JP2001006713A - Low contact-resistance stainless steel, titanium, and carbon material, for proton-exchange membrane fuel cell member - Google Patents

Low contact-resistance stainless steel, titanium, and carbon material, for proton-exchange membrane fuel cell member

Info

Publication number
JP2001006713A
JP2001006713A JP11170142A JP17014299A JP2001006713A JP 2001006713 A JP2001006713 A JP 2001006713A JP 11170142 A JP11170142 A JP 11170142A JP 17014299 A JP17014299 A JP 17014299A JP 2001006713 A JP2001006713 A JP 2001006713A
Authority
JP
Japan
Prior art keywords
contact resistance
noble metal
fuel cell
stainless steel
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11170142A
Other languages
Japanese (ja)
Other versions
JP5047408B2 (en
Inventor
Hiroshi Kihira
寛 紀平
Shuichi Yamazaki
修一 山崎
Masao Kikuchi
正夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17014299A priority Critical patent/JP5047408B2/en
Priority to CA002300008A priority patent/CA2300008C/en
Publication of JP2001006713A publication Critical patent/JP2001006713A/en
Application granted granted Critical
Publication of JP5047408B2 publication Critical patent/JP5047408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member capable of reducing contact resistance in order to enhance efficiency in the case of a proton-exchange membrane fuel cell. SOLUTION: This low contact-resistance stainless steel, titanium, or carbon material for the proton-exchange membrane fuel cell member is characterized in that a noble metal or a noble-metal alloy is deposited on a portion that generates contact resistance by making contact with another member. The noble metal or noble-metal alloy is deposited on a surface after an oxide film is removed therefrom, and the amount of deposition is preferably 5 nm or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電力を直接的駆動
源とする自動車、小規模の発電システムなどに用いられ
る固体高分子型燃料電池部材用材料に関する。さらに詳
しくは、その接触抵抗を低くするために、表面に処理を
施した固体高分子型燃料電池部材用低接触抵抗材料に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a polymer electrolyte fuel cell member used for automobiles and small-scale power generation systems that use electric power as a direct drive source. More specifically, the present invention relates to a low contact resistance material for a polymer electrolyte fuel cell member whose surface has been treated to reduce its contact resistance.

【0002】[0002]

【従来の技術】近年電気自動車用燃料電池の開発が、固
体高分子材料の開発成功を契機に急速に進展し始めてい
る。固体高分子型燃料電池とは、従来のアルカリ型燃料
電池、燐酸型燃料電池、溶融炭酸塩型燃料電池、固体電
解質型燃料電池などとは異なり、水素イオン選択透過型
の有機物膜を電解質として用いることを特徴とする燃料
電池である。
2. Description of the Related Art In recent years, the development of fuel cells for electric vehicles has begun to progress rapidly with the successful development of solid polymer materials. Unlike polymer electrolyte fuel cells, which are different from conventional alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, etc., they use a hydrogen ion selective permeation type organic material membrane as the electrolyte. It is a fuel cell characterized by the above.

【0003】固体高分子型燃料電池の燃料には、純水素
のほかアルコール類の改質によって得た水素ガスなどを
用い、空気中の酸素との反応を電気化学的に制御するこ
とによって、電力を取り出すシステムである。固体高分
子膜は薄くても十分に機能し、電解質が膜中に固定され
ていることから、電池内の露点を制御すれば電解質とし
て機能するために、水溶液系電解質や溶融塩系電解質な
ど流動性のある媒体を使う必要がなく、電池自体をコン
パクトに単純化して設計できることも特徴である。
As a fuel for a polymer electrolyte fuel cell, pure hydrogen and hydrogen gas obtained by reforming alcohols and the like are used, and the reaction with oxygen in the air is electrochemically controlled to produce electric power. It is a system to take out. Solid polymer membranes function well even if they are thin, and since the electrolyte is fixed in the membrane, they can function as electrolytes if the dew point in the battery is controlled, so fluids such as aqueous electrolytes and molten salt electrolytes can be used. There is no need to use versatile media, and the battery itself can be designed to be compact and simple.

【0004】従来、燃料電池用ステンレス鋼としては、
特開平4−247852号公報で開示された溶融炭酸塩
型燃料電池用耐食ステンレス鋼、特開平4−35804
4号公報で開示された溶融炭酸塩型燃料電池セパレータ
用高耐食鋼板、特開平7−188870号公報で開示さ
れた溶融塩に対する耐食性に優れたステンレス鋼および
その製造方法、特開平8−165546号公報で開示さ
れた耐溶融炭酸塩性に優れたステンレス鋼、特開平8−
225892号公報で開示された耐溶融炭酸塩腐食性に
優れたステンレス鋼、及び特開平8−3114620号
公報で開示された熱間加工性及び耐溶融塩腐食性に優れ
たステンレス鋼などが公知である。
Conventionally, as stainless steel for fuel cells,
Japanese Patent Laid-Open No. 4-247852 discloses a corrosion-resistant stainless steel for molten carbonate fuel cells.
No. 4 discloses a high corrosion-resistant steel plate for a molten carbonate fuel cell separator, a stainless steel disclosed in JP-A-7-188870 having excellent corrosion resistance to molten salts and a method for producing the same, and JP-A-8-165546. Japanese Patent Laid-Open Publication No. Hei 8-
Known are stainless steel excellent in molten carbonate corrosion resistance disclosed in JP-A-225892 and stainless steel excellent in hot workability and molten salt corrosion resistance disclosed in JP-A-8-3114620. is there.

【0005】また、高い耐食性が要求される溶融炭酸塩
環境で稼動する燃料電池用ステンレス鋼として、特開平
6−264193号公報および特開平6−293941
号公報で開示された固体電解質型燃料電池用金属材料、
特開平9−67672号公報で開示されたフェライト系
ステンレス鋼など、数百度の高温で稼動する固体電解質
型燃料電池材料の発明がなされている。
Further, as a stainless steel for a fuel cell which operates in a molten carbonate environment where high corrosion resistance is required, JP-A-6-264193 and JP-A-6-293941.
Metal material for a solid oxide fuel cell disclosed in
A solid electrolyte fuel cell material which operates at a high temperature of several hundred degrees, such as a ferritic stainless steel disclosed in Japanese Patent Application Laid-Open No. 9-67672, has been invented.

【0006】これに対して、100℃以下の領域で稼動
する固体高分子型燃料電池の構成材料としては、温度が
さほど高くないこと、およびその環境下で耐食性・耐久
性を十分発揮させることが可能であることなどの理由
で、炭素系の材料が使用されてきており、このタイプの
燃料電池へのステンレス鋼やチタンなど金属系の材料の
適用は検討されていなかった。
On the other hand, as a constituent material of a polymer electrolyte fuel cell which operates at a temperature of 100 ° C. or lower, it is required that the temperature is not so high and that the corrosion resistance and durability under the environment are sufficiently exhibited. Carbon-based materials have been used for reasons such as being possible, and application of metal-based materials such as stainless steel and titanium to this type of fuel cell has not been considered.

【0007】[0007]

【発明が解決しようとする課題】固体高分子型燃料電池
は、電解質となる固体高分子膜の両面に炭素微粒子と貴
金属超微粒子からなる触媒電極部、そこで発生する電力
を電流として取り出すと同時に触媒電極部へ反応ガスを
供給する機能を持った、フェルト状炭素繊維集合体(通
称カーボンペーパー)からなるカレントコレクター、そ
こからの電流を受けると共に酸素主体および水素主体の
2種の反応ガスや冷却媒体を分離するセパレーターなど
が積層されることにより構成される。
The polymer electrolyte fuel cell has a catalyst electrode portion composed of carbon fine particles and noble metal ultrafine particles on both surfaces of a solid polymer membrane serving as an electrolyte. A current collector consisting of a felt-like carbon fiber aggregate (commonly known as carbon paper) having a function of supplying a reaction gas to the electrode section. It receives current from it and has two types of reaction gas and cooling medium mainly composed of oxygen and hydrogen. Is formed by stacking a separator or the like that separates the components.

【0008】従来、このセパレーターにも炭素材料が使
用されていたが、自動車への搭載を考慮した場合、コス
トが高い、電池の大きさが大きいといった問題点があ
り、セパレーターなどの部材へのステンレス鋼の適用が
検討され始めている。
Conventionally, carbon materials have also been used for this separator. However, considering the mounting on automobiles, there are problems such as high cost and large size of the battery. The application of steel is beginning to be considered.

【0009】本発明者らは、既に特願平11−6114
6号や特願平11−62813号により、ステンレス鋼
をセパレータなどの固体高分子型燃料電池用部材として
使用するための具体的形状や成分などを開示している
が、ステンレス鋼製またはチタン製セパレータにおいて
は、カレントコレクターとなるカーボンペーパーとの接
触抵抗が大きいため、燃料電池としてのエネルギー効率
を大幅に低下させることが問題として指摘され始めてい
る。
The present inventors have already filed Japanese Patent Application No. 11-6114.
No. 6 and Japanese Patent Application No. 11-62813 disclose specific shapes and components for using stainless steel as a member for a polymer electrolyte fuel cell such as a separator. Since the separator has a large contact resistance with the carbon paper serving as a current collector, it has begun to be pointed out as a problem that the energy efficiency of the fuel cell is greatly reduced.

【0010】本発明は、かかる状況に鑑み、使用される
素材間の接触抵抗を検討し、固体高分子型燃料電池のエ
ネルギー変換効率を最大限に発揮させるための固体高分
子型燃料電池部材用の低接触抵抗材料を提供することを
目的とする。
In view of such circumstances, the present invention considers the contact resistance between materials to be used, and provides a polymer electrolyte fuel cell member for maximizing the energy conversion efficiency of the polymer electrolyte fuel cell. An object of the present invention is to provide a low contact resistance material.

【0011】[0011]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたもので、その要旨とするところは
次の通りである。 (1)他の部材と接触し接触抵抗を生ずる部分に、貴金
属または貴金属の合金が付着されていることを特徴とす
る固体高分子型燃料電池部材用低接触抵抗ステンレス
鋼。 (2)表面の酸化皮膜を除去した後に、貴金属または貴
金属の合金が付着されていることを特徴とする前記
(1)に記載の固体高分子型燃料電池部材用低接触抵抗
ステンレス鋼。 (3)貴金属または貴金属の合金の平均厚さが、5nm
以上であることを特徴とする前記(1)または(2)に
記載の固体高分子型燃料電池部材用低接触抵抗ステンレ
ス鋼。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the gist thereof is as follows. (1) A low contact resistance stainless steel for a polymer electrolyte fuel cell member, wherein a noble metal or an alloy of a noble metal is adhered to a portion which comes into contact with another member and generates contact resistance. (2) The low contact resistance stainless steel for a polymer electrolyte fuel cell member according to (1), wherein a noble metal or a noble metal alloy is adhered after removing the oxide film on the surface. (3) The average thickness of the noble metal or alloy of the noble metal is 5 nm
The low contact resistance stainless steel for a polymer electrolyte fuel cell member according to the above (1) or (2), characterized by the above.

【0012】(4)他の部材と接触し接触抵抗を生ずる
部分に、貴金属または貴金属の合金が付着されているこ
とを特徴とする固体高分子型燃料電池部材用低接触抵抗
チタン。 (5)表面の酸化皮膜を除去した後に、貴金属または貴
金属の合金が付着されていることを特徴とする前記
(4)に記載の固体高分子型燃料電池部材用低接触抵抗
チタン。 (6)貴金属または貴金属の合金の平均厚さが、5nm
以上であることを特徴とする前記(4)または(5)に
記載の固体高分子型燃料電池部材用低接触抵抗チタン。
(4) A low contact resistance titanium for a polymer electrolyte fuel cell member, wherein a noble metal or an alloy of a noble metal is adhered to a portion which comes into contact with another member and generates contact resistance. (5) The low contact resistance titanium for a polymer electrolyte fuel cell member according to (4), wherein a noble metal or an alloy of a noble metal is adhered after removing an oxide film on the surface. (6) The average thickness of the noble metal or alloy of the noble metal is 5 nm
The low contact resistance titanium for a polymer electrolyte fuel cell member according to the above (4) or (5), which is characterized by the above.

【0013】(7)他の部材と接触し接触抵抗を生ずる
部分に、貴金属または貴金属の合金が付着されているこ
とを特徴とする固体高分子型燃料電池部材用低接触抵抗
炭素材料。 (8)表面の酸化皮膜を除去した後に、貴金属または貴
金属の合金が付着されていることを特徴とする前記
(7)に記載の固体高分子型燃料電池部材用低接触抵抗
炭素材料。 (9)貴金属または貴金属の合金の平均厚さが、5nm
以上であることを特徴とする前記(7)または(8)に
記載の固体高分子型燃料電池部材用低接触抵抗炭素材
料。
(7) A low contact resistance carbon material for a polymer electrolyte fuel cell member, wherein a noble metal or an alloy of a noble metal is adhered to a portion which comes into contact with another member and generates contact resistance. (8) The low contact resistance carbon material for a polymer electrolyte fuel cell member according to (7), wherein a noble metal or a noble metal alloy is adhered after removing the oxide film on the surface. (9) The average thickness of the noble metal or alloy of the noble metal is 5 nm
The low contact resistance carbon material for a polymer electrolyte fuel cell member according to the above (7) or (8), which is characterized by the above.

【0014】[0014]

【発明の実施の形態】接触抵抗の測定法として、直径3
0mmの円盤状の電流供給面をもつ治具を上下に配し、そ
の間に2個の直径30mm、厚さ4mmの円盤状金属試験片
やカーボンペーパーを挟み込み、接触面の面圧が2.7
9kg/cm2 となるよう上部に錘を乗せ、電流密度1.1
3A/cm2 の定電流を供給して、2個の円盤状金属試験
片間の電位差を測定することにより、接触抵抗を求め
た。
BEST MODE FOR CARRYING OUT THE INVENTION As a method of measuring a contact resistance, a diameter 3
A jig having a disk-shaped current supply surface of 0 mm is arranged vertically, and two disk-shaped metal test pieces of 30 mm in diameter and 4 mm in thickness and carbon paper are sandwiched between the jigs, and the surface pressure of the contact surface is 2.7.
A weight is placed on the upper part so as to be 9 kg / cm 2, and the current density is 1.1
The contact resistance was determined by supplying a constant current of 3 A / cm 2 and measuring the potential difference between the two disc-shaped metal test pieces.

【0015】円盤状金属試験片の材質として、30μm
金めっきをした銅、市販のステンレス鋼であるSUS3
16L、YUS270、YUS260、YUS190
L、および工業用第1種純チタンを選定した(YUSは
新日本製鐵株式会社規格)。また、カーボンペーパーに
は、燃料電池用にガス透過性と電気伝導性の観点から最
適とされた厚さ0.6mmの試作品を1種類選定し、一片
30mmの正方形に切り出し試験に供した。まず標準値を
得るために、ステンレス鋼およびチタン製試験片は接触
面を鏡面研磨仕上げしたものを用い、接触抵抗測定を行
った。
The material of the disc-shaped metal test piece is 30 μm
Gold plated copper, SUS3, a commercially available stainless steel
16L, YUS270, YUS260, YUS190
L and industrial grade 1 pure titanium were selected (YUS is Nippon Steel Corporation standard). As the carbon paper, one prototype having a thickness of 0.6 mm, which was optimized from the viewpoint of gas permeability and electric conductivity for a fuel cell, was selected and cut into a 30 mm square piece for the test. First, in order to obtain a standard value, the contact resistance was measured using a stainless steel and titanium test piece having a mirror-polished contact surface.

【0016】その結果、接触抵抗の値はmΩ・cm2 で、
金/金:0.02、 金/カーボンペーパー:5.3
0、 金/SUS316L:22.43、 SUS31
6L/SUS316L:54.90、チタン/カーボン
ペーパー:566.83、 YUS270/カーボンペ
ーパー:696.50、 YUS260/カーボンペー
パー:679.87、YUS190L/カーボンペーパ
ー:819.40、 SUS316L/カーボンペーパ
ー:614.52という値を得た。
As a result, the value of the contact resistance is mΩ · cm 2 ,
Gold / gold: 0.02, gold / carbon paper: 5.3
0, Fri / SUS316L: 22.43, SUS31
6L / SUS316L: 54.90, titanium / carbon paper: 566.83, YUS270 / carbon paper: 696.50, YUS260 / carbon paper: 679.87, YUS190L / carbon paper: 819.40, SUS316L / carbon paper: 614 .52 was obtained.

【0017】なお、金/カーボンペーパーの接触抵抗は
カーボンペーパーを2枚の金めっき銅円盤状試験片で挟
み、金めっき銅円盤状試験片間の電位差を電流密度で除
算した後、2で割って値を得たため、カーボンペーパー
の厚み半分の抵抗値も含まれる。また、ステンレス鋼や
チタンとカーボンペーパーとの接触抵抗値は、ステンレ
ス鋼またはチタン/カーボンペーパー/金めっき銅の組
合せの両端で電位差を測定して、電流密度で除算して得
た全抵抗値から金/カーボンペーパーの接触抵抗値を差
し引くことによって求めた。
The contact resistance of the gold / carbon paper is obtained by sandwiching the carbon paper between two gold-plated copper disc-shaped test pieces, dividing the potential difference between the gold-plated copper disc-shaped test pieces by the current density, and dividing by two. Therefore, the resistance value of half the thickness of the carbon paper is also included. The contact resistance between stainless steel or titanium and carbon paper is calculated from the total resistance obtained by measuring the potential difference at both ends of the stainless steel or titanium / carbon paper / gold plated copper combination and dividing by the current density. It was determined by subtracting the contact resistance value of the gold / carbon paper.

【0018】これらの結果を整理すると、 金/金および金/カーボンペーパーの接触面では殆
ど抵抗は生じない。 ステンレス鋼やチタンには酸化皮膜が存在するため
に、数十mΩ・cm2 程度の接触抵抗が生じる。 ステンレス鋼またはチタンとカーボンペーパーとの
接触面には、オームの法則では予想できないほど大きな
接触抵抗が生ずる。 という3点が判明した。
Summarizing these results, almost no resistance occurs at the gold / gold and gold / carbon paper contact surfaces. Due to the presence of an oxide film on stainless steel and titanium, a contact resistance of about several tens mΩ · cm 2 is generated. The contact surface between the stainless steel or titanium and the carbon paper has a contact resistance that is unexpectedly large according to Ohm's law. Three points were found.

【0019】この現象は、カーボンペーパーを構成する
黒鉛の電気伝導が共役二重結合を行っているπ電子によ
り行われていることと深く関係し、黒鉛より大幅に差異
のある仕事関数値をもつステンレス鋼やチタンとの接触
界面には、いわゆるショットキー障壁が形成されたた
め、大きな接触抵抗を生じたものと考えられる。
This phenomenon is closely related to the fact that the electrical conductivity of graphite constituting carbon paper is performed by π electrons having a conjugated double bond, and has a work function value that is significantly different from that of graphite. It is considered that a so-called Schottky barrier was formed at the contact interface with stainless steel or titanium, which caused a large contact resistance.

【0020】このように半導体物理学的に接触抵抗問題
を考察すると、今回観測されたデータが矛盾なく説明で
きることから、黒鉛と同等の仕事関数値を有する貴金属
(ここでは、金,白金,パラジウム,銀,銅,錫,鉛な
どを指すものとする)、またはこれらの金属の合金をス
テンレス鋼またはチタンとカーボンペーパー接触面の間
に挟みこむことで、接触抵抗を低減できるという指針が
得られた。
Considering the contact resistance problem in terms of semiconductor physics as described above, the data observed this time can be explained without contradiction. Therefore, noble metals (here, gold, platinum, palladium, The guideline was obtained that the contact resistance could be reduced by inserting silver, copper, tin, lead, etc.) or an alloy of these metals between stainless steel or titanium and the carbon paper contact surface. .

【0021】一方、ステンレス鋼やチタンには酸化皮膜
がごく薄く存在することが知られているが、この皮膜も
接触抵抗を上昇させる原因となることが実験により判明
した。これについては、皮膜を除去しながら貴金属を付
着させることでカーボンペーパーとの接触抵抗を低減す
ることが指針となる。
On the other hand, it is known that stainless steel and titanium have an extremely thin oxide film, but it has been found through experiments that this film also causes an increase in contact resistance. The guideline for this is to reduce the contact resistance with carbon paper by attaching a noble metal while removing the film.

【0022】そこで、カーボンペーパーの接触面側にイ
オンプレーティング法により金をコーティングして鏡面
研摩したステンレス鋼との接触抵抗低減効果を測定した
ところ、蒸着速度と蒸着時間から換算した平均厚さで5
nm以上の金が付着すると接触抵抗が低減し始めること
がわかった。
Then, when the contact surface side of the carbon paper was coated with gold by an ion plating method and the effect of reducing the contact resistance with the stainless steel polished to a mirror surface was measured, the average thickness converted from the deposition rate and the deposition time was measured. 5
It has been found that when gold of nm or more adheres, the contact resistance starts to decrease.

【0023】また、ステンレス鋼を、0.5%塩化白金
酸を含む1N塩酸水溶液中で耐水型のシリコンカーバイ
ド紙により軽く研摩して、不働態皮膜を機械的に除去し
ながらメタル表面に白金を腐食反応により微量析出させ
る処理を行い、無処理のカーボンペーパーとの接触抵抗
を測定したところ、やはり平均厚さで5nm以上の白金
が付着していると接触抵抗が低減し始める効果が認めら
れた。
Also, stainless steel is lightly polished with a water-resistant silicon carbide paper in a 1N hydrochloric acid aqueous solution containing 0.5% chloroplatinic acid to remove platinum on the metal surface while mechanically removing the passive film. When a treatment for precipitating a small amount by the corrosion reaction was performed and the contact resistance with the untreated carbon paper was measured, it was confirmed that the contact resistance began to decrease when platinum having an average thickness of 5 nm or more was adhered. .

【0024】さらに本発明の効果を確認するために、ス
テンレス鋼,チタン,カーボンペーパーに種々の表面処
理を施して、それらの組合わせ接触面における接触抵抗
を測定した結果を表1(表1−1〜表1−4)に示す。
Further, in order to confirm the effect of the present invention, various surface treatments were applied to stainless steel, titanium, and carbon paper, and the results of measuring the contact resistance at the combined contact surfaces were shown in Table 1 (Table 1). 1 to Table 1-4).

【0025】組合せ番号1〜29までは、ステンレス鋼
には表面処理をせず、カーボンペーパーに金,白金,パ
ラジウム,鉛,錫,銅,ニッケルをイオン蒸着法または
電解メッキ法により付与したものである。これらの結果
から、いずれも5nm以上の平均厚さを確保すれば接触
抵抗が低減すること、表面処理平均厚さを厚くするほど
接触抵抗が低減すること、などが無処理材(組合せ番号
1=基準1)と比較することによりわかる。
Combination Nos. 1 to 29 are those in which no surface treatment is applied to stainless steel and carbon, gold, platinum, palladium, lead, tin, copper and nickel are applied by ion vapor deposition or electrolytic plating. is there. From these results, it can be seen that the contact resistance is reduced if the average thickness of 5 nm or more is secured, and that the contact resistance is reduced as the average thickness of the surface treatment is increased. It can be seen by comparing with criterion 1).

【0026】組合せ番号30〜56までは、カーボンペ
ーパーにイオン蒸着により1000nmの金を付着した
表面に、各種ステンレス鋼およびチタンの酸化皮膜を機
械的に除去しながら貴金属を析出または付着させた面を
接触させて、接触抵抗を測定した結果である。これらの
結果から、いずれのステンレス鋼およびチタンにおいて
も、これらの処理を施すことによって接触抵抗が低減す
ることがわかる。
For combinations Nos. 30 to 56, the surface on which noble metal was deposited or adhered while mechanically removing oxide films of various stainless steels and titanium on the surface of carbon paper to which gold of 1000 nm was adhered by ion vapor deposition. It is the result of having measured contact resistance after making contact. From these results, it is understood that the contact resistance is reduced by performing these treatments on any of stainless steel and titanium.

【0027】皮膜除去しながら貴金属を析出または付着
させる方法として、ここでは0.5%塩化白金酸を含む
1N塩酸水溶液中で耐水型のシリコンカーバイド紙によ
り軽く研摩し、腐食反応により白金などを微量析出させ
る方法、同様な研摩後カソード電解によってより多くの
白金の析出を促す方法、あるいは金,銀などを無電解メ
ッキしたガラスビーズでブラスト処理する方法などを試
みたが、いずれも接触抵抗を低減する効果が観測され
た。
As a method of precipitating or adhering a noble metal while removing the film, here, lightly polished with a water-resistant silicon carbide paper in a 1N hydrochloric acid aqueous solution containing 0.5% chloroplatinic acid, and a trace amount of platinum or the like is removed by a corrosion reaction. We tried a method of depositing, a method of promoting more platinum deposition by cathodic electrolysis after polishing, or a method of blasting with gold or silver electroless plated glass beads, all of which reduced contact resistance Effect was observed.

【0028】組合せ番号57〜73は、ステンレス鋼同
士、またはチタン同士、またはステンレス鋼とチタンの
接触面における接触抵抗を調べた結果である。これらの
接触抵抗低減率は、組合せ番号57の無処理表面同士の
接触抵抗を基準(基準2)として算出した。いずれも接
触抵抗低減効果があることが実証できた。
Combination numbers 57 to 73 are the results of examining the contact resistance at the contact surface between stainless steel, between titanium, or between stainless steel and titanium. These contact resistance reduction rates were calculated using the contact resistance between the untreated surfaces of combination number 57 as a reference (reference 2). It was proved that each of them had a contact resistance reduction effect.

【0029】なお、本発明の貴金属もしくは貴金属の合
金の付着は、相接触する両面においてされていることが
望ましい。また、貴金属もしくは貴金属の付着方法は上
記に例示した方法に限られるものではなく、いかなる従
来法やそれらの組合わせによっても良い。
It is desirable that the noble metal or alloy of the noble metal of the present invention is attached to both surfaces in contact with each other. The method of attaching the noble metal or the noble metal is not limited to the method exemplified above, but may be any conventional method or a combination thereof.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【実施例】以下、実施例により本発明をさらに詳しく説
明する。実際にステンレス鋼板をセパレータとして加工
し、市販の固体高分子膜に白金含有のカーボン微細粒ペ
ーストを塗布・乾燥させ、炭素繊維不織布をカレントコ
レクターとして燃料電池を作製した。
The present invention will be described in more detail with reference to the following examples. Actually, a stainless steel sheet was processed as a separator, and a platinum-containing carbon fine particle paste was applied to a commercially available solid polymer film and dried, and a fuel cell was manufactured using a carbon fiber nonwoven fabric as a current collector.

【0035】燃料ガスとして水素極側に純水素あるいは
模擬メタノール分解ガス(25%CO2 、75%H2
を、酸素極側には模擬空気ガス(20%O2 、80%N
2 )を大気圧で供給し、電池全体を90℃になるよう高
温チャンバー内に保持し、正極から負極に向けて外部に
流れる短絡電流を測定することで、燃料電池性能の確認
試験を行った。この試験に用いた電極部のサイズは10
0×100mmであり、セパレータは耐食性を考慮し、板
厚0.4mmのYUS270ステンレス鋼板をプレス成形
によりガス流路や冷却水流路となる溝や穴を加工したも
のを用いた。
Pure hydrogen or simulated methanol decomposition gas (25% CO 2 , 75% H 2 ) is placed on the hydrogen electrode side as a fuel gas.
Simulated air gas (20% O 2 , 80% N
2 ) was supplied at atmospheric pressure, the whole cell was kept in a high-temperature chamber at 90 ° C., and a short-circuit current flowing from the positive electrode to the negative electrode was measured. . The size of the electrode part used in this test was 10
The separator used was a YUS270 stainless steel plate having a thickness of 0.4 mm and press-formed to form grooves and holes serving as gas passages and cooling water passages in consideration of corrosion resistance.

【0036】ステンレス鋼製セパレータの接触面とし
て、表1の結果を参考に0.5%塩化白金酸カリウムを
含む1N塩酸中で#320シリコンカーバイド紙を用い
て軽く研摩した後、5分間のカソード電解処理を行って
白金を析出させたものと、比較のため無処理のものを用
意した。また、カーボンペーパーの接触面としては、イ
オン蒸着により約1000nmの金を付着させたもの
と、比較のための無処理のものを用意した。
The contact surface of the stainless steel separator was lightly polished with # 320 silicon carbide paper in 1N hydrochloric acid containing 0.5% potassium chloroplatinate with reference to the results in Table 1, and then the cathode was treated for 5 minutes. An electrolytic treatment was performed to deposit platinum, and an untreated treatment was prepared for comparison. As the contact surface of the carbon paper, one having about 1000 nm of gold adhered by ion vapor deposition and one having no treatment for comparison were prepared.

【0037】その結果、無処理の固体高分子型燃料電池
では約15Aしか発生しなかったのに対し、本発明によ
る接触抵抗低減処理をした固体高分子型燃料電池では、
短絡電流値は約85A発生し、内部の接触抵抗低減が大
幅な電力効率の向上を達成したことが判明した。
As a result, only about 15 A was generated in the untreated solid polymer fuel cell, whereas in the solid polymer fuel cell treated with the contact resistance reducing treatment according to the present invention,
A short-circuit current value of about 85 A was generated, and it was found that a reduction in internal contact resistance achieved a significant improvement in power efficiency.

【0038】[0038]

【発明の効果】上記のように本発明によれば、自動車内
燃機関や可搬型発電器として有望視されている固体高分
子型燃料電池のセパレータなどの材料として、これまで
の炭素材料に比べ低コストでコンパクト化が可能なステ
ンレス材料の適用にあたり、問題であった部材の接触抵
抗を大幅に低減でき、固体高分子型燃料電池の実用化に
大きく寄与するものである。
As described above, according to the present invention, as a material for a separator of a polymer electrolyte fuel cell, which is considered to be promising as an automobile internal combustion engine or a portable power generator, a material lower than conventional carbon materials is used. When a stainless steel material that can be made compact at low cost is applied, the contact resistance of the member, which has been a problem, can be greatly reduced, which greatly contributes to the practical use of a polymer electrolyte fuel cell.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菊池 正夫 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 5H026 AA06 CX09 EE02 EE08 HH03 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masao Kikuchi 20-1 Shintomi, Futtsu Nippon Steel Corporation Technology Development Division F term (reference) 5H026 AA06 CX09 EE02 EE08 HH03

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 他の部材と接触し接触抵抗を生ずる部分
に、貴金属または貴金属の合金が付着されていることを
特徴とする固体高分子型燃料電池部材用低接触抵抗ステ
ンレス鋼。
1. A low contact resistance stainless steel for a polymer electrolyte fuel cell member, wherein a noble metal or an alloy of a noble metal is adhered to a portion which comes into contact with another member and generates a contact resistance.
【請求項2】 表面の酸化皮膜を除去した後に、貴金属
または貴金属の合金が付着されていることを特徴とする
請求項1に記載の固体高分子型燃料電池部材用低接触抵
抗ステンレス鋼。
2. The low contact resistance stainless steel for a polymer electrolyte fuel cell member according to claim 1, wherein a noble metal or a noble metal alloy is adhered after removing the oxide film on the surface.
【請求項3】 貴金属または貴金属の合金の平均厚さ
が、5nm以上であることを特徴とする請求項1または
2に記載の固体高分子型燃料電池部材用低接触抵抗ステ
ンレス鋼。
3. The low contact resistance stainless steel for a polymer electrolyte fuel cell member according to claim 1, wherein the noble metal or an alloy of the noble metal has an average thickness of 5 nm or more.
【請求項4】 他の部材と接触し接触抵抗を生ずる部分
に、貴金属または貴金属の合金が付着されていることを
特徴とする固体高分子型燃料電池部材用低接触抵抗チタ
ン。
4. A low contact resistance titanium for a polymer electrolyte fuel cell member, wherein a noble metal or an alloy of a noble metal is adhered to a portion which comes into contact with another member and generates contact resistance.
【請求項5】 表面の酸化皮膜を除去した後に、貴金属
または貴金属の合金が付着されていることを特徴とする
請求項4に記載の固体高分子型燃料電池部材用低接触抵
抗チタン。
5. The low contact resistance titanium for a polymer electrolyte fuel cell member according to claim 4, wherein a noble metal or a noble metal alloy is adhered after removing the oxide film on the surface.
【請求項6】 貴金属または貴金属の合金の平均厚さ
が、5nm以上であることを特徴とする請求項4または
5に記載の固体高分子型燃料電池部材用低接触抵抗チタ
ン。
6. The low contact resistance titanium for a polymer electrolyte fuel cell member according to claim 4, wherein the noble metal or an alloy of the noble metal has an average thickness of 5 nm or more.
【請求項7】 他の部材と接触し接触抵抗を生ずる部分
に、貴金属または貴金属の合金が付着されていることを
特徴とする固体高分子型燃料電池部材用低接触抵抗炭素
材料。
7. A low contact resistance carbon material for a polymer electrolyte fuel cell member, wherein a noble metal or an alloy of a noble metal is adhered to a portion which comes into contact with another member and generates contact resistance.
【請求項8】 表面の酸化皮膜を除去した後に、貴金属
または貴金属の合金が付着されていることを特徴とする
請求項7に記載の固体高分子型燃料電池部材用低接触抵
抗炭素材料。
8. The low contact resistance carbon material for a polymer electrolyte fuel cell member according to claim 7, wherein a noble metal or a noble metal alloy is adhered after removing the oxide film on the surface.
【請求項9】 貴金属または貴金属の合金の平均厚さ
が、5nm以上であることを特徴とする請求項7または
8に記載の固体高分子型燃料電池部材用低接触抵抗炭素
材料。
9. The low contact resistance carbon material for a polymer electrolyte fuel cell member according to claim 7, wherein the noble metal or an alloy of the noble metal has an average thickness of 5 nm or more.
JP17014299A 1999-03-09 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell Expired - Fee Related JP5047408B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17014299A JP5047408B2 (en) 1999-06-16 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell
CA002300008A CA2300008C (en) 1999-03-09 2000-03-06 Stainless steel and titanium for solid polymer electrolyte fuel cell members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17014299A JP5047408B2 (en) 1999-06-16 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2001006713A true JP2001006713A (en) 2001-01-12
JP5047408B2 JP5047408B2 (en) 2012-10-10

Family

ID=15899458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17014299A Expired - Fee Related JP5047408B2 (en) 1999-03-09 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5047408B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237311A (en) * 2001-02-07 2002-08-23 Sinto Brator Co Ltd Manufacturing method of low contact resistance metal separator for fuel cell
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
WO2005124913A1 (en) * 2004-06-22 2005-12-29 Honda Motor Co., Ltd. Method for manufacturing separator for fuel cell
JP2006127922A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Metal member for fuel cell, and its manufacturing method
WO2007029772A1 (en) 2005-09-08 2007-03-15 Nissan Motor Co., Ltd. Transition metal nitride, fuel cell separator, fuel cell stack, fuel cell vehicle, method for producing transition metal nitride, and method for producing fuel cell separator
WO2007100131A1 (en) 2006-02-27 2007-09-07 Nippon Steel Corporation Separator for solid polymer fuel cell and method for manufacturing the same
JP2007317600A (en) * 2006-05-29 2007-12-06 Toyota Motor Corp Metal member which has noble metal plating, and manufacturing method therefor
WO2007145377A1 (en) 2006-06-15 2007-12-21 Nippon Steel Corporation Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
JP2007335407A (en) * 2006-06-16 2007-12-27 Samsung Sdi Co Ltd Fuel cell membrane-electrode assembly and fuel cell system containing the same
JP2008004492A (en) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp Composite layer-covered porous plate with less increases in contact resistance even if exposed to oxidative environment for long period
JP2008010284A (en) * 2006-06-28 2008-01-17 Mitsubishi Materials Corp Hydrophilic porous metal member and its manufacturing method
WO2008041560A1 (en) 2006-09-29 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
WO2008072697A1 (en) 2006-12-13 2008-06-19 Mitsubishi Materials Corporation Porous titanium having low contact resistance
WO2008075591A1 (en) 2006-12-21 2008-06-26 Kabushiki Kaisha Kobe Seiko Sho Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
JP2008176988A (en) * 2007-01-17 2008-07-31 Nippon Steel Corp Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
EP2061111A1 (en) 2007-11-15 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium substrate for forming separator for fuel cell and method of manufacturing the separator
DE102009004196A1 (en) 2008-01-10 2009-07-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe A method for regenerating a separator for a fuel cell, regenerated separator for a fuel cell and fuel cell
EP2096698A1 (en) 2008-02-27 2009-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Surface treatment method of titanium material for electrodes
US7592037B2 (en) 2004-04-13 2009-09-22 Nissan Motor Co., Ltd. Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
WO2010038544A1 (en) 2008-09-30 2010-04-08 新日本製鐵株式会社 Titanium material having low contact resistance for use in separator for solid polymer-type fuel cell and process for producing the titanium material
US7700212B2 (en) 2004-10-07 2010-04-20 Gm Global Technology Operations, Inc. Bipolar plate with enhanced stability
DE102009056908A1 (en) 2009-02-06 2010-08-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Corrosion resistant film for a fuel cell separator and fuel cell separator
DE102010002734A1 (en) 2009-03-11 2010-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Titanium electrode material and titanium electrode material surface treatment method
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US7955754B2 (en) 2004-07-20 2011-06-07 GM Global Technology Operations LLC Enhanced stability bipolar plate
US8298724B2 (en) 2007-03-07 2012-10-30 Nissan Motor Co., Ltd. Transition metal nitride, separator for fuel cells, fuel cell stack, fuel cell vehicle, method of manufacturing transition metal nitride, and method of manufacturing separator for fuel cells
JP2013016451A (en) * 2011-07-06 2013-01-24 Hyundai Motor Co Ltd Fuel cell stack structure and method of manufacturing the same
JP2015000989A (en) * 2013-06-13 2015-01-05 東洋鋼鈑株式会社 Palladium plating-coated material and method of producing palladium plating-coated material
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
JP2020004527A (en) * 2018-06-26 2020-01-09 株式会社グラヴィトン Solid polymer electrolyte fuel cell and electrode manufacturing method
JP2020013722A (en) * 2018-07-19 2020-01-23 株式会社グラヴィトン Solid polymer fuel cell and electrode manufacturing method
JP2020021577A (en) * 2018-07-31 2020-02-06 株式会社グラヴィトン Polymer electrolyte fuel cell and manufacturing method of electrode
CN112713281A (en) * 2021-01-13 2021-04-27 范钦柏 Fuel cell bipolar plate and fuel cell stack

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036309A (en) * 1998-07-17 2000-02-02 C Uyemura & Co Ltd Metal separator for fuel cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036309A (en) * 1998-07-17 2000-02-02 C Uyemura & Co Ltd Metal separator for fuel cell

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709781B2 (en) 2000-07-07 2004-03-23 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
DE10132841B4 (en) * 2000-07-07 2007-08-23 Nippon Steel Corp. Separation plate for solid polymer fuel cells and process for their preparation and use of the separation plate in solid polymer fuel cells
JP4580113B2 (en) * 2001-02-07 2010-11-10 新日本製鐵株式会社 Method for producing low contact resistance metal separator for fuel cell
JP2002237311A (en) * 2001-02-07 2002-08-23 Sinto Brator Co Ltd Manufacturing method of low contact resistance metal separator for fuel cell
US7592037B2 (en) 2004-04-13 2009-09-22 Nissan Motor Co., Ltd. Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
WO2005124913A1 (en) * 2004-06-22 2005-12-29 Honda Motor Co., Ltd. Method for manufacturing separator for fuel cell
US7955754B2 (en) 2004-07-20 2011-06-07 GM Global Technology Operations LLC Enhanced stability bipolar plate
US7700212B2 (en) 2004-10-07 2010-04-20 Gm Global Technology Operations, Inc. Bipolar plate with enhanced stability
JP2006127922A (en) * 2004-10-29 2006-05-18 Dainippon Printing Co Ltd Metal member for fuel cell, and its manufacturing method
JP4660161B2 (en) * 2004-10-29 2011-03-30 大日本印刷株式会社 Manufacturing method of separator for fuel cell
US8304141B2 (en) 2005-06-22 2012-11-06 Sintokogio Ltd. Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
WO2007029772A1 (en) 2005-09-08 2007-03-15 Nissan Motor Co., Ltd. Transition metal nitride, fuel cell separator, fuel cell stack, fuel cell vehicle, method for producing transition metal nitride, and method for producing fuel cell separator
JP4650492B2 (en) * 2005-09-08 2011-03-16 日産自動車株式会社 Transition metal nitride, fuel cell separator, fuel cell stack, fuel cell vehicle, transition metal nitride manufacturing method, and fuel cell separator manufacturing method
US8765321B2 (en) 2005-09-08 2014-07-01 Nissan Motor Co., Ltd. Transition metal nitride, separator for fuel cells, fuel cell stack, fuel cell vehicle, method of manufacturing transition metal nitride, and method of manufacturing separator for fuel cells
JPWO2007029772A1 (en) * 2005-09-08 2009-03-19 日産自動車株式会社 Transition metal nitride, fuel cell separator, fuel cell stack, fuel cell vehicle, transition metal nitride manufacturing method, and fuel cell separator manufacturing method
US8182961B2 (en) 2006-02-27 2012-05-22 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
WO2007100131A1 (en) 2006-02-27 2007-09-07 Nippon Steel Corporation Separator for solid polymer fuel cell and method for manufacturing the same
US8361676B2 (en) 2006-02-27 2013-01-29 Nippon Steel Corporation Solid polymer type fuel cell separator and method of production of same
DE112007001205T5 (en) 2006-05-29 2009-04-23 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Metal member with noble metal plating and manufacturing method thereof
WO2007138436A3 (en) * 2006-05-29 2008-03-13 Toyota Motor Co Ltd Metal member having precious metal plating and manufacturing method of that metal member
JP2007317600A (en) * 2006-05-29 2007-12-06 Toyota Motor Corp Metal member which has noble metal plating, and manufacturing method therefor
WO2007138436A2 (en) * 2006-05-29 2007-12-06 Toyota Jidosha Kabushiki Kaisha Metal member having precious metal plating and manufacturing method of that metal member
US8043719B2 (en) 2006-05-29 2011-10-25 Toyota Jidosha Kabushiki Kaisha Metal member having precious metal plating
WO2007145377A1 (en) 2006-06-15 2007-12-21 Nippon Steel Corporation Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
JP4901864B2 (en) * 2006-06-15 2012-03-21 新日本製鐵株式会社 Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP2007335407A (en) * 2006-06-16 2007-12-27 Samsung Sdi Co Ltd Fuel cell membrane-electrode assembly and fuel cell system containing the same
JP2008004492A (en) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp Composite layer-covered porous plate with less increases in contact resistance even if exposed to oxidative environment for long period
JP2008010284A (en) * 2006-06-28 2008-01-17 Mitsubishi Materials Corp Hydrophilic porous metal member and its manufacturing method
WO2008041560A1 (en) 2006-09-29 2008-04-10 Kabushiki Kaisha Kobe Seiko Sho Method for producing separator for fuel cell, separator for fuel cell, and fuel cell
WO2008072697A1 (en) 2006-12-13 2008-06-19 Mitsubishi Materials Corporation Porous titanium having low contact resistance
JP2008169472A (en) * 2006-12-13 2008-07-24 Mitsubishi Materials Corp Porous titanium with small contact resistance
US7794853B2 (en) 2006-12-13 2010-09-14 Mitsubishi Materials Corporation Porous titanium having low contact resistance
WO2008075591A1 (en) 2006-12-21 2008-06-26 Kabushiki Kaisha Kobe Seiko Sho Alloy coating film for metal separator of fuel cell, method for producing the same, sputtering target material, metal separator and fuel cell
US8231990B2 (en) 2006-12-21 2012-07-31 Kobe Steel, Ltd. Alloy film for a metal separator for a fuel cell, a manufacturing method thereof and a target material for sputtering, as well as a metal separator, and a fuel cell
JP2008176988A (en) * 2007-01-17 2008-07-31 Nippon Steel Corp Titanium material for solid polymer fuel cell separator of low contact resistance and low ion elution property and its manufacturing method, separator made by using this titanium material, and solid polymer fuel cell made by using this separator
US8298724B2 (en) 2007-03-07 2012-10-30 Nissan Motor Co., Ltd. Transition metal nitride, separator for fuel cells, fuel cell stack, fuel cell vehicle, method of manufacturing transition metal nitride, and method of manufacturing separator for fuel cells
EP2061111A1 (en) 2007-11-15 2009-05-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Titanium substrate for forming separator for fuel cell and method of manufacturing the separator
KR100997267B1 (en) 2008-01-10 2010-11-29 가부시키가이샤 고베 세이코쇼 Regeneration method of separator for fuel cell, regenerated separator for fuel cell and fuel cell
DE102009004196A1 (en) 2008-01-10 2009-07-23 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe A method for regenerating a separator for a fuel cell, regenerated separator for a fuel cell and fuel cell
EP2096698A1 (en) 2008-02-27 2009-09-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Surface treatment method of titanium material for electrodes
WO2010038544A1 (en) 2008-09-30 2010-04-08 新日本製鐵株式会社 Titanium material having low contact resistance for use in separator for solid polymer-type fuel cell and process for producing the titanium material
US8603268B2 (en) 2008-09-30 2013-12-10 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator having low contact resistance and method of production of same
DE102009056908A1 (en) 2009-02-06 2010-08-19 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Corrosion resistant film for a fuel cell separator and fuel cell separator
US8349519B2 (en) 2009-03-11 2013-01-08 Kobe Steel, Ltd. Titanium electrode material and surface treatment method of titanium electrode material
DE102010002734A1 (en) 2009-03-11 2010-09-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe-shi Titanium electrode material and titanium electrode material surface treatment method
US9065081B2 (en) 2009-08-03 2015-06-23 Nippon Steel & Sumitomo Metal Corporation Titanium material for solid polymer fuel cell separator use and method of production of same
JP2013016451A (en) * 2011-07-06 2013-01-24 Hyundai Motor Co Ltd Fuel cell stack structure and method of manufacturing the same
JP2015000989A (en) * 2013-06-13 2015-01-05 東洋鋼鈑株式会社 Palladium plating-coated material and method of producing palladium plating-coated material
US10087528B2 (en) 2013-06-13 2018-10-02 Toyo Kohan Co., Ltd. Palladium plate coated material and method of producing palladium plate coated material
JP2020004527A (en) * 2018-06-26 2020-01-09 株式会社グラヴィトン Solid polymer electrolyte fuel cell and electrode manufacturing method
JP2020013722A (en) * 2018-07-19 2020-01-23 株式会社グラヴィトン Solid polymer fuel cell and electrode manufacturing method
JP7281157B2 (en) 2018-07-19 2023-05-25 グローバル・リンク株式会社 Polymer electrolyte fuel cell and electrode manufacturing method
JP2020021577A (en) * 2018-07-31 2020-02-06 株式会社グラヴィトン Polymer electrolyte fuel cell and manufacturing method of electrode
JP7281158B2 (en) 2018-07-31 2023-05-25 グローバル・リンク株式会社 Polymer electrolyte fuel cell and electrode manufacturing method
CN112713281A (en) * 2021-01-13 2021-04-27 范钦柏 Fuel cell bipolar plate and fuel cell stack

Also Published As

Publication number Publication date
JP5047408B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP2001006713A (en) Low contact-resistance stainless steel, titanium, and carbon material, for proton-exchange membrane fuel cell member
JP4702304B2 (en) Fuel cell separator, fuel cell separator manufacturing method, and fuel cell
KR101597721B1 (en) Titanium material for solid polymer fuel cell separators, method for producing same, and solid polymer fuel cell using same
US20180261853A1 (en) Porous metal body, fuel battery, and method for producing porous metal body
US8785031B2 (en) Polymer electrolyte fuel cell separator made of pure titanium or titanium alloy and method of production of same
US9793554B2 (en) Fuel cell separator and fuel cell
KR20140034181A (en) Process for surface conditioning of a plate or sheet of stainless steel and application of a layer onto the surface, interconnect plate made by the process and use of the interconnect plate in fuel cell stacks
JPH11162478A (en) Separator for fuel cell
TW201119119A (en) Manufacture method of bi-polar plates of fuel cell and bi-polar plates thereof
JP2001357862A (en) Bipolar plate and solid high-polymer type fuel cell
JP4928222B2 (en) Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
WO2004075321A1 (en) Electrode for fuel cell and fuel cell using same
CN100362684C (en) Method for preparing surface modified stainless steel as biplar plate for proton exchange membrane fuel cell
JP2001283872A (en) Low-temperature fuel cell separator and its manufacturing method
CN113328111B (en) Stainless steel bipolar plate with chromium-based nitride composite coating and preparation method thereof
CN101369668B (en) Metal double polar plates of polymer electrolyte film fuel cell and method of manufacturing the same
KR20100079104A (en) Stainless steel separator and method of coating the same
JP2007128908A (en) Cell unit of solid polymer electrolyte fuel cell
CA2300008C (en) Stainless steel and titanium for solid polymer electrolyte fuel cell members
JP4040008B2 (en) Metal separator for fuel cell and manufacturing method thereof
JP5271067B2 (en) Stacked fuel cell
CN108432009B (en) Stainless steel sheet for fuel cell separator and method for producing same
JP5703560B2 (en) Stainless steel plate for fuel cell separator with excellent conductivity
JP5880799B1 (en) Metal material and current-carrying parts using this metal material
JPWO2004054019A1 (en) Method for forming reaction layer on electrolyte membrane of fuel cell and electrolyte membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110303

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110331

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees