JP5047408B2 - Stainless steel or titanium separator for polymer electrolyte fuel cell - Google Patents

Stainless steel or titanium separator for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP5047408B2
JP5047408B2 JP17014299A JP17014299A JP5047408B2 JP 5047408 B2 JP5047408 B2 JP 5047408B2 JP 17014299 A JP17014299 A JP 17014299A JP 17014299 A JP17014299 A JP 17014299A JP 5047408 B2 JP5047408 B2 JP 5047408B2
Authority
JP
Japan
Prior art keywords
stainless steel
carbon paper
titanium
fuel cell
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17014299A
Other languages
Japanese (ja)
Other versions
JP2001006713A (en
Inventor
寛 紀平
修一 山崎
正夫 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Nippon Steel Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Nippon Steel Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Nippon Steel Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17014299A priority Critical patent/JP5047408B2/en
Priority to CA002300008A priority patent/CA2300008C/en
Publication of JP2001006713A publication Critical patent/JP2001006713A/en
Application granted granted Critical
Publication of JP5047408B2 publication Critical patent/JP5047408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、電力を直接的駆動源とする自動車、小規模の発電システムなどに用いられる固体高分子型燃料電池部材用材料に関する。さらに詳しくは、その接触抵抗を低くするために、表面に処理を施した固体高分子型燃料電池部材用低接触抵抗材料に関するものである。
【0002】
【従来の技術】
近年電気自動車用燃料電池の開発が、固体高分子材料の開発成功を契機に急速に進展し始めている。固体高分子型燃料電池とは、従来のアルカリ型燃料電池、燐酸型燃料電池、溶融炭酸塩型燃料電池、固体電解質型燃料電池などとは異なり、水素イオン選択透過型の有機物膜を電解質として用いることを特徴とする燃料電池である。
【0003】
固体高分子型燃料電池の燃料には、純水素のほかアルコール類の改質によって得た水素ガスなどを用い、空気中の酸素との反応を電気化学的に制御することによって、電力を取り出すシステムである。
固体高分子膜は薄くても十分に機能し、電解質が膜中に固定されていることから、電池内の露点を制御すれば電解質として機能するために、水溶液系電解質や溶融塩系電解質など流動性のある媒体を使う必要がなく、電池自体をコンパクトに単純化して設計できることも特徴である。
【0004】
従来、燃料電池用ステンレス鋼としては、特開平4−247852号公報で開示された溶融炭酸塩型燃料電池用耐食ステンレス鋼、特開平4−358044号公報で開示された溶融炭酸塩型燃料電池セパレータ用高耐食鋼板、特開平7−188870号公報で開示された溶融塩に対する耐食性に優れたステンレス鋼およびその製造方法、特開平8−165546号公報で開示された耐溶融炭酸塩性に優れたステンレス鋼、特開平8−225892号公報で開示された耐溶融炭酸塩腐食性に優れたステンレス鋼、及び特開平8−3114620号公報で開示された熱間加工性及び耐溶融塩腐食性に優れたステンレス鋼などが公知である。
【0005】
また、高い耐食性が要求される溶融炭酸塩環境で稼動する燃料電池用ステンレス鋼として、特開平6−264193号公報および特開平6−293941号公報で開示された固体電解質型燃料電池用金属材料、特開平9−67672号公報で開示されたフェライト系ステンレス鋼など、数百度の高温で稼動する固体電解質型燃料電池材料の発明がなされている。
【0006】
これに対して、100℃以下の領域で稼動する固体高分子型燃料電池の構成材料としては、温度がさほど高くないこと、およびその環境下で耐食性・耐久性を十分発揮させることが可能であることなどの理由で、炭素系の材料が使用されてきており、このタイプの燃料電池へのステンレス鋼やチタンなど金属系の材料の適用は検討されていなかった。
【0007】
【発明が解決しようとする課題】
固体高分子型燃料電池は、電解質となる固体高分子膜の両面に炭素微粒子と貴金属超微粒子からなる触媒電極部、そこで発生する電力を電流として取り出すと同時に触媒電極部へ反応ガスを供給する機能を持った、フェルト状炭素繊維集合体(通称カーボンペーパー)からなるカレントコレクター、そこからの電流を受けると共に酸素主体および水素主体の2種の反応ガスや冷却媒体を分離するセパレーターなどが積層されることにより構成される。
【0008】
従来、このセパレーターにも炭素材料が使用されていたが、自動車への搭載を考慮した場合、コストが高い、電池の大きさが大きいといった問題点があり、セパレーターなどの部材へのステンレス鋼の適用が検討され始めている。
【0009】
本発明者らは、既に特願平11−61146号や特願平11−62813号により、ステンレス鋼をセパレータなどの固体高分子型燃料電池用部材として使用するための具体的形状や成分などを開示しているが、ステンレス鋼製またはチタン製セパレータにおいては、カレントコレクターとなるカーボンペーパーとの接触抵抗が大きいため、燃料電池としてのエネルギー効率を大幅に低下させることが問題として指摘され始めている。
【0010】
本発明は、かかる状況に鑑み、使用される素材間の接触抵抗を検討し、固体高分子型燃料電池のエネルギー変換効率を最大限に発揮させるための固体高分子型燃料電池部材用の低接触抵抗材料を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、上記課題を解決するためになされたもので、その要旨とするところは次の通りである。
(1) カーボンペーパー製カレントコレクターと接触することで前記カーボンペーパー製カレントコレクターとの間に電気的接触を形成するステンレス鋼製セパレータであって、カーボンペーパー製カレントコレクターには貴金属が、イオン蒸着法または電解メッキ法により付与されており、前記接触部において、ステンレス鋼の酸化被膜の上に前記貴金属が接触しており、前記貴金属は、膜厚が5nm〜1000nmであることを特徴とする固体高分子型燃料電池用ステンレス鋼製セパレータ。
【0012】
(2) カーボンペーパー製カレントコレクターと接触することで前記カーボンペーパー製カレントコレクターとの間に電気的接触を形成するチタン製セパレータであって、カーボンペーパー製カレントコレクターには貴金属が、イオン蒸着法または電解メッキ法により付与されており、前記該接触部において、チタンの酸化被膜の上に前記貴金属が接触しており、前記貴金属は、膜厚が5nm〜1000nmであることを特徴とする固体高分子型燃料電池用チタン製セパレータ。
【0014】
【発明の実施の形態】
接触抵抗の測定法として、直径30mmの円盤状の電流供給面をもつ治具を上下に配し、その間に2個の直径30mm、厚さ4mmの円盤状金属試験片やカーボンペーパーを挟み込み、接触面の面圧が2.79kg/cm2 となるよう上部に錘を乗せ、電流密度1.13A/cm2 の定電流を供給して、2個の円盤状金属試験片間の電位差を測定することにより、接触抵抗を求めた。
【0015】
円盤状金属試験片の材質として、30μm金めっきをした銅、市販のステンレス鋼であるSUS316L、YUS270、YUS260、YUS190L、および工業用第1種純チタンを選定した(YUSは新日本製鐵株式会社規格)。
また、カーボンペーパーには、燃料電池用にガス透過性と電気伝導性の観点から最適とされた厚さ0.6mmの試作品を1種類選定し、一片30mmの正方形に切り出し試験に供した。まず標準値を得るために、ステンレス鋼およびチタン製試験片は接触面を鏡面研磨仕上げしたものを用い、接触抵抗測定を行った。
【0016】
その結果、接触抵抗の値はmΩ・cm2 で、
金/金:0.02、 金/カーボンペーパー:5.30、 金/SUS316
L:22.43、 SUS316L/SUS316L:54.90、
チタン/カーボンペーパー:566.83、 YUS270/カーボンペーパー:696.50、 YUS260/カーボンペーパー:679.87、
YUS190L/カーボンペーパー:819.40、 SUS316L/カーボンペーパー:614.52
という値を得た。
【0017】
なお、金/カーボンペーパーの接触抵抗はカーボンペーパーを2枚の金めっき銅円盤状試験片で挟み、金めっき銅円盤状試験片間の電位差を電流密度で除算した後、2で割って値を得たため、カーボンペーパーの厚み半分の抵抗値も含まれる。また、ステンレス鋼やチタンとカーボンペーパーとの接触抵抗値は、ステンレス鋼またはチタン/カーボンペーパー/金めっき銅の組合せの両端で電位差を測定して、電流密度で除算して得た全抵抗値から金/カーボンペーパーの接触抵抗値を差し引くことによって求めた。
【0018】
これらの結果を整理すると、
▲1▼ 金/金および金/カーボンペーパーの接触面では殆ど抵抗は生じない。
▲2▼ ステンレス鋼やチタンには酸化皮膜が存在するために、数十mΩ・cm2 程度の接触抵抗が生じる。
▲3▼ ステンレス鋼またはチタンとカーボンペーパーとの接触面には、オームの法則では予想できないほど大きな接触抵抗が生ずる。
という3点が判明した。
【0019】
この現象は、カーボンペーパーを構成する黒鉛の電気伝導が共役二重結合を行っているπ電子により行われていることと深く関係し、黒鉛より大幅に差異のある仕事関数値をもつステンレス鋼やチタンとの接触界面には、いわゆるショットキー障壁が形成されたため、大きな接触抵抗を生じたものと考えられる。
【0020】
このように半導体物理学的に接触抵抗問題を考察すると、今回観測されたデータが矛盾なく説明できることから、黒鉛と同等の仕事関数値を有する貴金属(ここでは、金,白金,パラジウム,銀,銅,錫,鉛などを指すものとする)、またはこれらの金属の合金をステンレス鋼またはチタンとカーボンペーパー接触面の間に挟みこむことで、接触抵抗を低減できるという指針が得られた。
【0021】
一方、ステンレス鋼やチタンには酸化皮膜がごく薄く存在することが知られているが、この皮膜も接触抵抗を上昇させる原因となることが実験により判明した
【0022】
そこで、カーボンペーパーの接触面側にイオンプレーティング法により金をコーティングして鏡面研摩したステンレス鋼との接触抵抗低減効果を測定したところ、蒸着速度と蒸着時間から換算した平均厚さで5nm以上の金が付着すると接触抵抗が低減し始めることがわかった。
【0024】
さらに本発明の効果を確認するために、ステンレス鋼,チタン,カーボンペーパーに種々の表面処理を施して、それらの組合わせ接触面における接触抵抗を測定した結果を表1(表1−1〜表1−)に示す。
【0025】
組合せ番号1〜29までは、ステンレス鋼には表面処理をせず、カーボンペーパーに金,白金,パラジウム,鉛,錫,銅,ニッケルをイオン蒸着法または電解メッキ法により付与したものである。
これらの結果から、いずれも5nm以上の平均厚さを確保すれば接触抵抗が低減すること、表面処理平均厚さを厚くするほど接触抵抗が低減すること、などが無処理材(組合せ番号1=基準1)と比較することによりわかる。
【0027】
組合せ番号45、48、51、54では、ステンレス鋼やチタンを、表面処理していないガラスビーズでブラスト処理を行い、接触抵抗の低下が確認された。
【0029】
なお、本発明の貴金属もしくは貴金属の合金の付着は、相接触する両面においてされていることが望ましい。また、貴金属もしくは貴金属の付着方法は上記に例示した方法に限られるものではなく、いかなる従来法やそれらの組合わせによっても良い。
【0030】
【表1】

Figure 0005047408
【0031】
【表2】
Figure 0005047408
【0032】
【表3】
Figure 0005047408
【0038】
【発明の効果】
上記のように本発明によれば、自動車内燃機関や可搬型発電器として有望視されている固体高分子型燃料電池のセパレータなどの材料として、これまでの炭素材料に比べ低コストでコンパクト化が可能なステンレス材料の適用にあたり、問題であった部材の接触抵抗を大幅に低減でき、固体高分子型燃料電池の実用化に大きく寄与するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material for a polymer electrolyte fuel cell member used in automobiles, small-scale power generation systems, and the like that use electric power as a direct drive source. More specifically, the present invention relates to a low contact resistance material for a polymer electrolyte fuel cell member whose surface is treated in order to reduce the contact resistance.
[0002]
[Prior art]
In recent years, the development of fuel cells for electric vehicles has begun to progress rapidly with the successful development of solid polymer materials. Unlike conventional alkaline fuel cells, phosphoric acid fuel cells, molten carbonate fuel cells, solid electrolyte fuel cells, etc., solid polymer fuel cells use hydrogen ion permselective organic membranes as the electrolyte. This is a fuel cell.
[0003]
In addition to pure hydrogen, hydrogen gas obtained by reforming alcohols is used as the fuel for polymer electrolyte fuel cells, and the reaction with oxygen in the air is controlled electrochemically to extract electricity. It is.
The solid polymer membrane functions sufficiently even if it is thin, and the electrolyte is fixed in the membrane. Therefore, if the dew point in the battery is controlled, it functions as an electrolyte. Another characteristic is that the battery itself can be designed in a compact and simplified manner without the need to use a compatible medium.
[0004]
Conventionally, as stainless steel for fuel cells, corrosion-resistant stainless steel for molten carbonate type fuel cells disclosed in JP-A-4-247852, molten carbonate-type fuel cell separator disclosed in JP-A-4-358044 High corrosion resistant steel sheet, stainless steel excellent in corrosion resistance to molten salt disclosed in JP-A-7-188870, and method for producing the same, stainless steel excellent in molten carbonate resistance disclosed in JP-A-8-165546 Steel, stainless steel excellent in molten carbonate corrosion resistance disclosed in JP-A-8-225892, and hot workability and molten salt corrosion resistance disclosed in JP-A-8-3114620 Stainless steel and the like are known.
[0005]
Further, as stainless steel for fuel cells operating in a molten carbonate environment where high corrosion resistance is required, metal materials for solid oxide fuel cells disclosed in JP-A-6-264193 and JP-A-6-293941, An invention of a solid oxide fuel cell material that operates at a high temperature of several hundred degrees, such as the ferritic stainless steel disclosed in JP-A-9-67672, has been made.
[0006]
On the other hand, as a constituent material of the polymer electrolyte fuel cell operating in the region of 100 ° C. or lower, the temperature is not so high, and the corrosion resistance and durability can be sufficiently exhibited in the environment. For this reason, carbon-based materials have been used, and application of metal-based materials such as stainless steel and titanium to this type of fuel cell has not been studied.
[0007]
[Problems to be solved by the invention]
The polymer electrolyte fuel cell is a catalyst electrode part composed of carbon fine particles and noble metal ultrafine particles on both sides of a solid polymer film that serves as an electrolyte, and the function of supplying the reaction gas to the catalyst electrode part while taking out the electric power generated there as current A current collector made of a felt-like carbon fiber aggregate (commonly called carbon paper) with a separator, and a separator that receives current from it and separates two reaction gases mainly oxygen and hydrogen and a cooling medium. It is constituted by.
[0008]
Conventionally, carbon materials have also been used for these separators. However, when mounting on automobiles is considered, there are problems such as high cost and large battery size. Application of stainless steel to separators and other parts Has begun to be considered.
[0009]
The present inventors have already described specific shapes and components for using stainless steel as a member for a polymer electrolyte fuel cell such as a separator according to Japanese Patent Application Nos. 11-611146 and 11-62813. Although disclosed, in stainless steel or titanium separators, since the contact resistance with carbon paper serving as a current collector is large, it has begun to be pointed out as a problem that the energy efficiency of the fuel cell is greatly reduced.
[0010]
In view of such circumstances, the present invention examines the contact resistance between the materials used, and provides a low contact for a polymer electrolyte fuel cell member to maximize the energy conversion efficiency of the polymer electrolyte fuel cell. An object is to provide a resistance material.
[0011]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1) A stainless steel separator that forms electrical contact with the carbon paper current collector by contacting with the carbon paper current collector, wherein the noble metal is ion-deposited in the carbon paper current collector. Alternatively, it is applied by an electrolytic plating method, and the noble metal is in contact with the stainless steel oxide film at the contact portion, and the noble metal has a thickness of 5 nm to 1000 nm. Stainless steel separator for molecular fuel cells.
[0012]
(2) A titanium separator that forms an electrical contact with the current collector made of carbon paper by contacting with the current collector made of carbon paper, and the current collector made of carbon paper contains noble metal, ion deposition or A solid polymer , which is applied by an electrolytic plating method, wherein the noble metal is in contact with the titanium oxide film at the contact portion, and the noble metal has a thickness of 5 nm to 1000 nm. -Type fuel cell titanium separator.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As a method of measuring contact resistance, a jig with a disc-shaped current supply surface with a diameter of 30 mm is placed up and down, and two disc-shaped metal test pieces and carbon paper with a diameter of 4 mm are sandwiched between them. Place the weight on top to the surface pressure of a surface is 2.79 kg / cm 2, and supplies a constant current with a current density of 1.13A / cm 2, to measure the potential difference of two disk-shaped metal test pieces Thus, the contact resistance was obtained.
[0015]
As materials for the disk-shaped metal test pieces, 30 μm gold-plated copper, commercially available stainless steels SUS316L, YUS270, YUS260, YUS190L, and industrial type 1 pure titanium were selected (YUS is Nippon Steel Corporation). standard).
For the carbon paper, one type of 0.6 mm thick prototype optimized for gas permeability and electrical conductivity for the fuel cell was selected and cut into a 30 mm square to be used for the test. First, in order to obtain a standard value, the contact resistance was measured using a stainless steel and titanium test piece having a mirror-polished contact surface.
[0016]
As a result, the contact resistance value is mΩ · cm 2 ,
Gold / Gold: 0.02, Gold / Carbon paper: 5.30, Gold / SUS316
L: 22.43, SUS316L / SUS316L: 54.90,
Titanium / carbon paper: 566.83, YUS270 / carbon paper: 696.50, YUS260 / carbon paper: 679.87
YUS190L / carbon paper: 819.40, SUS316L / carbon paper: 614.52
I got the value.
[0017]
The contact resistance of gold / carbon paper is obtained by sandwiching carbon paper between two gold-plated copper disk-shaped specimens, dividing the potential difference between the gold-plated copper disk-shaped specimens by the current density, and dividing by two. Since it was obtained, the resistance value of half the thickness of carbon paper is also included. The contact resistance value between stainless steel or titanium and carbon paper is determined from the total resistance value obtained by measuring the potential difference at both ends of the combination of stainless steel or titanium / carbon paper / gold plated copper and dividing by the current density. It was determined by subtracting the contact resistance value of gold / carbon paper.
[0018]
Organizing these results,
(1) There is almost no resistance at the gold / gold and gold / carbon paper contact surfaces.
(2) Since stainless steel and titanium have an oxide film, a contact resistance of about several tens of mΩ · cm 2 occurs.
{Circle around (3)} Contact resistance between stainless steel or titanium and carbon paper has a contact resistance that cannot be predicted by Ohm's law.
Three points were found.
[0019]
This phenomenon is deeply related to the fact that the electrical conductivity of graphite constituting carbon paper is performed by π-electrons that are conjugated double bonds, and stainless steel having a work function value significantly different from graphite. Since a so-called Schottky barrier was formed at the contact interface with titanium, it is considered that a large contact resistance was generated.
[0020]
Considering the contact resistance problem in terms of semiconductor physics in this way, the data observed this time can be explained without contradiction, so noble metals having the same work function value as graphite (here, gold, platinum, palladium, silver, copper) , Tin, lead, and the like), or an alloy of these metals between stainless steel or titanium and carbon paper contact surface, the guideline that contact resistance can be reduced.
[0021]
On the other hand, it is known that stainless steel and titanium have an extremely thin oxide film, but it has been experimentally found that this film also causes an increase in contact resistance .
[0022]
Then, when the contact resistance reduction effect with the stainless steel which mirror-polished by coating gold | metal | money by the ion plating method on the contact surface side of carbon paper was measured, the average thickness converted from the deposition rate and the deposition time was 5 nm or more. It has been found that contact resistance begins to decrease when gold is deposited.
[0024]
Further, in order to confirm the effect of the present invention, various surface treatments were performed on stainless steel, titanium, and carbon paper, and the contact resistances measured on the combined contact surfaces are shown in Table 1 (Table 1-1 to Table 1-1). 1-3 )).
[0025]
In combination numbers 1 to 29, stainless steel is not subjected to surface treatment, and gold, platinum, palladium, lead, tin, copper, nickel is applied to carbon paper by an ion evaporation method or an electrolytic plating method.
From these results, it can be seen that the contact resistance is reduced if an average thickness of 5 nm or more is ensured, the contact resistance is reduced as the surface treatment average thickness is increased, and the like (combination number 1 = This can be seen by comparing with the standard 1).
[0027]
In combination numbers 45, 48, 51, and 54, stainless steel or titanium was blasted with glass beads that were not surface-treated, and a decrease in contact resistance was confirmed .
[0029]
It is desirable that the noble metal or the noble metal alloy of the present invention is adhered to both surfaces in phase contact. Moreover, the adhesion method of the noble metal or the noble metal is not limited to the method exemplified above, and any conventional method or a combination thereof may be used.
[0030]
[Table 1]
Figure 0005047408
[0031]
[Table 2]
Figure 0005047408
[0032]
[Table 3]
Figure 0005047408
[0038]
【Effect of the invention】
As described above, according to the present invention, as a material for a separator of a polymer electrolyte fuel cell, which is regarded as promising as an automobile internal combustion engine or a portable power generator, it can be made compact at a lower cost than conventional carbon materials. In the application of possible stainless steel materials, the contact resistance of the problematic member can be greatly reduced, which greatly contributes to the practical application of solid polymer fuel cells.

Claims (2)

カーボンペーパー製カレントコレクターと接触することで前記カーボンペーパー製カレントコレクターとの間に電気的接触を形成するステンレス鋼製セパレータであって、カーボンペーパー製カレントコレクターには貴金属が、イオン蒸着法または電解メッキ法により付与されており、前記接触部において、ステンレス鋼の酸化被膜の上に前記貴金属が接触しており、前記貴金属は、膜厚が5nm〜1000nmであることを特徴とする固体高分子型燃料電池用ステンレス鋼製セパレータ。A stainless steel separator that forms electrical contact with the carbon paper current collector by contacting with the carbon paper current collector, wherein the noble metal is ion-deposited or electroplated in the carbon paper current collector. The solid polymer fuel , wherein the noble metal is in contact with a stainless steel oxide film at the contact portion, and the noble metal has a thickness of 5 nm to 1000 nm. Stainless steel separator for batteries. カーボンペーパー製カレントコレクターと接触することで前記カーボンペーパー製カレントコレクターとの間に電気的接触を形成するチタン製セパレータであって、カーボンペーパー製カレントコレクターには貴金属が、イオン蒸着法または電解メッキ法により付与されており、前記該接触部において、チタンの酸化被膜の上に前記貴金属が接触しており、前記貴金属は、膜厚が5nm〜1000nmであることを特徴とする固体高分子型燃料電池用チタン製セパレータ。A titanium separator that forms electrical contact with the carbon paper current collector by contacting with the carbon paper current collector, wherein the noble metal is ion-deposited or electroplated in the carbon paper current collector. In the contact portion, the noble metal is in contact with an oxide film of titanium, and the noble metal has a film thickness of 5 nm to 1000 nm. Titanium separator.
JP17014299A 1999-03-09 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell Expired - Fee Related JP5047408B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17014299A JP5047408B2 (en) 1999-06-16 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell
CA002300008A CA2300008C (en) 1999-03-09 2000-03-06 Stainless steel and titanium for solid polymer electrolyte fuel cell members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17014299A JP5047408B2 (en) 1999-06-16 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2001006713A JP2001006713A (en) 2001-01-12
JP5047408B2 true JP5047408B2 (en) 2012-10-10

Family

ID=15899458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17014299A Expired - Fee Related JP5047408B2 (en) 1999-03-09 1999-06-16 Stainless steel or titanium separator for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP5047408B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2352443C (en) 2000-07-07 2005-12-27 Nippon Steel Corporation Separators for solid polymer fuel cells and method for producing same, and solid polymer fuel cells
JP4580113B2 (en) * 2001-02-07 2010-11-10 新日本製鐵株式会社 Method for producing low contact resistance metal separator for fuel cell
EP1735865B1 (en) 2004-04-13 2012-06-20 Nissan Motor Company Limited Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
JP2006012455A (en) * 2004-06-22 2006-01-12 Honda Motor Co Ltd Manufacturing method of separator for fuel cell
US7955754B2 (en) 2004-07-20 2011-06-07 GM Global Technology Operations LLC Enhanced stability bipolar plate
US7700212B2 (en) 2004-10-07 2010-04-20 Gm Global Technology Operations, Inc. Bipolar plate with enhanced stability
JP4660161B2 (en) * 2004-10-29 2011-03-30 大日本印刷株式会社 Manufacturing method of separator for fuel cell
US7807281B2 (en) 2005-06-22 2010-10-05 Nippon Steel Corporation Stainless steel, titanium, or titanium alloy solid polymer fuel cell separator and its method of production and method of evaluation of warp and twist of separator
CA2621772C (en) 2005-09-08 2015-01-27 Nissan Motor Co., Ltd. Transition metal nitride, separator for fuel cells, fuel cell stack, fuel cell vehicle, method of manufacturing transition metal nitride, and method of manufacturing separator forfuel cells
JP5014644B2 (en) 2006-02-27 2012-08-29 新日本製鐵株式会社 Separator for polymer electrolyte fuel cell and method for producing the same
JP5200334B2 (en) 2006-05-29 2013-06-05 トヨタ自動車株式会社 Metal member having noble metal plating and method for manufacturing the same
US8785031B2 (en) 2006-06-15 2014-07-22 Nippon Steel Sumitomo Metal Corporation Polymer electrolyte fuel cell separator made of pure titanium or titanium alloy and method of production of same
KR20070119905A (en) * 2006-06-16 2007-12-21 삼성에스디아이 주식회사 Membrane-electrode assembly for fuel cell and fuel cell system comprising same
JP2008004492A (en) * 2006-06-26 2008-01-10 Mitsubishi Materials Corp Composite layer-covered porous plate with less increases in contact resistance even if exposed to oxidative environment for long period
JP2008010284A (en) * 2006-06-28 2008-01-17 Mitsubishi Materials Corp Hydrophilic porous metal member and its manufacturing method
JP4551429B2 (en) 2006-09-29 2010-09-29 株式会社神戸製鋼所 Method for manufacturing fuel cell separator, fuel cell separator and fuel cell
JP5125435B2 (en) 2006-12-13 2013-01-23 三菱マテリアル株式会社 Porous titanium with low contact resistance
US8231990B2 (en) 2006-12-21 2012-07-31 Kobe Steel, Ltd. Alloy film for a metal separator for a fuel cell, a manufacturing method thereof and a target material for sputtering, as well as a metal separator, and a fuel cell
JP4926730B2 (en) * 2007-01-17 2012-05-09 新日本製鐵株式会社 Titanium material for polymer electrolyte fuel cell separator and method for producing the same, separator using the titanium material, and polymer electrolyte fuel cell using the separator
JP5365023B2 (en) 2007-03-07 2013-12-11 日産自動車株式会社 Transition metal nitride, fuel cell separator, fuel cell stack, fuel cell vehicle, transition metal nitride manufacturing method, and fuel cell separator manufacturing method
JP4823202B2 (en) 2007-11-15 2011-11-24 株式会社神戸製鋼所 Method for producing titanium substrate for fuel cell separator and method for producing fuel cell separator
JP2009170116A (en) 2008-01-10 2009-07-30 Kobe Steel Ltd Recycling method of separator for fuel cell, regenerated separator for the fuel cell, and the fuel cell
JP5185720B2 (en) 2008-02-27 2013-04-17 株式会社神戸製鋼所 Surface treatment method of titanium material for electrodes
WO2010038544A1 (en) 2008-09-30 2010-04-08 新日本製鐵株式会社 Titanium material having low contact resistance for use in separator for solid polymer-type fuel cell and process for producing the titanium material
JP2010182593A (en) 2009-02-06 2010-08-19 Kobe Steel Ltd Corrosion resistant film for fuel cell separator, and fuel cell separator
JP2010236083A (en) 2009-03-11 2010-10-21 Kobe Steel Ltd Titanium electrode material and surface treatment method of titanium electrode material
CN102473935B (en) 2009-08-03 2014-12-03 新日铁住金株式会社 Titanium material for solid polymer fuel cell separator, and process for production thereof
KR101316529B1 (en) * 2011-07-06 2013-10-08 기아자동차주식회사 Fuel Cell Stack Structure
JP6199086B2 (en) 2013-06-13 2017-09-20 東洋鋼鈑株式会社 Palladium-plated coating material and method for producing palladium-plated coating material
JP2020004527A (en) * 2018-06-26 2020-01-09 株式会社グラヴィトン Solid polymer electrolyte fuel cell and electrode manufacturing method
JP7281157B2 (en) * 2018-07-19 2023-05-25 グローバル・リンク株式会社 Polymer electrolyte fuel cell and electrode manufacturing method
JP7281158B2 (en) * 2018-07-31 2023-05-25 グローバル・リンク株式会社 Polymer electrolyte fuel cell and electrode manufacturing method
CN112713281A (en) * 2021-01-13 2021-04-27 范钦柏 Fuel cell bipolar plate and fuel cell stack

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620566B2 (en) * 1998-07-17 2005-02-16 上村工業株式会社 Metal separator for fuel cell

Also Published As

Publication number Publication date
JP2001006713A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
JP5047408B2 (en) Stainless steel or titanium separator for polymer electrolyte fuel cell
Antunes et al. Corrosion of metal bipolar plates for PEM fuel cells: A review
JP4702304B2 (en) Fuel cell separator, fuel cell separator manufacturing method, and fuel cell
JP3534685B2 (en) Separators for polymer electrolyte fuel cells
JP5343731B2 (en) Stainless steel material for separator of polymer electrolyte fuel cell and polymer electrolyte fuel cell using the same
JP5628478B2 (en) Coated steel bipolar plate
CN103484910B (en) The method depositing the thin gold plating of durability on fuel battery double plates
JP4901864B2 (en) Separator for solid polymer fuel cell made of pure titanium or titanium alloy and method for producing the same
JP2005093172A (en) Separator for fuel cell and fuel cell
JPWO2005124910A1 (en) Fuel cell separator based on austenitic stainless steel
JP5192908B2 (en) Titanium substrate for fuel cell separator, fuel cell separator, and fuel cell separator manufacturing method
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
JP4639434B2 (en) Bipolar plate and polymer electrolyte fuel cell
JPH11162478A (en) Separator for fuel cell
JP4642656B2 (en) Fuel cell electrode and fuel cell using the same
JP2003197223A (en) Porous gas distribution plate for small fuel cell, and separator plate for small fuel cell manufactured including this
CN100362684C (en) Method for preparing surface modified stainless steel as biplar plate for proton exchange membrane fuel cell
EP1735865B1 (en) Fuel cell separator, fuel cell stack, fuel cell vehicle, and method of manufacturing the fuel cell separator
Odetola et al. Electrodeposition of functional coatings on bipolar plates for fuel cell applications–a review
JP4629914B2 (en) Low temperature fuel cell separator and method for producing the same
JP2000260441A (en) Polymer electrolyte fuel cell
JP2007128908A (en) Cell unit of solid polymer electrolyte fuel cell
JP2005100813A (en) Separator for fuel cell and its manufacturing method, fuel cell stack and fuel cell vehicle
JP2004095440A (en) Metal member for fuel cell, its manufacturing method, and fuel cell
JP5271067B2 (en) Stacked fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110303

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110331

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees