〜200μmの範囲にあり、カーボンナノチューブ電極又はカーボンナノホーン電極の厚み寸法が0.03mm〜0.3mmの範囲にある固体高分子形燃料電池は、カーボンナノチューブ電極又はカーボンナノホーン電極の厚み寸法を前記範囲にすることで、カーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)の電気抵抗を小さくすることができ、カーボンナノチューブ電極又はカーボンナノホーン電極を電流がスムースに流れるから、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができるとともに、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell in which the transition metal fine particles have a particle size in the range of 10 μm to 200 μm and the thickness of the carbon nanotube electrode or carbon nanohorn electrode is in the range of 0.03 mm to 0.3 mm is a carbon nanotube electrode or By setting the thickness dimension of the carbon nanohorn electrode within the above range, the electrical resistance of the carbon nanotube electrode (fuel electrode and air electrode) or the carbon nanohorn electrode (fuel electrode and air electrode) can be reduced, and the carbon nanotube electrode or carbon Since the current flows smoothly through the nanohorn electrode, sufficient electricity can be generated in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or a carbon nanohorn electrode, and connected to the polymer electrolyte fuel cell. Supply sufficient electrical energy to the Can be paid.

遷移金属微粉体混合物がNi(ニッケル)の微粉体を主成分とし、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている固体高分子形燃料電池は、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているから、カーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができるとともに、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The transition metal fine powder mixture is mainly composed of Ni (nickel) fine powder, and the work function of Ni and the work function of at least two types of transition metals other than Ni is a work function of a platinum group element. As an approximation, a polymer electrolyte fuel cell in which transition metal fine powder of at least two other transition metals other than the fine powder of Ni is selected from various transition metals, the work function of Ni and the Ni And at least two other transition metals excluding Ni fine powder from various transition metals so that the work function of the transition metal and the work function of at least two other transition metals other than the above is close to the work function of the platinum group element. Since the fine powder of the transition metal is selected, the carbon nanotube electrode (fuel powder) having the alloy fine particles or the alloy fine particle laminated porous structure is formed on the surface of the carbon nanotube or the surface of the carbon nanohorn. Electrode and air electrode) or a carbon nanohorn electrode (fuel electrode and air electrode) has substantially the same work function as the fuel electrode and air electrode containing a platinum group element, and is substantially the same as the fuel electrode and air electrode containing a platinum group element. It is capable of exhibiting catalytic activity (catalysis), can generate sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or a carbon nanohorn electrode, and has a solid polymer fuel cell. Sufficient electrical energy to the load connected to the load.

遷移金属微粉体混合物の全重量に対するNi(ニッケル)の微粉体の重量比が30%〜50%の範囲にあり、Niの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%〜50%の範囲にあり、Niの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%〜20%の範囲にある固体高分子形燃料電池は、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているとともに、Niの微粉体の重量比やNiの微粉体を除く少なくとも1種類の遷移金属の微粉体の重量比、Niの微粉体を除く他の少なくとも1種類の遷移金属の微粉体の重量比を前記範囲にすることで、Niの微粉体を主成分としたカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、カーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮し、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができ、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The weight ratio of the Ni (nickel) fine powder to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and the transition metal fine powder of one type of transition metal fine powder excluding the Ni fine powder The weight ratio of the transition metal fine powder of at least one other transition metal excluding the Ni fine powder to the total weight of the transition metal fine powder mixture is in the range of 20% to 50% with respect to the total weight of the body mixture. Is in the range of 3% to 20%, the composite work function of the work function of Ni and the work function of at least two types of transition metals other than Ni is the work function of the platinum group element. As an approximation, at least two types of transition metal fine powder excluding Ni fine powder are selected from various transition metals, and the weight ratio of Ni fine powder and Ni fine powder are excluded. At least one transition By setting the weight ratio of the fine metal powder and the weight ratio of at least one type of transition metal fine powder other than the fine Ni powder to the above ranges, the carbon nanotube electrode (fuel Electrode and air electrode) or a carbon nanohorn electrode (fuel electrode and air electrode) has substantially the same work function as a fuel electrode and an air electrode containing a platinum group element, and a carbon nanotube electrode or a carbon nanohorn electrode contains a platinum group element. It exhibits substantially the same catalytic activity (catalysis) as the electrode and the air electrode, and can generate sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or a carbon nanohorn electrode. Sufficient electric energy can be supplied to the load connected to the molecular fuel cell.

遷移金属微粉体混合物がFe(鉄)の微粉体を主成分とし、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている固体高分子形燃料電池は、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているから、カーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができるとともに、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The transition metal fine powder mixture is mainly composed of a fine powder of Fe (iron), and the work function of Fe and the work function of at least two types of transition metals other than Fe is a work function of a platinum group element. As an approximation, a polymer electrolyte fuel cell in which at least two transition metal fine powders other than the fine powder of Fe are selected from among various transition metals, the work function of Fe and Fe And at least two other types of transition metals excluding the fine powder of Fe from various transition metals so that the composite work function with the work function of at least two other types of transition metals other than the above is similar to the work function of the platinum group element. Since the transition metal fine powder is selected, the carbon nanotube electrode (the fuel electrode and the like) having the alloy fine particles or the alloy fine particle laminated porous structure on the surface of the carbon nanotube or the surface of the carbon nanohorn is selected. The air electrode) or the carbon nanohorn electrode (fuel electrode and air electrode) has substantially the same work function as the fuel electrode and the air electrode containing a platinum group element, and has almost the same catalytic activity as the fuel electrode and the air electrode containing a platinum group element. (Catalytic action), and can generate sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or carbon nanohorn electrode, and can be connected to a polymer electrolyte fuel cell Enough electrical energy to the applied load.

遷移金属微粉体混合物の全重量に対するFe(鉄)の微粉体の重量比が30%〜50%の範囲にあり、Feの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%〜50%の範囲にあり、Feの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%〜20%の範囲にある固体高分子形燃料電池は、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているとともに、Feの微粉体の重量比やFeの微粉体を除く少なくとも1種類の遷移金属の微粉体の重量比、Feの微粉体を除く他の少なくとも1種類の遷移金属の微粉体の重量比を前記範囲にすることで、Feの微粉体を主成分としたカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、カーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮し、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができ、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The weight ratio of the fine powder of Fe (iron) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and the transition metal fine powder of the transition metal fine powder of one type of transition metal excluding the fine powder of Fe The weight ratio of the transition metal fine powder of at least one other transition metal excluding the Fe fine powder to the total weight of the transition metal fine powder mixture is in the range of 20% to 50% with respect to the total weight of the body mixture. Is in the range of 3% to 20%, the composite work function of the work function of Fe and the work function of at least two types of transition metals other than Fe is the work function of the platinum group element. As an approximation, at least two types of transition metal fine powder except for the fine powder of Fe are selected from various transition metals, and the weight ratio of the fine powder of Fe and the fine powder of Fe are excluded. At least one transition metal By setting the weight ratio of the fine powder and the weight ratio of at least one type of transition metal other than the fine powder of Fe within the above ranges, the carbon nanotube electrode (the fuel electrode and the The air electrode) or the carbon nanohorn electrode (fuel electrode and air electrode) has substantially the same work function as the fuel electrode and the air electrode containing a platinum group element, and the carbon nanotube electrode or the carbon nanohorn electrode has a fuel electrode containing a platinum group element and It exhibits almost the same catalytic activity (catalysis) as an air electrode, and can generate sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or a carbon nanohorn electrode. Sufficient electric energy can be supplied to the load connected to the fuel cell.

遷移金属微粉体混合物がCu(銅)の微粉体を主成分とし、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている固体高分子形燃料電池は、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているから、カーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子又はアロイ微粒子積層ポーラス構造を有するカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができるとともに、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The transition metal fine powder mixture contains Cu (copper) fine powder as a main component, and the composite work function of the work function of Cu and the work function of at least two types of transition metals other than Cu becomes the work function of the platinum group element. As an approximation, a polymer electrolyte fuel cell in which at least two transition metal fine powders of at least two other transition metals except for the fine powder of Cu are selected from various transition metals, the work function of Cu and the Cu And at least two other types of transition metals excluding the fine powder of Cu from various transition metals so that the work function thereof with the work function of the other at least two types of transition metals other than that of the transition metal approximates the work function of the platinum group element. Since the transition metal fine powder is selected, the carbon nanotube electrode (the fuel electrode and the like) having the alloy fine particles or the alloy fine particle laminated porous structure on the surface of the carbon nanotube or the surface of the carbon nanohorn is selected. The air electrode) or the carbon nanohorn electrode (fuel electrode and air electrode) has substantially the same work function as the fuel electrode and the air electrode containing a platinum group element, and has almost the same catalytic activity as the fuel electrode and the air electrode containing a platinum group element. (Catalytic action), and can generate sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or carbon nanohorn electrode, and can be connected to a polymer electrolyte fuel cell Enough electrical energy to the applied load.

遷移金属微粉体混合物の全重量に対するCu(銅)の微粉体の重量比が30%〜50%の範囲にあり、Cuの微粉体を除く1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が20%〜50%の範囲にあり、Cuの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の遷移金属微粉体混合物の全重量に対する重量比が3%〜20%の範囲にある固体高分子形燃料電池は、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているとともに、Cuの微粉体の重量比やCuの微粉体を除く少なくとも1種類の遷移金属の微粉体の重量比、Cuの微粉体を除く他の少なくとも1種類の遷移金属の微粉体の重量比を前記範囲にすることで、Cuの微粉体を主成分としたカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、カーボンナノチューブ電極又はカーボンナノホーン電極が白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮し、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができ、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   The weight ratio of the fine powder of Cu (copper) to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and the transition metal fine powder of the transition metal fine powder of one type of transition metal excluding the fine powder of Cu The weight ratio of the transition metal fine powder of at least one other transition metal excluding the Cu fine powder to the total weight of the transition metal fine powder mixture is in the range of 20% to 50% with respect to the total weight of the body mixture. Is in the range of 3% to 20%, the composite work function of the work function of Cu and the work function of at least two types of transition metals other than Cu is the work function of the platinum group element. As an approximation, at least two types of transition metal fine powder excluding Cu fine powder are selected from various transition metals, and the weight ratio of Cu fine powder and Cu fine powder are excluded. At least one transition metal By setting the weight ratio of the fine powder and the weight ratio of the fine powder of at least one other type of transition metal excluding the fine powder of Cu to the above ranges, the carbon nanotube electrode (fuel electrode and The air electrode) or the carbon nanohorn electrode (fuel electrode and air electrode) has substantially the same work function as the fuel electrode and the air electrode containing a platinum group element, and the carbon nanotube electrode or the carbon nanohorn electrode has a fuel electrode containing a platinum group element and It exhibits almost the same catalytic activity (catalysis) as an air electrode, and can generate sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or a carbon nanohorn electrode. Sufficient electric energy can be supplied to the load connected to the fuel cell.

アロイ成形物において、選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が遷移金属微粉体混合物の焼成時に溶融し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体が接合されている固体高分子形燃料電池は、遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が溶融することでアロイ成形物を作ることができ、アロイ成形物のアロイ微粒子をカーボンナノチューブの表面又はカーボンナノホーンの表面に担持させることができるとともに、アロイ微粒子積層ポーラス構造をカーボンナノチューブの表面又はカーボンナノホーンの表面に形成することができるから、カーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)が白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮し、白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を使用した固体高分子形燃料電池において十分な電気を発電することができ、固体高分子形燃料電池に接続された負荷に十分な電気エネルギーを供給することができる。   In the alloy molded product, transition metal fine powder of at least two types of transition metals among the selected transition metals is melted at the time of firing the transition metal fine powder mixture, and the transition metal fine powder of the molten transition metal is used as a binder. The polymer electrolyte fuel cell to which the transition metal fine powder of the metal is joined can produce an alloy molded article by melting the transition metal fine powder of at least two kinds of transition metals among the transition metals. Since the alloy fine particles of the molded product can be supported on the surface of the carbon nanotube or the surface of the carbon nanohorn, and the alloy fine particle laminated porous structure can be formed on the surface of the carbon nanotube or the surface of the carbon nanohorn, the carbon nanotube electrode ( Fuel electrode and air electrode) or carbon nanohorn electrode (fuel electrode and air) Electrode) exhibits substantially the same catalytic activity (catalysis) as a fuel electrode containing a platinum group element and an air electrode, and provides sufficient electricity in a polymer electrolyte fuel cell using a platinum-less carbon nanotube electrode or carbon nanohorn electrode. Can be generated, and sufficient electric energy can be supplied to the load connected to the polymer electrolyte fuel cell.

本発明に係る固体高分子形燃料電池の燃料極及び空気極として使用するカーボンナノチューブ電極又はカーボンナノホーンの電極製造方法によれば、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、遷移金属選択工程によって選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を作る遷移金属微粉体混合物作成工程と、遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を所定圧力で加圧して遷移金属微粉体圧縮物を作る遷移金属微粉体圧縮物作成工程と、遷移金属微粉体圧縮物作成工程によって作られた遷移金属微粉体圧縮物を所定温度で焼成してアロイ成形物を作るアロイ成形物作成工程と、カーボンナノチューブ又はカーボンナノホーンを生成し、アロイ成形物作成工程によって作られたアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を担持させるアロイ微粒子担持工程とからカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)を作るから、白金族元素を利用しない白金レスの固体高分子形燃料電池に使用するカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)を廉価に作ることができ、触媒活性(触媒作用)を有して触媒機能を十分かつ確実に利用することが可能であり、固体高分子形燃料電池において十分な電気を発電することが可能なカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。   According to the method for producing a carbon nanotube electrode or a carbon nanohorn electrode used as the fuel electrode and the air electrode of the polymer electrolyte fuel cell according to the present invention, the work function of at least three types of transition metals selected from various transition metals is selected. A transition metal selecting step of selecting at least three types of transition metals from various transition metals so that the synthetic work function approximates the work function of the platinum group element; and at least three types of transition metals selected by the transition metal selecting step. A transition metal fine powder mixture forming step of uniformly mixing and dispersing transition metal fine particles of the transition metal to form a transition metal fine powder mixture; and a transition metal fine powder mixture produced by the transition metal fine powder mixture forming step at a predetermined pressure. Pressurized transition metal fine powder compressed product making process to make transition metal fine powder compressed product, and transition metal fine powder compressed product making process An alloy molded article producing step of firing the compressed transition metal fine powder at a predetermined temperature to form an alloy molded article, and generating carbon nanotubes or carbon nanohorns and evaporating the alloy molded article produced by the alloy molded article producing step. A carbon nanotube electrode (a fuel electrode and an air electrode) or a carbon nanohorn electrode (a fuel electrode and an air electrode) from the alloy fine particle supporting step of supporting the alloy fine particles of the alloy molded article on the surface of the carbon nanotube or the surface of the carbon nanohorn. A carbon nanotube electrode (a fuel electrode and an air electrode) or a carbon nanohorn electrode (a fuel electrode and an air electrode) used for a platinum-free polymer electrolyte fuel cell that does not use a platinum group element can be produced at low cost, and catalytic activity (Catalytic action) enables the catalytic function to be used sufficiently and reliably There, it is possible to make the carbon nanotube electrodes or carbon nanohorn electrode capable of generating sufficient electricity in the solid polymer fuel cell.

アロイ微粒子担持工程が記カーボンナノチューブ又はカーボンナノホーンの生成と同時にアロイ成形物を蒸発させ、アロイ成形物のアロイ微粒子をカーボンナノチューブの表面又はカーボンナノホーンの表面に担持させる固体高分子形燃料電池の電極製造方法は、カーボンナノチューブ又はカーボンナノホーンを生成しつつアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を担持させるから、カーボンナノチューブの表面やカーボンナノホーンの表面にアロイ微粒子を均一に分散させた状態で担持させることができるとともに、カーボンナノチューブの表面やカーボンナノホーンの表面にアロイ微粒子を均一に分散担持させた白金レスのカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)を廉価に作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して固体高分子形燃料電池に好適に使用することが可能なボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。   The alloy fine particle supporting step evaporates the alloy molded product at the same time as the formation of the carbon nanotubes or carbon nanohorns, and manufactures the electrode of a polymer electrolyte fuel cell in which the alloy fine particles of the alloy molded product are supported on the surface of the carbon nanotube or carbon nanohorn. Since the method is to evaporate the alloy molded product while generating carbon nanotubes or carbon nanohorns and to carry the alloy fine particles of the alloy molded product on the surface of the carbon nanotube or the surface of the carbon nanohorn, the method is applied to the surface of the carbon nanotube or the surface of the carbon nanohorn. A platinum-free carbon nanotube electrode (fuel electrode) in which alloy fine particles can be supported in a state of being uniformly dispersed, and alloy fine particles are uniformly dispersed and supported on the surface of a carbon nanotube or the surface of a carbon nanohorn. And a carbon nanohorn electrode (fuel electrode and air electrode) can be manufactured at low cost, and the catalyst function can be used sufficiently and reliably, and has excellent catalytic activity (catalysis). A bon nanotube electrode or a carbon nanohorn electrode that can be suitably used for a polymer electrolyte fuel cell can be produced.

遷移金属微粉体混合物作成工程が遷移金属選択工程によって選択された少なくとも3種類の遷移金属を10μm〜200μmの粒径に微粉砕する固体高分子形燃料電池の電極製造方法は、遷移金属を前記範囲の粒径に微粉砕することでアロイ成形物を作ることができ、そのアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を均一に分散担持させた白金レスのカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)を廉価に作ることができるとともに、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して固体高分子形燃料電池に好適に使用することが可能なボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。   The method for producing an electrode of a polymer electrolyte fuel cell, wherein the transition metal fine powder mixture preparing step pulverizes at least three types of transition metals selected in the transition metal selection step to a particle size of 10 μm to 200 μm, comprises: An alloy molded product can be made by finely pulverizing the alloy molded product to a particle size of platinum. An excellent catalyst that can produce a carbon nanotube electrode (a fuel electrode and an air electrode) or a carbon nanohorn electrode (a fuel electrode and an air electrode) at a low cost, and can use the catalyst function sufficiently and reliably. Carbon nanotube electrode or carbohydrate having activity (catalysis) and suitable for use in polymer electrolyte fuel cells A nanohorn electrode can be made.

遷移金属微粉体圧縮物作成工程が遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を500Mpa〜800Mpaの圧力で加圧して遷移金属微粉体圧縮物を作る固体高分子形燃料電池の電極製造方法は、遷移金属微粉体混合物を前記範囲の圧力で加圧(圧縮)することで、遷移金属微粉体圧縮物を作ることができ、その遷移金属微粉体圧縮物を焼成してアロイ成形物を作ることができるとともに、そのアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を均一に分散担持させた白金レスのカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)を廉価に作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して固体高分子形燃料電池に好適に使用することが可能なボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。   A transition polymer fine powder compact is formed by applying a pressure of 500 Mpa to 800 Mpa to the transition metal fine powder mixture produced by the transition metal fine powder mixture production process to produce a transition metal fine powder compact. In the electrode manufacturing method, a transition metal fine powder compact can be produced by pressurizing (compressing) the transition metal fine powder mixture at a pressure within the above range, and firing the transition metal fine powder compact to form an alloy. And a platinum-less carbon nanotube electrode (a fuel electrode and an air Electrode) or carbon nanohorn electrodes (fuel electrode and air electrode) can be made at low cost, and the catalyst function can be used sufficiently and reliably. It can be made suitably carbon nanotube electrodes or carbon nanohorn electrode that can be used in a solid polymer fuel cell having a a possible excellent catalytic activity (catalytic).

アロイ成形物作成工程が遷移金属選択工程によって選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体を溶融させる温度で遷移金属微粉体圧縮物を焼成し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体を接合する固体高分子形燃料電池の電極製造方法は、遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が溶融することでアロイ成形物を作ることができ、そのアロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ成形物のアロイ微粒子を均一に分散担持させた白金レスのカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)を廉価に作ることができるとともに、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して固体高分子形燃料電池に好適に使用することが可能なボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。   The alloy molded article preparation step is to fire the transition metal fine powder compact at a temperature at which the transition metal fine powder of at least two kinds of transition metals selected from the transition metals selected in the transition metal selection step is melted, The method for manufacturing an electrode of a polymer electrolyte fuel cell in which the transition metal fine powder of the transition metal is joined with the transition metal fine powder as a binder, the transition metal fine powder of at least two types of transition metals among the transition metals is melted. A platinum-less carbon nanotube electrode (fuel electrode) in which an alloy molded product can be produced by evaporating the alloy molded product and uniformly dispersing and carrying alloy fine particles of the alloy molded product on the surface of the carbon nanotube or the surface of the carbon nanohorn. And air electrode) or carbon nanohorn electrode (fuel electrode and air electrode) at low cost To produce a bon-nanotube electrode or a carbon nanohorn electrode which can be used sufficiently and reliably and has excellent catalytic activity (catalysis) and can be suitably used for polymer electrolyte fuel cells Can be.

アロイ微粒子担持工程がカーボンナノチューブ電極又はカーボンナノホーン電極を0.03mm〜0.3mmの範囲の厚み寸法に成形し、カーボンナノチューブの表面又はカーボンナノホーンの表面から外側へ向かって重なり合うアロイ微粒子によってアロイ微粒子積層ポーラス構造を形成する固体高分子形燃料電池の電極製造方法は、アロイ成形物を蒸発させてカーボンナノチューブの表面又はカーボンナノホーンの表面にアロイ微粒子積層ポーラス構造を形成することができ、アロイ微粒子の比表面積を大きくしたアロイ微粉体積層ポーラス構造を有する白金レスのカーボンナノチューブ電極(燃料極及び空気極)又はカーボンナノホーン電極(燃料極及び空気極)を廉価に作ることができる。電極製造方法は、カーボンナノチューブ電極又はカーボンナノホーン電極の厚み寸法を前記範囲にすることで、カーボンナノチューブ電極又はカーボンナノホーン電極の電気抵抗を小さくすることができ、電流をスムースに流すことが可能であり、固体高分子形燃料電池において十分な電気を発電することが可能な白金レスのカーボンナノチューブ電極又はカーボンナノホーン電極を作ることができる。   The alloy fine particle supporting step forms the carbon nanotube electrode or the carbon nanohorn electrode into a thickness dimension in the range of 0.03 mm to 0.3 mm, and laminates the alloy fine particles by the alloy fine particles overlapping outward from the surface of the carbon nanotube or the surface of the carbon nanohorn. The method for producing an electrode of a polymer electrolyte fuel cell that forms a porous structure can form an alloy fine particle-laminated porous structure on the surface of a carbon nanotube or the surface of a carbon nanohorn by evaporating an alloy molded product. A platinum-free carbon nanotube electrode (fuel electrode and air electrode) or carbon nanohorn electrode (fuel electrode and air electrode) having an alloy fine powder laminated porous structure with a large surface area can be manufactured at low cost. The electrode manufacturing method can reduce the electrical resistance of the carbon nanotube electrode or the carbon nanohorn electrode by setting the thickness dimension of the carbon nanotube electrode or the carbon nanohorn electrode in the above range, and can flow a current smoothly. A platinum-free carbon nanotube electrode or carbon nanohorn electrode capable of generating sufficient electricity in a polymer electrolyte fuel cell can be produced.

一例として示す固体高分子形燃料電池の斜視図。1 is a perspective view of a polymer electrolyte fuel cell shown as an example. セルスタックを形成するセルの一例を示す分解斜視図。FIG. 2 is an exploded perspective view showing an example of a cell forming a cell stack. セルの側面図。The side view of a cell. 一例として示すカーボンナノチューブ電極又はカーボンナノホーン電極の斜視図。The perspective view of the carbon nanotube electrode or the carbon nanohorn electrode shown as an example. 一例として示すカーボンナノチューブ電極又はカーボンナノホーン電極の部分拡大正面図。FIG. 2 is a partially enlarged front view of a carbon nanotube electrode or a carbon nanohorn electrode shown as an example. アロイ微粒子を担持した一例として示すカーボンナノチューブの概念図。FIG. 2 is a conceptual diagram of a carbon nanotube shown as an example carrying alloy fine particles. アロイ微粒子を担持した一例として示すカーボンナノホーンの概念図。FIG. 2 is a conceptual diagram of a carbon nanohorn shown as an example carrying alloy fine particles. 他の一例として示すカーボンナノチューブ電極又はカーボンナノホーン電極の部分拡大正面図。FIG. 9 is a partially enlarged front view of a carbon nanotube electrode or a carbon nanohorn electrode shown as another example. アロイ微粒子を担持した他の一例として示すカーボンナノチューブの概念図。FIG. 3 is a conceptual diagram of a carbon nanotube shown as another example carrying alloy fine particles. アロイ微粒子を担持した他の一例として示すカーボンナノホーンの概念図。FIG. 5 is a conceptual diagram of a carbon nanohorn shown as another example carrying alloy fine particles. 固体高分子形燃料電池の発電を説明する図。The figure explaining the electric power generation of a polymer electrolyte fuel cell. カーボンナノチューブ電極又はカーボンナノホーン電極の起電圧試験の結果を示す図。The figure which shows the result of the electromotive force test of a carbon nanotube electrode or a carbon nanohorn electrode. カーボンナノチューブ電極又はカーボンナノホーン電極のI−V特性試験の結果を示す図。The figure which shows the result of the IV characteristic test of a carbon nanotube electrode or a carbon nanohorn electrode. カーボンナノチューブ電極又はカーボンナノホーン電極の製造方法を説明する図。The figure explaining the manufacturing method of a carbon nanotube electrode or a carbon nanohorn electrode.

一例として示す固体高分子形燃料電池10の斜視図である図1等の添付の図面を参照し、本発明に係る固体高分子形燃料電池及び固体高分子形燃料電池に使用するカーボンナノチューブ電極15A(燃料極13A,13B及び空気極14A,14B)又はカーボンナノホーン電極15B(燃料極13A,13B及び空気極14A,14B)の電極製造方法の詳細を説明すると、以下のとおりである。なお、図2は、セルスタック12を形成するセル11の一例を示す分解斜視図であり、図3は、セル11の側面図である。図4は、一例として示すカーボンナノチューブ電極15A,15B(燃料極13A,13B及び空気極14A,14B)又はカーボンナノホーン電極15A,15B(燃料極13A,13B及び空気極14A,14B)の斜視図である。図4では、厚み方向を矢印Xで示し、径方向を矢印Yで示す。   Referring to the accompanying drawings such as FIG. 1 which is a perspective view of a polymer electrolyte fuel cell 10 shown as an example, a polymer electrolyte fuel cell according to the present invention and a carbon nanotube electrode 15A used in the polymer electrolyte fuel cell The details of the method for manufacturing the electrodes (the fuel electrodes 13A and 13B and the air electrodes 14A and 14B) or the carbon nanohorn electrodes 15B (the fuel electrodes 13A and 13B and the air electrodes 14A and 14B) will be described below. FIG. 2 is an exploded perspective view showing an example of the cell 11 forming the cell stack 12, and FIG. 3 is a side view of the cell 11. FIG. 4 is a perspective view of carbon nanotube electrodes 15A and 15B (fuel electrodes 13A and 13B and air electrodes 14A and 14B) or carbon nanohorn electrodes 15A and 15B (fuel electrodes 13A and 13B and air electrodes 14A and 14B) shown as examples. is there. In FIG. 4, the thickness direction is indicated by an arrow X, and the radial direction is indicated by an arrow Y.

固体高分子形燃料電池10は、複数のセル11を有するセルスタック12(燃料電池スタック)を備え、水素と酸素とを供給することで発電する(電気エネルギーを生成する)。セルスタック12では、複数のセル11(単セル)が一方向へ重なり合って直列に接続されている。セル11の一例としては、図2に示すように、燃料極13A(又は燃料極13B)(カーボンナノチューブ電極15A又はカーボンナノホーン電極15B)と、空気極14A(又は空気極14B)(カーボンナノチューブ電極15A又はカーボンナノホーン電極15B)と、燃料極13A(又は燃料極13B)及び空気極14A(又は空気極14B)の間に位置(介在)する固体高分子電解質膜16(電極接合体膜)(スルホン酸基を有するフッ素系イオン交換膜)と、燃料極13A(又は燃料極13B)の厚み方向外側に位置するセパレータ17(バイポーラプレート)と、空気極14A(又は空気極14B)の厚み方向外側に位置するセパレータ18(バイポーラプレート)とから形成されている。   The polymer electrolyte fuel cell 10 includes a cell stack 12 (fuel cell stack) having a plurality of cells 11, and generates electricity (generates electric energy) by supplying hydrogen and oxygen. In the cell stack 12, a plurality of cells 11 (single cells) overlap in one direction and are connected in series. As an example of the cell 11, as shown in FIG. 2, a fuel electrode 13A (or fuel electrode 13B) (carbon nanotube electrode 15A or carbon nanohorn electrode 15B) and an air electrode 14A (or air electrode 14B) (carbon nanotube electrode 15A) Alternatively, the solid polymer electrolyte membrane 16 (electrode assembly membrane) (sulfonate) is located (interposed) between the fuel electrode 13A (or fuel electrode 13B) and the air electrode 14A (or air electrode 14B) and the carbon nanohorn electrode 15B). Group), a separator 17 (bipolar plate) positioned outside the fuel electrode 13A (or fuel electrode 13B) in the thickness direction, and a separator 17 positioned outside the air electrode 14A (or the air electrode 14B) in the thickness direction. And a separator 18 (bipolar plate).

それらセパレータ17,18には、反応ガス(水素や酸素等)の供給流路が刻設されている(彫り込まれている)。セル11では、図3に示すように、燃料極13A,13Bや空気極14A,14B、固体高分子電解質膜16が厚み方向へ重なり合って一体化し、膜/電極接合体19(Membrane Electrode Assembly, MEA)を構成し、膜/電極接合体19をそれらセパレータ17,18が挟み込んでいる。固体高分子電解質膜16は、プロトン導電性があり、電子導電性がない。燃料極13A(又は燃料極13B)とセパレータ17との間には、ガス拡散層21が形成され、空気極14A(又は空気極14B)とセパレータ18との間には、ガス拡散層22が形成されている。燃料極13A(又は燃料極13B)とセパレータ17との間であってガス拡散層20の上部及び下部には、ガスシール22が設置されている。空気極14A(又は空気極14B)とセパレータ18との間であってガス拡散層21の上部及び下部には、ガスシール23が設置されている。   The separators 17 and 18 are provided with a supply channel (engraved) for supplying a reaction gas (hydrogen, oxygen, or the like). In the cell 11, as shown in FIG. 3, the fuel electrodes 13A and 13B, the air electrodes 14A and 14B, and the solid polymer electrolyte membrane 16 are overlapped and integrated in the thickness direction to form a membrane / electrode assembly 19 (Membrane Electrode Assembly, MEA). ), And the membrane / electrode assembly 19 is sandwiched between the separators 17 and 18. The solid polymer electrolyte membrane 16 has proton conductivity and no electronic conductivity. A gas diffusion layer 21 is formed between the fuel electrode 13A (or the fuel electrode 13B) and the separator 17, and a gas diffusion layer 22 is formed between the air electrode 14A (or the air electrode 14B) and the separator 18. Have been. A gas seal 22 is provided between the fuel electrode 13A (or the fuel electrode 13B) and the separator 17 and above and below the gas diffusion layer 20. A gas seal 23 is provided between the air electrode 14A (or the air electrode 14B) and the separator 18 and above and below the gas diffusion layer 21.

固体高分子形燃料電池16(セル11)に使用する燃料極13A,13B(カーボンナノチューブ電極15A又はカーボンナノホーン電極15B)及び空気極14A,14B(カーボンナノチューブ電極又15Aはカーボンナノホーン電極15B)は、図4に示すように、前面24及び後面25を有するとともに、所定面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。なお、燃料極13A(又は燃料極13B)や空気極14A(又は空気極14B)の平面形状に特に制限はなく、四角形の他に、その用途にあわせて円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。   Fuel electrodes 13A and 13B (carbon nanotube electrode 15A or carbon nanohorn electrode 15B) and air electrodes 14A and 14B (carbon nanotube electrode or 15A, or carbon nanohorn electrode 15B) used in polymer electrolyte fuel cell 16 (cell 11) are: As shown in FIG. 4, it has a front surface 24 and a rear surface 25, has a predetermined area and a predetermined thickness L1, and has a planar shape of a square. The planar shape of the fuel electrode 13A (or the fuel electrode 13B) or the air electrode 14A (or the air electrode 14B) is not particularly limited. In addition to a square, other shapes such as a circle, an ellipse, and a polygon may be used according to the application. Can be formed into any planar shape.

燃料極13A,13B(カーボンナノチューブ電極15A又はカーボンナノホーン電極15B)及び空気極14A,14B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)は、アロイ成形物42(合金成形物)のアロイ微粒子26(合金微粒子)と、金属電極薄板27又はカーボン電極薄板28と、所定面積のカーボンナノチューブ29の凝集体30(凝集板)又は所定面積のカーボンナノホーン31の凝集体32(凝集板)とから形成されている。アロイ成形物42(合金成形物)(図14参照)は、粉状に加工(微粉砕)された各種の遷移金属38から選択された少なくとも3種類の遷移金属38の遷移金属微粉体39を均一に混合・分散した遷移金属微粉体混合物40(図14参照)を圧縮した後に焼成(焼結)することから作られている。   The fuel electrodes 13A, 13B (carbon nanotube electrode 15A or carbon nanohorn electrode 15B) and the air electrodes 14A, 14B (carbon nanotube electrodes 15A, 15B or carbon nanohorn electrodes 15A, 15B) are formed of an alloy 42 (alloy molding). From the fine particles 26 (alloy fine particles), the metal electrode thin plate 27 or the carbon electrode thin plate 28, and the aggregate 30 of carbon nanotubes 29 (aggregate plate) of predetermined area or the aggregate 32 of carbon nanohorn 31 of predetermined area (aggregate plate) Is formed. An alloy molded product 42 (alloy molded product) (see FIG. 14) is a uniform transition metal fine powder 39 of at least three types of transition metals 38 selected from various transition metals 38 processed (pulverized) into powder. The transition metal fine powder mixture 40 (see FIG. 14) mixed and dispersed is compressed and fired (sintered).

なお、アロイ成形物42(合金成形物)を微粉砕して粒径が10μm〜200μmのアロイ微粉体43(合金微粉体)とし、カーボンナノチューブ電極13A又はカーボンナノホーン電極13Aがアロイ微粉体43のアロイ微粒子26(合金微粒子)と、金属電極薄板27又はカーボン電極薄板28と、所定面積のカーボンナノチューブ29の凝集体30(凝集板)又は所定面積のカーボンナノホーン31の凝集体32(凝集板)とから形成される場合がある。   The alloy compact 42 (alloy compact) is finely pulverized into an alloy fine powder 43 (alloy fine powder) having a particle size of 10 μm to 200 μm. From the fine particles 26 (alloy fine particles), the metal electrode thin plate 27 or the carbon electrode thin plate 28 and the aggregate 30 of carbon nanotubes 29 (aggregate plate) of a predetermined area or the aggregate 32 of carbon nanohorns 31 (aggregate plate) of a predetermined area. May be formed.

遷移金属38としては、3d遷移金属や4d遷移金属が使用される。3d遷移金属には、Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)が使用される。4d遷移金属には、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)が使用される。遷移金属38の遷移金属微粉体39には、粉状に加工(微粉砕)されたTi(チタン)微粉体、粉状に加工(微粉砕)されたCr(クロム)微粉体、粉状に加工(微粉砕)されたMn(マンガン)微粉体、粉状に加工(微粉砕)されたFe(鉄)微粉体、粉状に加工(微粉砕)されたCo(コバルト)微粉体、粉状に加工(微粉砕)されたNi(ニッケル)微粉体、粉状に加工(微粉砕)されたCu(銅)微粉体、粉状に加工(微粉砕)されたZn(亜鉛)微粉体、粉状に加工(微粉砕)されたNb(ニオブ)微粉体、粉状に加工(微粉砕)されたMo(モリブデン)微粉体、粉状に加工されたAg(銀)微粉体が使用される。   As the transition metal 38, a 3d transition metal or a 4d transition metal is used. As the 3d transition metal, Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), and Zn (zinc) are used. Nb (niobium), Mo (molybdenum), and Ag (silver) are used as the 4d transition metal. The transition metal fine powder 39 of the transition metal 38 includes powdered (finely crushed) Ti (titanium) fine powder, powdered (finely crushed) Cr (chromium) fine powder, and powdery processed (Finely pulverized) Mn (manganese) fine powder, powdery (finely pulverized) Fe (iron) fine powder, powdery (finely pulverized) Co (cobalt) fine powder, powdery Processed (finely pulverized) Ni (nickel) fine powder, powdered (finely pulverized) Cu (copper) fine powder, powdered (finely pulverized) Zn (zinc) fine powder, powdery Nb (niobium) fine powder processed (finely pulverized), Mo (molybdenum) fine powder processed (pulverized) into powder, and Ag (silver) fine powder processed into powder are used.

Tiの微粉体(粉状に加工(微粉砕)されたTi)やCrの微粉体(粉状に加工(微粉砕)されたCr)、Mnの微粉体(粉状に加工(微粉砕)されたMn)、Feの微粉体(粉状に加工(微粉砕)されたFe)、Coの微粉体(粉状に加工(微粉砕)されたCo)、Niの微粉体(粉状に加工(微粉砕)されたNi)、Cuの微粉体(粉状に加工(微粉砕)されたCu)、Znの微粉体(粉状に加工(微粉砕)されたZn)、Nbの微粉体(粉状に加工(微粉砕)されたNb)、Moの微粉体(粉状に加工(微粉砕)されたMo)、Agの微粉体(粉状に加工(微粉砕)されたAg)は、それらの粒径が10μm〜200μmの範囲にある。   Fine powder of Ti (Ti processed into a powder (finely pulverized)), fine powder of Cr (Cr processed into a powder (fine pulverized)), and fine powder of Mn (processed into a powder (pulverized)) Mn), fine powder of Fe (Fe that has been processed (pulverized) into powder), fine powder of Co (Co that has been processed (pulverized) into powder), and fine powder of Ni (processed into powder ( Ni) finely pulverized), fine powder of Cu (Cu finely processed (finely pulverized)), fine powder of Zn (Zn finely processed (finely pulverized)), fine powder of Nb (powder Nb processed into a shape (finely pulverized), Mo fine powder (Mo processed into a fine powder (finely pulverized)), and Ag fine powder (Ag processed into a powder shape (finely pulverized)) Is in the range of 10 μm to 200 μm.

遷移金属微粉体混合物40(アロイ成形物42)では、選択された少なくとも3種類の遷移金属38の仕事関数(物質から電子を取り出すのに必要なエネルギー)の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属38の中から少なくとも3種類の遷移金属38が選択されている。Tiの仕事関数は、4.14(eV)、Crの仕事関数は、4.5(eV)、Mnの仕事関数は、4.1(eV)、Feの仕事関数は、4.67(eV)、Coの仕事関数は、5.0(eV)、Niの仕事関数は、5.22(eV)、Cuの仕事関数は、5.10(eV)、Znの仕事関数は、3.63(eV)、Nbの仕事関数は、4.01(eV)、Moの仕事関数は、4.45(eV)、Agの仕事関数は、4.31(eV)である。なお、白金の仕事関数は、5.65(eV)である。   In the transition metal fine powder mixture 40 (alloy molded product 42), the work function of at least three kinds of selected transition metals 38 (energy required to extract electrons from the substance) is the work function of the platinum group element. , At least three types of transition metals 38 are selected from among the transition metals 38. The work function of Ti is 4.14 (eV), the work function of Cr is 4.5 (eV), the work function of Mn is 4.1 (eV), and the work function of Fe is 4.67 (eV). ), The work function of Co is 5.0 (eV), the work function of Ni is 5.22 (eV), the work function of Cu is 5.10 (eV), and the work function of Zn is 3.63. (EV), the work function of Nb is 4.01 (eV), the work function of Mo is 4.45 (eV), and the work function of Ag is 4.31 (eV). The work function of platinum is 5.65 (eV).

遷移金属微粉体混合物40の一例としては、粉状に加工(微粉砕)されたNi(ニッケル)の微粉体を主成分とし、Niの微粉体とNiを除く粉状に加工(微粉砕)されたその他の少なくとも2種類の遷移金属(粉状のTi(チタン)、粉状のCr(クロム)、粉状のMn(マンガン)、粉状のFe(鉄)、粉状のCo(コバルト)、粉状のCu(銅)、粉状のZn(亜鉛)、粉状のNb(ニオブ)、粉状のMo(モリブデン)、粉状のAg(銀)のうちの少なくとも2種類)の遷移金属微粉体39とを均一に混合・分散した遷移金属微粉体混合物40である。   As an example of the transition metal fine powder mixture 40, Ni (nickel) fine powder processed into fine powder (finely pulverized) is used as a main component, and processed into fine powder except Ni fine powder and Ni (finely pulverized). And at least two other transition metals (powder Ti (titanium), powder Cr (chromium), powder Mn (manganese), powder Fe (iron), powder Co (cobalt), Transition metal fine powder of powdered Cu (copper), powdered Zn (zinc), powdered Nb (niobium), powdered Mo (molybdenum), powdered Ag (silver)) The transition metal fine powder mixture 40 is obtained by uniformly mixing and dispersing the transition metal fine powder 39 with the body 39.

主成分となるNi(ニッケル)の微粉体とNiを除く他の少なくとも2種類の遷移金属38の遷移金属微粉体39とを混合した遷移金属微粉体混合物40は、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属38の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属38の中からNiの微粉体を除く他の少なくとも2種類の遷移金属38の遷移金属微粉体39が選択されている。   A transition metal fine powder mixture 40 obtained by mixing Ni (nickel) fine powder as a main component and transition metal fine powder 39 of at least two other types of transition metals 38 other than Ni has a work function of Ni and excludes Ni. At least two other types of transition metals 38 excluding the fine Ni powder so that the composite work function with the work function of the other at least two types of transition metals 38 approximates the work function of the platinum group element. The transition metal fine powder 39 of the transition metal 38 is selected.

Niの微粉体を主成分としたアロイ成形物42では、選択された遷移金属38のうちの少なくとも2種類の遷移金属38の遷移金属微粉体39が遷移金属微粉体混合物40の焼成時に溶融し、溶融した遷移金属38の遷移金属微粉体39をバインダーとしてそれら遷移金属38の遷移金属微粉体39が接合されている。なお、Niを主成分としたアロイ成形物42を微粉砕して作られたアロイ微粉体43は、Niの微粉体を主成分とした遷移金属微粉体混合物40を圧縮した後に焼成することから作られたアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   In the alloy molded article 42 containing Ni fine powder as a main component, the transition metal fine powder 39 of at least two kinds of the transition metals 38 among the selected transition metals 38 is melted when the transition metal fine powder mixture 40 is fired, The transition metal fine powder 39 of the transition metal 38 is joined using the molten transition metal fine powder 39 of the transition metal 38 as a binder. The alloy fine powder 43 formed by finely pulverizing the alloy molded product 42 containing Ni as a main component is formed by compressing a transition metal fine powder mixture 40 containing Ni fine powder as a main component and then firing the mixture. The obtained alloy molded product 42 is finely pulverized with a particle size of 10 μm to 200 μm.

Ni(ニッケル)の微粉体を主成分とした遷移金属微粉体混合物40では、遷移金属微粉体混合物40の全重量に対するNiの微粉体の重量比が30%〜50%の範囲にあり、Niの微粉体を除く1種類の遷移金属38の遷移金属微粉体39(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの少なくとも1種類)の遷移金属微粉体混合物40の全重量に対する重量比が20%〜50%の範囲にあり、Niの微粉体を除く他の少なくとも1種類の遷移金属38の遷移金属微粉体39(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの他の少なくとも1種類)の遷移金属微粉体混合物40の全重量に対する重量比が3%〜20%の範囲にある。   In the transition metal fine powder mixture 40 mainly composed of Ni (nickel) fine powder, the weight ratio of the Ni fine powder to the total weight of the transition metal fine powder mixture 40 is in the range of 30% to 50%. Transition metal fine powder 39 of one kind of transition metal 38 excluding fine powder (Ti (titanium) fine powder, Cr (chromium) fine powder, Mn (manganese) fine powder, Fe (iron) fine powder, Co (cobalt) fine powder Transition metal fine powder mixture 40 of at least one of powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, and Ag (silver) fine powder And a transition metal fine powder 39 (Ti (titanium) fine powder, Cr (chromium)) of at least one other type of transition metal 38 excluding the Ni fine powder. Fine powder, Mn (manganese Fine powder, Fe (iron) fine powder, Co (cobalt) fine powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, Ag (silver) fine powder The weight ratio of the transition metal fine powder mixture 40 (the other at least one of the bodies) to the total weight is in the range of 3% to 20%.

Ni(ニッケル)を主成分としたアロイ成形物42の具体例としては、Niの微粉体、Cuの微粉体、ZNの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成したアロイ成形物42である。また、Niを主成分としたアロイ微粉体42(Niを主成分とした合金微粉体)の具体例としては、Niの微粉体、Cuの微粉体、ZNの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   As a specific example of the alloy molded product 42 containing Ni (nickel) as a main component, a transition metal fine powder mixture 40 in which fine Ni powder, fine Cu powder, and fine ZN powder are uniformly mixed and dispersed is compressed. This is a sintered alloy molded product 42. As a specific example of the alloy fine powder 42 containing Ni as a main component (alloy fine powder containing Ni as a main component), Ni fine powder, Cu fine powder, and ZN fine powder are uniformly mixed and dispersed. The transition metal fine powder mixture 40 is compressed and fired to form an alloy molded product 42, and the alloy molded product 42 is finely pulverized with a particle size of 10 μm to 200 μm.

このアロイ成形物42(アロイ微粉体43)は、遷移金属微粉体混合物40の全重量に対するNiの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するCuの微粉体の重量比が42%、遷移金属微粉体混合物40の全重量に対するZnの微粉体の重量比が10%である。Niの融点が1455℃、Cuの融点が1084.5℃、Znの融点が419.85℃であるから、Znの微粉体及びCuの微粉体が溶融し、溶融したZn及びCuの微粉体がバインダーとなってNiの微粉体を接合している。   The alloy molded product 42 (alloy fine powder 43) has a weight ratio of the Ni fine powder to the total weight of the transition metal fine powder mixture 40 of 48%, and the weight of the Cu fine powder to the total weight of the transition metal fine powder mixture 40. The ratio is 42%, and the weight ratio of the Zn fine powder to the total weight of the transition metal fine powder mixture 40 is 10%. Since the melting point of Ni is 1455 ° C., the melting point of Cu is 1084.5 ° C., and the melting point of Zn is 419.85 ° C., the fine powder of Zn and the fine powder of Cu are melted. Ni fine powder is joined as a binder.

Ni(ニッケル)を主成分としたアロイ成形物42の他の具体例としては、Niの微粉体、Mnの微粉体、Moの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成したアロイ成形物42である。また、Niを主成分としたアロイ微粉体43(Niを主成分とした合金微粉体)の他の具体例としては、Niの微粉体、Mnの微粉体、Moの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   As another specific example of the alloy molded product 42 containing Ni (nickel) as a main component, a transition metal fine powder mixture 40 obtained by uniformly mixing and dispersing Ni fine powder, Mn fine powder, and Mo fine powder is compressed. An alloy molded article 42 fired after firing. Further, as another specific example of the alloy fine powder 43 containing Ni as a main component (alloy fine powder containing Ni as a main component), Ni fine powder, Mn fine powder, and Mo fine powder are uniformly mixed. The dispersed transition metal fine powder mixture 40 is compressed and fired to form an alloy molded product 42. The alloy molded product 42 is finely pulverized with a particle size of 10 μm to 200 μm.

このアロイ成形物42(アロイ微粉体)は、遷移金属微粉体混合物40の全重量に対するNiの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するMnの微粉体の重量比が7%、遷移金属微粉体混合物40の全重量に対するMoの微粉体の重量比が45%である。Niの融点が1455℃、Mnの融点が1246℃、Moの融点が2623℃であるから、Mnの微粉体及びNiの微粉体が溶融し、溶融したMn及びNiの微粉体がバインダーとなってMoの微粉体を接合している。   In the alloy molded product 42 (alloy fine powder), the weight ratio of the Ni fine powder to the total weight of the transition metal fine powder mixture 40 was 48%, and the weight ratio of the Mn fine powder to the total weight of the transition metal fine powder mixture 40. Is 7%, and the weight ratio of the Mo fine powder to the total weight of the transition metal fine powder mixture 40 is 45%. Since the melting point of Ni is 1455 ° C., the melting point of Mn is 1246 ° C., and the melting point of Mo is 2623 ° C., the Mn fine powder and the Ni fine powder are melted, and the melted Mn and Ni fine powder serve as a binder. Mo fine powder is joined.

遷移金属微粉体混合物40の他の一例としては、粉状に加工(微粉砕)されたFe(鉄)の微粉体を主成分とし、Feの微粉体とFeを除く粉状に加工(微粉砕)されたその他の少なくとも2種類の遷移金属38(粉状のTi(チタン)、粉状のCr(クロム)、粉状のMn(マンガン)、粉状のCo(コバルト)、粉状のNi(ニッケル)、粉状のCu(銅)、粉状のZn(亜鉛)、粉状のNb(ニオブ)、粉状のMo(モリブデン)、粉状のAg(銀)のうちの少なくとも2種類)の遷移金属微粉体39とを均一に混合・分散した遷移金属微粉体混合物40である。   As another example of the transition metal fine powder mixture 40, a fine powder of Fe (iron) processed into a powder (fine pulverized) is used as a main component, and a fine powder of Fe and a powder excluding Fe are processed (fine pulverized). ) Other transition metals 38 (powder Ti (titanium), powder Cr (chromium), powder Mn (manganese), powder Co (cobalt), powder Ni ( Nickel), powdered Cu (copper), powdered Zn (zinc), powdered Nb (niobium), powdered Mo (molybdenum), and powdered Ag (silver)). A transition metal fine powder mixture 40 in which the transition metal fine powder 39 is uniformly mixed and dispersed.

主成分となるFe(鉄)の微粉体とFeを除く他の少なくとも2種類の遷移金属38の遷移金属微粉体39とを混合した遷移金属微粉体混合物40は、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属38の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属38の中からFeの微粉体を除く他の少なくとも2種類の遷移金属38の遷移金属微粉体39が選択されている。   A transition metal fine powder mixture 40 obtained by mixing a fine powder of Fe (iron) as a main component and a transition metal fine powder 39 of at least two other types of transition metals 38 excluding Fe has a work function of Fe and excluding Fe. At least two other types of transition metals 38 excluding the fine powder of Fe from the various transition metals 38 so that the work function of the transition metal 38 and the work function of the other at least two types of transition metals 38 approximate the work function of the platinum group element. The transition metal fine powder 39 of the transition metal 38 is selected.

Feの微粉体を主成分としたアロイ成形物42では、選択された遷移金属38のうちの少なくとも2種類の遷移金属38の遷移金属微粉体39が遷移金属微粉体混合物40の焼成時に溶融し、溶融した遷移金属38の遷移金属微粉体39をバインダーとしてそれら遷移金属38の遷移金属微粉体39が接合されている。なお、Feを主成分としたアロイ成形物42を微粉砕して作られたアロイ微粉体43は、Feの微粉体を主成分とした遷移金属微粉体混合物40を圧縮した後に焼成することから作られたアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   In the alloy molding 42 mainly containing Fe fine powder, the transition metal fine powder 39 of at least two kinds of transition metals 38 of the selected transition metals 38 is melted at the time of firing the transition metal fine powder mixture 40, The transition metal fine powder 39 of the transition metal 38 is joined using the molten transition metal fine powder 39 of the transition metal 38 as a binder. The alloy fine powder 43 made by finely pulverizing the alloy molded product 42 containing Fe as a main component is formed by compressing a transition metal fine powder mixture 40 containing Fe fine powder as a main component, followed by firing. The obtained alloy molded product 42 is finely pulverized with a particle size of 10 μm to 200 μm.

Fe(鉄)の微粉体を主成分とした遷移金属微粉体混合物40では、遷移金属微粉体混合物40の全重量に対するFeの微粉体の重量比が30%〜50%の範囲にあり、Feの微粉体を除く1種類の遷移金属38の遷移金属微粉体39(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの少なくとも1種類)の遷移金属微粉体混合物40の全重量に対する重量比が20%〜50%の範囲にあり、Feの微粉体を除く他の少なくとも1種類の遷移金属38の遷移金属微粉体39(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Cu(銅)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの他の少なくとも1種類)の遷移金属微粉体混合物40の全重量に対する重量比が3%〜20%の範囲にある。   In the transition metal fine powder mixture 40 mainly composed of Fe (iron) fine powder, the weight ratio of Fe fine powder to the total weight of the transition metal fine powder mixture 40 is in the range of 30% to 50%, Transition metal fine powder 39 of one kind of transition metal 38 excluding fine powder (Ti (titanium) fine powder, Cr (chromium) fine powder, Mn (manganese) fine powder, Co (cobalt) fine powder, Ni (nickel) fine powder Transition metal fine powder mixture 40 of at least one of powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, and Ag (silver) fine powder And a transition metal fine powder 39 (Ti (titanium) fine powder, Cr (chromium)) of at least one other type of transition metal 38 excluding the fine powder of Fe except for the fine powder of Fe. Fine powder, Mn (manganese Fine powder, Co (cobalt) fine powder, Ni (nickel) fine powder, Cu (copper) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, Ag (silver) fine powder The weight ratio of the transition metal fine powder mixture 40 (the other at least one of the bodies) to the total weight is in the range of 3% to 20%.

Fe(鉄)を主成分としたアロイ成形物42の具体例としては、Feの微粉体、Niの微粉体、Cuの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成したアロイ成形物42である。また、Fe(鉄)を主成分としたアロイ微粉体42(Feを主成分とした合金微粉体)の具体例としては、Feの微粉体、Niの微粉体、Cuの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   As a specific example of the alloy molded product 42 containing Fe (iron) as a main component, a transition metal fine powder mixture 40 in which a fine powder of Fe, a fine powder of Ni, and a fine powder of Cu are uniformly mixed and dispersed is compressed. This is a sintered alloy molded product 42. Further, as a specific example of the alloy fine powder 42 mainly composed of Fe (iron) (alloy fine powder mainly composed of Fe), a fine powder of Fe, a fine powder of Ni, and a fine powder of Cu are uniformly mixed. -The dispersed transition metal fine powder mixture 40 is compressed and then fired to form an alloy molded product 42. The alloy molded product 42 is finely pulverized with a particle size of 10 µm to 200 µm.

このアロイ成形物42(アロイ微粉体43)は、遷移金属微粉体混合物40の全重量に対するFeの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するNiの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するCuの微粉体の重量比が4%である。Feの融点が1536℃、Niの融点が1455℃、Cuの融点が1084.5℃であるから、Cuの微粉体及びNiの微粉体が溶融し、溶融したCu及びNiの微粉体がバインダーとなってFeの微粉体を接合している。   The alloy molded product 42 (alloy fine powder 43) has a weight ratio of Fe fine powder to the total weight of the transition metal fine powder mixture 40 of 48%, and the weight of the Ni fine powder to the total weight of the transition metal fine powder mixture 40. The ratio is 48%, and the weight ratio of the fine powder of Cu to the total weight of the transition metal fine powder mixture 40 is 4%. Since the melting point of Fe is 1536 ° C., the melting point of Ni is 1455 ° C., and the melting point of Cu is 1084.5 ° C., the fine powder of Cu and the fine powder of Ni are melted. To join Fe fine powder.

Fe(鉄)を主成分としたアロイ成形物42の他の具体例としては、Feの微粉体、Tiの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成したアロイ成形物42である。また、Feを主成分としたアロイ微粉体43(Feを主成分とした合金微粉体)の他の具体例としては、Feの微粉体、Tiの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   As another specific example of the alloy molded product 42 mainly containing Fe (iron), a transition metal fine powder mixture 40 in which fine powder of Fe, fine powder of Ti, and fine powder of Ag are uniformly mixed and dispersed is compressed. An alloy molding 42 fired after firing. Further, as another specific example of the alloy fine powder 43 mainly composed of Fe (alloy fine powder mainly composed of Fe), fine powder of Fe, fine powder of Ti, and fine powder of Ag are mixed uniformly. The dispersed transition metal fine powder mixture 40 is compressed and fired to form an alloy molded product 42. The alloy molded product 42 is finely pulverized with a particle size of 10 μm to 200 μm.

このアロイ成形物42(アロイ微粉体43)は、遷移金属微粉体混合物40の全重量に対するFeの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するTiの微粉体の重量比が46%、遷移金属微粉体混合物40の全重量に対するAgの微粉体の重量比が6%である。Feの融点が1536℃、Tiの融点が1666℃、Agの融点が961.93℃であるから、Agの微粉体及びFeの微粉体が溶融し、溶融したAg及びFeの微粉体がバインダーとなってTiの微粉体を接合している。   The alloy molded product 42 (alloy fine powder 43) has a weight ratio of Fe fine powder to the total weight of the transition metal fine powder mixture 40 of 48%, and the weight of the Ti fine powder to the total weight of the transition metal fine powder mixture 40. The ratio is 46%, and the weight ratio of the fine Ag powder to the total weight of the transition metal fine powder mixture 40 is 6%. Since the melting point of Fe is 1536 ° C., the melting point of Ti is 1666 ° C., and the melting point of Ag is 961.93 ° C., the Ag fine powder and the Fe fine powder are melted, and the molten Ag and Fe fine powder serve as a binder. To join the fine powder of Ti.

遷移金属微粉体混合物40の他の一例としては、粉状に加工(微粉砕)されたCu(銅)の微粉体を主成分とし、Cuの微粉体とCuを除く粉状に加工(微粉砕)されたその他の少なくとも2種類の遷移金属38(粉状のTi(チタン)、粉状のCr(クロム)、粉状のMn(マンガン)、粉状のFe(鉄)、粉状のCo(コバルト)、粉状のNi(ニッケル)、粉状のZn(亜鉛)、粉状のNb(ニオブ)、粉状のMo(モリブデン)、粉状のAg(銀)のうちの少なくとも2種類)の遷移金属微粉体39とを均一に混合・分散した遷移金属微粉体混合物40である。   As another example of the transition metal fine powder mixture 40, a fine powder of Cu (copper) processed (pulverized) in a powder form is used as a main component, and a fine powder of Cu and a powder excluding Cu are processed (fine pulverized). ) Other transition metals 38 (powder Ti (titanium), powder Cr (chromium), powder Mn (manganese), powder Fe (iron), powder Co ( (Cobalt), powdered Ni (nickel), powdered Zn (zinc), powdered Nb (niobium), powdered Mo (molybdenum), powdered Ag (silver)). A transition metal fine powder mixture 40 in which the transition metal fine powder 39 is uniformly mixed and dispersed.

主成分となるCu(銅)の微粉体とCuを除く他の少なくとも2種類の遷移金属38の遷移金属微粉体39とを混合した遷移金属微粉体混合物40は、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属38の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属38の中からCuの微粉体を除く他の少なくとも2種類の遷移金属38の遷移金属微粉体39が選択されている。   A transition metal fine-particle mixture 40 obtained by mixing a fine powder of Cu (copper) as a main component and a transition metal fine powder 39 of at least two other types of transition metals 38 excluding Cu has a work function of Cu and excluding Cu. In order to make the work function of the transition metal 38 and the work function of the other at least two kinds of transition metals close to the work function of the platinum group element, at least two other kinds of the transition metals 38 excluding the fine powder of Cu are used. The transition metal fine powder 39 of the transition metal 38 is selected.

Cuの微粉体を主成分としたアロイ成形物42では、選択された遷移金属38のうちの少なくとも2種類の遷移金属38の遷移金属微粉体39が遷移金属微粉体混合物40の焼成時に溶融し、溶融した遷移金属38の遷移金属微粉体39をバインダーとしてそれら遷移金属38の遷移金属微粉体39が接合されている。なお、Cuを主成分としたアロイ成形物42を微粉砕して作られたアロイ微粉体43は、Cuの微粉体を主成分とした遷移金属微粉体混合物40を圧縮した後に焼成することから作られたアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   In the alloy molded article 42 containing Cu fine powder as a main component, the transition metal fine powder 39 of at least two kinds of the transition metals 38 among the selected transition metals 38 is melted when the transition metal fine powder mixture 40 is fired, The transition metal fine powder 39 of the transition metal 38 is joined using the molten transition metal fine powder 39 of the transition metal 38 as a binder. The alloy fine powder 43 formed by finely pulverizing the alloy molded product 42 containing Cu as a main component is formed by compressing a transition metal fine powder mixture 40 containing Cu fine powder as a main component and then firing the mixture. The obtained alloy molded product 42 is finely pulverized with a particle size of 10 μm to 200 μm.

Cu(銅)の微粉体を主成分とした遷移金属微粉体混合物40では、遷移金属微粉体混合物40の全重量に対するCuの微粉体の重量比が30%〜50%の範囲にあり、Cuの微粉体を除く1種類の遷移金属38の遷移金属微粉体39(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの少なくとも1種類)の遷移金属微粉体混合物40の全重量に対する重量比が20%〜50%の範囲にあり、Cuの微粉体を除く他の少なくとも1種類の遷移金属38の遷移金属微粉体39(Ti(チタン)微粉体、Cr(クロム)微粉体、Mn(マンガン)微粉体、Fe(鉄)微粉体、Co(コバルト)微粉体、Ni(ニッケル)微粉体、Zn(亜鉛)微粉体、Nb(ニオブ)微粉体、Mo(モリブデン)微粉体、Ag(銀)微粉体のうちの他の少なくとも1種類)の遷移金属微粉体混合物40の全重量に対する重量比が3%〜20%の範囲にある。   In the transition metal fine powder mixture 40 containing Cu (copper) fine powder as a main component, the weight ratio of the Cu fine powder to the total weight of the transition metal fine powder mixture 40 is in the range of 30% to 50%. Transition metal fine powder 39 of one kind of transition metal 38 excluding fine powder (Ti (titanium) fine powder, Cr (chromium) fine powder, Mn (manganese) fine powder, Fe (iron) fine powder, Co (cobalt) fine powder , Ni (nickel) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, and at least one of Ag (silver) fine powder) transition metal fine powder mixture 40 And a transition metal fine powder 39 (Ti (titanium) fine powder, Cr (chromium)) of at least one other type of transition metal 38 excluding Cu fine powder. Fine powder, Mn (manganese Fine powder, Fe (iron) fine powder, Co (cobalt) fine powder, Ni (nickel) fine powder, Zn (zinc) fine powder, Nb (niobium) fine powder, Mo (molybdenum) fine powder, Ag (silver) fine powder The weight ratio of the transition metal fine powder mixture 40 (the other at least one of the bodies) to the total weight is in the range of 3% to 20%.

Cu(銅)を主成分としたアロイ成形物42の具体例としては、Cuの微粉体、Feの微粉体、Znの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成したアロイ成形物42である。また、Cu(銅)を主成分としたアロイ微粉体43(Cuを主成分とした合金微粉体)の具体例としては、Cuの微粉体、Feの微粉体、Znの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   As a specific example of the alloy molded product 42 containing Cu (copper) as a main component, a transition metal fine powder mixture 40 obtained by uniformly mixing and dispersing Cu fine powder, Fe fine powder, and Zn fine powder is compressed. This is a sintered alloy molded product 42. Further, as a specific example of the alloy fine powder 43 mainly composed of Cu (copper) (alloy fine powder mainly composed of Cu), a fine powder of Cu, a fine powder of Fe, and a fine powder of Zn are uniformly mixed. -The dispersed transition metal fine powder mixture 40 is compressed and then fired to form an alloy molded product 42. The alloy molded product 42 is finely pulverized with a particle size of 10 µm to 200 µm.

このアロイ成形物42(アロイ微粉体43)は、遷移金属微粉体混合物40の全重量に対するCuの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するFeの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するZnの微粉体の重量比が4%である。Cuの融点が1084.5℃、Feの融点が1536℃、Znの融点が419.58℃であるから、Znの微粉体及びCuの微粉体が溶融し、溶融したZn及びCuの微粉体がバインダーとなってFeの微粉体を接合している。   This alloy molded product 42 (alloy fine powder 43) has a weight ratio of Cu fine powder to the total weight of the transition metal fine powder mixture 40 of 48%, and the weight of the Fe fine powder to the total weight of the transition metal fine powder mixture 40. The ratio was 48%, and the weight ratio of the fine Zn powder to the total weight of the transition metal fine powder mixture 40 was 4%. Since the melting point of Cu is 1084.5 ° C., the melting point of Fe is 1536 ° C., and the melting point of Zn is 419.58 ° C., the fine powder of Zn and the fine powder of Cu are melted. A fine powder of Fe is joined as a binder.

Cu(銅)を主成分としたアロイ成形物42の他の具体例としては、Cuの微粉体、Feの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成したアロイ成形物42である。また、Cuを主成分としたアロイ微粉体43(Cuを主成分とした合金微粉体)の他の具体例としては、Cuの微粉体、Feの微粉体、Agの微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕した粒径が10μm〜200μmの微粉砕物である。   As another specific example of the alloy molded product 42 containing Cu (copper) as a main component, a transition metal fine powder mixture 40 obtained by uniformly mixing and dispersing Cu fine powder, Fe fine powder, and Ag fine powder is compressed. An alloy molding 42 fired after firing. Further, as another specific example of the alloy fine powder 43 containing Cu as a main component (alloy fine powder containing Cu as a main component), a fine powder of Cu, a fine powder of Fe, and a fine powder of Ag are uniformly mixed. The dispersed transition metal fine powder mixture 40 is compressed and fired to form an alloy molded product 42, and the alloy molded product 42 is finely pulverized with a particle size of 10 μm to 200 μm.

このアロイ成形物42(アロイ微粉体43)は、遷移金属微粉体混合物40の全重量に対するCuの微粉体の重量比が48%、遷移金属微粉体混合物40の全重量に対するFeの微粉体の重量比が46%、遷移金属微粉体混合物40の全重量に対するAgの微粉体の重量比が6%である。Cuの融点が1084.5℃、Feの融点が1536℃、Agの融点が961.93℃であるから、Agの微粉体及びCuの微粉体が溶融し、溶融したAg及びCuの微粉体がバインダーとなってFeの微粉体を接合している。   This alloy molded product 42 (alloy fine powder 43) has a weight ratio of Cu fine powder to the total weight of the transition metal fine powder mixture 40 of 48%, and the weight of the Fe fine powder to the total weight of the transition metal fine powder mixture 40. The ratio is 46%, and the weight ratio of the Ag fine powder to the total weight of the transition metal fine powder mixture 40 is 6%. Since the melting point of Cu is 1084.5 ° C., the melting point of Fe is 1536 ° C., and the melting point of Ag is 961.93 ° C., the Ag fine powder and the Cu fine powder are melted, and the fused Ag and Cu fine powder are melted. The fine powder of Fe is joined as a binder.

金属電極薄板27は、前面及び後面を有するとともに、所定面積及び0.02〜0.2mmの厚み寸法を有する。金属電極薄板27は、導電性の金属(銀や銅、鉄、又は、導電性の合金)を薄板状に成形したものであり、その平面形状が四角形に成形されている。金属電極薄板27には、気体や液体が通流する微細な多数の流路(微細貫通孔)が形成されている。なお、金属電極薄板27の平面形状に特に制限はなく、四角形の他に、円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。   The metal electrode thin plate 27 has a front surface and a rear surface, and has a predetermined area and a thickness of 0.02 to 0.2 mm. The metal electrode thin plate 27 is formed by forming a conductive metal (silver, copper, iron, or a conductive alloy) into a thin plate shape, and has a square shape in plan view. In the metal electrode thin plate 27, a large number of fine channels (fine through holes) through which gas and liquid flow are formed. The planar shape of the metal electrode thin plate 27 is not particularly limited, and may be formed into any other planar shape such as a circle, an ellipse, and a polygon in addition to a square.

カーボン電極薄板28は、前面及び後面を有するとともに、所定面積及び0.02〜0.2mmの厚み寸法を有し、その平面形状が四角形に成形されている。カーボン電極薄板28には、気体や液体が通流する微細な多数の流路(微細貫通孔)が形成されている。なお、カーボン電極板28の平面形状に特に制限はなく、四角形の他に、円形や楕円形、多角形等の他のあらゆる平面形状に成形することができる。   The carbon electrode thin plate 28 has a front surface and a rear surface, has a predetermined area and a thickness of 0.02 to 0.2 mm, and is formed in a quadrangular planar shape. In the carbon electrode thin plate 28, a large number of fine channels (fine through holes) through which gas and liquid flow are formed. The planar shape of the carbon electrode plate 28 is not particularly limited, and may be formed into any other planar shape such as a circle, an ellipse, and a polygon in addition to a square.

カーボン電極薄板28の一例としては、数μm〜数10μmのカーボングラファイト(黒鉛)粉末と導電性バインダー(導電性結合材)とを冷間静水圧プレスによって成形した後、約3000℃で黒鉛化したシート状の電極材を使用する。カーボン電極薄板28の他の一例としては、数μm〜数10μmのカーボングラファイト(黒鉛)粉末と導電性バインダー(導電性結合材)とを押出型から押し出し成形した後、約3000℃で黒鉛化したシート状の電極材を使用する。カーボン電極薄板28としては、ガラス状カーボンを使用することもできる。   As an example of the carbon electrode thin plate 28, carbon graphite (graphite) powder of several μm to several tens μm and a conductive binder (conductive binder) are formed by cold isostatic pressing and then graphitized at about 3000 ° C. Use a sheet-like electrode material. As another example of the carbon electrode thin plate 28, carbon graphite (graphite) powder of several μm to several tens of μm and a conductive binder (conductive binder) are extruded from an extrusion mold and then graphitized at about 3000 ° C. Use a sheet-like electrode material. As the carbon electrode thin plate 28, glassy carbon can also be used.

カーボンナノチューブ29の凝集体30は、微細な多数の流路(微細貫通孔)が形成された金属電極薄板27の両面(前後面)に固着(成長)し、又は、微細な多数の流路(微細貫通孔)が形成されたカーボン電極薄板28の両面(前後面)に固着(成長)している。カーボンナノチューブ29の表面には、図6に示すように、アロイ成形物42のアロイ微粒子26(アロイ成形物42を蒸発させたアロイ微粒子26)又はアロイ成形物42を微粉砕したアロイ微粉体43のアロイ微粒子26(アロイ微粉体43を蒸発させたアロイ微粒子26)が満遍なく均一に分散した状態で担持されている。アロイ微粒子26を担持したカーボンナノチューブ29には、気体や液体が通流する多数の微細な開口が形成されている。アロイ微粒子26は、レーザー蒸発法によってカーボンナノチューブ29の表面に担持されている。固体高分子形燃料電池10(セル11)では、固体高分子電解質膜16とカーボンナノチューブ29の表面及びアロイ微粒子26とが隙間なく重なり合い、固体高分子電解質膜16とカーボンナノチューブ29の表面及びアロイ微粒子26とが隙間なく密着している。   The aggregate 30 of the carbon nanotubes 29 adheres (grows) to both surfaces (front and rear surfaces) of the metal electrode thin plate 27 in which a large number of fine channels (fine through holes) are formed, or a large number of fine channels ( It is fixed (grown) on both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 in which the fine through holes (fine through holes) are formed. As shown in FIG. 6, on the surface of the carbon nanotube 29, the alloy fine particles 26 (alloy fine particles 26 obtained by evaporating the alloy molded product 42) or the alloy fine powder 43 obtained by pulverizing the alloy molded product 42 are formed. The alloy fine particles 26 (alloy fine particles 26 obtained by evaporating the alloy fine powder 43) are carried in a uniformly dispersed state. The carbon nanotubes 29 carrying the alloy fine particles 26 have a large number of fine openings through which gas and liquid flow. The alloy fine particles 26 are supported on the surface of the carbon nanotube 29 by a laser evaporation method. In the polymer electrolyte fuel cell 10 (cell 11), the solid polymer electrolyte membrane 16 and the surface of the carbon nanotube 29 and the alloy fine particles 26 overlap without any gap, and the surface of the solid polymer electrolyte membrane 16 and the carbon nanotube 29 and the alloy fine particles 26 is in close contact with no gap.

カーボンナノホーン31の凝集体32は、微細な多数の流路(微細貫通孔)が形成された金属電極薄板27の両面(前後面)に固着(成長)し、又は、微細な多数の流路(微細貫通孔)が形成されたカーボン電極薄板28の両面(前後面)に固着(成長)している。カーボンナノホーン31の表面には、図7に示すように、アロイ成形物42のアロイ微粒子26(アロイ成形物42を蒸発させたアロイ微粒子26)又はアロイ成形物42を微粉砕したアロイ微粉体43のアロイ微粒子26(アロイ微粉体43を蒸発させたアロイ微粒子26)が満遍なく均一に分散した状態で担持されている。アロイ微粒子26を担持したカーボンナノホーン31には、気体や液体が通流する多数の微細な開口が形成されている。アロイ微粒子26は、レーザー蒸発法によってカーボンナノホーン31の表面に担持されている。固体高分子形燃料電池10(セル11)では、固体高分子電解質膜16とカーボンナノホーン31の表面及びアロイ微粒子26とが隙間なく重なり合い、固体高分子電解質膜16とカーボンナノホーン31の表面及びアロイ微粒子26とが隙間なく密着している。   The aggregates 32 of the carbon nanohorns 31 are fixed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 27 in which a large number of fine channels (fine through holes) are formed, or a large number of fine channels ( It is fixed (grown) on both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 in which the fine through holes (fine through holes) are formed. As shown in FIG. 7, on the surface of the carbon nanohorn 31, the alloy fine particles 26 of the alloy molded product 42 (alloy fine particles 26 obtained by evaporating the alloy molded product 42) or the alloy fine powder 43 obtained by pulverizing the alloy molded product 42 are formed. The alloy fine particles 26 (alloy fine particles 26 obtained by evaporating the alloy fine powder 43) are carried in a uniformly dispersed state. The carbon nanohorn 31 carrying the alloy fine particles 26 has a large number of fine openings through which gas and liquid flow. The alloy fine particles 26 are supported on the surface of the carbon nanohorn 31 by a laser evaporation method. In the polymer electrolyte fuel cell 10 (cell 11), the solid polymer electrolyte membrane 16 and the surface of the carbon nanohorn 31 and the alloy fine particles 26 overlap without any gap, and the solid polymer electrolyte membrane 16 and the surface of the carbon nanohorn 31 and the alloy fine particles 26 is in close contact with no gap.

図5は、一例として示すカーボンナノチューブ電極15A(燃料極13A及び空気極14A)又はカーボンナノホーン電極15A(燃料極13A及び空気極14A)の部分拡大正面図であり、図6は、アロイ微粒子26を担持した一例として示すカーボンナノチューブ29の概念図である。図7は、アロイ微粒子26を担持した一例として示すカーボンナノホーン31の概念図である。   FIG. 5 is a partially enlarged front view of a carbon nanotube electrode 15A (fuel electrode 13A and air electrode 14A) or a carbon nanohorn electrode 15A (fuel electrode 13A and air electrode 14A) shown as an example, and FIG. It is a conceptual diagram of the carbon nanotube 29 shown as an example carried. FIG. 7 is a conceptual diagram of a carbon nanohorn 31 shown as an example carrying alloy fine particles 26.

燃料極13A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)及び空気極14A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)は、その厚み寸法L1が0.03mm〜0.3mmの範囲、好ましくは、0.05mm〜0.1mmの範囲にある。燃料極13A及び空気極14Aの厚み寸法L1が0.03mm未満では、その強度が低下し、衝撃が加えられたときに燃料極13A及び空気極14Aが容易に破損又は損壊し、その形状を維持することができない場合がある。燃料極13A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)及び空気極14A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)の厚み寸法L1が0.3mmを超過すると、燃料極13A及び空気極14Aの電気抵抗が大きくなり、燃料極13A及び空気極14Aに電流がスムースに流れず、燃料極13A及び空気極15Aが固体高分子形燃料電池10に使用されたときに燃料電池10において十分な電気を発電することができず、燃料電池10に接続された負荷37に十分な電気エネルギーを供給することができない。   The fuel electrode 13A (carbon nanotube electrode 15A or carbon nanohorn electrode 15A) and the air electrode 14A (carbon nanotube electrode 15A or carbon nanohorn electrode 15A) have a thickness L1 in the range of 0.03 mm to 0.3 mm, preferably 0 mm. It is in the range of 0.05 mm to 0.1 mm. When the thickness L1 of the fuel electrode 13A and the air electrode 14A is less than 0.03 mm, the strength is reduced, and the fuel electrode 13A and the air electrode 14A are easily broken or damaged when an impact is applied, and the shape is maintained. May not be possible. When the thickness L1 of the fuel electrode 13A (the carbon nanotube electrode 15A or the carbon nanohorn electrode 15A) and the air electrode 14A (the carbon nanotube electrode 15A or the carbon nanohorn electrode 15A) exceeds 0.3 mm, the electricity of the fuel electrode 13A and the air electrode 14A is increased. The resistance increases, current does not flow smoothly to the fuel electrode 13A and the air electrode 14A, and when the fuel electrode 13A and the air electrode 15A are used in the polymer electrolyte fuel cell 10, sufficient electricity is generated in the fuel cell 10. Therefore, sufficient electric energy cannot be supplied to the load 37 connected to the fuel cell 10.

燃料極13A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)及び空気極14A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)は、その厚み寸法L1が0.03mm〜0.3mmの範囲、好ましくは、0.05mm〜0.1mmの範囲にあるから、燃料極13A及び空気極14Aが高い強度を有してその形状を維持することができ、燃料極13A及び空気極14Aに衝撃が加えられたときの燃料極13A及び空気極14Aの破損や損壊を防ぐことができる。さらに、厚み寸法L1を前記範囲にすることで、燃料極13A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)及び空気極14A(カーボンナノチューブ電極15A又はカーボンナノホーン電極15A)の電気抵抗を小さくすることができ、燃料極13A及び空気極14Aに電流がスムースに流れ、燃料極13A及び空気極14Aが固体高分子形燃料電池10に使用されたときに燃料電池10において十分な電気を発電することができ、燃料電池10に接続された負荷37に十分な電気エネルギーを供給することができる。   The fuel electrode 13A (carbon nanotube electrode 15A or carbon nanohorn electrode 15A) and the air electrode 14A (carbon nanotube electrode 15A or carbon nanohorn electrode 15A) have a thickness L1 in the range of 0.03 mm to 0.3 mm, preferably 0 mm. Since the fuel electrode 13A and the air electrode 14A are in the range of 0.05 mm to 0.1 mm, the fuel electrode 13A and the air electrode 14A have high strength and can maintain their shapes, and when the impact is applied to the fuel electrode 13A and the air electrode 14A. The fuel electrode 13A and the air electrode 14A can be prevented from being damaged or damaged. Further, by setting the thickness L1 within the above range, the electric resistance of the fuel electrode 13A (carbon nanotube electrode 15A or carbon nanohorn electrode 15A) and the air electrode 14A (carbon nanotube electrode 15A or carbon nanohorn electrode 15A) can be reduced. When the fuel electrode 13A and the air electrode 14A are used in the polymer electrolyte fuel cell 10, sufficient current can be generated in the fuel cell 10 when the fuel electrode 13A and the air electrode 14A flow smoothly. Thus, sufficient electric energy can be supplied to the load 37 connected to the fuel cell 10.

図8は、他の一例として示すカーボンナノチューブ電極15B(燃料極13B及び空気極14B)又はカーボンナノホーン電極15B(燃料極13B及び空気極14B)の部分拡大正面図であり、図9は、アロイ微粒子26を担持した他の一例として示すカーボンナノチューブ29の概念図である。図10は、アロイ微粒子26を担持した他の一例として示すカーボンナノホーン31の概念図である。   FIG. 8 is a partially enlarged front view of a carbon nanotube electrode 15B (fuel electrode 13B and air electrode 14B) or a carbon nanohorn electrode 15B (fuel electrode 13B and air electrode 14B) shown as another example, and FIG. FIG. 7 is a conceptual diagram of a carbon nanotube 29 shown as another example carrying 26. FIG. 10 is a conceptual diagram of a carbon nanohorn 31 shown as another example carrying alloy fine particles 26.

図8に示すカーボンナノチューブ電極15B(燃料極13B及び空気極14B)又はカーボンナノホーン電極15B(燃料極13B及び空気極14B)が図5の電極15A(燃料極13A及び空気極14A)と異なるところは、カーボンナノチューブ29の表面から外側へ向かって重なり合うアロイ微粒子26によってアロイ微粒子積層ポーラス構造33がカーボンナノチューブ29の表面に形成されている点、カーボンナノホーン31の表面から外側へ向かって重なり合うアロイ微粒子26によってアロイ微粒子積層ポーラス構造33がカーボンナノホーン31の表面に形成されている点にあり、その他の構成は図5のカーボンナノチューブ電極15A又はカーボンナノホーン電極15Aのそれらと同一であるから、図5〜図7と同一の符号を付すとともに、図5〜図7の電極15A(燃料極13A及び空気極14A)の説明を援用することで、この電極15B(燃料極13B及び空気極14B)のその他の構成の詳細な説明は省略する。   The difference between the carbon nanotube electrode 15B (fuel electrode 13B and air electrode 14B) or the carbon nanohorn electrode 15B (fuel electrode 13B and air electrode 14B) shown in FIG. 8 is different from the electrode 15A (fuel electrode 13A and air electrode 14A) of FIG. The point that the alloy fine particle laminated porous structure 33 is formed on the surface of the carbon nanotube 29 by the alloy fine particles 26 overlapping from the surface of the carbon nanotube 29 to the outside, Since the alloy microporous structure 33 is formed on the surface of the carbon nanohorn 31 and the other configuration is the same as those of the carbon nanotube electrode 15A or the carbon nanohorn electrode 15A of FIG. 5, FIGS. Same as And the description of the electrode 15A (the fuel electrode 13A and the air electrode 14A) in FIGS. 5 to 7 is referred to for a detailed description of the other configuration of the electrode 15B (the fuel electrode 13B and the air electrode 14B). Omitted.

燃料極13B(カーボンナノチューブ電極15B又はカーボンナノホーン電極15B)及び空気極14B(カーボンナノチューブ電極15B又はカーボンナノホーン電極15B)は、図5の燃料極13A及び空気極14Aと同様に、前面24及び後面25を有するとともに、所定の面積及び所定の厚み寸法L1を有し、その平面形状が四角形に成形されている。燃料極13B及び空気極14Bは、アロイ成形物42(合金成形物)のアロイ微粒子26(合金微粒子)と、金属電極薄板27又はカーボン電極薄板28と、所定面積のカーボンナノチューブ29の凝集体30(凝集板)又は所定面積のカーボンナノホーン31の凝集体32(凝集板)とから形成されている。   The fuel electrode 13B (carbon nanotube electrode 15B or carbon nanohorn electrode 15B) and the air electrode 14B (carbon nanotube electrode 15B or carbon nanohorn electrode 15B) have a front surface 24 and a rear surface 25 similar to the fuel electrode 13A and air electrode 14A of FIG. And has a predetermined area and a predetermined thickness dimension L1, and has a square planar shape. The fuel electrode 13B and the air electrode 14B are composed of an alloy fine particle 26 (alloy fine particle) of an alloy molded product 42 (alloy molded product), a metal electrode thin plate 27 or a carbon electrode thin plate 28, and an aggregate 30 of a predetermined area of a carbon nanotube 29 ( (Aggregated plate) or an aggregate 32 (aggregated plate) of carbon nanohorns 31 having a predetermined area.

なお、燃料極13B及び空気極14Bがアロイ成形物42を微粉砕した粒径が10μm〜200μmのアロイ微粉体43(合金微粉体)のアロイ微粒子26(合金微粒子)と、金属電極薄板27又はカーボン電極薄板28と、所定面積のカーボンナノチューブ29の凝集体30(凝集板)又は所定面積のカーボンナノホーン31の凝集体32(凝集板)とから形成される場合がある。   The fuel electrode 13B and the air electrode 14B are finely pulverized from the alloy molding 42. The alloy fine particles 26 (alloy fine particles) of the alloy fine powder 43 (alloy fine powder) having a particle size of 10 μm to 200 μm, and the metal electrode thin plate 27 or carbon It may be formed from an electrode thin plate 28 and an aggregate 30 of carbon nanotubes 29 (aggregate plate) of a predetermined area or an aggregate 32 of carbon nanohorns 31 (aggregate plate) of a predetermined area.

カーボンナノチューブ29の凝集体30は、厚み寸法が0.02〜0.2mmであって微細な多数の流路(微細孔)が形成された金属電極薄板27の両面に固着し、又は、厚み寸法が0.02〜0.2mmであって微細な多数の流路(微細孔)が形成されたカーボン電極薄板28の両面に固着している。カーボンナノチューブ29の表面には、図9に示すように、アロイ成形物42のアロイ微粒子26(アロイ成形物42を蒸発させたアロイ微粒子26)又はアロイ成形物42を微粉砕したアロイ微粉体43のアロイ微粒子26(アロイ微粉体43を蒸発させたアロイ微粒子26)が担持され、カーボンナノチューブ29の表面から外側へ向かって重なり合うそれらアロイ微粒子26によってアロイ微粒子積層ポーラス構造33が形成されている。   The aggregate 30 of the carbon nanotubes 29 has a thickness of 0.02 to 0.2 mm and is fixed to both surfaces of the metal electrode thin plate 27 in which a large number of fine channels (micropores) are formed. Is 0.02 to 0.2 mm and is fixed to both surfaces of the carbon electrode thin plate 28 in which a large number of fine channels (micropores) are formed. As shown in FIG. 9, on the surface of the carbon nanotube 29, the alloy fine particles 26 of the alloy molded product 42 (the alloy fine particles 26 obtained by evaporating the alloy molded product 42) or the alloy fine powder 43 obtained by pulverizing the alloy molded product 42 are formed. The alloy fine particles 26 (alloy fine particles 26 obtained by evaporating the alloy fine powder 43) are supported, and the alloy fine particles 26 overlapping from the surface of the carbon nanotube 29 to the outside form an alloy fine particle laminated porous structure 33.

カーボンナノホーン31の凝集体32は、厚み寸法が0.02〜0.2mmであって微細な多数の流路(微細孔)が形成された金属電極薄板27の両面に固着し、又は、厚み寸法が0.02〜0.2mmであって微細な多数の流路(微細孔)が形成されたカーボン電極薄板28の両面に固着している。カーボンナノホーン31の表面には、図10に示すように、アロイ成形物42のアロイ微粒子26(アロイ成形物42を蒸発させたアロイ微粒子26)又はアロイ成形物42を微粉砕したアロイ微粉体43のアロイ微粒子26(アロイ微粉体43を蒸発させたアロイ微粒子26)が担持され、カーボンナノホーン31の表面から外側へ向かって重なり合うそれらアロイ微粒子26によってアロイ微粒子積層ポーラス構造33が形成されている。   The aggregate 32 of the carbon nanohorns 31 has a thickness of 0.02 to 0.2 mm and is fixed to both surfaces of the metal electrode thin plate 27 in which a large number of fine channels (micropores) are formed. Is 0.02 to 0.2 mm and is fixed to both surfaces of the carbon electrode thin plate 28 in which a large number of fine channels (micropores) are formed. On the surface of the carbon nanohorn 31, as shown in FIG. 10, the alloy fine particles 26 of the alloy molded product 42 (the alloy fine particles 26 obtained by evaporating the alloy molded product 42) or the alloy fine powder 43 obtained by pulverizing the alloy molded product 42 are formed. The alloy fine particles 26 (alloy fine particles 26 obtained by evaporating the alloy fine powder 43) are supported, and the alloy fine particles 26 overlapping from the surface of the carbon nanohorn 31 to the outside form an alloy fine particle laminated porous structure 33.

アロイ微粉体26(合金微粉体)は、アロイ成形物42(合金成形物)を微粉砕することから作られている。アロイ成形物42は、粉状に加工(微粉砕)された各種の遷移金属38から選択された少なくとも3種類の遷移金属38の微粉体を均一に混合・分散した遷移金属微粉体混合物40を圧縮した後に焼成(焼結)することから作られている。遷移金属38や遷移金属微粉体混合物40、アロイ成形物42、アロイ微粉体43は、図5の燃料極13A及び空気極14Aのそれらと同一である。遷移金属微粉体38の粒径やアロイ微粉体43の粒径、燃料極13B及び空気極14Bの厚み寸法L1は、図5の燃料極13A及び空気極14Aのそれらと同一である。   The alloy fine powder 26 (alloy fine powder) is made by finely pulverizing an alloy molded product 42 (alloy molded product). The alloy molding 42 compresses a transition metal fine powder mixture 40 obtained by uniformly mixing and dispersing at least three types of transition metal 38 fine powders selected from various transition metal 38 processed into fine powder (fine pulverization). It is made by firing (sintering) after it is done. The transition metal 38, the transition metal fine powder mixture 40, the alloy molded product 42, and the alloy fine powder 43 are the same as those of the fuel electrode 13A and the air electrode 14A in FIG. The particle size of the transition metal fine powder 38, the particle size of the alloy fine powder 43, and the thickness L1 of the fuel electrode 13B and the air electrode 14B are the same as those of the fuel electrode 13A and the air electrode 14A in FIG.

固体高分子形燃料電池10(セル11)では、固体高分子電解質膜16とカーボンナノチューブ29の表面及びアロイ微粒子積層ポーラス構造33とが隙間なく重なり合い、固体高分子電解質膜16とカーボンナノチューブ29の表面及びアロイ微粒子積層ポーラス構造33とが隙間なく密着している。また、固体高分子電解質膜16とカーボンナノホーン31の表面及びアロイ微粒子積層ポーラス構造33とが隙間なく重なり合い、固体高分子電解質膜16とカーボンナノホーン31の表面及びアロイ微粒子積層ポーラス構造33とが隙間なく密着している。   In the polymer electrolyte fuel cell 10 (cell 11), the solid polymer electrolyte membrane 16 and the surface of the carbon nanotube 29 and the alloy fine particle laminated porous structure 33 overlap without gaps, and the surfaces of the solid polymer electrolyte membrane 16 and the carbon nanotube 29 And the alloy fine particle laminated porous structure 33 is in close contact with no gap. Further, the solid polymer electrolyte membrane 16 and the surface of the carbon nanohorn 31 and the alloy fine particle laminated porous structure 33 overlap without any gap, and the solid polymer electrolyte membrane 16 and the surface of the carbon nanohorn 31 and the alloy fine particle laminated porous structure 33 are tightly spaced. Adhering.

アロイ微粒子積層ポーラス構造33には、径が異なる多数の微細な流路34(通路孔)が形成されている。それら流路34(通路孔)には、気体(水素ガスや酸素ガス)または液体(水)が通流する。それら流路34(通路孔)は、カーボンナノチューブ電極15B又はカーボンナノホーン電極15Bの前面の側に開口する複数の通流口35と電極10Bの後面の側に開口する複数の通流口35とを有し、カーボンナノチューブ29又はカーボンナノホーン31に向かってアロイ微粒子積層ポーラス構造33を貫通している。それら流路34は、アロイ微粒子積層ポーラス構造33の様々な方向(厚み方向や縦横方向)へ不規則に曲折しながら延びている。それら流路34は、アロイ微粒子積層ポーラス構造33の内部において部分的につながり、一方の流路34と他方の流路34とが互いに連通している。それら流路34(通路孔)の開口面積(開口径)は、アロイ微粒子積層ポーラス構造33の内部において一様ではなく、不規則に変化している。   A large number of fine flow paths 34 (passage holes) having different diameters are formed in the alloy fine particle laminated porous structure 33. A gas (hydrogen gas or oxygen gas) or a liquid (water) flows through these flow paths 34 (passage holes). The flow paths 34 (passage holes) include a plurality of flow openings 35 opening on the front side of the carbon nanotube electrode 15B or the carbon nanohorn electrode 15B and a plurality of flow openings 35 opening on the back side of the electrode 10B. And penetrates the porous alloy layered structure 33 toward the carbon nanotube 29 or the carbon nanohorn 31. These flow paths 34 extend in various directions (thickness direction and vertical and horizontal directions) of the alloy fine particle laminated porous structure 33 while being bent irregularly. These flow paths 34 are partially connected inside the alloy fine particle laminated porous structure 33, and one flow path 34 and the other flow path 34 communicate with each other. The opening areas (opening diameters) of the flow paths 34 (passage holes) are not uniform inside the alloy fine particle laminated porous structure 33 but are irregularly changed.

アロイ微粒子積層ポーラス構造は33、その空隙率が15%〜30%の範囲にあり、その相対密度が70%〜85%の範囲にある。アロイ微粒子積層ポーラス構造33の空隙率が15%未満であって相対密度が85%を超過すると、アロイ微粒子積層ポーラス構造33に多数の微細な流路34(通路孔)が形成されず、アロイ微粒子積層ポーラス構造33の比表面積を大きくすることができない。アロイ微粒子積層ポーラス構造33の空隙率が30%を超過し、相対密度が70%未満では、流路34(通路孔)の開口面積(開口径)が必要以上に大きくなり、アロイ微粒子積層ポーラス構造33の強度が低下し、衝撃が加えられたときにアロイ微粒子積層ポーラス構造33が容易に破損又は損壊し、その形態を維持することができない場合がある。   The alloy fine particle laminated porous structure 33 has a porosity in the range of 15% to 30% and a relative density in the range of 70% to 85%. If the porosity of the alloy fine particle laminated porous structure 33 is less than 15% and the relative density exceeds 85%, a large number of fine channels 34 (passage holes) are not formed in the alloy fine particle laminated porous structure 33, and the alloy fine particles The specific surface area of the laminated porous structure 33 cannot be increased. If the porosity of the alloy fine particle laminated porous structure 33 exceeds 30% and the relative density is less than 70%, the opening area (opening diameter) of the flow path 34 (passage hole) becomes unnecessarily large, and the alloy fine particle laminated porous structure In some cases, the strength of the alloy particle 33 decreases, and when an impact is applied, the alloy fine particle laminated porous structure 33 is easily broken or damaged, and the form cannot be maintained.

アロイ微粒子積層ポーラス構造33は、その空隙率及び相対密度が前記範囲にあるから、アロイ微粒子積層ポーラス構造33が開口面積(開口径)の異なる多数の微細な流路34(通路孔)を有し、アロイ微粒子積層ポーラス構造33の比表面積を大きくすることができ、それら流路34(通路孔)を気体や液体が通流しつつ気体や液体をアロイ微粒子積層ポーラス構造33の接触面(アロイ微粒子26(合金微粒子)の表面)に広く接触させることができる。   Since the porosity and the relative density of the alloy fine particle laminated porous structure 33 are in the above ranges, the alloy fine particle laminated porous structure 33 has a large number of fine flow paths 34 (passage holes) having different opening areas (opening diameters). The specific surface area of the alloy fine particle laminated porous structure 33 can be increased, and the gas or liquid flows through the flow path 34 (passage hole) while the gas or liquid flows through the contact surface of the alloy fine particle laminated porous structure 33 (alloy fine particles 26). (The surface of the (alloy fine particles)).

図11は、固体高分子形燃料電池10の発電を説明する図であり、図12は、燃料極13A,13B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)及び空気極14A,14B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)の起電圧試験の結果を示す図である。図13は、燃料極13A,13B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)及び空気極13A,13B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)のI−V特性試験の結果を示す図である。固体高分子形燃料電池10では、図11に示すように、燃料極13A,13Bに水素(燃料)が供給され、空気極14A,14Bに空気(酸素)が供給される。   FIG. 11 is a diagram illustrating power generation by the polymer electrolyte fuel cell 10. FIG. 12 is a diagram illustrating fuel electrodes 13A and 13B (carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B) and air electrodes 14A and 14B. It is a figure showing the result of the electromotive force test of (carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B). FIG. 13 shows IV characteristics of fuel electrodes 13A and 13B (carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B) and air electrodes 13A and 13B (carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B). It is a figure showing a result of a test. In the polymer electrolyte fuel cell 10, as shown in FIG. 11, hydrogen (fuel) is supplied to the fuel electrodes 13A and 13B, and air (oxygen) is supplied to the air electrodes 14A and 14B.

燃料極13A又は燃料極13Bでは、水素がH→2H+2eの反応(触媒作用)によってプロトン(水素イオン、H)と電子とに分解される。その後、プロトンが固体高分子電解質膜16内を通って空気極14A又は空気極14Bへ移動し、電子が導線36内を通って空気極14A又は空気極14Bへ移動する。固体高分子電解質膜16には、燃料極13A又は燃料極13Bで生成されたプロトンが通流する。空気極14A又は空気極14Bでは、固体高分子電解質膜16から移動したプロトンと導線36を移動した電子とが空気中の酸素と反応し、4H+O+4e→2HOの反応によって水が生成される。 At the fuel electrode 13A or 13B, hydrogen is decomposed into protons (hydrogen ions, H + ) and electrons by a reaction (catalysis) of H 2 → 2H + + 2e . Thereafter, the protons move through the solid polymer electrolyte membrane 16 to the air electrode 14A or the air electrode 14B, and the electrons move through the conductor 36 to the air electrode 14A or the air electrode 14B. Protons generated at the fuel electrode 13A or the fuel electrode 13B flow through the solid polymer electrolyte membrane 16. At the air electrode 14A or the air electrode 14B, the protons transferred from the solid polymer electrolyte membrane 16 and the electrons transferred on the conductive wire 36 react with oxygen in the air, and water is formed by the reaction of 4H + + O 2 + 4e → 2H 2 O. Generated.

少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、遷移金属の中から少なくとも3種類の遷移金属が選択され、選択された少なくとも3種類の遷移金属から作られたアロイ成形物43のアロイ微粒子26がカーボンナノチューブ29又はカーボンナノホーン31の表面に担持され又はアロイ微粒子積層ポーラス構造33がカーボンナノチューブ29又はカーボンナノホーン31の表面に形成され、又は、アロイ成形物42を微粉砕したアロイ微粉体43のアロイ微粒子26がカーボンナノチューブ29又はカーボンナノホーン31の表面に担持され又はアロイ微粒子積層ポーラス構造33がカーボンナノチューブ29又はカーボンナノホーン31の表面に担持され、アロイ微粒子26又はアロイ微粒子積層ポーラス構造33が燃料極13A,13B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)及び空気極14A,14B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)を構成するから、燃料極13A,13Bや空気極14A,14Bが優れた触媒活性(触媒作用)を示し、水素がプロトンと電子とに効率よく分解される。   At least three transition metals are selected from the transition metals such that the work function of the work functions of the at least three transition metals is close to the work function of the platinum group element, and the selected at least three transition metals are selected. The alloy fine particles 26 of the alloy molded product 43 made of are supported on the surface of the carbon nanotube 29 or the carbon nanohorn 31 or the alloy fine particle laminated porous structure 33 is formed on the surface of the carbon nanotube 29 or the carbon nanohorn 31, or the alloy molding The alloy fine particles 26 of the alloy fine powder 43 obtained by pulverizing the product 42 are supported on the surface of the carbon nanotube 29 or the carbon nanohorn 31 or the alloy fine particle laminated porous structure 33 is supported on the surface of the carbon nanotube 29 or the carbon nanohorn 31. 26 or allo The fine particle laminated porous structure 33 constitutes the fuel electrodes 13A and 13B (carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B) and the air electrodes 14A and 14B (carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B). Therefore, the fuel electrodes 13A and 13B and the air electrodes 14A and 14B exhibit excellent catalytic activity (catalysis), and hydrogen is efficiently decomposed into protons and electrons.

起電圧試験では、水素ガスを注入してから15分の間、燃料極13A又は燃料極13Bと空気極14A又は空気極14Bとの間(電極間)の電圧(V)を測定した。図12の起電圧試験の結果を示す図では、横軸に測定時間(min)を表し、縦軸に燃料極13A又は燃料極13Bと空気極14A又は空気極14Bとの間(電極間)の電圧(V)を表す。白金族元素を利用した(担持させた)燃料極及び空気極(白金電極)を使用した固体高分子形燃料電池では、図12の起電圧試験の結果を示す図から分かるように、燃料極と空気極との電圧が1.079(V)前後であった。それに対し、燃料極13A(白金レス電極)又は燃料極13B(白金レス電極)及び空気極14A(白金レス電極)又は空気極14B(白金レス電極)を使用した固体高分子形燃料電池10では、燃料極13A又は燃料極13Bと空気極14A又は空気極14Bとの間(電極間)の電圧(起電力)が1.04(V)〜1.03(V)であった。   In the electromotive voltage test, the voltage (V) between the fuel electrode 13A or the fuel electrode 13B and the air electrode 14A or the air electrode 14B (between the electrodes) was measured for 15 minutes after the hydrogen gas was injected. In the diagram showing the results of the electromotive force test in FIG. 12, the horizontal axis represents the measurement time (min), and the vertical axis represents the distance between the fuel electrode 13A or 13B and the air electrode 14A or 14B (between the electrodes). Indicates voltage (V). In a polymer electrolyte fuel cell using a fuel electrode utilizing (supported on) a platinum group element and an air electrode (platinum electrode), as can be seen from the result of the electromotive force test shown in FIG. The voltage with the air electrode was around 1.079 (V). On the other hand, in the polymer electrolyte fuel cell 10 using the fuel electrode 13A (platinum-less electrode) or the fuel electrode 13B (platinum-less electrode) and the air electrode 14A (platinum-less electrode) or the air electrode 14B (platinum-less electrode), The voltage (electromotive force) between the fuel electrode 13A or the fuel electrode 13B and the air electrode 14A or the air electrode 14B (between the electrodes) was 1.04 (V) to 1.03 (V).

I−V特性試験では、燃料極13A又は燃料極13Bと空気極14A又は空気極14Bとの間(電極間)に負荷37を接続し、電圧と電流との関係を測定した。図13のI−V特性試験の結果を示す図では、横軸に電流(A)を表し、縦軸に電圧(V)を表す。燃料極13A(白金レス電極)又は燃料極13B(白金レス電極)及び空気極14A(白金レス電極)又は空気極14B(白金レス電極)を使用した固体高分子形燃料電池10では、図13のI−V特性試験の結果を示す図から分かるように、白金族元素を利用した(担持させた)燃料極(白金電極)及び空気極(白金電極)を使用した固体高分子形燃料電池の電圧降下率と大差のない結果が得られた。図12の起電圧試験の結果や図13のI−V特性試験の結果に示すように、白金族元素を利用していない白金レスの燃料極13A,13B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)及び空気極14A,14B(カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15B)が電子を放出させて水素イオンとなる反応を促進させる優れた触媒作用を有するとともに、白金を利用した燃料極及び空気極と略同様の酸素還元機能(触媒作用)を有することが確認された。   In the IV characteristic test, a load 37 was connected between the fuel electrode 13A or the fuel electrode 13B and the air electrode 14A or the air electrode 14B (between the electrodes), and the relationship between voltage and current was measured. In the diagram showing the results of the IV characteristic test in FIG. 13, the horizontal axis represents current (A) and the vertical axis represents voltage (V). In the polymer electrolyte fuel cell 10 using the fuel electrode 13A (platinum-less electrode) or the fuel electrode 13B (platinum-less electrode) and the air electrode 14A (platinum-less electrode) or the air electrode 14B (platinum-less electrode), FIG. As can be seen from the figure showing the results of the IV characteristic test, the voltage of the polymer electrolyte fuel cell using a fuel electrode (platinum electrode) and an air electrode (platinum electrode) utilizing (supporting) a platinum group element. The result was not much different from the descent rate. As shown in the result of the electromotive force test in FIG. 12 and the result of the IV characteristic test in FIG. 13, the platinum-less fuel electrodes 13A and 13B (carbon nanotube electrodes 15A and 15B or carbon nanohorns) which do not use a platinum group element are used. The electrodes 15A, 15B) and the air electrodes 14A, 14B (carbon nanotube electrodes 15A, 15B or carbon nanohorn electrodes 15A, 15B) have excellent catalytic action to release electrons to promote a reaction to become hydrogen ions, It was confirmed that it had an oxygen reduction function (catalysis) substantially similar to the used fuel electrode and air electrode.

固体高分子形燃料電池10は、それに使用される燃料極13A及び空気極14Aであるカーボンナノチューブ電極15A又はカーボンナノホーン電極15Aが各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物42(又はアロイ微粉体43)のアロイ微粒子26(合金微粒子)と、金属電極薄板27又はカーボン電極薄板28と、カーボンナノチューブ29の凝集体30又はカーボンナノホーン31の凝集体32とから形成され、選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中から少なくとも3種類の遷移金属が選択されているとともに、アロイ微粒子26がカーボンナノチューブ29の表面又はカーボンナノホーン31の表面に均一に分散した状態で担持されているから、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粒子26を担持したカーボンナノチューブ電極15A(燃料極13A及び空気極14A)又はカーボンナノホーン電極15A(燃料極及13A及び空気極14A)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極15A又はカーボンナノホーン電極15Aを使用した固体高分子形燃料電池10において十分な電気を発電することができるとともに、固体高分子形燃料電池10に接続された負荷37に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell 10 has a carbon nanotube electrode 15A or a carbon nanohorn electrode 15A that is a fuel electrode 13A and an air electrode 14A used therein. The transition metal fine particles of at least three types of transition metals selected from various transition metals. Alloy fine particles 26 (alloy fine particles) of an alloy molded product 42 (or alloy fine powder 43) which is obtained by compressing a transition metal fine powder mixture in which a body is uniformly mixed and dispersed, and a metal electrode thin plate 27 or a carbon electrode thin plate 28; , Formed from the aggregate 30 of the carbon nanotubes 29 or the aggregate 32 of the carbon nanohorns 31 so that the work function of at least three kinds of selected transition metals approximates the work function of the platinum group element, At least three types of transition metals are selected from various types of transition metals, and alloys are selected. Since the particles 26 are supported in a state of being uniformly dispersed on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31, the carbon nanotube electrode 15A having the alloy fine particles 26 supported on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31 ( The fuel electrode 13A and the air electrode 14A) or the carbon nanohorn electrode 15A (the fuel electrode 13A and the air electrode 14A) have substantially the same work function as the fuel electrode and the air electrode containing a platinum group element, and the fuel electrode containing a platinum group element. And can exhibit substantially the same catalytic activity (catalysis) as the air electrode, and generate sufficient electricity in the polymer electrolyte fuel cell 10 using the platinum-less carbon nanotube electrode 15A or carbon nanohorn electrode 15A. And connected to the polymer electrolyte fuel cell 10. It is possible to supply sufficient electric energy to the load 37.

カーボンナノチューブ29又はカーボンナノホーン31の表面から外側へ向かって重なり合うアロイ微粒子26によってアロイ微粒子積層ポーラス構造33がカーボンナノチューブ29の表面又はカーボンナノホーン31の表面に形成され、固体高分子電解質膜16(電極接合体膜)とカーボンナノチューブ29又はカーボンナノホーン31の表面およびアロイ微粒子積層ポーラス構造33とが隙間なく重なり合っている固体高分子形燃料電池10は、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粒子積層ポーラス構造33を形成することで、アロイ微粒子26の比表面積を大きくすることができ、アロイ微粒子26の触媒作用を十分に利用することができるとともに、アロイ微粒子積層ポーラス構造33を有するカーボンナノチューブ電極15B(燃料極及13B及び空気極14B)又はカーボンナノホーン電極15B(燃料極13B及び空気極14B)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極15B又はカーボンナノホーン電極15Bを使用した固体高分子形燃料電池10において十分な電気を発電することができるとともに、固体高分子形燃料電池10に接続された負荷37に十分な電気エネルギーを供給することができる。   The alloy fine particles layered porous structure 33 is formed on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31 by the alloy fine particles 26 overlapping from the surface of the carbon nanotube 29 or the carbon nanohorn 31 to the outside, and the solid polymer electrolyte membrane 16 (electrode bonding) is formed. The polymer electrolyte fuel cell 10 in which the body film), the surface of the carbon nanotube 29 or the carbon nanohorn 31 and the alloy fine particle laminated porous structure 33 overlap without any gap, has a structure in which the alloy fine particles are formed on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31. By forming the laminated porous structure 33, the specific surface area of the alloy fine particles 26 can be increased, and the catalytic action of the alloy fine particles 26 can be sufficiently utilized. The carbon nanotube electrode 15B (the fuel electrode 13B and the air electrode 14B) or the carbon nanohorn electrode 15B (the fuel electrode 13B and the air electrode 14B) has substantially the same work function as the fuel electrode and the air electrode containing a platinum group element. Can exhibit substantially the same catalytic activity (catalysis) as a fuel electrode containing a group III element and an air electrode, and can be sufficiently used in a polymer electrolyte fuel cell 10 using a platinum-less carbon nanotube electrode 15B or a carbon nanohorn electrode 15B. Power can be generated, and sufficient electric energy can be supplied to the load 37 connected to the polymer electrolyte fuel cell 10.

固体高分子形燃料電池10は、それに使用されるカーボンナノチューブ電極15A,15B(燃料極13A,13B及び空気極14A,14B)又はカーボンナノホーン電極15A,15B(燃料極13A,13B及び空気極14A,14B)が各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体から作られたアロイ微粒子26(アロイ成形物42)を利用し、高価な白金族元素が利用されていない白金レスであり、固体高分子形燃料電池10を廉価に作ることができる。   The polymer electrolyte fuel cell 10 has a carbon nanotube electrode 15A, 15B (fuel electrode 13A, 13B and air electrode 14A, 14B) or a carbon nanohorn electrode 15A, 15B (fuel electrode 13A, 13B and air electrode 14A, 14B) uses alloy fine particles 26 (alloy molding 42) made from transition metal fine powders of at least three types of transition metals selected from various transition metals, and does not use expensive platinum group elements. And the polymer electrolyte fuel cell 10 can be manufactured at low cost.

遷移金属微粉体混合物がNi(ニッケル)の微粉体を主成分とした固体高分子形燃料電池10は、Niの仕事関数とNiを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からNiの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているから、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粒子26又はアロイ微粒子積層ポーラス構造33を有するカーボンナノチューブ電極15A,15B(燃料極13A,13B及び空気極14A,14B)又はカーボンナノホーン電極15A,15B(燃料極13A,13B及び空気極14A,14B)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15Bを使用した固体高分子形燃料電池10において十分な電気を発電することができるとともに、固体高分子形燃料電池10に接続された負荷に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell 10 in which the transition metal fine powder mixture is mainly composed of Ni (nickel) fine powder has a combined work of the work function of Ni and the work function of at least two types of transition metals other than Ni. Since at least two types of fine powders of transition metals other than the fine powder of Ni are selected from various transition metals so that the function is close to the work function of the platinum group element, the surface of the carbon nanotube 29 is selected. Alternatively, carbon nanotube electrodes 15A, 15B (fuel electrodes 13A, 13B and air electrodes 14A, 14B) or carbon nanohorn electrodes 15A, 15B (fuel electrodes 13A, 13B and the cathodes 14A, 14B) have substantially the same work functions as the anode and cathode containing the platinum group element. It is capable of exhibiting substantially the same catalytic activity (catalysis) as a fuel electrode and an air electrode containing a platinum group element, and is a solid polymer type using platinum-less carbon nanotube electrodes 15A, 15B or carbon nanohorn electrodes 15A, 15B. Sufficient electricity can be generated in the fuel cell 10 and sufficient electric energy can be supplied to the load connected to the polymer electrolyte fuel cell 10.

遷移金属微粉体混合物がFe(鉄)の微粉体を主成分とした固体高分子形燃料電池10は、Feの仕事関数とFeを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からFeの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているから、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粒子26又はアロイ微粒子積層ポーラス構造33を有するカーボンナノチューブ電極15A,15B(燃料極13A,13B及び空気極14A,14B)又はカーボンナノホーン電極15A,15B(燃料極13A,13B及び空気極14A,14B)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15Bを使用した固体高分子形燃料電池10において十分な電気を発電することができるとともに、固体高分子形燃料電池10に接続された負荷に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell 10 in which the transition metal fine powder mixture is mainly composed of fine powder of Fe (iron) is a composite work of the work function of Fe and the work function of at least two types of transition metals other than Fe. Since at least two types of fine powders of transition metals other than the fine powder of Fe are selected from various transition metals so that the function is close to the work function of the platinum group element, the surface of the carbon nanotube 29 is selected. Alternatively, the carbon nanotube electrodes 15A and 15B (the fuel electrodes 13A and 13B and the air electrodes 14A and 14B) or the carbon nanohorn electrodes 15A and 15B (the fuel electrodes 13A and 13B) having the alloy fine particles 26 or the alloy fine particle laminated porous structure 33 on the surface of the carbon nanohorn 31. 13B and the cathodes 14A and 14B) have substantially the same work function as the fuel electrode and the cathode including the platinum group element. A polymer electrolyte fuel cell capable of exhibiting substantially the same catalytic activity (catalysis) as a fuel electrode and an air electrode containing an element and using platinum-free carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B. In 10, sufficient electricity can be generated, and sufficient electric energy can be supplied to the load connected to the polymer electrolyte fuel cell 10.

遷移金属微粉体混合物がCu(銅)の微粉体を主成分とした固体高分子形燃料電池10は、Cuの仕事関数とCuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属の中からCuの微粉体を除く他の少なくとも2種類の遷移金属の微粉体が選択されているから、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粒子26又はアロイ微粒子積層ポーラス構造33を有するカーボンナノチューブ電極15A,15B(燃料極13A,13B及び空気極14A,14B)又はカーボンナノホーン電極15A,15B(燃料極13A,13B及び空気極14A,14B)が白金族元素を含む燃料極及び空気極と略同一の仕事関数を備え、白金族元素を含む燃料極及び空気極と略同様の触媒活性(触媒作用)を発揮することができ、白金レスのカーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15Bを使用した固体高分子形燃料電池10において十分な電気を発電することができるとともに、固体高分子形燃料電池10に接続された負荷に十分な電気エネルギーを供給することができる。   The polymer electrolyte fuel cell 10 in which the transition metal fine powder mixture is mainly composed of Cu (copper) fine powder has a composite work of a work function of Cu and a work function of at least two types of transition metals other than Cu. Since at least two types of transition metal fine powder excluding Cu fine powder are selected from various transition metals so that the function approximates the work function of the platinum group element, the surface of the carbon nanotube 29 is Alternatively, carbon nanotube electrodes 15A, 15B (fuel electrodes 13A, 13B and air electrodes 14A, 14B) or carbon nanohorn electrodes 15A, 15B (fuel electrodes 13A, 13B and the cathodes 14A and 14B) have substantially the same work function as the fuel electrode and the cathode including the platinum group element. A polymer electrolyte fuel cell capable of exhibiting substantially the same catalytic activity (catalysis) as a fuel electrode and an air electrode containing an element and using platinum-free carbon nanotube electrodes 15A and 15B or carbon nanohorn electrodes 15A and 15B. In 10, sufficient electricity can be generated, and sufficient electric energy can be supplied to the load connected to the polymer electrolyte fuel cell 10.

図14は、カーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15Bの製造方法を説明する図である。電極15A,15Bは、図14に示すように、遷移金属選択工程S1、遷移金属微粉体混合物作成工程S2、遷移金属微粉体圧縮物作成工程S3、アロイ成形物作成工程S4、アロイ微粒子担持工程S5を有する電極製造方法によって製造される。なお、アロイ成形物作成工程S4とアロイ微粒子担持工程S5との間にアロイ微粉体作成工程S6が行われる場合がある。   FIG. 14 is a diagram illustrating a method of manufacturing the carbon nanotube electrodes 15A and 15B or the carbon nanohorn electrodes 15A and 15B. As shown in FIG. 14, the electrodes 15A and 15B are provided with a transition metal selection step S1, a transition metal fine powder mixture preparation step S2, a transition metal fine powder compressed substance preparation step S3, an alloy molded article preparation step S4, and an alloy particle support step S5. It is manufactured by an electrode manufacturing method having the following. Note that an alloy fine powder preparation step S6 may be performed between the alloy molded product preparation step S4 and the alloy fine particle supporting step S5.

遷移金属選択工程S1では、各種の遷移金属38から選択する少なくとも3種類の遷移金属38の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属38の中から少なくとも3種類の遷移金属38(Ti(チタン)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀))を選択する。   In the transition metal selection step S1, the various transition metals 38 are selected from various transition metals 38 so that the composite work function of the work functions of at least three types of transition metals 38 selected from the various transition metals 38 approximates the work function of the platinum group element. At least three types of transition metals 38 (Ti (titanium), Cr (chromium), Mn (manganese), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Nb ( Niobium), Mo (molybdenum), Ag (silver)).

遷移金属選択工程S1において、既述のように、Ni(ニッケル)を主成分とした遷移金属微粉体混合物40(アロイ微粒子26やアロイ微粒子積層ポーラス構造33)では、Cu(銅)及びZN(亜鉛)を選択し、又は、Mn(マンガン)及びMo(モリブデン)を選択する。Fe(鉄)を主成分とした遷移金属微粉体混合物40(アロイ微粒子26やアロイ微粒子積層ポーラス構造33)では、Ni(ニッケル)及びCu(銅)を選択し、又は、Ti(チタン)及びAg(銀)を選択する。Cu(銅)を主成分とした遷移金属微粉体混合物49(アロイ微粒子26やアロイ微粒子積層ポーラス構造33)では、Fe(鉄)及びZn(亜鉛)を選択し、又は、Fe(鉄)及びAg(銀)を選択する。   In the transition metal selection step S1, as described above, in the transition metal fine powder mixture 40 (alloy fine particles 26 and the alloy fine particle laminated porous structure 33) mainly containing Ni (nickel), Cu (copper) and ZN (zinc) are used. ) Or Mn (manganese) and Mo (molybdenum). In the transition metal fine powder mixture 40 (alloy fine particles 26 and alloy fine particle laminated porous structure 33) mainly containing Fe (iron), Ni (nickel) and Cu (copper) are selected, or Ti (titanium) and Ag are used. Select (Silver). In the transition metal fine powder mixture 49 (alloy fine particles 26 and the alloy fine particle laminated porous structure 33) mainly containing Cu (copper), Fe (iron) and Zn (zinc) are selected, or Fe (iron) and Ag are used. Select (Silver).

遷移金属微粉体混合物作成工程S2では、遷移金属選択工程S1によって選択された少なくとも3種類の遷移金属38の遷移金属微粉体39を均一に混合・分散した遷移金属微粉体混合物40を作る。遷移金属微粉体混合物作成工程S2において、Ni(ニッケル)を主成分とした遷移金属微粉体混合物40(アロイ微粒子26やアロイ微粒子積層ポーラス構造33)では、遷移金属選択工程S1によって選択されたNi、Cu(銅)、ZN(亜鉛)のそれぞれを微粉砕機によって10μm〜200μmの粒径に微粉砕してNiの微粉体39、Cuの微粉体39、Znの微粉体39を作成する。次に、Niの微粉体39やCuの微粉体39、Znの微粉体39を混合機に投入して混合機によってNiの微粉体39、Cuの微粉体39、Znの微粉体39を攪拌・混合し、Niの微粉体39、Cuの微粉体39、Znの微粉体39が均一に混合・分散した遷移金属微粉体混合物40を作る。   In the transition metal fine powder mixture preparation step S2, a transition metal fine powder mixture 40 is prepared by uniformly mixing and dispersing transition metal fine powders 39 of at least three types of transition metals 38 selected in the transition metal selection step S1. In the transition metal fine powder mixture preparing step S2, in the transition metal fine powder mixture 40 (alloy fine particles 26 and the alloy fine particle laminated porous structure 33) containing Ni (nickel) as a main component, Ni, Ni selected in the transition metal selecting step S1 is selected. Each of Cu (copper) and ZN (zinc) is finely pulverized to a particle size of 10 μm to 200 μm by a fine pulverizer to prepare a Ni fine powder 39, a Cu fine powder 39, and a Zn fine powder 39. Next, the Ni fine powder 39, the Cu fine powder 39, and the Zn fine powder 39 are put into a mixer, and the Ni fine powder 39, the Cu fine powder 39, and the Zn fine powder 39 are stirred by the mixer. The mixture is mixed to prepare a transition metal fine powder mixture 40 in which the Ni fine powder 39, the Cu fine powder 39, and the Zn fine powder 39 are uniformly mixed and dispersed.

又は、遷移金属選択工程S1によって選択されたNi(ニッケル)、Mn(マンガン)、Mo(モリブデン)のそれぞれを微粉砕機によって10μm〜200μmの粒径に微粉砕してNiの微粉体39、Mnの微粉体39、Moの微粉体39を作成する。次に、Niの微粉体39やMnの微粉体39、Moの微粉体39を混合機に投入して混合機によってNiの微粉体39、Mnの微粉体39、Moの微粉体39を攪拌・混合し、Niの微粉体39、Mnの微粉体39、Moの微粉体39が均一に混合・分散した遷移金属微粉体混合物40を作る。   Alternatively, each of Ni (nickel), Mn (manganese), and Mo (molybdenum) selected in the transition metal selection step S1 is finely pulverized to a particle diameter of 10 μm to 200 μm by a fine pulverizer to obtain a fine Ni powder 39, Mn. And a Mo fine powder 39 are prepared. Next, the Ni fine powder 39, the Mn fine powder 39, and the Mo fine powder 39 are put into a mixer, and the Ni fine powder 39, the Mn fine powder 39, and the Mo fine powder 39 are stirred by the mixer. The transition metal fine powder mixture 40 in which the Ni fine powder 39, the Mn fine powder 39, and the Mo fine powder 39 are mixed and dispersed uniformly is prepared.

遷移金属微粉体混合物作成工程S2において、Fe(鉄)を主成分とした遷移金属微粉体混合物40(アロイ微粒子26やアロイ微粒子積層ポーラス構造33)では、遷移金属選択工程S1によって選択されたFe、Ni(ニッケル)、Cu(銅)のそれぞれを微粉砕機によって10μm〜200μmの粒径に微粉砕してFeの微粉体39、Niの微粉体39、Cuの微粉体39を作成する。次に、Feの微粉体39やNiの微粉体39、Cuの微粉体39を混合機に投入して混合機によってFeの微粉体39、Niの微粉体39、Cuの微粉体39を攪拌・混合し、Feの微粉体39、Niの微粉体39、Cuの微粉体39が均一に混合・分散した遷移金属微粉体混合物40を作る。   In the transition metal fine powder mixture preparing step S2, in the transition metal fine powder mixture 40 (alloy fine particles 26 and the alloy fine particle laminated porous structure 33) containing Fe (iron) as a main component, Fe, Each of Ni (nickel) and Cu (copper) is finely pulverized to a particle size of 10 μm to 200 μm by a fine pulverizer to prepare Fe fine powder 39, Ni fine powder 39, and Cu fine powder 39. Next, the fine powder 39 of Fe, the fine powder 39 of Ni, and the fine powder 39 of Cu are charged into a mixer, and the fine powder 39 of Fe, the fine powder 39 of Ni, and the fine powder 39 of Cu are stirred by the mixer. The mixture is mixed to form a transition metal fine powder mixture 40 in which the fine powder 39 of Fe, the fine powder 39 of Ni, and the fine powder 39 of Cu are uniformly mixed and dispersed.

又は、遷移金属選択工程S1によって選択されたFe(鉄)、Ti(チタン)、Ag(銀)のそれぞれを微粉砕機によって10μm〜200μmの粒径に微粉砕してFeの微粉体39、Tiの微粉体39、Agの微粉体39を作成する。次に、Feの微粉体39やTiの微粉体39、Agの微粉体39を混合機に投入して混合機によってFeの微粉体39、Tiの微粉体39、Agの微粉体39を攪拌・混合し、Feの微粉体39、Tiの微粉体39、Agの微粉体39が均一に混合・分散した遷移金属微粉体混合物40を作る。   Alternatively, each of Fe (iron), Ti (titanium), and Ag (silver) selected in the transition metal selection step S1 is finely pulverized to a particle size of 10 μm to 200 μm by a fine pulverizer, and the fine powder of Fe 39, Ti Of fine powder 39 of Ag and fine powder 39 of Ag. Next, the fine powder 39 of Fe, the fine powder 39 of Ti, and the fine powder 39 of Ag are charged into a mixer, and the fine powder 39 of Fe, the fine powder 39 of Ti, and the fine powder 39 of Ag are stirred by the mixer. The mixture is mixed to form a transition metal fine powder mixture 40 in which the fine powder 39 of Fe, the fine powder 39 of Ti, and the fine powder 39 of Ag are uniformly mixed and dispersed.

遷移金属微粉体混合物作成工程S2において、Cu(銅)を主成分とした遷移金属微粉体混合物40(アロイ微粒子26やアロイ微粒子積層ポーラス構造33)では、遷移金属選択工程S1によって選択されたCu、Fe(鉄)、Zn(亜鉛)のそれぞれを微粉砕機によって10μm〜200μmの粒径に微粉砕してCuの微粉体39、Feの微粉体39、Znの微粉体39を作成する。次に、Cuの微粉体39やFeの微粉体39、Znの微粉体39を混合機に投入して混合機によってCuの微粉体39、Feの微粉体39、Znの微粉体39を攪拌・混合し、Cuの微粉体39、Feの微粉体39、Znの微粉体39が均一に混合・分散した遷移金属微粉体混合物40を作る。   In the transition metal fine powder mixture preparation step S2, in the transition metal fine powder mixture 40 (alloy fine particles 26 and the alloy fine particle laminated porous structure 33) containing Cu (copper) as a main component, the Cu selected in the transition metal selection step S1 Each of Fe (iron) and Zn (zinc) is finely pulverized by a fine pulverizer to a particle size of 10 μm to 200 μm to prepare a fine powder 39 of Cu, a fine powder 39 of Fe, and a fine powder 39 of Zn. Next, the Cu fine powder 39, the Fe fine powder 39, and the Zn fine powder 39 are put into a mixer, and the Cu fine powder 39, the Fe fine powder 39, and the Zn fine powder 39 are stirred by the mixer. The mixture is mixed to form a transition metal fine powder mixture 40 in which the Cu fine powder 39, the Fe fine powder 39, and the Zn fine powder 39 are uniformly mixed and dispersed.

又は、遷移金属選択工程S1によって選択されたCu(銅)、Fe(鉄)、Ag(銀)のそれぞれを微粉砕機によって10μm〜200μmの粒径に微粉砕してCuの微粉体39、Feの微粉体39、Agの微粉体39を作成する。次に、Cuの微粉体39やFeの微粉体39、Agの微粉体39を混合機に投入して混合機によってCuの微粉体39、Feの微粉体39、Agの微粉体39を攪拌・混合し、Cuの微粉体39、Feの微粉体39、Agの微粉体39が均一に混合・分散した遷移金属微粉体混合物40を作る。   Alternatively, each of Cu (copper), Fe (iron), and Ag (silver) selected in the transition metal selection step S1 is finely pulverized to a particle diameter of 10 μm to 200 μm by a fine pulverizer, and the Cu fine powder 39, Fe Of fine powder 39 and Ag fine powder 39 are prepared. Next, the Cu fine powder 39, the Fe fine powder 39, and the Ag fine powder 39 are put into a mixer, and the Cu fine powder 39, the Fe fine powder 39, and the Ag fine powder 39 are stirred by the mixer. The mixture is mixed to form a transition metal fine powder mixture 40 in which the Cu fine powder 39, the Fe fine powder 39, and the Ag fine powder 39 are uniformly mixed and dispersed.

遷移金属微粉体圧縮物作成工程S3では、遷移金属微粉体混合物作成工程S2によって作られた遷移金属微粉体混合物40を所定圧力で加圧し、遷移金属微粉体混合物40を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物41を作る。遷移金属微粉体圧縮物作成工程S3では、遷移金属微粉体混合物40を所定の金型に入れ、金型をプレス機によって加圧(プレス)するプレス加工によって遷移金属微粉体圧縮物41を作る。プレス加工時におけるプレス圧(圧力)は、500Mpa〜800Mpaの範囲にある。   In the transition metal fine powder compressed material producing step S3, the transition metal fine powder mixture 40 produced in the transition metal fine powder mixture producing step S2 is pressurized at a predetermined pressure to compress the transition metal fine powder mixture 40 into a predetermined area and a predetermined thickness. To produce a compressed transition metal fine powder 41. In the transition metal fine powder compact creation step S3, the transition metal fine powder mixture 40 is put into a predetermined mold, and the transition metal fine powder compact 41 is produced by press working in which the mold is pressed (pressed) by a press machine. The press pressure (pressure) during the press working is in the range of 500 MPa to 800 MPa.

プレス圧(圧力)が500Mpa未満では、遷移金属微粉体混合物40を十分に圧縮することができず、所定面積及び所定厚みの遷移金属微粉体圧縮物41を作ることができない。プレス圧(圧力)が800Mpaを超過すると、アロイ成形物作成工程S4によって作られるアロイ成形物42の硬度が必要以上に高くなり、アロイ微粒子担持工程S5においてアロイ成形物42をスムースに蒸発させることができず、アロイ微粉体作成工程S6において所期する粒径のアロイ微粉体43を作ることができない。電極製造方法は、遷移金属微粉体混合物40を前記範囲の圧力で加圧(圧縮)することで、所定硬度の遷移金属微粉体圧縮物41を作ることができ、その遷移金属微粉体圧縮物41を焼成して所定硬度のアロイ成形物42を作ることができ、アロイ成形物42をスムースに蒸発させることができるとともに、アロイ成形物42を微粉砕した所定粒径のアロイ微粉体43を作ることができる。   If the pressing pressure (pressure) is less than 500 MPa, the transition metal fine powder mixture 40 cannot be sufficiently compressed, and the transition metal fine powder compressed product 41 having a predetermined area and a predetermined thickness cannot be produced. If the pressing pressure (pressure) exceeds 800 MPa, the hardness of the alloy molded product 42 produced in the alloy molded product making step S4 becomes unnecessarily high, and the alloy molded product 42 is smoothly evaporated in the alloy fine particle supporting step S5. Therefore, the alloy fine powder 43 having a desired particle size cannot be produced in the alloy fine powder producing step S6. In the electrode manufacturing method, the transition metal fine powder mixture 41 is pressurized (compressed) at a pressure in the above range, whereby a transition metal fine powder compression product 41 having a predetermined hardness can be produced. Is fired to form an alloy molded product 42 having a predetermined hardness, the alloy molded product 42 can be smoothly evaporated, and the alloy molded product 42 is finely pulverized to form an alloy fine powder 43 having a predetermined particle size. Can be.

遷移金属微粉体圧縮物作成工程S3において、Ni(ニッケル)を主成分とした遷移金属微粉体混合物40では、Niの微粉体39、Cu(銅)の微粉体39、ZN(亜鉛)微粉体39を混合した遷移金属微粉体混合物40の所定量を金型に投入し、その遷移金属微粉体混合物40をプレス加工によって加圧して遷移金属微粉体混合物40を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物41を作る。又は、Niの微粉体39、Mn(マンガン)の微粉体39、Mo(モリブデン)の微粉体39を混合した遷移金属微粉体混合物40の所定量を金型に投入し、その遷移金属微粉体混合物40をプレス加工によって加圧して遷移金属微粉体混合物40を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物41を作る。   In the transition metal fine powder compact creation step S3, in the transition metal fine powder mixture 40 containing Ni (nickel) as a main component, Ni fine powder 39, Cu (copper) fine powder 39, ZN (zinc) fine powder 39 A predetermined amount of the transition metal fine powder mixture 40 obtained by mixing the transition metal fine powder mixture 40 is charged into a mold, and the transition metal fine powder mixture 40 is pressed by press working to compress the transition metal fine powder mixture 40 and have a predetermined area and a predetermined thickness of the transition metal. A compressed fine powder 41 is produced. Alternatively, a predetermined amount of a transition metal fine powder mixture 40 obtained by mixing Ni fine powder 39, Mn (manganese) fine powder 39, and Mo (molybdenum) fine powder 39 is charged into a mold, and the transition metal fine powder mixture is added. The transition metal fine powder mixture 40 is compressed by pressing to form a transition metal fine powder mixture 41 having a predetermined area and a predetermined thickness.

遷移金属微粉体圧縮物作成工程S3において、Fe(鉄)を主成分とした遷移金属微粉体混合物40では、Feの微粉体39、Ni(ニッケル)の微粉体39、Cu(銅)の微粉体39を混合した遷移金属微粉体混合物40の所定量を金型に投入し、その遷移金属微粉体混合物40をプレス加工によって加圧して遷移金属微粉体混合物40を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物41を作る。又は、Feの微粉体39、Ti(チタン)の微粉体39、Ag(銀)の微粉体39を混合した遷移金属微粉体混合物40の所定量を金型に投入し、その遷移金属微粉体混合物40をプレス加工によって加圧して遷移金属微粉体混合物40を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物41を作る。   In the transition metal fine powder compact creation step S3, in the transition metal fine powder mixture 40 mainly containing Fe (iron), the fine powder 39 of Fe, the fine powder 39 of Ni (nickel), and the fine powder of Cu (copper) are used. A predetermined amount of the transition metal fine powder mixture 40 into which the mixture 39 is mixed is charged into a mold, and the transition metal fine powder mixture 40 is pressed by press working to compress the transition metal fine powder mixture 40 into a predetermined area and a predetermined thickness. The compressed metal fine powder 41 is produced. Alternatively, a predetermined amount of a transition metal fine powder mixture 40 obtained by mixing Fe fine powder 39, Ti (titanium) fine powder 39, and Ag (silver) fine powder 39 is charged into a mold, and the transition metal fine powder mixture is added. The transition metal fine-powder mixture 40 is compressed by pressing to form a transition metal fine-powder mixture 41 having a predetermined area and a predetermined thickness.

遷移金属微粉体圧縮物作成工程S3において、Cu(銅)を主成分とした遷移金属微粉体混合物40では、Cuの微粉体39、Fe(鉄)の微粉体39、Zn(亜鉛)の微粉体39を混合した遷移金属微粉体混合物40の所定量を金型に投入し、その遷移金属微粉体混合物40をプレス加工によって加圧(圧縮)して遷移金属微粉体混合物40を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物41を作る。又は、Cuの微粉体39、Fe(鉄)の微粉体39、Ag(銀)の微粉体39を混合した遷移金属微粉体混合物40の所定量を金型に投入し、その遷移金属微粉体混合物40をプレス加工によって加圧して遷移金属微粉体混合物40を圧縮した所定面積及び所定厚みの遷移金属微粉体圧縮物41を作る。   In the transition metal fine powder compact creation step S3, in the transition metal fine powder mixture 40 containing Cu (copper) as a main component, Cu fine powder 39, Fe (iron) fine powder 39, Zn (zinc) fine powder A predetermined amount of the transition metal fine powder mixture 40 into which the mixture 39 is mixed is put into a mold, and the transition metal fine powder mixture 40 is pressed (compressed) by press working to compress the transition metal fine powder mixture 40 into a predetermined area. A transition metal fine powder compact 41 having a predetermined thickness is produced. Alternatively, a predetermined amount of a transition metal fine powder mixture 40 obtained by mixing Cu fine powder 39, Fe (iron) fine powder 39, and Ag (silver) fine powder 39 is charged into a mold, and the transition metal fine powder mixture is added. The transition metal fine-powder mixture 40 is compressed by pressing to form a transition metal fine-powder mixture 41 having a predetermined area and a predetermined thickness.

アロイ成形物作成工程S4では、遷移金属微粉体圧縮物作成工程S3によって作られた遷移金属微粉体圧縮物41を炉(蒸気過熱炉や電気炉等)に投入し、遷移金属微粉体圧縮物41を炉において所定温度で焼成(焼結)し、開口径が1μm〜100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物42を作る。アロイ成形物作成工程S4では、遷移金属選択工程S1によって選択された少なくとも3種類の遷移金属38うちの少なくとも2種類の遷移金属38を溶融させる温度で遷移金属微粉体圧縮物41を長時間焼成する。焼成(焼結)時間は、3時間〜6時間である。アロイ成形物作成工程S4では、所定面積及び所定厚みに圧縮された遷移金属微粉体圧縮物41の焼成時において、少なくとも2種類の遷移金属38の微粉体39が溶融し、溶融した遷移金属38の微粉体39をバインダーとして他の遷移金属38の微粉体39を接合(固着)する。   In the alloy molded product creation step S4, the transition metal fine powder compact 41 created in the transition metal fine powder compact creation step S3 is charged into a furnace (a steam superheater, an electric furnace, or the like), and the transition metal fine powder compact 41 is placed. Is fired (sintered) at a predetermined temperature in a furnace to produce an alloy molded article 42 having a porous structure in which a number of fine channels (passage holes) having an opening diameter in a range of 1 μm to 100 μm are formed. In the alloy molded product preparation step S4, the transition metal fine powder compact 41 is fired for a long time at a temperature at which at least two types of the transition metals 38 among the at least three types of transition metals 38 selected in the transition metal selection step S1 are melted. . The firing (sintering) time is 3 hours to 6 hours. In the alloy molded article forming step S4, at the time of firing the compressed transition metal fine powder 41 compressed to a predetermined area and a predetermined thickness, the fine powder 39 of at least two types of transition metals 38 is melted, and the molten transition metal 38 is melted. The fine powder 39 of another transition metal 38 is joined (fixed) using the fine powder 39 as a binder.

アロイ成形物作成工程S4において、Ni(ニッケル)を主成分とした遷移金属微粉体圧縮物41では、Niの微粉体39、Cu(銅)の微粉体39、ZN(亜鉛)微粉体39を混合した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を炉において長時間焼成し、開口径が1μm〜100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物42を作る。Niの微粉体39、Cuの微粉体39、Znの微粉体39から形成されたアロイ成形物42では、Zn及びCuの微粉体39を溶融させる温度(例えば、1100℃〜1200℃)で遷移金属微粉体圧縮物41を焼成(焼結)し、溶融したZn及びCuの微粉体39によってNiの微粉体39が接合(固着)される。   In the alloy molded article preparation step S4, in the transition metal fine powder compact 41 mainly composed of Ni (nickel), Ni fine powder 39, Cu (copper) fine powder 39, and ZN (zinc) fine powder 39 are mixed. The compressed transition metal fine powder mixture 41 obtained by compressing the transition metal fine powder mixture 40 is fired in a furnace for a long time to form a porous structure having a large number of fine channels (passage holes) having an opening diameter in a range of 1 μm to 100 μm. An alloy molding 42 is made. In the alloy molded article 42 formed from the Ni fine powder 39, the Cu fine powder 39, and the Zn fine powder 39, the transition metal is formed at a temperature at which the Zn and Cu fine powder 39 is melted (for example, 1100 ° C to 1200 ° C). The compressed fine powder 41 is fired (sintered), and the Ni fine powder 39 is joined (fixed) by the molten Zn and Cu fine powder 39.

また、アロイ成形物作成工程S4において、Ni(ニッケル)を主成分とした遷移金属微粉体圧縮物41では、Niの微粉体39、Mn(マンガン)の微粉体39、Mo(モリブデン)の微粉体39を混合した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を炉において長時間焼成し、開口径が1μm〜100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物42を作る。Niの微粉体39、Mnの微粉体39、Moの微粉体39から形成されたアロイ成形物42では、Mn及びNiの微粉体39を溶融させる温度(例えば、1460℃〜1500℃)で遷移金属微粉体圧縮物41を焼成し、溶融したMn及びNiの微粉体39によってMoの微粉体39が接合(固着)される。   Further, in the alloy molded article preparation step S4, the transition metal fine powder compact 41 mainly composed of Ni (nickel) contains Ni fine powder 39, Mn (manganese) fine powder 39, and Mo (molybdenum) fine powder. The compressed transition metal fine powder mixture 41 obtained by compressing the transition metal fine powder mixture 40 mixed with 39 was fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 μm to 100 μm. An alloy molded article 42 having a porous structure is produced. In the alloy molded article 42 formed from the Ni fine powder 39, the Mn fine powder 39, and the Mo fine powder 39, the transition metal is heated at a temperature at which the Mn and Ni fine powder 39 are melted (for example, 1460 ° C to 1500 ° C). The compressed fine powder 41 is baked, and the Mo fine powder 39 is joined (fixed) by the molten Mn and Ni fine powder 39.

アロイ成形物作成工程S4において、Fe(鉄)を主成分とした遷移金属微粉体圧縮物41では、Feの微粉体39、Ni(ニッケル)の微粉体39、Cu(銅)の微粉体39を混合した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を炉において長時間焼成し、開口径が1μm〜100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物42を作る。Feの微粉体39、Niの微粉体39、Cuの微粉体39から形成されたアロイ成形物42では、Cu及びNiの微粉体39を溶融させる温度(例えば、1460℃〜1500℃)で遷移金属微粉体圧縮物41を焼成し、溶融したCu及びNiの微粉体39によってFeの微粉体39が接合(固着)される。   In the alloy molded article preparation step S4, in the transition metal fine powder compact 41 mainly containing Fe (iron), the fine powder 39 of Fe, the fine powder 39 of Ni (nickel), and the fine powder 39 of Cu (copper) are mixed. A porous structure in which the compressed transition metal fine powder mixture 41 obtained by compressing the mixed transition metal fine powder mixture 40 is fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 μm to 100 μm. Is made. In the alloy molded article 42 formed from the fine powder 39 of Fe, the fine powder 39 of Ni, and the fine powder 39 of Cu, the transition metal is heated at a temperature at which the fine powder 39 of Cu and Ni is melted (for example, 1460 ° C to 1500 ° C). The fine powder compact 41 is baked, and the Fe fine powder 39 is joined (fixed) by the molten Cu and Ni fine powder 39.

また、アロイ成形物作成工程S4において、Fe(鉄)を主成分とした遷移金属微粉体圧縮物41では、Feの微粉体39、Ti(チタン)の微粉体39、Ag(銀)の微粉体39を混合した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を炉において長時間焼成し、開口径が1μm〜100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物42を作る。Feの微粉体39、Tiの微粉体39、Agの微粉体39から形成されたアロイ成形物42では、Ag及びFeの微粉体39を溶融させる温度(例えば、1540℃〜1600℃)で遷移金属微粉体圧縮物41を焼成し、溶融したAg及びFeの微粉体39によってTiの微粉体39が接合(固着)される。   Further, in the alloy molded article preparation step S4, the transition metal fine powder compact 41 containing Fe (iron) as a main component has a fine powder 39 of Fe, a fine powder 39 of Ti (titanium), and a fine powder of Ag (silver). The compressed transition metal fine powder mixture 41 obtained by compressing the transition metal fine powder mixture 40 mixed with 39 was fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 μm to 100 μm. An alloy molded article 42 having a porous structure is produced. In the alloy molded article 42 formed from the fine powder 39 of Fe, the fine powder 39 of Ti, and the fine powder 39 of Ag, the transition metal is formed at a temperature at which the fine powder 39 of Ag and Fe is melted (for example, 1540 ° C. to 1600 ° C.). The compressed fine powder 41 is baked, and the Ti fine powder 39 is joined (fixed) by the molten Ag and Fe fine powder 39.

アロイ成形物作成工程S4において、Cu(銅)を主成分とした遷移金属微粉体圧縮物41では、Cuの微粉体39、Fe(鉄)の微粉体39、Zn(亜鉛)の微粉体39を混合した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を炉において長時間焼成し、開口径が1μm〜100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物42を作る。Cuの微粉体39、Feの微粉体39、Znの微粉体39から形成されたアロイ成形物42では、Zn及びCuの微粉体39を溶融させる温度(例えば、1090℃〜1200℃)で遷移金属微粉体圧縮物41を焼成し、溶融したZn及びCuの微粉体39によってFeの微粉体39が接合(固着)される。   In the alloy molded article preparation step S4, the transition metal fine powder compact 41 containing Cu (copper) as a main component is composed of Cu fine powder 39, Fe (iron) fine powder 39, and Zn (zinc) fine powder 39. A porous structure in which the compressed transition metal fine powder mixture 41 obtained by compressing the mixed transition metal fine powder mixture 40 is fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 μm to 100 μm. Is made. In the alloy molded article 42 formed from the Cu fine powder 39, the Fe fine powder 39, and the Zn fine powder 39, the transition metal is formed at a temperature at which the Zn and Cu fine powder 39 is melted (for example, 1090 ° C. to 1200 ° C.). The compressed fine powder 41 is baked, and the fine powder 39 of Fe is joined (fixed) by the fine powder 39 of Zn and Cu melted.

また、アロイ成形物作成工程S4において、Cu(銅)を主成分とした遷移金属微粉体圧縮物41では、Cuの微粉体39、Fe(鉄)の微粉体39、Ag(銀)の微粉体39を混合した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を炉において長時間焼成し、開口径が1μm〜100μmの範囲の多数の微細な流路(通路孔)を形成したポーラス構造のアロイ成形物42を作る。Cuの微粉体39、Feの微粉体39、Agの微粉体39から形成されたアロイ成形物42では、Ag及びCuの微粉体39を溶融させる温度(例えば、1090℃〜1200℃)で遷移金属微粉体圧縮物41を焼成し、溶融したAg及びCuの微粉体39によってFeの微粉体39が接合(固着)される。   Further, in the alloy molded article preparation step S4, the transition metal fine powder compact 41 containing Cu (copper) as a main component includes the Cu fine powder 39, the Fe (iron) fine powder 39, and the Ag (silver) fine powder. The compressed transition metal fine powder mixture 41 obtained by compressing the transition metal fine powder mixture 40 mixed with 39 was fired in a furnace for a long time to form a large number of fine channels (passage holes) having an opening diameter in the range of 1 μm to 100 μm. An alloy molded article 42 having a porous structure is produced. In the alloy molded article 42 formed from the Cu fine powder 39, the Fe fine powder 39, and the Ag fine powder 39, the transition metal is formed at a temperature at which the Ag and Cu fine powder 39 are melted (for example, 1090 ° C. to 1200 ° C.). The fine powder compact 41 is baked, and the Fe fine powder 39 is joined (fixed) by the molten Ag and Cu fine powder 39.

アロイ微粒子担持工程S5では、アロイ成形物作成工程S4によって作られたアロイ成形物42をレーザー蒸発法によって蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ成形物42のアロイ微粒子26を担持させる。アロイ微粒子26は、カーボンナノチューブ29の表面に均一に分散した状態でカーボンナノチューブ29の表面に担持され、カーボンナノホーン31の表面に均一に分散した状態でカーボンナノホーン31の表面に担持される。カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粒子26を担持させることでカーボンナノチューブ電極15A又はカーボンナノホーン電極15Aが作られる。アロイ微粒子担持工程S5では、カーボンナノチューブ電極15A又はカーボンナノホーン電極15Aが0.03mm〜0.3mmの範囲の厚み寸法L1に成形される。   In the alloy fine particle supporting step S5, the alloy molded article 42 produced in the alloy molded article forming step S4 is evaporated by a laser evaporation method, and the alloy fine particles 26 of the alloy molded article 42 are deposited on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31. Carry it. The alloy fine particles 26 are carried on the surface of the carbon nanotubes 29 in a state of being uniformly dispersed on the surface of the carbon nanotubes 29, and are carried on the surface of the carbon nanohorns 31 in a state of being uniformly dispersed on the surface of the carbon nanohorns 31. By carrying the alloy fine particles 26 on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31, the carbon nanotube electrode 15A or the carbon nanohorn electrode 15A is produced. In the alloy fine particle supporting step S5, the carbon nanotube electrode 15A or the carbon nanohorn electrode 15A is formed into a thickness L1 in the range of 0.03 mm to 0.3 mm.

アロイ微粒子26の担持方法としては、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成した(成長させた)後、レーザー蒸発法によってアロイ成形物26を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ成形物42のアロイ微粒子26を担持させる場合、又は、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ成形物42を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ成形物42のアロイ微粒子26を担持させる場合がある。   As a method for supporting the alloy fine particles 26, carbon nanotubes 29 or carbon nanohorns 31 were formed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 27 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 by a laser evaporation method. Thereafter, the alloy molded product 26 is evaporated by a laser evaporation method, and the alloy fine particles 26 of the alloy molded product 42 are supported on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31, or on both surfaces (front and rear surfaces) of the metal electrode thin plate 27. ) Or when carbon nanotubes 29 or carbon nanohorns 31 are formed (grown) on both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 by laser evaporation, the alloy molded article 42 is evaporated by laser evaporation, Surface or carbon nanohorn A first surface which may be carrying the alloy particles 26 of alloy molded product 42.

また、アロイ微粒子担持工程S5では、アロイ成形物作成工程によって作られたアロイ成形物42をレーザー蒸発法によって蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ成形物42のアロイ微粒子26を担持させつつ、カーボンナノチューブ29又はカーボンナノホーン31の表面から外側へ向かって重なり合うアロイ微粒子26によってアロイ微粒子積層ポーラス構造33を形成する。アロイ微粒子26は、カーボンナノチューブ29の表面に均一に分散した状態でカーボンナノチューブ29の表面に担持されて重なり合い、カーボンナノホーン31の表面に均一に分散した状態でカーボンナノホーン31の表面に担持されて重なり合ってアロイ微粒子積層ポーラス構造33を形成する。カーボンナノチューブ29の表面又はカーボンナノホーン31の表面に多数のアロイ微粒子26からなるアロイ微粒子積層ポーラス構造33を形成することでカーボンナノチューブ電極15B又はカーボンナノホーン電極15Bが作られる。アロイ微粒子積層ポーラス構造33を形成するアロイ微粒子担持工程S5では、カーボンナノチューブ電極15B又はカーボンナノホーン電極15Bが0.03mm〜0.3mmの範囲の厚み寸法L1に成形される。   Further, in the alloy fine particle supporting step S5, the alloy molded article 42 produced in the alloy molded article forming step is evaporated by a laser evaporation method, and the alloy fine particles 26 of the alloy molded article 42 are formed on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31. And the alloy fine particles 26 overlapping outward from the surface of the carbon nanotube 29 or the carbon nanohorn 31 to form an alloy fine particle laminated porous structure 33. The alloy fine particles 26 are supported on the surface of the carbon nanotubes 29 in a state of being uniformly dispersed on the surface of the carbon nanotubes 29 and overlap, and are supported on the surface of the carbon nanohorns 31 in a state of being uniformly dispersed on the surface of the carbon nanohorns 31 and overlap. Thus, an alloy fine particle laminated porous structure 33 is formed. The carbon nanotube electrode 15B or the carbon nanohorn electrode 15B is formed by forming an alloy fine particle laminated porous structure 33 composed of a large number of alloy fine particles 26 on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31. In the alloy particle supporting step S5 for forming the alloy particle laminated porous structure 33, the carbon nanotube electrode 15B or the carbon nanohorn electrode 15B is formed to have a thickness L1 in the range of 0.03 mm to 0.3 mm.

アロイ微粒子積層ポーラス構造33を形成する方法としては、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成した(成長させた)後、レーザー蒸発法によってアロイ成形物42を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ成形物42のアロイ微粒子26を担持させてアロイ微粒子積層ポーラス構造33を形成する場合、又は、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ成形42物を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ成形物42のアロイ微粒子26を担持させてアロイ微粒子積層ポーラス構造33を形成する場合がある。   As a method for forming the alloy fine particle laminated porous structure 33, the carbon nanotubes 29 or the carbon nanohorns 31 are formed on both surfaces (front and rear surfaces) of the metal electrode thin plate 27 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 by a laser evaporation method ( Thereafter, the alloy molded product 42 is evaporated by a laser evaporation method, and the alloy fine particles 26 of the alloy molded product 42 are supported on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31 to form an alloy fine particle laminated porous structure 33. Or when the carbon nanotubes 29 or the carbon nanohorns 31 are formed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 27 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 by laser evaporation, and at the same time, laser evaporation is performed. Alloy molding 42 products by the method Emitted thereby, in some cases by supporting the alloy particles 26 of alloy molded product 42 on the surface of the surface or a carbon nanohorn 31 of carbon nanotubes 29 forming an alloy particle laminated porous structure 33.

なお、アロイ成形物作成工程S4とアロイ微粒子担持工程S5との間にアロイ微粉体作成工程S6が行われる場合、アロイ微粉体作成工程S6では、アロイ成形物作成工程S4によって作られたアロイ成形物42を微粉砕機によって10μm〜200μmの粒径に微粉砕してアロイ微粉体43を作る。Ni(ニッケル)を主成分としたアロイ微粉体43(Niを主成分とした合金微粉体)の一例としては、Niの微粉体39、Cuの微粉体39、ZNの微粉体39を均一に混合・分散した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕機によって10μm〜200μmの粒径に微粉砕した微粉砕物である。Ni(ニッケル)を主成分としたアロイ微粉体43の他の一例としては、Niの微粉体39、Mnの微粉体39、Moの微粉体39を均一に混合・分散した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕機によって10μm〜200μmの粒径に微粉砕した微粉砕物である。   When the alloy fine powder making step S6 is performed between the alloy molded article making step S4 and the alloy fine particle supporting step S5, in the alloy fine powder making step S6, the alloy molded article made in the alloy molded article making step S4 42 is finely pulverized to a particle size of 10 μm to 200 μm by a fine pulverizer to produce an alloy fine powder 43. As an example of an alloy fine powder 43 containing Ni (nickel) as a main component (an alloy fine powder containing Ni as a main component), Ni fine powder 39, Cu fine powder 39, and ZN fine powder 39 are uniformly mixed. A compressed transition metal fine powder mixture 41 obtained by compressing the dispersed transition metal fine powder mixture 40 is fired to form an alloy molded product 42, and the alloy molded product 42 is finely pulverized by a pulverizer to a particle size of 10 μm to 200 μm. It is finely pulverized. Another example of the alloy fine powder 43 mainly composed of Ni (nickel) is a transition metal fine powder mixture 40 in which Ni fine powder 39, Mn fine powder 39, and Mo fine powder 39 are uniformly mixed and dispersed. This is a finely pulverized product obtained by firing a compressed transition metal fine powder 41, which is obtained by compressing the above, into an alloy molded product 42, and finely pulverizing the alloy molded product 42 to a particle size of 10 μm to 200 μm by a fine pulverizer.

Fe(鉄)を主成分としたアロイ微粉体43(Feを主成分とした合金微粉体)の一例としては、Feの微粉体39、Niの微粉体39、Cuの微粉体39を均一に混合・分散した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕機によって10μm〜200μmの粒径に微粉砕した微粉砕物である。Fe(鉄)を主成分としたアロイ微粉体43の他の一例としては、Feの微粉体39、Tiの微粉体39、Agの微粉体39を均一に混合・分散した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕機によって10μm〜200μmの粒径に微粉砕した微粉砕物である。   As an example of the alloy fine powder 43 containing Fe (iron) as a main component (alloy fine powder containing Fe as a main component), a fine powder 39 of Fe, a fine powder 39 of Ni, and a fine powder 39 of Cu are uniformly mixed. A compressed transition metal fine powder mixture 41 obtained by compressing the dispersed transition metal fine powder mixture 40 is fired to form an alloy molded product 42, and the alloy molded product 42 is finely pulverized by a pulverizer to a particle size of 10 μm to 200 μm. It is finely pulverized. Another example of the alloy fine powder 43 containing Fe (iron) as a main component is a transition metal fine powder mixture 40 obtained by uniformly mixing and dispersing a fine powder 39 of Fe, a fine powder 39 of Ti, and a fine powder 39 of Ag. This is a finely pulverized product obtained by firing a compressed transition metal fine powder 41, which is obtained by compressing the above, into an alloy molded product 42, and finely pulverizing the alloy molded product 42 to a particle size of 10 μm to 200 μm by a fine pulverizer.

Cu(銅)を主成分としたアロイ微粉体43(Cuを主成分とした合金微粉体)の一例としては、Cuの微粉体39、Feの微粉体39、Znの微粉体39を均一に混合・分散した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕機によって10μm〜200μmの粒径に微粉砕した微粉砕物である。Cu(銅)を主成分としたアロイ微粉体43の他の一例としては、Cuの微粉体39、Feの微粉体39、Agの微粉体39を均一に混合・分散した遷移金属微粉体混合物40を圧縮した遷移金属微粉体圧縮物41を焼成してアロイ成形物42を作り、そのアロイ成形物42を微粉砕機によって10μm〜200μmの粒径に微粉砕した微粉砕物である。   As an example of the alloy fine powder 43 mainly composed of Cu (copper) (alloy fine powder mainly composed of Cu), a fine powder 39 of Cu, a fine powder 39 of Fe, and a fine powder 39 of Zn are uniformly mixed. A compressed transition metal fine powder mixture 41 obtained by compressing the dispersed transition metal fine powder mixture 40 is fired to form an alloy molded product 42, and the alloy molded product 42 is finely pulverized by a pulverizer to a particle size of 10 μm to 200 μm. It is finely pulverized. Another example of the alloy fine powder 43 containing Cu (copper) as a main component is a transition metal fine powder mixture 40 in which Cu fine powder 39, Fe fine powder 39, and Ag fine powder 39 are uniformly mixed and dispersed. This is a finely pulverized product obtained by firing a compressed transition metal fine powder 41, which is obtained by compressing the above, into an alloy molded product 42, and finely pulverizing the alloy molded product 42 to a particle size of 10 μm to 200 μm by a fine pulverizer.

アロイ微粉体作成工程S6の後に行われるアロイ微粒子担持工程S5では、アロイ微粉体作成工程S6によって作られたアロイ微粉体43をレーザー蒸発法によって蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粉体43のアロイ微粒子26を担持させる。アロイ微粒子26は、カーボンナノチューブ29の表面に均一に分散した状態でカーボンナノチューブ29の表面に担持され、カーボンナノホーン31の表面に均一に分散した状態でカーボンナノホーン31の表面に担持される。カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粒子43を担持させることでカーボンナノチューブ電極15B又はカーボンナノホーン電極15Bが作られる。アロイ微粒子担持工程S5では、カーボンナノチューブ電極15B又はカーボンナノホーン電極15Bが0.03mm〜0.3mmの範囲の厚み寸法L1に成形される。   In the alloy fine particle supporting step S5 performed after the alloy fine powder forming step S6, the alloy fine powder 43 formed in the alloy fine powder forming step S6 is evaporated by a laser evaporation method, and the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31 is formed. The alloy fine particles 43 of the alloy fine powder 43 are supported on the substrate. The alloy fine particles 26 are carried on the surface of the carbon nanotubes 29 in a state of being uniformly dispersed on the surface of the carbon nanotubes 29, and are carried on the surface of the carbon nanohorns 31 in a state of being uniformly dispersed on the surface of the carbon nanohorns 31. By carrying the alloy fine particles 43 on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31, the carbon nanotube electrode 15B or the carbon nanohorn electrode 15B is produced. In the alloy fine particle supporting step S5, the carbon nanotube electrode 15B or the carbon nanohorn electrode 15B is formed into a thickness L1 in the range of 0.03 mm to 0.3 mm.

アロイ微粒子26の担持方法としては、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成した(成長させた)後、レーザー蒸発法によってアロイ微粉体43を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粉体43のアロイ微粒子26を担持させる場合、又は、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ微粉体43を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粉体43のアロイ微粒子26を担持させる場合がある。   As a method for supporting the alloy fine particles 26, carbon nanotubes 29 or carbon nanohorns 31 were formed (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 27 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 by a laser evaporation method. Thereafter, the alloy fine powder 43 is evaporated by a laser evaporation method, and the alloy fine powder 26 of the alloy fine powder 43 is carried on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31, or on both surfaces (front and rear surfaces) of the metal electrode thin plate 27. ) Or when the carbon nanotubes 29 or carbon nanohorns 31 are formed (grown) on both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 by the laser evaporation method, and at the same time, the alloy fine powder 43 is evaporated by the laser evaporation method. Surface or carbon nanohorn A first surface which may be carrying the alloy particles 26 of the alloy fine powder 43.

また、アロイ微粒子担持工程S5では、アロイ微粉体作成工程S6によって作られたアロイ微粉体43をレーザー蒸発法によって蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粉体43のアロイ微粒子26を担持させつつ、カーボンナノチューブ29又はカーボンナノホーン31の表面から外側へ向かって重なり合うアロイ微粒子26によってアロイ微粒子積層ポーラス構造33を形成する。アロイ微粒子26は、カーボンナノチューブ29の表面に均一に分散した状態でカーボンナノチューブ29の表面に担持されて重なり合い、カーボンナノホーン31の表面に均一に分散した状態でカーボンナノホーン31の表面に担持されて重なり合ってアロイ微粒子積層ポーラス構造33を形成する。カーボンナノチューブ29の表面又はカーボンナノホーン31の表面に多数のアロイ微粒子26からなるアロイ微粒子積層ポーラス構造33を形成することでカーボンナノチューブ電極15B又はカーボンナノホーン電極15Bが作られる。アロイ微粒子積層ポーラス構造33を形成するアロイ微粒子担持工程S5では、カーボンナノチューブ電極15B又はカーボンナノホーン電極15Bが0.03mm〜0.3mmの範囲の厚み寸法L1に成形される。   In the alloy fine powder supporting step S5, the alloy fine powder 43 produced in the alloy fine powder forming step S6 is evaporated by a laser evaporation method, and the alloy fine powder 43 of the alloy fine powder 43 is formed on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31. The alloy fine particle layered porous structure 33 is formed by the alloy fine particles 26 superposed outward from the surface of the carbon nanotube 29 or the carbon nanohorn 31 while supporting the carbon nano tube 26. The alloy fine particles 26 are supported on the surface of the carbon nanotubes 29 in a state of being uniformly dispersed on the surface of the carbon nanotubes 29 and overlap, and are supported on the surface of the carbon nanohorns 31 in a state of being uniformly dispersed on the surface of the carbon nanohorns 31 and overlap. Thus, an alloy fine particle laminated porous structure 33 is formed. The carbon nanotube electrode 15B or the carbon nanohorn electrode 15B is formed by forming an alloy fine particle laminated porous structure 33 composed of a large number of alloy fine particles 26 on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31. In the alloy particle supporting step S5 for forming the alloy particle laminated porous structure 33, the carbon nanotube electrode 15B or the carbon nanohorn electrode 15B is formed to have a thickness L1 in the range of 0.03 mm to 0.3 mm.

アロイ微粒子積層ポーラス構造を形成する方法としては、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成した(成長させた)後、レーザー蒸発法によってアロイ微粉体43を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粉体43のアロイ微粒子26を担持させてアロイ微粒子積層ポーラス構造33を形成する場合、又は、金属電極薄板27の両面(前後面)又はカーボン電極薄板31の両面(前後面)にレーザー蒸発法によってカーボンナノチューブ29又はカーボンナノホーン31を生成すると(成長させると)同時に、レーザー蒸発法によってアロイ微粉体43を蒸発させ、カーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ微粉体43のアロイ微粒子26を担持させてアロイ微粒子積層ポーラス構造33を形成する場合がある。   As a method of forming the alloy fine particle laminated porous structure, carbon nanotubes 29 or carbon nanohorns 31 are generated (grown) on both surfaces (front and rear surfaces) of the metal electrode thin plate 27 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 28 by laser evaporation. After that, the alloy fine powder 43 is evaporated by a laser evaporation method, and the alloy fine particles 26 of the alloy fine powder 43 are supported on the surface of the carbon nanotube 29 or the surface of the carbon nanohorn 31 to form an alloy fine particle laminated porous structure 33. When the carbon nanotubes 29 or the carbon nanohorns 31 are generated (grown) on both sides (front and back surfaces) of the metal electrode thin plate 27 or both surfaces (front and back surfaces) of the carbon electrode thin plate 31 by laser evaporation, the laser evaporation method is used. Alloy fine powder 43 is evaporated by So, there is a case of forming the alloy particle laminated porous structure 33 by supporting the alloy particles 26 of the alloy fine powder 43 to the surface or surfaces of the carbon nanohorn 31 of carbon nanotubes 29.

電極製造方法は、各種の遷移金属38から選択する少なくとも3種類の遷移金属38の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、各種の遷移金属38の中から少なくとも3種類の遷移金属38を選択する遷移金属選択工程S1と、遷移金属選択工程S1によって選択された少なくとも3種類の遷移金属38の遷移金属微粉体39を均一に混合・分散した遷移金属微粉体混合物40を作る遷移金属微粉体混合物作成工程S2と、遷移金属微粉体混合物作成工程S2によって作られた遷移金属微粉体混合物40を所定圧力で加圧して遷移金属微粉体圧縮物41を作る遷移金属微粉体圧縮物作成工程S3と、遷移金属微粉体圧縮物作成工程S3によって作られた遷移金属微粉体圧縮物41を所定温度で焼成してアロイ成形物42を作るアロイ成形物作成工程S4と、カーボンナノチューブ29又はカーボンナノホーン31を生成し、アロイ成形物作成工程S4によって作られたアロイ成形物43を蒸発させてカーボンナノチューブ29の表面又はカーボンナノホーン31の表面にアロイ成形物43のアロイ微粒子26を担持させるアロイ微粒子担持工程S5との各工程によってカーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15Bを作ることができるから、白金族元素を利用しない白金レスの電極15A,15Bを廉価に作ることができ、触媒機能を十分かつ確実に利用することが可能であって優れた触媒活性(触媒作用)を有して固体高分子形燃料電池10に好適に使用することが可能な白金レスの電極15A,15Bを廉価に作ることができる。   The electrode manufacturing method includes at least three of the various transition metals 38 such that the composite work function of the work functions of the at least three types of transition metals 38 selected from the various transition metals 38 approximates the work function of the platinum group element. Transition metal selection step S1 for selecting one kind of transition metal 38, and transition metal fine powder mixture 40 obtained by uniformly mixing and dispersing transition metal fine powder 39 of at least three types of transition metals 38 selected in transition metal selection step S1. Transition metal fine powder mixture forming step S2, and the transition metal fine powder mixture 40 formed by the transition metal fine powder mixture forming step S2 are pressurized at a predetermined pressure to form a transition metal fine powder compressed product 41. The compacted transition metal fine powder 41 produced in the compacted material preparation step S3 and the transition metal fine powder compacted step S3 is fired at a predetermined temperature to form an alloy. An alloy molded article producing step S4 for producing the carbon nanotube 29 or the carbon nanohorn 31 is generated, and the alloy molded article 43 produced in the alloy molded article producing step S4 is evaporated to form the surface of the carbon nanotube 29 or the carbon nanohorn 31. Since the carbon nanotube electrodes 15A and 15B or the carbon nanohorn electrodes 15A and 15B can be formed by the alloy fine particle supporting step S5 of supporting the alloy fine particles 26 of the alloy molded product 43 on the surface, platinum that does not use a platinum group element is used. Electrodes 15A and 15B can be manufactured at low cost, the catalyst function can be used sufficiently and reliably, and it has excellent catalytic activity (catalysis) and is suitable for the polymer electrolyte fuel cell 10. Inexpensive platinum-free electrodes 15A and 15B that can be used for It can be made.

電極製造方法は、金属電極薄板27の両面(前後面)又はカーボン電極薄板28の両面(前後面)にカーボンナノチューブ29又はカーボンナノホーン31が固着され、カーボンナノチューブ29又はカーボンナノホーン31の表面にアロイ微粒子26が担持され、又は、カーボンナノチューブ29又はカーボンナノホーン31の表面にアロイ微粒子積層ポーラス構造33が形成された厚み寸法L1が0.03mm〜0.3mmのカーボンナノチューブ電極15A,15B又はカーボンナノホーン電極15A,15Bを作ることができるから、電極15A,15Bの電気抵抗を低くすることができ、電極15A,15Bに電流がスムースに流れ、固体高分子形燃料電池10において十分な電気を発電することが可能であって固体高分子形燃料電池10に接続された負荷に十分な電気エネルギーを供給することが可能な電極15A,15Bを廉価に作ることができる   In the electrode manufacturing method, carbon nanotubes 29 or carbon nanohorns 31 are fixed to both surfaces (front and rear surfaces) of the metal electrode thin plate 27 or both surfaces (front and rear surfaces) of the carbon electrode thin plate 28, and alloy fine particles are attached to the surface of the carbon nanotube 29 or carbon nanohorn 31. 26 or a carbon nanotube electrode 15A, 15B or carbon nanohorn electrode 15A having a thickness L1 of 0.03 mm to 0.3 mm in which an alloy fine particle laminated porous structure 33 is formed on the surface of a carbon nanotube 29 or carbon nanohorn 31. , 15B can be made, the electric resistance of the electrodes 15A, 15B can be reduced, the current flows smoothly to the electrodes 15A, 15B, and sufficient electricity can be generated in the polymer electrolyte fuel cell 10. Possible solid polymer fuel It can be made capable of electrodes 15A to supply sufficient electric energy to the load connected to the pond 10 and 15B to inexpensive

10 固体高分子形燃料電池
11 セル
12 セルスタック
13A 燃料極(電極)
13B 燃料極(電極)
14A 空気極(電極)
14A 空気極(電極)
15A カーボンナノチューブ電極又はカーボンナノホーン電極
15B カーボンナノチューブ電極又はカーボンナノホーン電極
16 固体高分子電解質膜(電極接合体膜)
17 セパレータ
18 セパレータ
19 膜/電極接合体
20 ガス拡散層
21 ガス拡散層
22 ガスシール
23 ガスシール
24 前面
25 後面
26 アロイ微粉体
27 金属電極薄板
28 カーボン電極薄板
29 カーボンナノチューブ
30 凝集体(凝集板)
31 カーボンナノホーン
32 凝集体(凝集板)
33 アロイ微粒子積層ポーラス構造
34 流路
35 通流口
36 導線
37 負荷
38 遷移金属
39 遷移金属微粉体(微粉体)
40 遷移金属微粉体混合物
41 遷移金属微粉体圧縮物
42 アロイ成形物
43 アロイ微粉体
L1 厚み寸法
S1 遷移金属選択工程
S2 遷移金属微粉体混合物作成工程
S3 遷移金属微粉体圧縮物作成工程
S4 アロイ成形物作成工程
S5 アロイ微粒子担持工程
S6 アロイ微粉体作成工程
Reference Signs List 10 polymer electrolyte fuel cell 11 cell 12 cell stack 13A fuel electrode (electrode)
13B Fuel electrode (electrode)
14A air electrode (electrode)
14A air electrode (electrode)
15A Carbon nanotube electrode or carbon nanohorn electrode 15B Carbon nanotube electrode or carbon nanohorn electrode 16 Solid polymer electrolyte membrane (electrode assembly membrane)
17 Separator 18 Separator 19 Membrane / electrode assembly 20 Gas diffusion layer 21 Gas diffusion layer 22 Gas seal 23 Gas seal 24 Front surface 25 Back surface 26 Alloy fine powder 27 Metal electrode thin plate 28 Carbon electrode thin plate 29 Carbon nanotube 30 Aggregate (aggregate plate)
31 Carbon nanohorn 32 Aggregate (aggregate plate)
33 Alloy fine particle laminated porous structure 34 Channel 35 Inlet 36 Conductor 37 Load 38 Transition metal 39 Transition metal fine powder (fine powder)
Reference Signs List 40 Transition metal fine powder mixture 41 Transition metal fine powder compact 42 Alloy molded product 43 Alloy fine powder L1 Thickness dimension S1 Transition metal selecting process S2 Transition metal fine powder mixture producing process S3 Transition metal fine powder compact producing process S4 Alloy molded product Production process S5 Alloy fine particle carrying process S6 Alloy fine powder production process

Claims (16)

複数のセルを有するセルスタックを備え、前記セルが、燃料極及び空気極と、前記燃料極と前記空気極との間に位置する電極接合体膜と、前記燃料極の外側と前記空気極の外側とに位置するセパレータとから形成された固体高分子形燃料電池において、
前記燃料極及び前記空気極が、カーボンナノチューブ電極又はカーボンナノホーン電極であり、前記カーボンナノチューブ電極又は前記カーボンナノホーン電極が、各種の遷移金属から選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を圧縮した後に焼成したアロイ成形物のアロイ微粒子と、カーボンナノチューブの凝集体又はカーボンナノホーンの凝集体とを含み、前記遷移金属微粉体混合物では、前記選択された少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも3種類の遷移金属が選択され、前記カーボンナノチューブ電極又は前記カーボンナノホーン電極では、前記アロイ微粒子がカーボンナノチューブの表面又はカーボンナノホーンの表面に担持されていることを特徴とする固体高分子形燃料電池。
The fuel cell further includes a cell stack having a plurality of cells, wherein the cells include a fuel electrode and an air electrode, an electrode assembly film located between the fuel electrode and the air electrode, and a fuel electrode and an air electrode. In a polymer electrolyte fuel cell formed from an outer and a separator located on the outside,
The fuel electrode and the air electrode are a carbon nanotube electrode or a carbon nanohorn electrode, and the carbon nanotube electrode or the carbon nanohorn electrode is a transition metal fine powder of at least three types of transition metals selected from various transition metals. An alloy molded article obtained by compressing a homogeneously mixed / dispersed transition metal fine powder mixture and then baked is included, and includes an aggregate of carbon nanotubes or an aggregate of carbon nanohorns. At least three types of transition metals are selected from the various transition metals so that the calculated work function of the work functions of the at least three types of transition metals approximates the work function of the platinum group element; Alternatively, in the carbon nanohorn electrode, the alloy fine particles are Polymer electrolyte fuel cell characterized by being carried on the surface or surfaces of the carbon nanohorn nanotubes.
前記カーボンナノチューブの表面又は前記カーボンナノホーンの表面には、該カーボンナノチューブ又は該カーボンナノホーンの表面から外側へ向かって重なり合う前記アロイ微粒子によってアロイ微粒子積層ポーラス構造が形成され、前記固体高分子形燃料電池では、前記電極接合体膜と前記アロイ微粒子積層ポーラス構造とが隙間なく重なり合っている請求項1に記載の固体高分子形燃料電池。   On the surface of the carbon nanotube or the surface of the carbon nanohorn, an alloy particle laminated porous structure is formed by the alloy particles overlapping outward from the surface of the carbon nanotube or the carbon nanohorn, and in the polymer electrolyte fuel cell, 2. The polymer electrolyte fuel cell according to claim 1, wherein the electrode assembly film and the alloy fine particle laminated porous structure overlap without any gap. 前記遷移金属微粉体の粒径が、10μm〜200μmの範囲にあり、前記カーボンナノチューブ電極又は前記カーボンナノホーン電極の厚み寸法が、0.03mm〜0.3mmの範囲にある請求項1又は請求項2に記載の固体高分子形燃料電池。   The particle diameter of the transition metal fine powder is in a range of 10 μm to 200 μm, and the thickness dimension of the carbon nanotube electrode or the carbon nanohorn electrode is in a range of 0.03 mm to 0.3 mm. 9. The polymer electrolyte fuel cell according to item 1. 前記遷移金属微粉体混合物が、Ni(ニッケル)の微粉体を主成分とし、前記遷移金属微粉体混合物では、前記Niの仕事関数と該Niを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が前記白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から前記Niの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている請求項1ないし請求項3いずれかに記載の固体高分子形燃料電池。   The transition metal fine powder mixture is mainly composed of Ni (nickel) fine powder, and the transition metal fine powder mixture has a work function of Ni and a work function of at least two other transition metals other than Ni. A transition metal fine powder of at least two other transition metals other than the Ni fine powder is selected from the various transition metals so that the composite work function of the transition metal approximates the work function of the platinum group element. The polymer electrolyte fuel cell according to any one of claims 1 to 3. 前記遷移金属微粉体混合物の全重量に対する前記Ni(ニッケル)の微粉体の重量比が、30%〜50%の範囲にあり、前記Niの微粉体を除く1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、20%〜50%の範囲にあり、前記Niの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、3%〜20%の範囲にある請求項4に記載の固体高分子形燃料電池。   A transition metal fine powder of one type of transition metal excluding the Ni fine powder, wherein a weight ratio of the Ni (nickel) fine powder to the total weight of the transition metal fine powder mixture is in a range of 30% to 50%; Wherein the weight ratio of the transition metal fine powder mixture to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and the transition metal fine powder of the transition metal fine powder of at least one other transition metal excluding the Ni fine powder. The polymer electrolyte fuel cell according to claim 4, wherein a weight ratio of the body mixture to the total weight is in a range of 3% to 20%. 前記遷移金属微粉体混合物が、Fe(鉄)の微粉体を主成分とし、前記遷移金属微粉体混合物では、前記Feの仕事関数と該Feを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が前記白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から前記Feの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている請求項1ないし請求項3いずれかに記載の固体高分子形燃料電池。   The transition metal fine powder mixture has a fine powder of Fe (iron) as a main component, and the transition metal fine powder mixture has a work function of Fe and a work function of at least two types of transition metals other than Fe. A transition metal fine powder of at least two other transition metals other than the fine powder of Fe is selected from the various transition metals so that the composite work function of the transition metal approximates the work function of the platinum group element. The polymer electrolyte fuel cell according to any one of claims 1 to 3. 前記遷移金属微粉体混合物の全重量に対する前記Fe(鉄)の微粉体の重量比が、30%〜50%の範囲にあり、前記Feの微粉体を除く1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、20%〜50%の範囲にあり、前記Feの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、3%〜20%の範囲にある請求項6に記載の固体高分子形燃料電池。   The weight ratio of the Fe (iron) fine powder to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and the transition metal fine powder of one type of transition metal excluding the Fe fine powder Wherein the weight ratio of the transition metal fine powder mixture to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and the transition metal fine powder of the transition metal fine powder of at least one other transition metal excluding the Fe fine powder The polymer electrolyte fuel cell according to claim 6, wherein the weight ratio of the body mixture to the total weight is in the range of 3% to 20%. 前記遷移金属微粉体混合物が、Cu(銅)の微粉体を主成分とし、前記遷移金属微粉体混合物では、前記Cuの仕事関数と該Cuを除く他の少なくとも2種類の遷移金属の仕事関数との合成仕事関数が前記白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から前記Cuの微粉体を除く他の少なくとも2種類の遷移金属の遷移金属微粉体が選択されている請求項1ないし請求項3いずれかに記載の固体高分子形燃料電池。   The transition metal fine powder mixture is mainly composed of Cu (copper) fine powder, and the transition metal fine powder mixture has a work function of Cu and a work function of at least two types of transition metals other than Cu. A transition metal fine powder of at least two other transition metals other than the fine powder of Cu is selected from the various transition metals so that the composite work function of the transition metal approximates the work function of the platinum group element. The polymer electrolyte fuel cell according to any one of claims 1 to 3. 前記遷移金属微粉体混合物の全重量に対する前記Cu(銅)の微粉体の重量比が、30%〜50%の範囲にあり、前記Cuの微粉体を除く1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、20%〜50%の範囲にあり、前記Cuの微粉体を除く他の少なくとも1種類の遷移金属の遷移金属微粉体の前記遷移金属微粉体混合物の全重量に対する重量比が、3%〜20%の範囲にある請求項8に記載の固体高分子形燃料電池。   The weight ratio of the Cu (copper) fine powder to the total weight of the transition metal fine powder mixture is in the range of 30% to 50%, and the transition metal fine powder of one type of transition metal excluding the Cu fine powder Wherein the weight ratio of the transition metal fine powder mixture to the total weight of the transition metal fine powder mixture is in the range of 20% to 50%, and the transition metal fine powder of at least one other transition metal except for the Cu fine powder. The polymer electrolyte fuel cell according to claim 8, wherein a weight ratio of the body mixture to the total weight is in a range of 3% to 20%. 前記アロイ成形物では、前記選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体が遷移金属微粉体混合物の焼成時に溶融し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体が接合されている請求項1ないし請求項9いずれかに記載の固体高分子形燃料電池。   In the alloy molded product, the transition metal fine powder of at least two types of transition metals among the selected transition metals is melted during firing of the transition metal fine powder mixture, and the transition metal fine powder of the molten transition metal is used as a binder. 10. The polymer electrolyte fuel cell according to claim 1, wherein transition metal fine powders of the transition metals are joined. 固体高分子形燃料電池の燃料極及び空気極として使用するカーボンナノチューブ電極又はカーボンナノホーンを製造する電極製造方法において、
前記電極製造方法が、各種の遷移金属から選択する少なくとも3種類の遷移金属の仕事関数の合成仕事関数が白金族元素の仕事関数に近似するように、前記各種の遷移金属の中から少なくとも3種類の遷移金属を選択する遷移金属選択工程と、前記遷移金属選択工程によって選択された少なくとも3種類の遷移金属の遷移金属微粉体を均一に混合・分散した遷移金属微粉体混合物を作る遷移金属微粉体混合物作成工程と、前記遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を所定圧力で加圧して遷移金属微粉体圧縮物を作る遷移金属微粉体圧縮物作成工程と、前記遷移金属微粉体圧縮物作成工程によって作られた遷移金属微粉体圧縮物を所定温度で焼成してアロイ成形物を作るアロイ成形物作成工程と、カーボンナノチューブ又はカーボンナノホーンを生成し、前記アロイ成形物作成工程によって作られたアロイ成形物を蒸発させて前記カーボンナノチューブの表面又は前記カーボンナノホーンの表面に該アロイ成形物のアロイ微粒子を担持させるアロイ微粒子担持工程とを有することを特徴とする固体高分子形燃料電池の電極製造方法。
In an electrode manufacturing method for manufacturing a carbon nanotube electrode or a carbon nanohorn used as a fuel electrode and an air electrode of a polymer electrolyte fuel cell,
The electrode manufacturing method may include at least three types of transition metals such that a composite work function of work functions of at least three types of transition metals selected from various types of transition metals approximates a work function of a platinum group element. Transition metal selecting step of selecting a transition metal of the above, and transition metal fine powder for uniformly mixing and dispersing transition metal fine powders of at least three types of transition metals selected in the transition metal selecting step. A mixture preparation step, a transition metal fine powder compact to produce a transition metal fine powder compact by pressing the transition metal fine powder mixture produced by the transition metal fine powder mixture preparation step at a predetermined pressure, and the transition metal An alloy molded product producing step of firing the transition metal fine powder compact produced by the fine powder compact produced process at a predetermined temperature to form an alloy molded product; An alloy fine particle carrier for generating a tube or a carbon nanohorn, evaporating the alloy molded product formed in the alloy molded product forming step, and carrying the alloy fine particles of the alloy molded product on the surface of the carbon nanotube or the surface of the carbon nanohorn. And a process for producing an electrode of a polymer electrolyte fuel cell.
前記アロイ微粒子担持工程が、前記カーボンナノチューブ又は前記カーボンナノホーンの生成と同時にアロイ成形物を蒸発させ、前記アロイ成形物のアロイ微粒子を該カーボンナノチューブの表面又は該カーボンナノホーンの表面に担持させる請求項11に記載の固体高分子形燃料電池の電極製造方法。   The alloy fine particle supporting step evaporates an alloy molded product simultaneously with the generation of the carbon nanotube or the carbon nanohorn, and causes the alloy fine particles of the alloy molded product to be supported on the surface of the carbon nanotube or the surface of the carbon nanohorn. 3. The method for producing an electrode of a polymer electrolyte fuel cell according to item 1. 前記遷移金属微粉体混合物作成工程が、前記遷移金属選択工程によって選択された少なくとも3種類の遷移金属を10μm〜200μmの粒径に微粉砕する請求項11又は請求項12に記載の固体高分子形燃料電池の電極製造方法。   The solid polymer form according to claim 11 or 12, wherein the transition metal fine powder mixture preparation step pulverizes at least three types of transition metals selected in the transition metal selection step to a particle size of 10 µm to 200 µm. An electrode manufacturing method for a fuel cell. 前記遷移金属微粉体圧縮物作成工程が、前記遷移金属微粉体混合物作成工程によって作られた遷移金属微粉体混合物を500Mpa〜800Mpaの圧力で加圧して前記遷移金属微粉体圧縮物を作る請求項11ないし請求項13いずれかに記載の固体高分子形燃料電池の電極製造方法。   12. The transition metal fine powder compressed product producing step, wherein the transition metal fine powder mixture produced in the transition metal fine powder mixture producing process is pressurized at a pressure of 500 to 800 MPa to produce the transition metal fine powder compressed product. 14. The method for producing an electrode of a polymer electrolyte fuel cell according to claim 13. 前記アロイ成形物作成工程が、前記遷移金属選択工程によって選択された遷移金属のうちの少なくとも2種類の遷移金属の遷移金属微粉体を溶融させる温度で前記遷移金属微粉体圧縮物を焼成し、溶融した遷移金属の遷移金属微粉体をバインダーとしてそれら遷移金属の遷移金属微粉体を接合する請求項11ないし請求項14いずれかに記載の固体高分子形燃料電池の電極製造方法。   The alloy molded product forming step, the transition metal fine powder compact is fired at a temperature at which the transition metal fine powder of at least two types of transition metals selected from the transition metals selected in the transition metal selecting step is melted and melted. The method for producing an electrode of a polymer electrolyte fuel cell according to any one of claims 11 to 14, wherein the transition metal fine powder of the transition metal is joined using the transition metal fine powder of the transition metal as a binder. 前記アロイ微粒子担持工程が、前記カーボンナノチューブ電極又は前記カーボンナノホーン電極を0.03mm〜0.3mmの範囲の厚み寸法に成形し、前記カーボンナノチューブの表面又は前記カーボンナノホーンの表面から外側へ向かって重なり合う前記アロイ微粒子によってアロイ微粒子積層ポーラス構造を形成する請求項11ないし請求項15いずれかに記載の固体高分子形燃料電池の電極製造方法。
The alloy fine particle supporting step forms the carbon nanotube electrode or the carbon nanohorn electrode into a thickness dimension in a range of 0.03 mm to 0.3 mm, and overlaps outward from the surface of the carbon nanotube or the surface of the carbon nanohorn. The method for manufacturing an electrode of a polymer electrolyte fuel cell according to any one of claims 11 to 15, wherein the alloy fine particles form an alloy fine particle laminated porous structure.
JP2018143106A 2018-07-31 2018-07-31 Polymer electrolyte fuel cell and electrode manufacturing method Active JP7281158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018143106A JP7281158B2 (en) 2018-07-31 2018-07-31 Polymer electrolyte fuel cell and electrode manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018143106A JP7281158B2 (en) 2018-07-31 2018-07-31 Polymer electrolyte fuel cell and electrode manufacturing method

Publications (2)

Publication Number Publication Date
JP2020021577A true JP2020021577A (en) 2020-02-06
JP7281158B2 JP7281158B2 (en) 2023-05-25

Family

ID=69588737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018143106A Active JP7281158B2 (en) 2018-07-31 2018-07-31 Polymer electrolyte fuel cell and electrode manufacturing method

Country Status (1)

Country Link
JP (1) JP7281158B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064786A (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006713A (en) * 1999-06-16 2001-01-12 Nippon Steel Corp Low contact-resistance stainless steel, titanium, and carbon material, for proton-exchange membrane fuel cell member
WO2002075831A1 (en) * 2001-03-19 2002-09-26 Nec Corporation Fuel cell electrode, and fuel cell comprising the electrode
JP2006156387A (en) * 2004-11-26 2006-06-15 Samsung Sdi Co Ltd Electrode for fuel cell, fuel cell equipped with this, and manufacturing method of electrode for fuel cell
JP2006228745A (en) * 2001-03-28 2006-08-31 Toshiba Corp Catalyst material for fuel cell and manufacturing method of catalyst material for fuel cell
JP2007026746A (en) * 2005-07-13 2007-02-01 Gunma Univ Manufacturing method of electrocatalyst for fuel cell, electrocatalyst manufactured by its method, as well as fuel cell using that electrocatalyst
JP2013026143A (en) * 2011-07-25 2013-02-04 Daihatsu Motor Co Ltd Fuel cell
WO2014020650A1 (en) * 2012-08-02 2014-02-06 トヨタ自動車株式会社 Fuel cell electrode, as well as method for manufacturing fuel cell electrode, membrane electrode assembly, and fuel cell
JP2017098004A (en) * 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same
WO2017159351A1 (en) * 2016-03-16 2017-09-21 日本電気株式会社 Flat structure including fibrous carbon nanohorn aggregate
JP2017170404A (en) * 2016-03-25 2017-09-28 日産自動車株式会社 Method for producing catalyst particle and method for producing electrode catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006713A (en) * 1999-06-16 2001-01-12 Nippon Steel Corp Low contact-resistance stainless steel, titanium, and carbon material, for proton-exchange membrane fuel cell member
WO2002075831A1 (en) * 2001-03-19 2002-09-26 Nec Corporation Fuel cell electrode, and fuel cell comprising the electrode
JP2006228745A (en) * 2001-03-28 2006-08-31 Toshiba Corp Catalyst material for fuel cell and manufacturing method of catalyst material for fuel cell
JP2006156387A (en) * 2004-11-26 2006-06-15 Samsung Sdi Co Ltd Electrode for fuel cell, fuel cell equipped with this, and manufacturing method of electrode for fuel cell
JP2007026746A (en) * 2005-07-13 2007-02-01 Gunma Univ Manufacturing method of electrocatalyst for fuel cell, electrocatalyst manufactured by its method, as well as fuel cell using that electrocatalyst
JP2013026143A (en) * 2011-07-25 2013-02-04 Daihatsu Motor Co Ltd Fuel cell
WO2014020650A1 (en) * 2012-08-02 2014-02-06 トヨタ自動車株式会社 Fuel cell electrode, as well as method for manufacturing fuel cell electrode, membrane electrode assembly, and fuel cell
JP2017098004A (en) * 2015-11-20 2017-06-01 株式会社健明 Electrode material for fuel cell and method of manufacturing the same
WO2017159351A1 (en) * 2016-03-16 2017-09-21 日本電気株式会社 Flat structure including fibrous carbon nanohorn aggregate
JP2017170404A (en) * 2016-03-25 2017-09-28 日産自動車株式会社 Method for producing catalyst particle and method for producing electrode catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064786A (en) * 2018-10-18 2020-04-23 株式会社グラヴィトン Polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP7281158B2 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
JP5833786B1 (en) ELECTRODE MATERIAL FOR FUEL CELL, ITS MANUFACTURING METHOD, AND FUEL CELL
WO2019244840A1 (en) Electrode
JP7281157B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
WO2020080530A1 (en) Electrode and electrode manufacturing method
US3441390A (en) Fuel cell electrode
JP7281158B2 (en) Polymer electrolyte fuel cell and electrode manufacturing method
WO2020017623A1 (en) Electrode and electrode manufacturing method
US6428931B1 (en) Methods for making oxygen reduction catalyst using micelle encapsulation and metal-air electrode including said catalyst
JP7193111B2 (en) Carbon nanotube electrode or carbon nanohorn electrode and electrode manufacturing method
JP2020004527A (en) Solid polymer electrolyte fuel cell and electrode manufacturing method
JP7199080B2 (en) Electrolyzer and electrode manufacturing method
JP7171024B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP2006228587A (en) Fuel electrode of power generation cell for solid electrolyte fuel cell
JP2020064786A (en) Polymer electrolyte fuel cell
JP7171027B2 (en) Method for manufacturing fuel electrode and air electrode for polymer electrolyte fuel cell
JP7171030B2 (en) Manufacturing method for anode and cathode of electrolyzer
WO2020045643A1 (en) Electrode
JP7235284B2 (en) polymer electrolyte fuel cell
JP2020019980A (en) Electrolysis device, and method of producing electrode
WO2020059783A1 (en) Electrode
JP2020087812A (en) Electrode and electrode manufacturing method
JP2020002397A (en) Electrolysis apparatus and electrode manufacturing method
JP7179314B2 (en) Manufacturing method for anode and cathode of electrolyzer
Gençtürk et al. 1D Materials as Electrocatalysts for Metal-Air Batteries
JP2020167064A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200617

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210511

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230508

R150 Certificate of patent or registration of utility model

Ref document number: 7281158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150