JP2020015110A - ロボットシステム - Google Patents

ロボットシステム Download PDF

Info

Publication number
JP2020015110A
JP2020015110A JP2018138212A JP2018138212A JP2020015110A JP 2020015110 A JP2020015110 A JP 2020015110A JP 2018138212 A JP2018138212 A JP 2018138212A JP 2018138212 A JP2018138212 A JP 2018138212A JP 2020015110 A JP2020015110 A JP 2020015110A
Authority
JP
Japan
Prior art keywords
force
arm
robot
torque
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018138212A
Other languages
English (en)
Other versions
JP7275488B2 (ja
Inventor
正樹 元▲吉▼
Masaki Motoyoshi
正樹 元▲吉▼
海野 幸浩
Yukihiro Unno
幸浩 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2018138212A priority Critical patent/JP7275488B2/ja
Priority to EP19187566.5A priority patent/EP3599064A3/en
Priority to CN201910661608.1A priority patent/CN110774280A/zh
Priority to US16/519,529 priority patent/US20200030992A1/en
Publication of JP2020015110A publication Critical patent/JP2020015110A/ja
Application granted granted Critical
Publication of JP7275488B2 publication Critical patent/JP7275488B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • B25J9/161Hardware, e.g. neural networks, fuzzy logic, interfaces, processor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1638Programme controls characterised by the control loop compensation for arm bending/inertia, pay load weight/inertia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • B25J9/1676Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39178Compensation inertia arms
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39194Compensation gravity

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Manipulator (AREA)

Abstract

【課題】接触検出と力制御を一つの力検知部で行う。【解決手段】ロボットシステムは、基台と、前記基台に支持されているアームと、前記基台に設けられ前記アームに加えられる力を検出する力検出部と、を備えるロボットと、前記ロボットの動作を制御する制御部と、を備える。前記制御部は、前記力検出部の出力に基づいて、前記アームの力制御と、前記ロボットと他の構成との接触に応じた前記アームの減速と、を行う。【選択図】図1

Description

本発明は、力制御を行うロボットに関する。
従来、他の構成に加える力を制御する力制御を行うロボットが存在する。特許文献1の技術においては、ロボットシステムは、第1の力センサーおよび第2の力センサーを備える。第1の力センサーは、固定プレートとロボットベースとの間に介挿されている。第2の力センサーは、操作部とアダプターとの間に介挿されている。
特許文献1の技術においては、第1の力センサーによって、ロボットの任意の部位に掛かる作用力が検出される。第2の力センサーによって、作業員が把持する操作部に加えられた操作力が検出される。第1の力センサーによって検出された作用力から、操作力の成分を除去することにより、ロボットの任意の部位が外部の物体と接触したときに物体からロボットに掛かる接触力が算出される。
操作力の大きさが閾値以上である場合、ハンドガイド動作が実行される。具体的には、操作力に応じて、ロボットを動作させるための速度指令が生成される。接触力が閾値以上である場合、緊急停止スキームが実行される。
特開2017−177293号公報
しかし、特許文献1の技術においては、力制御を実現するために、接触検出のための力センサーに加えて、ロボットの手先に二つ目の力センサーを用意する必要がある。その結果、ロボットの手先に力センサーを備えない態様に比べて、ロボットの手先の質量が大きく、同程度のモーターの出力で実現できるロボットの手先の移動速度が低い。
本発明の一形態によれば、ロボットシステムが提供される。このロボットシステムは、基台と、前記基台に支持されているアームと、前記基台に設けられ前記アームに加えられる力を検出する力検出部と、を備えるロボットと、前記ロボットの動作を制御する制御部と、を備える。前記制御部は、前記力検出部の出力に基づいて、前記アームの力制御と、前記ロボットと他の構成との接触に応じた前記アームの減速と、を行う。
第1実施形態のロボットシステム1を模式的に示す説明図である。 力制御を実行する際のロボット100と、動作制御装置30と、教示装置50との機能を示す図である。 動作制御装置30における重力の補償および慣性力の補償の処理を示すブロック図である。 教示装置50の出力装置58に表示されるユーザーインターフェイスUI12を示す。 ロボット100を動作させている際に、動作制御装置30において接触検出と力制御を実現する処理を示すフローチャートである。 作用力fのX軸方向の力成分Fx、Y軸方向の力成分Fy、およびZ軸方向の力成分Fzで規定される仮想空間において非接触が推定される領域Thfを示す図である。 作用力fのU軸方向のトルク成分Tu、V軸方向のトルク成分Tv、およびW軸方向のトルク成分Twで規定される仮想空間において非接触が推定される領域Thtを示す図である。 複数のプロセッサーによってロボットの制御装置が構成される一例を示す概念図である。 複数のプロセッサーによってロボットの制御装置が構成される他の例を示す概念図である。
A.第1実施形態:
A1.ロボットシステムの構成:
図1は、第1実施形態のロボットシステム1を模式的に示す説明図である。図1において、技術の理解を容易にするために、ロボット座標系RCを示す。ロボット座標系RCは、水平面上において互いに直交するX軸とY軸と、鉛直上向きを正方向とするZ軸とによって規定される3次元の直交座標系である。本実施形態のロボットシステム1は、ロボット100と、エンドエフェクター200と、車両700と、ロボット制御装置25と、を備える。
ロボット100は、スカラロボットである。本明細書において、「スカラロボット」とは、アームを構成するアーム要素であって、互いに平行な方向を回転軸として回転する複数のアーム要素を備え、それら複数のアーム要素の回転軸と垂直な方向を回転軸とするアーム要素を備えないロボット、いわゆる水平多関節ロボットである。
ロボット100は、4個の関節J11〜J14を備えたアーム110を有する4軸ロボットである。アーム110は、関節J11を介して、基台180に支持されている。ロボット100は、4個の関節J11〜J14をそれぞれサーボモーターで回転または直進させることにより、アーム110の先端部に取りつけられたエンドエフェクター200を、3次元空間中の指定された位置に指定された姿勢で配することができる。なお、3次元空間におけるエンドエフェクター200の位置を代表する地点を、TCP(Tool Center Point)とも呼ぶ。
アーム110において、関節J11,J12,J14は、ロボット座標系RCのZ軸方向に平行な方向を回転軸とする回転関節である。図1において、関節J11,J12,J14における回転方向を、それぞれDj1,Dj2,Dj4として示す。関節J13は、Z軸方向に平行な方向に動作する直動関節である。アーム110を構成する複数の関節のうち互いに隣接する関節と関節の間の構成要素を、本明細書において「アーム要素」と呼ぶ。図1において、関節J11と関節J12の間のアーム要素110a、関節J12と関節J13の間のアーム要素110b、およびアーム110の先端を構成し関節J13,J14によって動かされるアーム要素110cを、符号を付して示す。アーム要素110aは、関節J11を介して、基台180に接続されている。
ロボット100は、関節J11〜J14に、それぞれサーボモーター410と、エンコーダー420と、減速機510と、を備える。サーボモーター410は、動作制御装置30に制御されて、その出力軸を回転させる。減速機510は、サーボモーター410の出力軸の回転を減速させてアーム要素に伝達する。エンコーダー420は、サーボモーター410の出力軸の回転角度を検出する。
図1においては、関節J11を駆動するサーボモーター410aとエンコーダー420aと減速機510a、関節J13を駆動するサーボモーター410cとエンコーダー420cと減速機510c、関節J14を駆動するサーボモーター410dとエンコーダー420dと減速機510dを、符号を付して示す。本明細書において、サーボモーター410a〜410dについて、相互に区別せずに言及する場合には、サーボモーター410と表記する。エンコーダー420a〜420dについて、相互に区別せずに言及する場合には、エンコーダー420と表記する。減速機510a〜510dについて、相互に区別せずに言及する場合には、減速機510と表記する。
関節J11を介して回転されるアーム要素110aと、関節J12を介して回転されるアーム要素110bと、関節J14を介して回転されるアーム要素110cとは、それぞれ水平方向に回転される。
アーム要素110cの一部の外表面には、雄ネジが形成されている。アーム要素110cの当該部分は、ボールネジとして機能する。サーボモーター410dによって、ボールネジとしてのアーム要素110cは、アーム要素110bに対して矢印J13で示す方向に沿って、移動される。
基台180は、アーム110を支持している。基台180の下部には、力検出部190が設けられている。力検出部190は、アーム110に加えられる力を検出することができる。より具体的には、力検出部190は、外部、すなわち、力検出部190以外の構成から加えられる、X軸、Y軸、Z軸の3軸方向の力と、回転軸としてのU軸、V軸、W軸まわりのトルクを検出することができる。その結果、力検出部190は、力検出部190以外の構成であるアーム110に作用するX軸、Y軸、Z軸の3軸方向の力と、U軸、V軸、W軸まわりのトルクを測定することができる。力検出部190の出力は、動作制御装置30に送信され、ロボット100の制御に使用される。
車両700は、力検出部190を介して、基台180を支持している。車両700は、ロボット100を床面上の任意の位置に移動させることができる。車両700は、2組の車輪W1,W2と、サーボモーター410v1,410v2と、エンコーダー420v1,420v2と、減速機510v1,510v2と、を備える。なお、本明細書において、サーボモーター410v1,410v2について、相互に区別せずに言及する場合には、サーボモーター410vと表記する。エンコーダー420v1,420v2について、相互に区別せずに言及する場合には、エンコーダー420vと表記する。減速機510v1,510v2について、相互に区別せずに言及する場合には、減速機510vと表記する。
サーボモーター410v1,410v2は、動作制御装置30に制御されて、その出力軸を回転させる。減速機510v1,510v2は、サーボモーター410v1,410v2の各出力軸の回転を減速させてそれぞれ車輪W1,W2に伝達する。エンコーダー420v1,420v2は、それぞれサーボモーター410v1,410v2の出力軸の回転角度を検出する。
エンドエフェクター200は、アーム110の先端に取りつけられている。エンドエフェクター200は、動作制御装置30に制御されて、作業の対象物であるワークピースをつかむことができ、また、つかんでいるワークピースを離すことができる。その結果、たとえば、エンドエフェクター200とロボット100と車両700とは、動作制御装置30に制御されて、ワークピースをつかんで移動させることができる。なお、図1においては、技術の理解を容易にするため、エンドエフェクター200を単純な四角形で示している。
ロボット制御装置25は、ロボット100を制御する。ロボット制御装置25は、動作制御装置30と、教示装置50とによって構成される。
動作制御装置30は、ロボット100の動作を制御する制御装置である。動作制御装置30は、ロボット100に接続されている。動作制御装置30は、プロセッサーであるCPU(Central Processing Unit)301、RAM(Random Access Memory)302、ROM(Read-Only Memory)303を備える。動作制御装置30には、ロボット100を制御するための制御プログラムがインストールされている。動作制御装置30においては、ハードウェア資源としてのCPU301、RAM302、ROM303と、制御プログラムとが協働する。具体的には、CPU301が、ROM303に記憶されたコンピュータープログラムをRAM302にロードして実行することによって、様々な機能を実現する。
教示装置50は、動作制御装置30に目標位置Stと目標力ftとを教示するための装置である。なお、目標力ftは、成分として、直線的に作用する力と、トルクと、を含みうる。教示装置50は、プロセッサーであるCPU501、RAM502、ROM503を備える。教示装置50には、動作制御装置30に目標位置Stと目標力ftとを教示するための制御プログラムがインストールされている。教示装置50においては、ハードウェア資源としてのCPU501、RAM502、ROM503と、制御プログラムとが協働する。具体的には、CPU501が、ROM503に記憶されたコンピュータープログラムをRAM502にロードして実行することによって、様々な機能を実現する。
教示装置50は、さらに、入力装置57と、出力装置58を備える。入力装置57は、ユーザーからの指示を受け付ける。入力装置57は、例えば、マウス、キーボード、タッチパネル等である。出力装置58は、ユーザーに各種の情報を出力する。出力装置58は、例えば、ディスプレイやスピーカー等である。
A2.動作制御装置30による力制御の処理:
図2は、力制御を実行する際のロボット100と、動作制御装置30と、教示装置50との機能を示す図である。図2に示す「S」は、ロボット座標系RCを規定する軸の方向、すなわち、X軸方向、Y軸方向、およびZ軸方向、ならびに回転軸方向としてのU軸方向、V軸方向、W軸方向のうちのいずれか1つの方向を表す。なお、U軸方向は、X軸方向を回転軸とする回転方向である。V軸方向は、Y軸方向を回転軸とする回転方向である。W軸方向は、Z軸方向を回転軸とする回転方向である。例えば、Sが表わす方向がX軸方向の場合、ロボット座標系RCにおいて設定された目標位置のX軸方向成分がSt=Xtと表記され、目標力のX軸方向成分がft=fXtと表記される。また、Sは、Sが表わす方向の軸に沿った位置も表す。
動作制御装置30は、ロボット100のサーボモーター410a〜410dの回転角度の組み合わせと、ロボット座標系RCにおけるTCPの位置との対応関係Uを、RAM内に記憶している(図2の中段右側参照)。動作制御装置30は、ロボット100が行う作業の工程ごとに、目標位置Stと目標力ftとを対応付けて、RAM内に記憶している。目標位置Stと目標力ftは、教示装置50を使用した教示作業によって設定される。
動作制御装置30は、エンコーダー420a〜420dからサーボモーター410a〜410dの回転角度Daを取得すると、対応関係Uに基づいて、回転角度Daをロボット座標系RCにおけるTCPの位置Sに変換する(図2の右側中段参照)。より具体的には、回転角度Daは、TCPの位置を表す位置DX、位置DY、位置DZ、回転角度RX、回転角度RY、および回転角度RZの組み合わせに変換される。
力検出部190は、独自の座標系において力検出部190に加えられた力fmを検出する(図2の右上部参照)。力検出部190に加えられた力fmは、成分として、直線的に作用する力と、トルクと、を含みうる。力検出部190の座標系とロボット座標系RCの関係が、既知のデータとしてあらかじめ動作制御装置30のRAM302に記憶されている。このため、動作制御装置30は、力検出部190の出力に基づいて、ロボット座標系RCにおける力fmを特定できる。なお、技術の理解を容易にするために、力検出部190の座標系とロボット座標系RCの関係は、図2において省略する。
動作制御装置30は、ロボット座標系RCに変換した後の力fmに対して重力および慣性力の補償を行う(図2の右下部参照)。「重力の補償」とは、力検出部190が測定した力fmから重力に起因する成分を除去する処理である。「慣性力の補償」とは、力検出部190が測定した力fmから慣性力の成分を除去する処理である。力検出部190が検出した力のうち重力に起因する力および慣性力以外の力を、以下では「作用力f」とも呼ぶ。本明細書において、作用力は、成分として、直線的に作用する力と、トルクと、を含みうる。
作用力fは、(i)力制御において、エンドエフェクター200が想定された作業対象物から受ける力と、(ii)エンドエフェクター200、ロボット100または車両700が作業において想定された作業対象物以外の構成と接触した結果、その構成から受ける力と、を含みうる。通常は、作用力fは、(i)力制御において、エンドエフェクター200が想定された作業対象物から受ける力である。
動作制御装置30は、目標力ftと作用力fとをコンプライアントモーション制御の運動方程式に代入することにより、力由来補正量ΔSを特定する(図2の左側中段参照)。本実施形態では、コンプライアントモーション制御として、インピーダンス制御を採用する。「インピーダンス制御」とは、仮想の機械的インピーダンスをサーボモーター410a〜410dによって実現する制御である。以下に示した式(1)は、インピーダンス制御の運動方程式である。
Figure 2020015110
式(1)において、mは、質量パラメーターである。質量パラメーターは、慣性パラメーターとも呼ばれる。dは、粘性パラメーターである。kは、弾性パラメーターである。各パラメーターm、d、kは、教示装置50から取得される。各パラメーターm、d、kは、方向ごとに異なる値に設定される構成であってもよく、方向にかかわらず共通の値に設定されてもよい。
式(1)において、Δf(t)は、目標力ftに対する作用力fの偏差である。Δf(t)中のtは、時間を表す。目標力ftは、ロボット100が行う工程において、一定値として設定されてもよく、時間に依存する関数によって設定されてもよい。式(1)における微分とは、時間による微分を意味する。
式(1)から得られる力由来補正量ΔSとは、TCPが機械的インピーダンスによる作用力fを受けた場合に、目標力ftと作用力fとの力偏差Δf(t)を解消して目標力ftを達成するために、TCPが移動すべき変位を意味する。ここで、「変位」は、直線距離および/または回転角で表される。
動作制御装置30は、目標位置Stに、力由来補正量ΔSを加算することにより、インピーダンス制御を考慮した補正目標位置(St+ΔS)を特定する(図2の中段右側参照)。
動作制御装置30は、対応関係Uに基づいて、ロボット座標系RCにおける6つの方向、すなわち、X軸方向、Y軸方向、Z軸方向、U軸方向、V軸方向、およびW軸方向のそれぞれについての補正目標位置(St+ΔS)を、サーボモーター410a〜410dそれぞれの目標の駆動位置である目標角度Dtに変換する(図2の中段右側参照)。
動作制御装置30は、エンコーダー420a〜420dの出力が示すサーボモーター410a〜410dの回転角度Daと、制御目標である目標角度Dtと、を一致させるフィードバック制御を実行する。より具体的には、動作制御装置30は、回転角度Daと目標角度Dtとの偏差De、その偏差Deの積分、およびその偏差Deの微分を使用して、位置についてのPID制御を実行する。図2において、比例ゲインKpp、積分ゲインKpi、微分ゲインKpdを示す(図2の中央部参照)。
動作制御装置30は、上記Kpp,Kpi,Kpdを使用した位置についてのPID制御の出力と、回転角度Daの微分との偏差、その偏差の積分、その偏差の微分を使用して、速度についてのPID制御を実行する。図2において、比例ゲインKvp、積分ゲインKvi、微分ゲインKvdを示す(図2の中段左側参照)。
以上の処理の結果、サーボモーター410a〜410dの制御量Dcが決定される。動作制御装置30は、各サーボモーター410a〜410dの制御量Dcで、各サーボモーター410a〜410dを制御する。
以上のような処理により、教示装置50によって設定される目標位置Stと目標力ft(図2の下段参照)とに基づいて、動作制御装置30は、アーム110を制御することができる。
図3は、動作制御装置30における重力の補償および慣性力の補償の処理を示すブロック図である。前述のように、動作制御装置30は、力検出部190に加えられた力fmと、アーム110に働く重力と、アーム110の動作に起因する慣性力に基づいて、補償を行い、作用力fを決定する(図2の右下参照)。
動作制御装置30は、力検出部190から力fmの情報を受け取る。動作制御装置30は、ロボット100のエンコーダー420から、ロボット100のサーボモーター410の回転角度Daの情報を受け取る。動作制御装置30は、車両700のエンコーダー420vから、車両700のサーボモーター410vの回転角度Dvの情報を受け取る。
動作制御装置30は、力検出部190が測定した力およびトルクのうち、アーム110などにかかる重力に起因する力およびトルクを、以下のように計算する。なお、図3において、アーム110などにかかる重力に起因する直線的な力およびトルクを、まとめて重力に起因する力fgと表記する。
動作制御装置30は、(i)作業においてエンドエフェクター200に保持されるワークピース、エンドエフェクター200、基台180およびアーム110で構成される構造の重心と、(ii)その重心と力検出部190の位置との相対位置と、を計算する。この計算は、(a)ワークピース、エンドエフェクター200、アーム要素110a〜110dならびに基台180のそれぞれの長さ、重心位置および重量、ならびに(b)回転角度Daから特定されるそのときのアーム110の姿勢に基づいて、実行される。
そして、動作制御装置30は、その相対位置と、上記構造の重量と、に基づいて、力検出部190にかかる、基台180およびアーム110にかかる重力に起因するトルクを計算する(図3のfg参照)。また、上記構造の重量が、力検出部190にかかる、基台180およびアーム110にかかる重力に起因する力である(図3のfg参照)。
動作制御装置30は、力検出部190が測定した力およびトルクのうち、アーム110の動きによって発生する慣性力に起因する力およびトルクを、以下のように計算する。なお、図3において、アーム110の動きによって発生する慣性力に起因する直線的な力およびトルクを、まとめて慣性力に起因する力fi1と表記する。
動作制御装置30は、ワークピース、エンドエフェクター200、基台180およびアーム110で構成される構造の重心と、力検出部190の位置との相対位置の変化を計算する。そして、動作制御装置30は、その相対位置の変化を微分して得られる加速度ベクトルと、上記構造の重量と、に基づいて、力検出部190にかかる、基台180およびアーム110にかかる慣性力に起因する力fi1を計算する。
動作制御装置30は、力検出部190が検出する力およびトルクのうち、車両700の動きによって発生する慣性力に起因する力およびトルクを、以下のように計算する。なお、図3において、車両700の動きによって発生する慣性力に起因する直線的な力およびトルクを、まとめて慣性力に起因する力fi2と表記する。
動作制御装置30は、(i)ワークピース、エンドエフェクター200、基台180およびアーム110で構成される構造の重心と、力検出部190の位置との相対位置と、(ii)上記構造の質量と、(iii)回転角度Dvの変化から特定されるそのときの車両700の加速度ベクトルと、に基づいて、力検出部190にかかる、車両700の動きによって発生する慣性力に起因する力fi2を、計算する。
動作制御装置30は、力検出部190が検出した力fmから、それらの力fg,fi1,fi2を減算することにより、作用力fを算出する(図2の右下部も参照)。
このような処理を行うことにより、ロボット100に作用した作用力fのうち直線的に作用する力およびトルクを正確に決定して、アーム110の力制御やアーム110の動作の停止を実行することができる。
A3.教示装置50における力制御のパラメーターの入力処理:
図4は、教示装置50の出力装置58に表示されるユーザーインターフェイスUI12を示す。ユーザーインターフェイスUI12には、教示装置50の入力装置57を介して情報が入力される。ユーザーインターフェイスUI12は、入力窓W11〜W16、ならびにボタンB01,B02を備える。
入力窓W11は、力制御における目標力の向きを入力するためのインターフェイスである。図4の例においては、Z軸方向のマイナス側の向きが指定されている。入力窓W12は、力情報の一部としての、力制御における目標力の大きさを入力するためのインターフェイスである。図4の例においては、10Nが指定されている。
入力窓W13は、エンドエフェクター200の重量の情報の入力するためのインターフェイスである。図4の例においては、1kgが指定されている。
入力窓W14〜W16は、エンドエフェクター情報の一部としての、アーム110の先端の位置と、アーム110に取りつけられたエンドエフェクター200の重心位置と、の相対位置関係の情報の入力するためのインターフェイスである。図4の例においては、相対位置関係の情報として、X軸方向0、Y軸方向0、およびZ軸方向のプラス側50mmの相対位置が指定されている。
ボタンB01は、入力窓W11〜W16への入力を終えたユーザーが、教示装置50に次の処理を行わせるためのボタンである。ボタンB02は、ユーザーインターフェイスUI12を介した情報の入力の前の処理に戻るためのボタンである。
このようなユーザーインターフェイスUI12を介して、力制御における目標力ftの方向および大きさが、教示装置50および動作制御装置30に入力される(図2の下段参照)。動作の目標位置Stについても、同様のインターフェイスを介して、教示装置50の入力装置57から入力される。教示装置50において、目標力ftの方向および大きさの入力を受け付け、動作の目標位置Stの入力を受け付ける機能部を、図2において、「受付部53」として示す。
A4.接触検出と力制御:
図5は、ロボット100を動作させる際に、動作制御装置30において接触検出と力制御を実現する処理を示すフローチャートである。動作制御装置30は、力検出部190の出力に基づいて、アーム110の力制御と、ロボット100と他の構成との接触に応じたアーム110の停止と、を行う。図5の処理は、具体的には、動作制御装置30のCPU301によって実現される。なお、力制御における目標力ftと目標位置Stとは、図5の処理に先立って、あらかじめ入力されているものとする(図4参照)。
ステップS110において、動作制御装置30は、力検出部190によって、力検出部190にかかる力fmを検出する(図2の右上部参照)。ステップS120において、動作制御装置30は、検出力fmから、重力に起因する力fg、慣性力に起因する力fi1,fi2を除いて、作用力fを決定する(図2の右下部および図3参照)。
ステップS130において、動作制御装置30は、作用力fのX軸方向、Y軸方向、Z軸方向についての各方向成分が、それぞれ力閾値Thfx,Thfy,Thfzより小さく、かつ、作用力fのU軸方向、V軸方向、W軸方向についての各方向成分がトルク閾値Thtu,Thtv,Thtwより小さいか否かを判定する。力閾値Thfx,Thfy,Thfz、ならびにトルク閾値Thtu,Thtv,Thtwは、ロボット100によって実現すべき力制御の動作に応じて、あらかじめ定められている。
たとえば、力検出部190によって検出された作用力fのZ軸方向の力成分Fzの大きさが、力閾値Thfzを超えた場合、作用力fのX軸方向の力成分Fxの大きさが、力閾値Thfxを超えた場合、または作用力fのY軸方向の力成分Fyの大きさが、力閾値Thfyを超えた場合に、ステップS130における判定はNoとなる。
また、たとえば、力検出部190によって検出された作用力fのW軸方向のトルク成分Twの大きさが、トルク閾値Thtwを超えた場合、作用力fのU軸方向のトルク成分Tuの大きさが、トルク閾値Thtuを超えた場合、または作用力fのV軸方向のトルク成分Tvの大きさが、トルク閾値Thtvを超えた場合に、ステップS130における判定はNoとなる。
ステップS130における判定結果がNoの場合、処理は、ステップS140に進む。判定結果がYesの場合、処理は、ステップS150に進む。ステップS130において行われる作用力の大きさに関する判定を、「接触検出」とも呼ぶ。
ステップS140において、動作制御装置30は、アーム110を停止させる。力の各方向成分のいずれかが、閾値を超えた場合、または、トルクの各方向成分のいずれかが閾値を超えた場合は、エンドエフェクター200、ロボット100または車両700が意図せずに物体と接触したと推定できる。そのため、動作制御装置30によるアーム110の動作を中止し、アーム110は停止される。その結果、アーム110によって他の構成が損傷する可能性を低減できる。なお、「物体」は、広くロボット100に接触し得るものである。「物体」には、作業者や、ロボット100以外のロボット、ロボット100の週反に配されている装置などが含まれる。
ステップS150において、動作制御装置30は、目標力ftを実現する力制御を実行する(図2参照)。ステップS160において、動作制御装置30は、TCPが目標位置Stに到達したか否かを判定する。判定結果がYesである場合、処理は終了する。判定結果がNoである場合、処理はステップS110に戻る。
このような処理を行うことにより、動作制御装置30は、基台180に設けられた力検出部190に基づいて、アーム110の力制御と、ロボット100と作業対象物以外の構成との接触に応じたアーム110の減速と、を実現することができる。
図6は、作用力fのX軸方向の力成分Fx、Y軸方向の力成分Fy、およびZ軸方向の力成分Fzで規定される仮想空間において作業対象物以外の構成と非接触が推定される領域Thfを示す図である。作用力fのX軸方向の力成分Fx、Y軸方向の力成分Fy、およびZ軸方向の力成分Fzを各軸とする仮想空間内において、領域Thfは、エンドエフェクター200、ロボット100または車両700が他の構成と意図しない接触をしていないと推定できる領域である(図5のS130参照)。図6は、Z軸方向に力を加える力制御が行われる場合(図4のW11参照)の非接触が推定される領域Thfを示す。
エンドエフェクター200、ロボット100または車両700が他の構成と接触したと推定する際の作用力fの力成分の大きさの閾値を、作用力fの力成分の方向によらず一定値とした場合に、非接触が推定される領域を、図6において、領域Thfcとして示す。領域Thfcは、Fx軸、Fy軸、およびFz軸で規定される空間において、球形である。
これに対して、本実施形態において、非接触が推定される領域Thfは、Fz軸方向を中心軸とする円柱形状である。領域Thfは、Fx−Fy平面において球形領域Thfcの外縁に接しており、Fz軸方向において、球形領域Thfcよりも原点Oから遠い位置にまで及ぶ円柱である。領域ThfのFz軸方向のプラス側の外縁およびFz軸方向のマイナス側の外縁は、Fz軸に垂直な平面である。すなわち、領域Thfは、底面の円の半径よりも、軸方向に沿った長さの方が大きい円柱である。領域Thfの外縁上の点の座標を(Thfx,Thfy,Thfz)としたとき、領域Thfの外縁は、以下の式(2)で規定される。
Thfx+Thfy = Cf1 かつ Thfz = ±Cf2 ・・・ (2)
ここで、0<Cf1<Cf2。
その結果、Fz軸方向の非接触の力閾値の大きさ|Thfz|は、Fx軸方向の非接触の力閾値の大きさ|Thfx|およびFy軸方向の非接触の力閾値の大きさ,|Thfy|よりも大きい。
基台180に設けられた力検出部190によって検出された作用力fに基づいて、力制御を行いつつ(図5のS150参照)、接触に応じたアーム110の停止を行う場合(図5のS140参照)、各方向について等しい力閾値を設定すると、次のような問題が生じ得る。すなわち、ロボット100の動作によって力検出部190に力がかかりやすい方向(本実施形態においてZ軸方向)については、検出された力成分の大きさが頻繁に力閾値Thfzを超え、アーム110の停止が頻繁に行われることとなる。しかし、本実施形態において、ロボット100の動作によって力検出部190に力がかかりやすい方向(本実施形態においてZ軸方向)を、力閾値が他より大きく設定される方向に設定することにより、適切に接触に応じたアーム110の停止を行うことができる。
より具体的には、本実施形態においては、力閾値が他より大きく設定される方向は、動作制御装置30が受け取った力制御の目標力ftの方向である(図4のW11および図6参照)。このため、ロボット100の力制御に起因してアーム110の停止が実行されてしまう可能性を低減することができる。一方、他の方向については、他の構成要素と接触を、敏感に検知することができる。
また、本実施形態において、力閾値が他より大きく設定される方向は、アーム要素110a,110bの関節J11,J12の回転軸と平行な方向である(図1および図6参照)。このため、アーム要素110a,110bが回転移動しない方向についての力閾値Thfzが、他の方向についての力閾値Thfx,Thfyよりも大きく設定される。すなわち、アーム要素110a,110bの移動によって他の構成要素と接触する可能性が低い回転軸の方向については、力閾値が大きく設定される。このため、アーム要素110a,110bの移動によって他の構成要素と接触する可能性が低い回転軸の方向については、ロボット100の力制御に起因してアーム110の停止が実行されてしまう可能性を低減することができる。一方、他のX軸方向、Y軸方向については、アーム要素110a,110bの移動による他の構成要素と接触を、敏感に検知することができる。
図7は、作用力fのU軸方向のトルク成分Tu、V軸方向のトルク成分Tv、およびW軸方向のトルク成分Twで規定される仮想空間において非接触が推定される領域Thtを示す図である。作用力fのU軸方向のトルク成分Tu、V軸方向のトルク成分Tv、およびW軸方向のトルク成分Twを各軸とする仮想空間内において、領域Thtは、エンドエフェクター200、ロボット100または車両700が作業対象物以外の構成と意図しない接触をしていないと推定できる領域である(図5のS130参照)。図7は、Z軸方向に平行なアーム要素の回転軸を有するスカラロボット(図1参照)の非接触が推定される領域Thtを示す。
エンドエフェクター200、ロボット100または車両700が他の構成と接触したと推定する際の作用力fのトルク成分の大きさの閾値を、作用力fのトルク成分の回転軸方向によらず一定値とした場合に、非接触が推定される領域を、図7において、領域Thtcとして示す。領域Thtcは、Tu軸、Tv軸、およびTw軸で規定される空間において、球形である。
これに対して、本実施形態において、非接触が推定される領域Thtは、Tw軸方向を中心軸とする円柱形状である。領域Thtは、円柱の両端面の中心点においてそれぞれ球形領域Thtcの外縁に接しており、Tu−Tw平面において、球形領域Thtcの外縁よりも原点Oから遠い位置にまで及ぶ円柱である。領域ThtのTw軸方向のプラス側の外縁およびFz軸方向のマイナス側の外縁は、Tw軸に垂直な平面である。領域Thtの外縁上の点の座標を(Thtu,Thtv,Thtw)としたとき、領域Thtの外縁は、以下の式(3)で規定される。
Thtu+Thtv = Ct1 かつ Thtw = ±Ct2 ・・・ (3)
ここで、0<Ct2<Ct1。
その結果、Tw軸方向の非接触のトルク閾値の大きさ|Thfz|は、Tu軸方向の非接触のトルク閾値の大きさ|Thfx|およびTv軸方向の非接触のトルク閾値の大きさ|Thfy|の最大値よりも小さい。
基台180に設けられた力検出部190によって検出された作用力fに基づいて、力制御を行いつつ(図5のS150参照)、接触に応じたアーム110の停止を行う場合(図5のS140参照)、各回転方向について等しいトルク閾値を設定すると、以下のような問題が生じ得る。すなわち、ロボット100の動作によって他の構成要素と接触する可能性が高い回転方向(本実施形態においてW軸方向)に合わせてトルク閾値が設定され、その結果、他の回転方向については、力制御に起因して検出されたトルク成分の大きさが不必要に頻繁にトルク閾値を超え、アーム110の減速が頻繁に行われることとなる。しかし、上記の態様において、ロボット100の動作によって他の構成要素と接触する可能性が高い回転方向(本実施形態においてW軸方向)を、トルク閾値が他より小さく設定される方向に設定することにより、適切に接触に応じたアーム110の停止を行うことができる。
より具体的には、本実施形態において、トルク閾値が他の方向のトルク閾値の最大値より小さく設定される方向は、アーム要素110a,110bの関節J11,J12の回転軸と平行な方向である。すなわち、アーム要素110a,110bの移動によって他の構成要素と接触する可能性が高いW軸方向については、トルク閾値Thtwが、他の方向についてのトルク閾値Thtu,Thtvよりも小さく設定される。このため、アーム要素110a,110bの移動によって他の構成要素と接触する可能性が高いW軸方向については、アーム要素110a,110bの移動による他の構成要素と接触を、敏感に検知することができる。一方、他のU軸方向、V軸方向については、ロボット100の力制御に起因してアーム110の停止が実行されてしまう可能性を低減することができる。
以上で説明した第1実施形態のロボットシステム1によれば、基台180に設けられた力検出部190に基づいて、アーム110の力制御(図5のS150参照)と、ロボット100と他の構成とが接触した場合の停止(図5のS140参照)とを、実現することができる。
第1実施形態のロボットシステム1は、アーム110の先端に力制御のための二つ目の力検出部を備えない。その結果、アームの先端に力検出部を備える態様に比べて、アーム110の先端の質量が小さい。このため、アームの先端に力検出部を備える態様に比べて、同じモーターの出力で実現できるアーム110の先端の移動速度が高い。また、同程度に高速にアーム110の先端を移動させるために必要とされるモーターの出力をより小さくすることができる。さらに、力制御のための力検出部をアームの先端に備える態様に比べて、製造コストを低減できる。
本実施形態におけるロボット制御装置25を、「制御部」とも呼ぶ。ロボット座標系RCにおけるZ軸方向を、「第1方向」とも呼ぶ。ロボット座標系RCにおけるX軸方向およびY軸方向を、「第2方向」とも呼ぶ。力閾値Thfzを、「第1力閾値」とも呼ぶ。力閾値Thfx,Thfyを、「第2力閾値」とも呼ぶ。
本実施形態におけるロボット座標系RCにおけるW軸方向を、「第1回転方向」とも呼ぶ。ロボット座標系RCにおけるU軸方向およびV軸方向を、「第2回転方向」とも呼ぶ。トルク閾値Thtwを、「第1トルク閾値」とも呼ぶ。トルク閾値Thtu,Thtvを、「第2トルク閾値」とも呼ぶ。
B.第2実施形態:
上記第1実施形態においては、ロボットシステム1が作業を行っているときの力制御と接触検出の例を説明した。しかし、図5の力制御と接触検出は、ロボットシステム1による作業に先だって、ロボット100に動作の教示を行う際にも適用できる。以下では、ロボット100に動作の教示を行う際の力制御と接触検出について説明する。第2実施形態においては、図5の処理をロボット100への教示の際に実行する点、ならびに動作制御装置30が実行する図5の処理のうち、ステップS150とステップS160の処理内容が異なる。第2実施形態においては、他の点は、第1実施形態と同じである。
ロボット100への動作の教示は、いわゆるダイレクトティーチの処理を含む。ダイレクトティーチにおいては、アーム要素110c(図1参照)の先端をユーザーが所望の位置に移動させて、その位置がロボットシステム1に教示される。位置を記憶すべき旨の指示は、教示装置50の入力装置57を介して行われる。ロボットシステム1への目標位置St(図2の下段参照)の入力は、このような態様で行うこともできる。このような機能を奏する教示装置50の機能部は、受付部53である。
動作制御装置30は、ダイレクトティーチにおいて、図5の処理を実行する。ダイレクトティーチにおいて、ユーザーがアーム要素110cの先端に力を加えていない間は、動作制御装置30は、アーム110を動かさず、アーム110の姿勢を維持する。ダイレクトティーチにおいて、ユーザーがアーム要素110cの先端に力を加えている間は、動作制御装置30は、力検出部190より検出された力に応じてアーム110の先端を移動および回転させる。
動作制御装置30は、図5のステップS150において、力検出部190より検出された力およびトルクが基準値より大きくならないように、アーム110の先端を移動および回転させる。これらの力の基準値およびトルクの基準値は、各軸方向について定められる。これらの力の基準値およびトルクの基準値は、それぞれステップS130における力閾値Thfx,Thfy,Thfz、ならびにトルク閾値Thtu,Thtv,Thtwより小さい。
また、動作制御装置30は、ステップS150において、力検出部190より作用力が検出されない場合、すなわち、ユーザーがアーム要素110cの先端に力を加えていない場合は、動作制御装置30は、アーム110を動かさず、アーム110の姿勢を維持する。
ステップS160においては、ユーザーが、アーム110の先端がロボット100に教示すべき目標位置Stに到達したか否かを判定する。判定結果がNoである場合、処理はステップS110に戻り、ユーザーは、アーム要素110cの先端を引き続き移動させる。判定結果がYesである場合、図5の処理は終了し、ユーザーは、そのときのアーム要素110cの先端の位置を、教示装置50の入力装置57を介してロボットシステム1に記憶させる。
第2実施形態においては、ダイレクトティーチが行われている際に、アーム110が他の構成に接触した場合には、ステップS130の判定を経て、ステップS140において、アーム110の動作が停止される。このため、ダイレクトティーチの際に、ユーザーが誤って他の構成を損傷させる可能性を低減することができる。
第2実施形態においては、ロボットシステム1への動作の教示において、基台180に設けられた力検出部190に基づいて、アーム110の力制御(図5のS150参照)と、ロボットと他の構成とが接触した場合の停止(図5のS140参照)とを、行うことができる。
C.第3実施形態:
図8は、複数のプロセッサーによってロボットの制御装置が構成される一例を示す概念図である。この例では、ロボット100およびその動作制御装置30の他に、パーソナルコンピューター400,400bと、LANなどのネットワーク環境を介して提供されるクラウドサービス500とが描かれている。パーソナルコンピューター400,400bは、それぞれプロセッサーとメモリーとを含んでいる。また、クラウドサービス500においてもプロセッサーとメモリーを利用可能である。プロセッサーは、コンピューター実行可能な命令を実行する。これらの複数のプロセッサーの一部または全部を利用して、動作制御装置30および教示装置50を含むロボット制御装置25を実現することが可能である。また、各種の情報を記憶する記憶部も、これらの複数のメモリーの一部または全部を利用して、実現することが可能である。
D.第4実施形態:
図9は、複数のプロセッサーによってロボットの制御装置が構成される他の例を示す概念図である。この例では、ロボット100の動作制御装置30が、ロボット100の中に格納されている点が図8と異なる。この例においても、複数のプロセッサーの一部または全部を利用して、ロボット100の制御装置を実現することが可能である。また、各種の情報を記憶する記憶部も、複数のメモリーの一部または全部を利用して、実現することが可能である。
E.他の実施形態:
E1.他の実施形態1:
(1)上記実施形態においては、動作制御装置30は、エンコーダー420v1,420v2からサーボモーター410v1,410v2の出力軸の回転角度を取得し、その回転角度の変化に基づいて、車両700の動きによって発生する慣性力に起因する力fi2を計算する。しかし、車両700が慣性計測装置(IMU:Inertial Measurement Unit)を備える態様においては、動作制御装置30は、慣性計測装置から車両700のX軸方向、Y軸方向、Z軸方向の加速度、ならびにU軸方向、V軸方向、W軸方向の角速度の情報を取得することができる。そして、動作制御装置30は、それらの加速度、および角速度から得られる角加速度に基づいて、車両700の動きによって発生する慣性力に起因する力fi2を計算することができる。図1において、慣性計測装置をIMU710として示す。
なお、慣性計測装置は、ロボット100など、車両700以外の場所に設けられていてもよい。例えば、ロボット100の基台180が慣性計測装置を備えている態様であってもよい。慣性計測装置は、ロボットにおいて、基台以外の場所に設けることもできる。ただし、慣性計測装置は、ロボットにおいて、基台に対して移動することができる構成要素よりも基台側の部位に設けられていることが好ましい。
(2)上記実施形態においては、ロボット100は、車両700に支持されている(図1参照)。しかし、ロボット100の基台180が移動しない態様とすることもできる。そのような態様においては、車両700の動きによって発生する慣性力に起因する力fi2を、力検出部190が測定した力fmから除去する処理(図3の下段参照)を行う必要はない。
(3)上記実施形態においては、動作制御装置30は、目標力ftを実現する力制御を実行する(図2および図5のS150参照)。そして、目標力ftは、成分として、直線的に作用する力と、トルクと、を含みうる。すなわち、力制御は、直線的に作用する力と、トルクと、について行われる。しかし、力制御は、直線的に作用する力のみに関して行われることもできる。そのような態様においては、力検出部190は、トルクの検知を行わない態様とすることができる。また、そのような態様においては、トルクに関する閾値との比較(図5のS130参照)も行う必要はない。たとえば、スカラロボットにおいて力制御を行う場合には、直線的に作用する力のみに関して力制御を行っても、十分な精度で力制御を行うことができる。ただし、さらにトルクも考慮して力制御を行うこととすれば、より高精度に力制御および接触検出を行うことができる。
(4)上記実施形態においては、一つのアーム110を備えるスカラロボット100を例に本開示の技術を説明した。しかし、本開示の技術は、二つの腕を備えるロボットなど、複数の腕を備えるロボットに適用することもできる。
(5)上記実施形態においては、作用力fのX軸方向、Y軸方向、Z軸方向についての各方向成分のいずれかが、力閾値より大きいか、または、作用力fのU軸方向、V軸方向、W軸方向についての各方向成分がトルク閾値より大きい場合には、動作制御装置30は、アーム110を停止させる。しかし、そのような場合に、動作制御装置30が、アームの動作速度を低下させつつ、アームを動作させ続ける態様とすることもできる。本明細書においては、最終的に動作速度が0になるか否かによらず、アームの動作速度を低下させることを、「アームの減速」と呼ぶ。
また、作用力fのX軸方向、Y軸方向、Z軸方向についての各方向成分のいずれかが、力閾値より大きいか、または、作用力fのU軸方向、V軸方向、W軸方向についての各方向成分がトルク閾値より大きい場合(図5のS130参照)、すなわち、接触検出において物体との接触があった旨の判定がされた場合に、行われる処理は、アームの減速である。しかし、接触検出の肯定判定がされた場合に、行われる処理は、画像、音声、またはランプの点灯などの処理による警告の出力であってもよい。
(6)上記実施形態においては、アーム要素110a,110bの関節J11,J12の回転軸の方向は、重力方向と平行である。しかし、スカラロボットにおける複数のアーム要素の関節の回転軸の方向は、重力方向とは異なる方向とすることもできる。また、無重力環境下で使用されるロボットに、本開示の技術を適用することもできる。
E2.他の実施形態2:
(1)上記実施形態においては、Z軸方向の非接触の力閾値の大きさ|Thfz|は、X軸方向の非接触の力閾値の大きさ|Thfx|およびY軸方向の非接触の力閾値の大きさ|Thfy|よりも大きい(図6参照)。しかし、各方向の力閾値の大きさは、互いに等しくてもよい(図6のThfc参照)。そのような態様としても、基台に設けられた力検出部に基づいて、アームの力制御と、ロボットと他の構成とが接触した場合の減速とを、行うことができる。
(2)上記実施形態においては、力閾値は、ロボット座標系RCのX軸方向、Y軸方向、Z軸方向についての各方向成分に対して、設定されている。しかし、力閾値は、ロボット座標系RCとは異なる座標系の各軸方向について設定されることもできる。そのような態様においては、作用力fが、力閾値が設定される座標系に基づく力ベクトルに座標変換された後、閾値との比較が実行される(図5のS130参照)。
E3.他の実施形態3:
上記実施形態においては、動作制御装置30は、力検出部190が検出した力fmから、重力に起因する力fg、ならびに慣性力に起因するfi1,fi2を減算することにより、作用力fを算出する(図3および図2の右下部参照)。しかし、重力に起因する力および慣性力による補償を行わない態様とすることもできる。そのような態様においては、重力に起因する力およびロボットや車両の動作に起因する慣性力をあらかじめ考慮して、各方向の力閾値およびトルク閾値を定めることが好ましい。また、重力に起因する力による補償と、慣性力による補償とのいずれか一方のみを行う態様とすることもできる。
E4.他の実施形態4:
(1)上記実施形態においては、力閾値が他より大きく設定される方向は、アーム要素110a,110bの関節J11,J12の回転軸と平行な方向である(図1および図6参照)。しかし、力閾値が他より大きく設定される方向は、アーム要素の関節の回転軸と平行ではない方向であってもよい。
(2)上記実施形態においては、ロボット100は、スカラロボットである(図1参照)。しかし、本開示の技術を適用する対象は、垂直多関節ロボットなど、他のロボットでもよい。
E5.他の実施形態5:
上記実施形態においては、力閾値が他より大きく設定される方向は、動作制御装置30が受け取った力制御の目標力ftの方向である(図4のW11および図6参照)。しかし、力閾値が他より大きく設定される方向は、力制御の目標力の方向とは異なる方向であってもよい。力閾値が他より大きく設定される方向は、ロボットの回転軸の方向や、重力方向など、さまざまな方向に基づいて定めることができる。
E6.他の実施形態6:
(1)上記実施形態においては、W軸方向の非接触のトルク閾値の大きさ|Thtw|は、U軸方向の非接触のトルク閾値の大きさ|Thtu|およびV軸方向の非接触のトルク閾値の大きさ|Thtv|よりも小さい(図7参照)。しかし、各方向のトルク閾値の大きさは、互いに等しくてもよい(図7のThtc参照)。そのような態様としても、基台に設けられた力検出部に基づいて、アームの力制御と、ロボットと他の構成とが接触した場合の減速とを、行うことができる。
(2)上記実施形態においては、トルク閾値は、ロボット座標系RCのX軸方向、Y軸方向、Z軸方向、より具体的には、U軸方向、V軸方向、W軸方向についての各方向成分に対して、設定されている。しかし、トルク閾値は、ロボット座標系RCとは異なる座標系の各軸方向について設定されることもできる。そのような態様においては、作用力fが、トルク閾値が設定される座標系に基づくトルクベクトルに座標変換された後、閾値との比較が実行される(図5のS130参照)。
E7.他の実施形態7:
上記実施形態においては、動作制御装置30は、力検出部190が検出した力fmから、重力に起因する力fg、ならびに慣性力に起因するfi1,fi2を減算することにより、作用力fを算出する(図3および図2の右下部参照)。しかし、重力に起因する力および慣性力による補償を、直線的な力とトルクとの一方のみについて、行う態様とすることもできる。
重力に起因する力および慣性力による補償を、トルクについて行わない態様においては、重力に起因する力およびロボットや車両の動作に起因する慣性力をあらかじめ考慮して、各方向のトルク閾値を定めることが好ましい。重力に起因する力および慣性力による補償を、直線的な力について行わない態様においては、重力に起因する力およびロボットや車両の動作に起因する慣性力をあらかじめ考慮して、各方向の力閾値を定めることが好ましい。
E8.他の実施形態8:
上記実施形態においては、トルク閾値が他より小さく設定される回転軸方向は、アーム要素110a,110bの関節J11,J12の回転軸と平行な回転軸方向である(図1および図6参照)。しかし、トルク閾値が他より小さく設定される回転軸方向は、アーム要素の関節の回転軸と平行ではない回転軸方向であってもよい。
F.さらに他の形態:
本発明は、上述した実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の形態で実現することができる。例えば、本発明は、以下の形態によっても実現可能である。以下に記載した各形態中の技術的特徴に対応する上記実施形態中の技術的特徴は、本発明の課題の一部又は全部を解決するために、あるいは、本発明の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。
(1)本発明の一形態によれ55ば、ロボットシステムが提供される。このロボットシステムは、基台と、前記基台に支持されているアームと、前記基台に設けられ前記アームに加えられる力を検出する力検出部と、を有するロボットと、前記アームの力制御と、前記ロボットと物体との接触検出と、を前記力検出部の出力に基づいて行う制御部を有する制御装置と、を備える。
このような態様とすれば、基台に設けられた力検出部に基づいて、アームの力制御と、ロボットと物体との接触検出とを、行うことができる。その結果、力制御のための力検出部をアームの先端に備える態様に比べて、同じ出力で実現できるアームの先端の移動速度が高い。
なお、本明細書においては、狭義の力は、直線的に作用する力を意味する。一方、広義の力は、直線的に作用する力と、トルクと、を含む。
本発明の一形態によれば、ロボットシステムが提供される。このロボットシステムは、基台と、前記基台に支持されているアームと、前記基台に設けられ前記アームに加えられる力を検出する力検出部と、を備えるロボットと、前記ロボットの動作を制御する制御部と、を備える。前記制御部は、前記力検出部の出力に基づいて、前記アームの力制御と、前記ロボットと他の構成との接触に応じた前記アームの減速と、を行う。
このような態様とすれば、基台に設けられた力検出部に基づいて、アームの力制御と、ロボットと他の構成とが接触した場合の減速とを、行うことができる。その結果、力制御のための力検出部をアームの先端に備える態様に比べて、同じ出力で実現できるアームの先端の移動速度が高い。また、同程度に高速にアームの先端を移動させるために必要とされる出力が小さい。さらに、力制御のための力検出部をアームの先端に備える態様に比べて、製造コストを低減できる。
(2)上記形態のロボットシステムにおいて、前記制御部は、前記力の第1方向の力成分の大きさが第1力閾値を超えた場合と、前記力の第2方向の力成分の大きさが前記第1力閾値よりも小さい第2力閾値を超えた場合に前記接触検出に基づいて前記アームの減速を実行する、態様とすることもできる。
基台に設けられた力検出部によって検出された力に基づいて、力制御を行いつつ、接触検出を行う場合、各方向について等しい力閾値を設定すると、以下のような問題が生じ得る。すなわち、ロボットの動作によって力検出部に力がかかりやすい方向については、検出された力成分の大きさが頻繁に力閾値を超え、接触検出が頻繁に行われる可能性がある。しかし、上記の態様において、ロボットの動作によって力検出部に力がかかりやすい方向に応じて第1方向を設定することにより、ロボットの動作によって力検出部に力がかかりやすい方向についても、適切に接触検出を行うことができる。
上記形態のロボットシステムにおいて、前記力検出部は、前記力検出部に加えられた力の互いに異なる3方向の力成分を検出することができ、前記制御部は、前記力検出部によって検出された作用力の第1方向の力成分の大きさが、第1力閾値を超えた場合、または前記作用力の第2方向の力成分の大きさが、第2力閾値を超えた場合に、前記アームの前記減速を実行し、前記第2方向は、前記第1方向とは異なる方向であり、前記第1力閾値は、前記第2力閾値よりも大きい、態様とすることもできる。
基台に設けられた力検出部によって検出された作用力に基づいて、力制御を行いつつ、接触に応じたアームの減速を行う場合、各方向について等しい力閾値を設定すると、以下のような問題が生じ得る。すなわち、ロボットの動作によって力検出部に力がかかりやすい方向については、検出された力成分の大きさが頻繁に力閾値を超え、アームの減速が頻繁に行われる可能性がある。しかし、上記の態様において、ロボットの動作によって力検出部に力がかかりやすい方向に応じて第1方向を設定することにより、ロボットの動作によって力検出部に力がかかりやすい方向についても、適切に接触に応じたアームの減速を行うことができる。
なお、本明細書において、方向Aと方向Bとが「異なる」とは、同一および平行を含まない関係を、方向Aと方向Bとが有することを意味する。
(3)上記形態のロボットシステムにおいて、前記制御部は、前記力検出部に加えられた前記力から、前記アームに働く重力に起因する力、および前記アームの動作に起因する慣性力、を差し引いた力に基づいて、前記力制御および前記接触検出を行う、態様とすることもできる。
このような態様とすれば、ロボットに作用した力を正確に決定して、接触検出を実行することができる。
上記形態のロボットシステムにおいて、前記制御部は、前記力検出部に加えられた前記力と、前記アームにはたらく重力に起因する力と、前記アームの動作に起因する慣性力と、に基づいて、前記作用力を決定する、態様とすることもできる。
上記形態のロボットシステムにおいて、前記アームは、互いに平行な方向を回転軸として回転する複数のアーム要素を備え、前記複数のアーム要素の回転軸と垂直な方向を回転軸とするアーム要素を備えず、前記第1方向は、前記複数のアーム要素の回転軸と平行な方向である、態様とすることもできる。
このような態様において、アーム要素が回転移動しない方向についての第1力閾値が、他の方向についての第2力閾値よりも大きく設定される。すなわち、アーム要素の移動によって他の構成要素と接触する可能性が低い方向については、第1力閾値が大きく設定される。このため、アーム要素の移動によって他の構成要素と接触する可能性が低い方向については、ロボットの力制御に起因してアームの減速が実行されてしまう可能性を低減することができる。一方、他の方向については、アーム要素の移動による他の構成要素と接触を、敏感に検知することができる。
(4)上記形態のロボットシステムにおいて、前記第1方向は、前記制御部が受け取った前記力制御の目標力の方向である、態様とすることもできる。
このような態様において、目標力の方向についての第1力閾値が、他の方向についての第2力閾値よりも大きく設定される。このため、ロボットの力制御に起因してアームの減速が実行されてしまう可能性を低減することができる。一方、他の方向については、他の構成要素と接触を、敏感に検知することができる。
(5)上記形態のロボットシステムにおいて、前記制御部は、前記力検出部に加えられたトルクの第1回転方向のトルク成分の大きさが第1トルク閾値を超えた場合と、前記力の第2回転方向のトルク成分の大きさが第1トルク閾値よりも大きい第2トルク閾値を超えた場合に前記アームの前記減速を実行する、態様とすることもできる。
基台に設けられた力検出部によって検出された力に基づいて、力制御を行いつつ、接触検出を行う場合、各回転方向について等しいトルク閾値を設定すると、以下のような問題が生じ得る。すなわち、ロボットの動作によって物体と接触する可能性が高い回転方向に合わせてトルク閾値が設定され、その結果、他の回転方向については、力制御に起因して検出されたトルク成分の大きさが不必要に頻繁にトルク閾値を超え、接触検出が頻繁に行われる可能性がある。しかし、上記の態様において、ロボットの動作によって物体と接触する可能性が高い回転方向に応じて第1回転方向を設定することにより、他の方向についても、適切に接触検出を行うことができる。
上記形態のロボットシステムにおいて、前記力検出部は、さらに、前記力検出部に加えられたトルクの互いに異なる3個の回転方向のトルク成分を検出することができ、前記制御部は、前記作用力の第1回転方向のトルク成分の大きさが、第1トルク閾値を超えた場合、または前記作用力の第2回転方向のトルク成分の大きさが、第2トルク閾値を超えた場合に、前記アームの前記減速を実行し、前記第2回転方向は、前記第1回転方向とは異なる回転方向であり、前記第1トルク閾値は、前記第2トルク閾値の最大値よりも小さい、態様とすることもできる。
基台に設けられた力検出部によって検出された作用力に基づいて、力制御を行いつつ、接触に応じたアームの減速を行う場合、各回転方向について等しいトルク閾値を設定すると、以下のような問題が生じ得る。すなわち、ロボットの動作によって他の構成要素と接触する可能性が高い回転方向に合わせてトルク閾値が設定され、その結果、他の回転方向については、力制御に起因して検出されたトルク成分の大きさが不必要に頻繁にトルク閾値を超え、アームの減速が頻繁に行われる可能性がある。しかし、上記の態様において、ロボットの動作によって他の構成要素と接触する可能性が高い回転方向に応じて第1回転方向を設定することにより、他の方向についても、適切に接触に応じたアームの減速を行うことができる。
なお、本明細書において、回転方向Pと回転方向Qとが「異なる」とは、同一および平行を含まない関係を、回転方向Pと回転方向Qとが有することを意味する。
(6)上記形態のロボットシステムにおいて、前記制御部は、前記力検出部に加えられた前記トルクから、前記アームに働く重力に起因するトルク、および前記アームの動作よって発生する慣性力に起因するトルク、を差し引いたトルクに基づいて、前記力制御および前記接触検出を行う、態様とすることもできる。
このような態様とすれば、ロボットに作用したトルクを正確に決定して、アームの減速を実行することができる。
上記形態のロボットシステムにおいて、前記制御部は、前記力検出部に加えられた前記トルクと、前記アームにはたらく重力に起因する力と、前記アームの動作に起因する慣性力と、に基づいて、前記作用力を決定する、態様とすることもできる。
このような態様とすれば、ロボットに作用した作用力のうちのトルクを正確に決定して、アームの減速を実行することができる。
(7)上記形態のロボットシステムにおいて、前記ロボットは水平多関節ロボットである、態様とすることもできる。
このような態様において、物体と接触する可能性が高い方向については、物体と接触を、敏感に検知するように設定することができる。一方、他の方向については、ロボットの力制御に起因して接触検出が行われてしまう可能性を低減することができる。
上記形態のロボットシステムにおいて、前記アームは、互いに平行な方向を回転軸として回転する複数のアーム要素を備え、前記複数のアーム要素の回転軸と垂直な方向を回転軸とするアーム要素を備えず、前記第1回転方向は、前記複数のアーム要素の回転軸と平行な方向である、態様とすることもできる。
このような態様において、アーム要素が移動する回転方向についての第1力閾値が、他の方向についての第2力閾値よりも小さく設定される。すなわち、アーム要素の移動によって他の構成要素と接触する可能性が高い方向については、第1トルク閾値が小さく設定される。このため、アーム要素の移動によって他の構成要素と接触する可能性が高い方向については、アーム要素の移動による他の構成要素と接触を、敏感に検知することができる。一方、他の方向については、ロボットの力制御に起因してアームの減速が実行されてしまう可能性を低減することができる。
上述した本発明の各形態の有する複数の構成要素はすべてが必須のものではなく、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、適宜、前記複数の構成要素の一部の構成要素について、その変更、削除、新たな他の構成要素との差し替え、限定内容の一部削除を行うことが可能である。また、上述の課題の一部又は全部を解決するため、あるいは、本明細書に記載された効果の一部又は全部を達成するために、上述した本発明の一形態に含まれる技術的特徴の一部又は全部を上述した本発明の他の形態に含まれる技術的特徴の一部又は全部と組み合わせて、本発明の独立した一形態とすることも可能である。
1…ロボットシステム、25…ロボット制御装置、30…動作制御装置、50…教示装置、53…受付部、57…入力装置、58…出力装置、100…ロボット、110…アーム、110a〜110c…アーム要素、180…基台、190…力検出部、200…エンドエフェクター、301…CPU、302…RAM、303…ROM、400,400b…パーソナルコンピューター、410a〜410d…サーボモーター、410v1,410v2…サーボモーター、420,420a〜420d…エンコーダー、420v,420v1,420v2…エンコーダー、500…クラウドサービス、501…CPU、502…RAM、503…ROM、510a〜510d…減速機、510v1,510v2…減速機、700…車両、710…慣性計測装置(IMU)、B01,B02…ボタン、Cf1,Cf2…力閾値の値、Ct1,Ct2…トルク閾値の値、Da…サーボモーター410a〜410dの回転角度、Dc…制御量、De…回転角度Daと目標角度Dtとの偏差、Dj1,Dj2,Dj4…関節J11,J12,J14の回転方向、Dt…目標角度、Dv…サーボモーター410v1,410v2の回転角度、Fx…作用力fSのX軸方向の力成分、Fy…作用力fSのY軸方向の力成分、Fz…作用力fSのZ軸方向の力成分、J11〜J14…関節、Kpd…微分ゲイン、Kpi…積分ゲイン、Kpp…比例ゲイン、Kvd…微分ゲイン、Kvi…積分ゲイン、Kvp…比例ゲイン、O…原点、RC…ロボット座標系、S…位置、St…目標位置、Thf…非接触が推定される領域、Thfc…比較例において非接触が推定される領域、Tht…非接触が推定される領域、Thtc…比較例において非接触が推定される領域、Tu…作用力fSのU軸方向のトルク成分、Tv…作用力fSのV軸方向のトルク成分、Tw…作用力fSのW軸方向のトルク成分、U…モーターM1〜M6の角度位置の組み合わせとロボット座標系RCにおけるTCPの位置との対応関係、UI12…ユーザーインターフェイス、W1,W2…車輪、W11〜W16…入力窓、fg…重力に起因する力およびトルク、fi1…アームの動きによる慣性力に起因する力、fi2…車両の動きによる慣性力に起因する力、fm…力検出部190によって検出される力、fS…作用力、fSt…目標力、k,d,m…インピーダンス制御のパラメーター、ΔfS(t)…力偏差、ΔS…力由来補正量

Claims (7)

  1. 基台と、前記基台に支持されているアームと、前記基台に設けられ前記アームに加えられる力を検出する力検出部と、を有するロボットと、
    前記アームの力制御と、前記ロボットと物体との接触検出と、を前記力検出部の出力に基づいて行う制御部を有する制御装置と、を備える、
    ロボットシステム。
  2. 請求項1に記載のロボットシステムであって、
    前記制御部は、前記力の第1方向の力成分の大きさが第1力閾値を超えた場合と、前記力の第2方向の力成分の大きさが前記第1力閾値よりも小さい第2力閾値を超えた場合に前記接触検出に基づいて前記アームの減速を実行する、ロボットシステム。
  3. 請求項2に記載のロボットシステムであって、
    前記制御部は、前記力検出部に加えられた前記力から、前記アームに働く重力に起因する力、および前記アームの動作に起因する慣性力、を差し引いた力に基づいて、前記力制御および前記接触検出を行う、ロボットシステム。
  4. 請求項2または3に記載のロボットシステムであって、
    前記第1方向は、前記制御部が受け取った前記力制御の目標力の方向である、ロボットシステム。
  5. 請求項2に記載のロボットシステムであって、
    前記制御部は、前記力検出部に加えられたトルクの第1回転方向のトルク成分の大きさが第1トルク閾値を超えた場合と、前記力の第2回転方向のトルク成分の大きさが第1トルク閾値よりも大きい第2トルク閾値を超えた場合に前記アームの前記減速を実行する、ロボットシステム。
  6. 請求項5に記載のロボットシステムであって、
    前記制御部は、前記力検出部に加えられた前記トルクから、前記アームに働く重力に起因するトルク、および前記アームの動作よって発生する慣性力に起因するトルク、を差し引いたトルクに基づいて、前記力制御および前記接触検出を行う、ロボットシステム。
  7. 請求項1から6のいずれか1項に記載のロボットシステムであって、
    前記ロボットは水平多関節ロボットである、ロボットシステム。
JP2018138212A 2018-07-24 2018-07-24 ロボットシステム Active JP7275488B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018138212A JP7275488B2 (ja) 2018-07-24 2018-07-24 ロボットシステム
EP19187566.5A EP3599064A3 (en) 2018-07-24 2019-07-22 Robot system
CN201910661608.1A CN110774280A (zh) 2018-07-24 2019-07-22 机器人系统
US16/519,529 US20200030992A1 (en) 2018-07-24 2019-07-23 Robot System

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018138212A JP7275488B2 (ja) 2018-07-24 2018-07-24 ロボットシステム

Publications (2)

Publication Number Publication Date
JP2020015110A true JP2020015110A (ja) 2020-01-30
JP7275488B2 JP7275488B2 (ja) 2023-05-18

Family

ID=67438375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018138212A Active JP7275488B2 (ja) 2018-07-24 2018-07-24 ロボットシステム

Country Status (4)

Country Link
US (1) US20200030992A1 (ja)
EP (1) EP3599064A3 (ja)
JP (1) JP7275488B2 (ja)
CN (1) CN110774280A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021171838A (ja) * 2020-04-21 2021-11-01 株式会社東芝 ピッキング装置、制御装置、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210387354A1 (en) * 2018-11-01 2021-12-16 Fuji Corporation Automatic workpiece carrying machine
JP7283994B2 (ja) * 2019-06-21 2023-05-30 ファナック株式会社 ロボットの制御装置およびプログラミング装置
KR20190117421A (ko) * 2019-09-27 2019-10-16 엘지전자 주식회사 운송 로봇 및 그의 제어 방법
WO2021182243A1 (ja) * 2020-03-10 2021-09-16 ファナック株式会社 ロボット制御装置
US11446825B2 (en) * 2020-04-15 2022-09-20 Shanghai Flexiv Robotics Technology Co., Ltd. Method for estimating a direction of gravity with respect to a robot
TWI742990B (zh) 2021-01-19 2021-10-11 財團法人工業技術研究院 機械手臂系統、其控制方法及其電腦程式產品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021287A (ja) * 2004-07-09 2006-01-26 Univ Waseda ロボットの接触力検出装置
JP2015217451A (ja) * 2014-05-14 2015-12-07 ファナック株式会社 外力監視機能を有するワーク搬送方法システム
JP2017077608A (ja) * 2015-10-21 2017-04-27 ファナック株式会社 ロボットの安全監視装置
JP2017177293A (ja) * 2016-03-30 2017-10-05 ファナック株式会社 人協働型のロボットシステム
JP2018051635A (ja) * 2016-09-26 2018-04-05 セイコーエプソン株式会社 ロボット制御装置、ロボットおよびロボットシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6044511B2 (ja) * 2013-11-05 2016-12-14 トヨタ自動車株式会社 ロボットの制御方法及びロボットシステム
CN106068175B (zh) * 2014-03-14 2020-04-28 索尼公司 机器人手臂设备、机器人手臂控制方法及程序
JP6193816B2 (ja) * 2014-06-20 2017-09-06 ファナック株式会社 アームの退避機能を有する多関節ロボット
JP5927284B1 (ja) * 2014-12-22 2016-06-01 ファナック株式会社 人との接触力を検出してロボットを停止させるロボット制御装置
CN106239516B (zh) * 2015-06-03 2021-09-24 精工爱普生株式会社 机器人控制装置、机器人以及机器人系统
JP6693098B2 (ja) * 2015-11-26 2020-05-13 セイコーエプソン株式会社 ロボット、及びロボットシステム
KR20180084841A (ko) * 2015-12-01 2018-07-25 카와사키 주코교 카부시키 카이샤 로봇 시스템의 감시장치
JP2018138212A (ja) 2018-05-11 2018-09-06 メディア株式会社 歯周病診断支援装置及びその方法並びにプログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021287A (ja) * 2004-07-09 2006-01-26 Univ Waseda ロボットの接触力検出装置
JP2015217451A (ja) * 2014-05-14 2015-12-07 ファナック株式会社 外力監視機能を有するワーク搬送方法システム
JP2017077608A (ja) * 2015-10-21 2017-04-27 ファナック株式会社 ロボットの安全監視装置
JP2017177293A (ja) * 2016-03-30 2017-10-05 ファナック株式会社 人協働型のロボットシステム
JP2018051635A (ja) * 2016-09-26 2018-04-05 セイコーエプソン株式会社 ロボット制御装置、ロボットおよびロボットシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021171838A (ja) * 2020-04-21 2021-11-01 株式会社東芝 ピッキング装置、制御装置、及びプログラム

Also Published As

Publication number Publication date
CN110774280A (zh) 2020-02-11
US20200030992A1 (en) 2020-01-30
EP3599064A2 (en) 2020-01-29
EP3599064A3 (en) 2020-03-11
JP7275488B2 (ja) 2023-05-18

Similar Documents

Publication Publication Date Title
JP7275488B2 (ja) ロボットシステム
JP6860498B2 (ja) ロボットシステムの監視装置
US9821459B2 (en) Multi-joint robot having function for repositioning arm
US10434646B2 (en) Robot control apparatus, robot, and robot system
US9037293B2 (en) Robot
TWI759592B (zh) 機器人之控制裝置
US10377043B2 (en) Robot control apparatus, robot, and robot system
KR101498835B1 (ko) 7축 다관절 로봇의 제어방법, 제어 프로그램 및 로봇 제어장치
CN109129525B (zh) 机器人的负载重心位置推定装置及负载重心位置推定方法
JP2016190292A (ja) ロボット制御装置、ロボットシステムおよびロボット制御方法
JP4396553B2 (ja) ロボット制御装置,コンピュータプログラム
CN112873198B (zh) 机器人系统的控制方法
JP2017077600A (ja) マニピュレータ装置
JP5569953B2 (ja) 高速高精度な接触作業に適用するロボット制御システム、ロボット制御方法、ロボット制御装置、およびプログラム
JP7459530B2 (ja) 教示方法およびロボットシステム
CN112118940B (zh) 机械手的直接教示装置以及直接教示方法
TWI753287B (zh) 機器人之控制裝置
JP2021079463A (ja) ロボットシステムの制御方法
WO2021182356A1 (ja) ロボットの制御装置、ロボットシステム、ロボット制御方法
WO2023171281A1 (ja) ロボット、ロボット制御方法、及び、ロボット制御プログラム
JP7537195B2 (ja) 力制御パラメーター調整方法、ロボットシステムおよび力制御パラメーター調整プログラム
JP2023007773A (ja) 教示支援装置
JP2021091060A (ja) 制御方法およびロボットシステム
JP2020157459A (ja) 制御方法およびロボットシステム

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20180910

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181121

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20200810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210622

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210917

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20211108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7275488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150