JP2020009548A5 - - Google Patents

Download PDF

Info

Publication number
JP2020009548A5
JP2020009548A5 JP2018126882A JP2018126882A JP2020009548A5 JP 2020009548 A5 JP2020009548 A5 JP 2020009548A5 JP 2018126882 A JP2018126882 A JP 2018126882A JP 2018126882 A JP2018126882 A JP 2018126882A JP 2020009548 A5 JP2020009548 A5 JP 2020009548A5
Authority
JP
Japan
Prior art keywords
lithium ion
bonds
storage device
negative electrode
conjugated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018126882A
Other languages
Japanese (ja)
Other versions
JP7237296B2 (en
JP2020009548A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018126882A priority Critical patent/JP7237296B2/en
Priority claimed from JP2018126882A external-priority patent/JP7237296B2/en
Publication of JP2020009548A publication Critical patent/JP2020009548A/en
Publication of JP2020009548A5 publication Critical patent/JP2020009548A5/ja
Application granted granted Critical
Publication of JP7237296B2 publication Critical patent/JP7237296B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (6)

少なくとも負極、リチウムイオン伝導体、正極から構成され、該負極と正極の間に該リチウムイオン伝導体が正負極と接して設けられているリチウムイオンの挿入脱離が可能な蓄電デバイスにおいて、少なくとも該負極又は正極のいずれか一方の表面が、二重結合と単結合が交互に並んだ構造の共役π電子系が直線的な分子鎖に沿って連なる一次元構造及び、エステル結合、エーテル結合、チオエーテル(スルフィド)結合、カルボニル基、環状構造の群から選択される一種以上の構造から成る層で被覆され、該被覆層が加熱により変形が容易な熱可塑性樹脂とリチウムイオン伝導性粒子を含有し、
上記負極又は正極の少なくともいずれか一方が、少なくとも活物質と導電助剤と加熱により変形が容易な熱可塑性樹脂とリチウムイオン伝導性粒子と、二重結合と単結合が交互に並んだ構造の共役π電子系が直線的な分子鎖に沿って連なる一次元構造のポリマーもしくはオリゴマーから成り、
前記負極の主活物質がシリコン、シリコン合金、酸化シリコン、スズ合金、から成る群から選択される一種類以上の材料の微粉である、
ことを特徴とする蓄電デバイス。
In a storage device capable of inserting and removing lithium ions, which is composed of at least a negative electrode, a lithium ion conductor, and a positive electrode, and the lithium ion conductor is provided between the negative electrode and the positive electrode in contact with the positive and negative electrodes, at least the said. A one-dimensional structure in which conjugated π-electron systems having a structure in which double bonds and single bonds are alternately arranged on the surface of either the negative electrode or the positive electrode are connected along a linear molecular chain, and ester bonds, ether bonds, and thioethers. It is coated with a layer consisting of one or more structures selected from the group of (sulfide) bonds, carbonyl groups, and cyclic structures, and the coating layer contains a thermoplastic resin and lithium ion conductive particles that are easily deformed by heating.
At least one of the negative electrode and the positive electrode is conjugated with a structure in which at least an active material, a conductive auxiliary agent, a thermoplastic resin easily deformed by heating, lithium ion conductive particles, and double bonds and single bonds are alternately arranged. It consists of a polymer or oligomer with a one-dimensional structure in which the π-electron system is connected along a linear molecular chain.
The main active material of the negative electrode is fine powder of one or more kinds of materials selected from the group consisting of silicon, silicon alloy, silicon oxide, and tin alloy.
A power storage device characterized by this.
前記負極又は正極のいずれか一方の表面を被覆する層が、少なくとも幹ポリマーの枝分かれ部分が二重結合と単結合が交互に並んだ構造の共役π電子系が直線的な分子鎖に沿って連なる一次元構造を有する導電性ポリマー構造で、エステル結合、エーテル結合、チオエーテル(スルフィド)結合、カルボニル基、環状構造の群から選択される一種以上の結合含有の架橋構造も有するグラフトポリマーから成ることを特徴とする請求項1記載の蓄電デバイス。The layer covering the surface of either the negative electrode or the positive electrode is formed by connecting conjugated π-electron systems having a structure in which at least the branched portions of the stem polymer are alternately double-bonded and single-bonded along a linear molecular chain. It is a conductive polymer structure having a one-dimensional structure, and is composed of a graft polymer having a crosslinked structure containing one or more bonds selected from the group of ester bonds, ether bonds, thioether (sulfide) bonds, carbonyl groups, and cyclic structures. The power storage device according to claim 1, characterized by this. 前記負極と正極間に設けられたリチウムイオン伝導体が、少なくとも、平均繊維径1μm以下のガラス繊維の不織布加熱により変形が容易な熱可塑性樹脂とリチウムイオン伝導性固体電解質粒子と、二重結合と単結合が交互に並んだ構造の共役π電子系が直線的な分子鎖に沿って連なる一次元構造のポリマーもしくはオリゴマーから成ることを特徴とする請求項1記載の蓄電デバイス。 The lithium ion conductor provided between the negative electrode and the positive electrode is double-layered with at least a glass fiber non-woven fabric having an average fiber diameter of 1 μm or less, a thermoplastic resin easily deformed by heating, and lithium ion conductive solid electrolyte particles. The power storage device according to claim 1, wherein the conjugated π-electron system having a structure in which bonds and single bonds are alternately arranged is composed of a polymer or an oligomer having a one-dimensional structure in which the conjugated π-electron system is connected along a linear molecular chain. 前記リチウムイオン伝導性粒子が、硫化物系リチウムイオン導電体、NASICON型リチウムイオン伝導体、ペロブスカイト型リチウムイオン伝導体、ガーネット型リチウムイオン導電体、酸化タングステン、酸化モリブデン、酸化ニオブ、から成る群から選択される一種類以上のイオン伝導性粒子であることを特徴とする請求項記載の蓄電デバイス。 The lithium ion conductive particles consist of a group consisting of a sulfide-based lithium ion conductor, a NASICON type lithium ion conductor, a perovskite type lithium ion conductor, a garnet type lithium ion conductor, tungsten oxide, molybdenum oxide, and niobium oxide. The power storage device according to claim 1 , wherein the storage device is one or more types of ion conductive particles to be selected. 少なくとも、平均繊維径1μm以下のガラス繊維の不織布と、熱可塑性樹脂と、リチウムイオン伝導性固体電解質粒子と、二重結合と単結合が交互に並んだ構造の共役π電子系が直線的な分子鎖に沿って連なる一次元構造の導電性ポリマーもしくはオリゴマーとから成り、At least a linear molecule of a glass fiber non-woven fabric with an average fiber diameter of 1 μm or less, a thermoplastic resin, lithium ion conductive solid electrolyte particles, and a conjugated π-electron system having a structure in which double bonds and single bonds are alternately arranged. It consists of a one-dimensional conductive polymer or oligomer that runs along a chain.
該熱可塑性樹脂の比率は20〜50重量% 、該導電性ポリマーもしくはオリゴマーの比率は10〜50重量% 、該リチウムイオン伝導性固体電解質粒子の比率は20〜60重量% 、該ガラス繊維の不織布の比率は10〜50重量%であることを特徴とする蓄電デバイス用シート状固体電解質。The ratio of the thermoplastic resin is 20 to 50% by weight, the ratio of the conductive polymer or oligomer is 10 to 50% by weight, the ratio of the lithium ion conductive solid electrolyte particles is 20 to 60% by weight, and the non-woven fabric of the glass fiber. A sheet-like solid electrolyte for a power storage device, characterized in that the ratio of the above is 10 to 50% by weight.
前記リチウムイオン伝導性固体電解質粒子が、硫化物系リチウムイオン導電体、NASICON型リチウムイオン伝導体、ペロブスカイト型リチウムイオン伝導体、ガーネット型リチウムイオン導電体から成る群から選択される一種類以上の固体電解質粒子であることを特徴とする請求項6記載の蓄電デバイス用シート状固体電解質。One or more types of solids in which the lithium ion conductive solid electrolyte particles are selected from the group consisting of sulfide-based lithium ion conductors, NASICON type lithium ion conductors, perovskite type lithium ion conductors, and garnet type lithium ion conductors. The sheet-like solid electrolyte for a power storage device according to claim 6, which is an electrolyte particle.
JP2018126882A 2018-07-03 2018-07-03 storage device Active JP7237296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018126882A JP7237296B2 (en) 2018-07-03 2018-07-03 storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018126882A JP7237296B2 (en) 2018-07-03 2018-07-03 storage device

Publications (3)

Publication Number Publication Date
JP2020009548A JP2020009548A (en) 2020-01-16
JP2020009548A5 true JP2020009548A5 (en) 2021-05-27
JP7237296B2 JP7237296B2 (en) 2023-03-13

Family

ID=69152029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018126882A Active JP7237296B2 (en) 2018-07-03 2018-07-03 storage device

Country Status (1)

Country Link
JP (1) JP7237296B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158957A1 (en) * 2019-01-29 2020-08-06 パイオトレック株式会社 Production method for conductive polymer inorganic solid electrolyte secondary battery
JP2021163622A (en) * 2020-03-31 2021-10-11 住友化学株式会社 Solid electrolyte-containing layer
CN113410432B (en) * 2020-05-08 2022-05-27 珠海冠宇电池股份有限公司 Negative plate, preparation method and lithium ion battery comprising negative plate
JPWO2021241402A1 (en) * 2020-05-29 2021-12-02
CN112125339B (en) * 2020-09-17 2022-08-26 江西师范大学 Method for forming tungsten oxide and carbon nanosheet composite sodium storage material with single crystal face
CN112701348B (en) * 2020-12-28 2024-01-12 南方科技大学 Polymer solid electrolyte, all-solid lithium battery and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831429A (en) * 1994-07-21 1996-02-02 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte battery
JP3736045B2 (en) * 1997-06-19 2006-01-18 松下電器産業株式会社 All solid lithium battery
JPH11260336A (en) * 1998-03-06 1999-09-24 Hitachi Maxell Ltd Polymer electrolyte battery
JP4505886B2 (en) * 1999-06-29 2010-07-21 ソニー株式会社 Solid electrolyte battery
JP5094013B2 (en) * 2004-12-10 2012-12-12 キヤノン株式会社 ELECTRODE STRUCTURE FOR LITHIUM SECONDARY BATTERY AND SECONDARY BATTERY HAVING THE ELECTRODE STRUCTURE
JP2008103258A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
JP2011154902A (en) * 2010-01-27 2011-08-11 Toyota Motor Corp All-solid battery
JP2017199639A (en) * 2016-05-01 2017-11-02 川上 総一郎 Electrode structure for power storage device, power storage device, and method for manufacturing electrode structure

Similar Documents

Publication Publication Date Title
JP2020009548A5 (en)
Lee et al. Stretchable ionics–a promising candidate for upcoming wearable devices
US11502357B2 (en) Lithium ion conducting protective film and method of use
Chen et al. A three‐dimensionally interconnected carbon nanotube–conducting polymer hydrogel network for high‐performance flexible battery electrodes
Wang et al. Manganese oxide micro-supercapacitors with ultra-high areal capacitance
Kim et al. Air-stable, high-performance, flexible microsupercapacitor with patterned ionogel electrolyte
JP4802680B2 (en) Actuator
US9413001B2 (en) Functionalized carbon nanotube composite
JP2017517835A5 (en)
Rhodes et al. Nanoscale polymer electrolytes: ultrathin electrodeposited poly (phenylene oxide) with solid-state ionic conductivity
CN110546790A (en) Battery cell with electrolyte diffusion material
CN109149992B (en) Improved friction nano generator
ATE492920T1 (en) BATTERY, IN PARTICULAR MICROBATTERY, AND THEIR PRODUCTION USING WAFER-LEVEL TECHNOLOGY
CN102460618B (en) Ionic polymer metal composite capacitor
US20120228999A1 (en) Actuator
JP2017069195A (en) battery
Ramesh et al. Self‐healable conductive materials
US20130328441A1 (en) Polymer actuator device system
KR20140118513A (en) flexible/stretchable transparent film having conductivity and manufacturing method thereof
Ahn et al. Self-supplied nano-fusing and transferring metal nanostructures via surface oxide reduction
KR101809361B1 (en) Flexible Memristors for Application in Neural Devices and Method of forming the same
JP2018060815A (en) Electrode material for lithium electrochemical cell
CN103688388B (en) Separator and accumulator for accumulator
Mahadeva et al. Nanocoating of ionic liquid and polypyrrole for durable electro-active paper actuators working under ambient conditions
Terasawa et al. Performance enhancement of PEDOT: poly (4-styrenesulfonate) actuators by using ethylene glycol