JP2011154902A - All-solid battery - Google Patents

All-solid battery Download PDF

Info

Publication number
JP2011154902A
JP2011154902A JP2010015744A JP2010015744A JP2011154902A JP 2011154902 A JP2011154902 A JP 2011154902A JP 2010015744 A JP2010015744 A JP 2010015744A JP 2010015744 A JP2010015744 A JP 2010015744A JP 2011154902 A JP2011154902 A JP 2011154902A
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrode layer
sulfide
layer
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010015744A
Other languages
Japanese (ja)
Inventor
Yukiyoshi Ueno
幸義 上野
Masato Kamiya
正人 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2010015744A priority Critical patent/JP2011154902A/en
Publication of JP2011154902A publication Critical patent/JP2011154902A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an all-solid battery capable of imparting uniform surface pressure to a unit cell without lowering energy density. <P>SOLUTION: The all-solid battery includes at least one unit cell having a solid electrolyte layer existing between a positive electrode layer and a negative electrode layer. The positive electrode layer, the negative electrode layer and the solid electrolyte layer include sulfide based solid electrolyte as electrolyte. In at least one of the positive electrode layer, the negative electrode layer and the solid electrolyte layer, the Young's modulus of the sulfide based solid electrolyte in an outer periphery region of the layer is smaller than the Young's modulus of the sulfide based solid electrolyte in an inside region located inside the outer periphery region. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、全固体電池に関する。   The present invention relates to an all solid state battery.

近年、パソコン、ビデオカメラ、携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界においても、電気自動車やハイブリッド自動車用の高出力且つ高容量の電池の開発が進められている。各種電池の中でも、エネルギー密度と出力が高いことから、リチウム二次電池が注目されている。   In recent years, with the rapid spread of information-related equipment such as personal computers, video cameras, and mobile phones, and communication equipment, development of batteries that are used as power sources has been regarded as important. Also in the automobile industry, development of high-power and high-capacity batteries for electric vehicles and hybrid vehicles is underway. Among various batteries, lithium secondary batteries are attracting attention because of their high energy density and output.

正極層と負極層との間に配置される電解質層として、可燃性の有機電解液を用いるリチウム二次電池は、液漏れの他、短絡や過充電などを想定した安全対策が欠かせない。特に、高出力、高容量の電池は、さらなる安全性の向上が求められる。そこで、電解質として、硫化物系固体電解質や酸化物系固体電解質等の不燃性の無機固体電解質を用いた全固体リチウム二次電池等、全固体電池の研究開発も進められている。無機固体電解質としては、イオン伝導性の観点から、特に硫化物系ガラス体や硫化物系結晶体等の硫化物系固体電解質が注目されている。   As a lithium secondary battery using a flammable organic electrolyte as an electrolyte layer disposed between the positive electrode layer and the negative electrode layer, in addition to liquid leakage, safety measures assuming short circuit or overcharge are indispensable. In particular, high-power, high-capacity batteries are required to further improve safety. Therefore, research and development of all-solid-state batteries such as all-solid lithium secondary batteries using non-combustible inorganic solid electrolytes such as sulfide-based solid electrolytes and oxide-based solid electrolytes are being promoted. As the inorganic solid electrolyte, a sulfide-based solid electrolyte such as a sulfide-based glass body or a sulfide-based crystal body has attracted attention from the viewpoint of ion conductivity.

全固体電池においては、所望の容量及び電圧を得るため、通常、正極層、固体電解質層及び負極層がこの順序で配置された単電池を、複数個電気的に接続させる。具体的には、正極層、固体電解質層及び負極層が順に積層した単電池を複数積層させたり、或いは、帯状の基材上に電極層や固体電解質層が形成された電極体を捲回させることで複数の単電池を接続させることができる。このように接続された単電池群には、単電池を構成する各層間の抵抗や各単電池を構成する各層内における抵抗を減らすため、また、単電池間の抵抗を減らすために拘束力が付加される。   In an all solid state battery, in order to obtain a desired capacity and voltage, usually, a plurality of unit cells in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are arranged in this order are electrically connected. Specifically, a plurality of unit cells in which a positive electrode layer, a solid electrolyte layer, and a negative electrode layer are sequentially stacked are stacked, or an electrode body in which an electrode layer or a solid electrolyte layer is formed on a belt-shaped substrate is wound. Thus, a plurality of single cells can be connected. The unit cell group connected in this way has a binding force to reduce the resistance between the layers constituting the unit cell, the resistance in each layer constituting the unit cell, and the resistance between the unit cells. Added.

全固体電池は、上記拘束力により単電池を構成する各層に付与される面圧に、バラツキが生じやすいという問題がある。特に、正極層や負極層の剥落等を原因とする短絡を防止すべく、これら電極層の周囲に絶縁体を配置した構造を有する全固体電池では、電極層や固体電解質層の外周部と外周部の内側とで、面圧に差が生じやすい。面圧のバラツキは、各層間の接触抵抗や反応抵抗にムラを生じさせ、その結果としてさらに電池の性能ムラを生じさせる。また、面圧のバラツキは、電池の耐久性を低下させる。
そこで、従来、電極層や固体電解質層にかかる面圧のバラツキを解消すべく、様々な技術が提案されている。例えば、特許文献1には、集電体の一面に正極を設け、他面に負極を設けたバイポーラ電極を、前記正極都前記負極の間にセパレータを介在させて複数積層することで、前記正極、前記負極、及び前記セパレータによって構成された単電池が複数積層されたバイポーラ電池であって、前記単電池の周囲を取り囲み且つ前記集電体同士の間に設けられたシール材を有し、前記正極及び前記負極の存在する部分の前記積層方向の厚さが、前記シール材の存在する部分の前記積層方向の厚さ以上であるバイポーラ電池が開示されている。
The all-solid-state battery has a problem that the surface pressure applied to each layer constituting the unit battery is likely to vary due to the binding force. In particular, in an all-solid battery having a structure in which an insulator is arranged around these electrode layers in order to prevent a short circuit caused by peeling off of the positive electrode layer and the negative electrode layer, the outer periphery and outer periphery of the electrode layer and the solid electrolyte layer Difference in surface pressure is likely to occur between the inside and the inside of the part. The variation in surface pressure causes unevenness in contact resistance and reaction resistance between the respective layers, and as a result, further causes unevenness in battery performance. Moreover, the variation in surface pressure reduces the durability of the battery.
In view of this, various techniques have been proposed in order to eliminate variations in the surface pressure applied to the electrode layer and the solid electrolyte layer. For example, in Patent Document 1, a plurality of bipolar electrodes, each having a positive electrode on one surface and a negative electrode on the other surface, are stacked with a separator interposed between the positive electrodes. A bipolar battery in which a plurality of unit cells constituted by the negative electrode and the separator are laminated, and has a sealing material that surrounds the unit cell and is provided between the current collectors, A bipolar battery is disclosed in which the thickness in the stacking direction of the portion where the positive electrode and the negative electrode are present is equal to or greater than the thickness in the stacking direction of the portion where the sealing material is present.

特開2006−54119号公報JP 2006-54119 A

しかしながら、特許文献1のバイポーラ電池では、発電に直接寄与しない部材を設けるため、電池のエネルギー密度が低下してしまう。
また、本発明者らの検討の結果、無機固体電解質として硫化物系結晶体を用いる場合、硫化物系結晶体の硬度が高いために、単電池の各層に作用する面圧のバラツキが特に生じやすいことが見出された。また、本発明者らは、単電池の各層に作用する面圧を大きくすることで、全固体電池の耐久性が向上するという知見を得た。
However, since the bipolar battery of Patent Document 1 is provided with a member that does not directly contribute to power generation, the energy density of the battery is reduced.
Further, as a result of the study by the present inventors, when a sulfide-based crystal is used as the inorganic solid electrolyte, the surface pressure acting on each layer of the unit cell varies particularly due to the high hardness of the sulfide-based crystal. It was found easy. Further, the present inventors have found that the durability of the all-solid battery is improved by increasing the surface pressure acting on each layer of the unit cell.

本発明は、上記実情を鑑みて成し遂げられたものであり、エネルギー密度を低下させることなく、単電池への均一な面圧付与が可能な全固体電池を提供することを目的とする。   The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide an all solid state battery capable of imparting a uniform surface pressure to a single cell without reducing the energy density.

本発明の全固体電池は、正極層と負極層との間に固体電解質層が介在してなる単電池を少なくとも1つ備える全固体電池であって、前記正極層、前記負極層及び前記固体電解質層は、電解質として硫化物系固体電解質を含み、前記正極層、前記負極層及び前記固体電解質層の少なくとも1つにおいて、該層の外周領域に含まれる前記硫化物系固体電解質のヤング率が、前記外周領域の内側に位置する内側領域に含まれる前記硫化物系固体電解質のヤング率よりも小さいことを特徴とする。
本発明の全固体電池は、上記のように、単電池を構成する少なくとも1層において、外周領域が相対的にヤング率の小さい硫化物系固体電解質を含み、内側領域が相対的にヤング率の大きい硫化物系固体電解質を含む。このように、外周領域のヤング率を小さくすることで、該外周領域にかかる面圧を大きくすることができ、面圧のバラツキを緩和することができる。
The all solid state battery of the present invention is an all solid state battery comprising at least one unit cell in which a solid electrolyte layer is interposed between a positive electrode layer and a negative electrode layer, the positive electrode layer, the negative electrode layer, and the solid electrolyte. The layer includes a sulfide-based solid electrolyte as an electrolyte, and at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer has a Young's modulus of the sulfide-based solid electrolyte included in an outer peripheral region of the layer, The Young's modulus of the sulfide-based solid electrolyte contained in the inner region located inside the outer peripheral region is smaller.
As described above, the all solid state battery of the present invention includes a sulfide-based solid electrolyte in which the outer peripheral region has a relatively small Young's modulus and the inner region has a relatively Young's modulus in at least one layer constituting the single cell. Contains a large sulfide-based solid electrolyte. Thus, by reducing the Young's modulus of the outer peripheral region, the surface pressure applied to the outer peripheral region can be increased, and variations in the surface pressure can be reduced.

上記のようにヤング率の異なる硫化物系固体電解質の組み合わせとしては、例えば、前記外周領域に含まれる前記硫化物系固体電解質が硫化物系ガラス体であり、前記内側領域に含まれる前記硫化物系固体電解質が硫化物系結晶体である、組み合わせが挙げられる。   As a combination of sulfide-based solid electrolytes having different Young's moduli as described above, for example, the sulfide-based solid electrolyte contained in the outer peripheral region is a sulfide-based glass body, and the sulfide contained in the inner region A combination in which the solid electrolyte is a sulfide crystal is exemplified.

本発明によれば、全固体電池において、エネルギー密度を低下させることなく、単電池の面圧のバラツキを緩和することが可能である。すなわち、本発明は、全固体電池の耐久性及び発電性能の向上、さらには、高容量化に貢献するものである。   According to the present invention, in the all-solid-state battery, it is possible to reduce the variation in the surface pressure of the unit cell without reducing the energy density. That is, the present invention contributes to the improvement of durability and power generation performance of the all solid state battery, and further to the increase in capacity.

硫化物系固体電解質を用いた全固体電池の性能劣化と面圧の関係を示すグラフである。It is a graph which shows the relationship between the performance deterioration of an all-solid-state battery using a sulfide type solid electrolyte, and surface pressure. 本発明の全固体電池の一形態例を示す分解斜視図である。It is a disassembled perspective view which shows one example of an all-solid-state battery of this invention. 本発明の全固体電池の他の形態を示す分解斜視図である。It is a disassembled perspective view which shows the other form of the all-solid-state battery of this invention. 実施例と比較例の面圧分布を示すグラフである。It is a graph which shows the surface pressure distribution of an Example and a comparative example.

本発明の全固体電池は、正極層と負極層との間に固体電解質層が介在してなる単電池を少なくとも1つ備える全固体電池であって、前記正極層、前記負極層及び前記固体電解質層は、電解質として硫化物系固体電解質を含み、前記正極層、前記負極層及び前記固体電解質層の少なくとも1つにおいて、該層の外周領域に含まれる前記硫化物系固体電解質のヤング率が、前記外周領域の内側に位置する内側領域に含まれる前記硫化物系固体電解質のヤング率よりも小さいことを特徴とするものである。   The all solid state battery of the present invention is an all solid state battery comprising at least one unit cell in which a solid electrolyte layer is interposed between a positive electrode layer and a negative electrode layer, the positive electrode layer, the negative electrode layer, and the solid electrolyte. The layer includes a sulfide-based solid electrolyte as an electrolyte, and at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer has a Young's modulus of the sulfide-based solid electrolyte included in an outer peripheral region of the layer, The Young's modulus of the sulfide-based solid electrolyte contained in the inner region located inside the outer peripheral region is smaller.

本発明者らは、硫化物系固体電解質を用いた全固体電池において、単電池を構成する各層に作用する面圧を大きくすることで全固体電池の耐久性が向上するという知見を得た(図1参照)。図1は、正極層、固体電解質層及び負極層のいずれにも硫化物系固体電解質(Li7311)を含有する積層型の単電池に、異なる面圧を付与し、その耐久性を評価した結果である。具体的には、作製した上記積層型の単電池の抵抗値R0を測定し、その後、充放電サイクル試験を約2週間行い、該サイクル試験後の単電池の抵抗値R1を測定し、劣化率(R1/R0×100%)を算出した。 The present inventors have found that, in an all solid state battery using a sulfide-based solid electrolyte, the durability of the all solid state battery is improved by increasing the surface pressure acting on each layer constituting the unit cell ( (See FIG. 1). FIG. 1 shows the durability obtained by applying different surface pressures to a laminated unit cell containing a sulfide-based solid electrolyte (Li 7 P 3 S 11 ) in any of a positive electrode layer, a solid electrolyte layer, and a negative electrode layer. It is the result of evaluating. Specifically, the resistance value R0 of the manufactured stacked unit cell is measured, and then a charge / discharge cycle test is performed for about two weeks, and the resistance value R1 of the unit cell after the cycle test is measured, and the deterioration rate is measured. (R1 / R0 × 100%) was calculated.

また、本発明者らは、単電池を構成する各層の面方向において、外周領域で面圧が低く、内側領域で面圧が高いという知見を得た(図4「比較例」参照)。
そして、単電池を構成する正極層、負極層及び固体電解質層の少なくとも1つにおいて、該層の外周領域のヤング率を相対的に小さくし、内側領域のヤング率を相対的に大きくすることによって、外周領域の面圧を高め、面圧のバラツキを緩和できることを見出した。
Further, the present inventors have found that in the surface direction of each layer constituting the unit cell, the surface pressure is low in the outer peripheral region and the surface pressure is high in the inner region (see “Comparative Example” in FIG. 4).
In at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer constituting the unit cell, the Young's modulus in the outer peripheral region of the layer is relatively reduced, and the Young's modulus in the inner region is relatively increased. The present inventors have found that the surface pressure in the outer peripheral region can be increased and the variation in surface pressure can be reduced.

以下、図2、図3を参照しながら、本発明の全固体電池について説明する。
図2は、本発明の全固体電池における単電池の構造の一形態例を示すものである。図2に示す単電池4は、正極層2、固体電解質層1、及び負極層3がこの順序に積層した積層構造を有している。正極層2には、固体電解質層1とは反対側の面に集電体5が配置されている。負極層3には、固体電解質層1とは反対側の面に集電体6が配置されている。
単電池4において、固体電解質層1は、相対的にヤング率が小さい硫化物系固体電解質を含有する外周領域1Aと、相対的にヤング率が大きい硫化物系固体電解質を含有する内側領域1Bとからなる。正極層2及び負極層3もまた、固体電解質層1と同様、それぞれ、相対的にヤング率が小さい硫化物系固体電解質を含有する外周領域2A、3Aと、相対的にヤング率が大きい硫化物系固体電解質を含有する内側領域2B、3Bとからなる。
Hereinafter, the all solid state battery of the present invention will be described with reference to FIGS.
FIG. 2 shows an example of the structure of the unit cell in the all solid state battery of the present invention. The unit cell 4 shown in FIG. 2 has a laminated structure in which the positive electrode layer 2, the solid electrolyte layer 1, and the negative electrode layer 3 are laminated in this order. In the positive electrode layer 2, a current collector 5 is disposed on the surface opposite to the solid electrolyte layer 1. In the negative electrode layer 3, a current collector 6 is disposed on the surface opposite to the solid electrolyte layer 1.
In the unit cell 4, the solid electrolyte layer 1 includes an outer peripheral region 1A containing a sulfide-based solid electrolyte having a relatively small Young's modulus, and an inner region 1B containing a sulfide-based solid electrolyte having a relatively large Young's modulus. Consists of. Similarly to the solid electrolyte layer 1, the positive electrode layer 2 and the negative electrode layer 3 are also outer peripheral regions 2 </ b> A and 3 </ b> A containing sulfide-based solid electrolytes having a relatively small Young's modulus, and sulfides having a relatively large Young's modulus. And inner regions 2B and 3B containing a solid electrolyte.

ここで、各層の外周領域とは、層の面方向中央部を取り囲むように、層の外周端から層の中央部に向かって拡がる領域であり、内側領域とは、該外周領域の取り囲まれた面方向中央部を含む領域である。各領域の具体的な分布形態は、特に限定されず、単電池の形状、拘束形態等に応じて適宜設計すればよい。   Here, the outer peripheral region of each layer is a region extending from the outer peripheral edge of the layer toward the central portion of the layer so as to surround the central portion in the plane direction of the layer, and the inner region is surrounded by the outer peripheral region. It is an area including the center in the surface direction. The specific distribution form of each region is not particularly limited, and may be appropriately designed according to the shape of the unit cell, the restraint form, and the like.

本発明では、正極層、負極層及び固体電解質層の少なくとも1つにおいて、相対的にヤング率の小さい硫化物系固体電解質を外周領域に含有させ、且つ、相対的にヤング率の大きい硫化物系固体電解質を内側領域に含有させることによって、該層の外周領域のヤング率を相対的に小さくし、内側領域のヤング率を相対的に大きくする。このように単電池を構成する正極層、負極層及び固体電解質層の少なくとも1つにおいて、面方向にヤング率の異なる領域を分布させることによって、面圧のバラツキを緩和することができる。しかも、各領域のヤング率を固体電解質によって調整するため、発電に直接寄与しない材料を用いて面圧のバラツキを抑制するのとは異なり、電池のエネルギー密度の低下が生じない。   In the present invention, at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer contains a sulfide-based solid electrolyte having a relatively small Young's modulus in the outer peripheral region, and a sulfide-based compound having a relatively large Young's modulus. By including the solid electrolyte in the inner region, the Young's modulus of the outer peripheral region of the layer is relatively reduced, and the Young's modulus of the inner region is relatively increased. As described above, in at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer constituting the unit cell, the variation in the surface pressure can be reduced by distributing the regions having different Young's moduli in the surface direction. In addition, since the Young's modulus of each region is adjusted by a solid electrolyte, the energy density of the battery does not decrease unlike the case where the variation in surface pressure is suppressed using a material that does not directly contribute to power generation.

図2では、単電池を構成する正極層、負極層及び固体電解質層のいずれにおいても、ヤング率の異なる硫化物系固体電解質を含有する外周領域と内側領域とを分布させているが、外周領域と内側領域を分布させる層は、正極層、負極層及び固体電解質層のいずれか1層でもよいし、任意の2層でもよい。例えば、図3の(3A)〜(3C)に示すように、正極層2のみにおいて外周領域2A及び内側領域2Bを分布させてもよいし、固体電解質層1のみにおいて外周領域1A及び内側領域1Bを分布させてもよいし、負極層3のみにおいて外周領域3A及び内側領域3Bを分布させてもよい。   In FIG. 2, the outer peripheral region and the inner region containing sulfide-based solid electrolytes having different Young's moduli are distributed in any of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer constituting the unit cell. The layer for distributing the inner region may be any one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, or may be any two layers. For example, as shown in (3A) to (3C) of FIG. 3, the outer peripheral region 2A and the inner region 2B may be distributed only in the positive electrode layer 2, or the outer peripheral region 1A and the inner region 1B only in the solid electrolyte layer 1. The outer peripheral region 3A and the inner region 3B may be distributed only in the negative electrode layer 3.

以下、固体電池の構成部材について説明する。
正極層及び負極層は、電極活物質及び硫化物系固体電解質を含有し、必要に応じて、導電助剤や結着材等を含有する。
電極活物質としては、特に限定されず、例えばリチウム二次電池に利用可能な物質を用いることができる。
Hereinafter, the constituent members of the solid state battery will be described.
The positive electrode layer and the negative electrode layer contain an electrode active material and a sulfide-based solid electrolyte, and contain a conductive additive, a binder, and the like as necessary.
The electrode active material is not particularly limited, and for example, a material that can be used for a lithium secondary battery can be used.

具体的には、正極活物質としては、ニッケルコバルトマンガン酸リチウム(LiNiCo1−y−xMn2)、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMnO2)、鉄オリビン(LiFePO4)、コバルトオリビン(LiCoPO4)、マンガンオリビン(LiMnPO4)、チタン酸リチウム(Li4Ti512)等のリチウム遷移金属化合物、銅シュブレル(Cu2Mo68)、硫化鉄(FeS)、硫化コバルト(CoS)、硫化ニッケル(NiS)等のカルコゲン化合物などが挙げられる。 Specifically, as the positive electrode active material, lithium nickel cobalt manganese oxide (LiNi x Co 1-y- x Mn y O 2), lithium cobalt oxide (LiCoO 2), lithium nickelate (LiNiO 2), lithium manganate Lithium transition metal compounds such as (LiMnO 2 ), iron olivine (LiFePO 4 ), cobalt olivine (LiCoPO 4 ), manganese olivine (LiMnPO 4 ), lithium titanate (Li 4 Ti 5 O 12 ), copper schrerel (Cu 2 Mo 6 S 8 ), chalcogen compounds such as iron sulfide (FeS), cobalt sulfide (CoS), nickel sulfide (NiS), and the like.

また、負極活物質としては、チタン酸リチウム(Li4Ti512)等のリチウム遷移金属化合物、La3Ni2Sn7等の金属合金、ハードカーボン、ソフトカーボン、グラファイト等の炭素材料などが挙げられる。 The negative electrode active material includes lithium transition metal compounds such as lithium titanate (Li 4 Ti 5 O 12 ), metal alloys such as La 3 Ni 2 Sn 7 , carbon materials such as hard carbon, soft carbon, and graphite. Can be mentioned.

硫化物系固体電解質としては、特に限定されず、例えば、リチウム二次電池の固体電解質として利用可能な硫化物系ガラス体や硫化物系結晶体等が挙げられる。具体的には、Li2S−P25、Li2S−SiS2、Li3.250.25Ge0.764、Li4-xGe1-xx4、Li7311、Li2S−SiS2−Li3PO4等のガラス体及び結晶体が挙げられる。これら硫化物系固体電解質のうち、Li2S−P25、Li2S−SiS2、Li2S−SiS2−Li3PO4において、硫化リチウム(Li2S)とその他化合物との割合は特に限定されないが、通常、Li2Sとその他化合物とのモル比(Li2S/その他化合物)が、1以上100未満(ただし、Li2S+その他化合物=100モルとする)であることが好ましい。 The sulfide-based solid electrolyte is not particularly limited, and examples thereof include a sulfide-based glass body and a sulfide-based crystal body that can be used as a solid electrolyte of a lithium secondary battery. Specifically, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 3.25 P 0.25 Ge 0.76 S 4 , Li 4-x Ge 1-x P x S 4 , Li 7 P 3 S 11 , Examples thereof include glass bodies and crystal bodies such as Li 2 S—SiS 2 —Li 3 PO 4 . Among these sulfide-based solid electrolytes, Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—SiS 2 —Li 3 PO 4 , lithium sulfide (Li 2 S) and other compounds the proportion is not particularly limited, it is generally possible, the molar ratio of Li 2 S and other compounds (Li 2 S / other compounds), which is less than 1 to 100 (however, the Li 2 S + other compound = 100 mol) Is preferred.

硫化物系ガラス体は、上記硫化物系固体電解質の原料を、メカニカルミリング処理または融液急冷処理を行いガラス化することで得ることができる。メカニカルミリング処理は、硫化物系固体電解質の原料を、機械的に混合、摩砕することによってガラス化し、ガラス材料を得る方法であり、一般的な方法に準じることができる。また、融液急冷処理も一般的なガラス合成方法であり、硫化物系ガラスの合成方法として採用する場合にも、一般的な方法に準じることができる。   The sulfide-based glass body can be obtained by vitrifying the sulfide-based solid electrolyte raw material by performing mechanical milling treatment or melt quenching treatment. The mechanical milling process is a method of obtaining a glass material by mechanically mixing and grinding raw materials of a sulfide-based solid electrolyte to obtain a glass material, and can be based on a general method. The melt quenching process is also a common glass synthesis method, and can be applied to a general method when employed as a synthesis method of sulfide-based glass.

硫化物系結晶体は、硫化物系ガラス体を加熱処理することによって得られる。具体的な加熱温度は、硫化物系ガラス体にもよるが、通常、100〜400℃程度でよく、好ましくは200〜300℃である。また、硫化物系ガラス体の結晶化は、高圧条件下行うことが好ましい。具体的な圧力条件は特に限定されないが、通常0.1〜5MPa程度でよく、好ましくは2〜4.5MPaである。また、ガラス体の結晶化は、上記加熱温度範囲おいて、好ましくは上記圧力条件下、通常0.1〜5時間行うことが好ましい。   The sulfide-based crystal body can be obtained by heat-treating a sulfide-based glass body. Although specific heating temperature is based also on a sulfide type glass body, about 100-400 degreeC may be sufficient normally, Preferably it is 200-300 degreeC. In addition, the crystallization of the sulfide-based glass body is preferably performed under high pressure conditions. Specific pressure conditions are not particularly limited, but may be usually about 0.1 to 5 MPa, and preferably 2 to 4.5 MPa. In addition, the crystallization of the glass body is preferably performed in the above heating temperature range, preferably under the above pressure condition, usually for 0.1 to 5 hours.

外周領域に含有させる硫化物系固体電解質及び内側領域に含有させる硫化物系固体電解質の具体的なヤング率は特に限定されず、外周領域に含有させる硫化物系固体電解質のヤング率Eが、内側領域に含有させる硫化物系固体電解質のヤング率Eよりも小さければよい。
通常は、内側領域の硫化物系固体電解質のヤング率Eに対する外周領域の硫化物系固体電解質のヤング率Eの比(E/E)が0.01〜0.8の範囲内、特に0.05〜0.5の範囲内、さらに0.1〜0.3の範囲内であることが好ましい。
Periphery sulfide-based solid electrolyte is contained in the region and the inner region specific Young's modulus of the sulfide-based solid electrolyte to be contained in is not particularly limited, but the Young's modulus E A sulfide-based solid electrolyte to be contained in the outer peripheral region, it is smaller than the Young's modulus E B of the sulfide-based solid electrolyte to be contained in the inner area.
Typically, the ratio of the Young's modulus E A sulfide-based solid electrolyte of the peripheral region with respect to the Young's modulus E B of the sulfide-based solid electrolyte of the inner region (E A / E B) is in the range of 0.01 to 0.8 In particular, it is preferably in the range of 0.05 to 0.5, more preferably in the range of 0.1 to 0.3.

外周領域の硫化物系固体電解質と内側領域の硫化物系固体電解質の組み合わせは特に限定されないが、例えば、外周領域の硫化物系固体電解質として硫化物系ガラス体、内側領域の硫化物系固体電解質として硫化物系結晶体が挙げられる。
硫化物系固体電解質のうち、硫化物系ガラス体と該硫化物系ガラス体を結晶化した硫化物系結晶体とでは、そのヤング率が異なる。具体的には、硫化物系ガラス体(Li734)のヤング率が0.088GPaであるのに対して、硫化物系結晶体(Li7311)のヤング率が0.444GPaである。このようなガラス体とガラス体を結晶化した結晶体とのヤング率の大小関係は、Li734とLi7311に限らず一般的な硫化物系固体電解質に見られる傾向である。
The combination of the sulfide-based solid electrolyte in the outer peripheral region and the sulfide-based solid electrolyte in the inner region is not particularly limited. For example, the sulfide-based glass body as the sulfide-based solid electrolyte in the outer peripheral region, the sulfide-based solid electrolyte in the inner region And sulfide-based crystals.
Among the sulfide-based solid electrolytes, the Young's modulus is different between a sulfide-based glass body and a sulfide-based crystal body obtained by crystallizing the sulfide-based glass body. Specifically, the Young's modulus of sulfide-based glass (Li 7 P 3 S 4 ) is 0.088 GPa, whereas the Young's modulus of sulfide-based crystal (Li 7 P 3 S 11 ) is 0. .444 GPa. Such a magnitude relationship of Young's modulus between a glass body and a crystal body obtained by crystallizing the glass body is not limited to Li 7 P 3 S 4 and Li 7 P 3 S 11 , but is found in general sulfide-based solid electrolytes. It is a trend.

正極層及び負極層における、電極活物質と硫化物系固体電解質の割合は特に限定されず、適宜決定することができる。
尚、本発明において、正極層及び負極層は、硫化物系固体電解質以外の固体電解質、例えば、酸化物系固体電解質等を含有していてもよい。また、正極層及び負極層の導電性を向上させるための導電助剤としては、例えば、アセチレンブラック、カーボンファイバー等を挙げることができる。
The ratio of the electrode active material and the sulfide-based solid electrolyte in the positive electrode layer and the negative electrode layer is not particularly limited and can be appropriately determined.
In the present invention, the positive electrode layer and the negative electrode layer may contain a solid electrolyte other than the sulfide-based solid electrolyte, for example, an oxide-based solid electrolyte. Moreover, as a conductive support agent for improving the electroconductivity of a positive electrode layer and a negative electrode layer, acetylene black, carbon fiber, etc. can be mentioned, for example.

固体電解質層は、少なくとも硫化物系固体電解質を含有し、必要に応じて、絶縁性無機粒子や結着材等を含有する。
硫化物系固体電解質としては、特に限定されないが、上記にて例示した硫化物系ガラス体及び硫化物系結晶体を例示することができる。
尚、本発明において、固体電解質層は、硫化物系固体電解質以外の固体電解質、例えば、酸化物系固体電解質等を含有していてもよい。
The solid electrolyte layer contains at least a sulfide-based solid electrolyte and, if necessary, contains insulating inorganic particles, a binder, and the like.
Although it does not specifically limit as a sulfide type solid electrolyte, The sulfide type glass body and sulfide type crystal body which were illustrated above can be illustrated.
In the present invention, the solid electrolyte layer may contain a solid electrolyte other than the sulfide-based solid electrolyte, for example, an oxide-based solid electrolyte.

正極層、固体電解質層及び負極層がこの順序で配置された単電池には、さらに、通常正極層及び負極層にそれぞれ集電体が設けられる。集電体としては、銅、ニッケル、銀、SUS、ルミニウム、アルミニウム合金、等、一般的な金属材料を用いることができる。   In the unit cell in which the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are arranged in this order, a current collector is usually provided in each of the positive electrode layer and the negative electrode layer. As the current collector, a general metal material such as copper, nickel, silver, SUS, ruminium, aluminum alloy, or the like can be used.

以下、本発明の全固体電池の製造方法について説明する。尚、本発明の全固体電池の製造方法は以下の方法に限られない。
まず、集電体表面に正極層を形成した正極体と集電体表面に負極層を形成した負極体を作製する。集電体表面に正極層及び負極層を形成する方法は、特に限定されない。例えば、電極活物質及び硫化物系固体電解質に、必要に応じて、結着材、導電助剤等を添加した電極材粉末を、溶媒に分散して電極材スラリーを調製し、電極材スラリーを集電体表面に塗布、乾燥する方法が挙げられる。電極材粉末を分散させる溶媒としては、特に限定されず、例えば、ヘプタン、ペンタン、オクタン、プロパン、ブタン等を挙げることができる。また、電極材スラリーの塗布方法としては、例えば、スプレー法、ダイコート法等の一般的な方法を採用することができる。
Hereafter, the manufacturing method of the all-solid-state battery of this invention is demonstrated. In addition, the manufacturing method of the all-solid-state battery of this invention is not restricted to the following method.
First, a positive electrode body having a positive electrode layer formed on the current collector surface and a negative electrode body having a negative electrode layer formed on the current collector surface are prepared. The method for forming the positive electrode layer and the negative electrode layer on the surface of the current collector is not particularly limited. For example, an electrode material powder is prepared by dispersing an electrode material powder in which a binder, a conductive additive, etc. are added to an electrode active material and a sulfide-based solid electrolyte, if necessary, in a solvent. The method of apply | coating and drying to the collector surface is mentioned. The solvent for dispersing the electrode material powder is not particularly limited, and examples thereof include heptane, pentane, octane, propane, and butane. Moreover, as a coating method of electrode material slurry, general methods, such as a spray method and a die-coating method, are employable, for example.

次に、固体電解質層を正極体の正極層又は負極体の負極層の表面に形成する。正極層又は負極層の表面に固体電解質を形成する方法は特に限定されない。例えば、硫化物系固体電解質に、必要に応じて、結着材等を添加した固体電解質粉末を溶媒に分散して固体電解質スラリーを調製し、該固体電解質スラリーを負極層又は正極層の表面に塗布、乾燥する方法が挙げられる。固体電解質粉末を分散させる溶媒としては、特に限定されず、例えば、ヘプタン、ペンタン、オクタン、プロパン、ブタン等を挙げることができる。また、固体電解質スラリーの塗布方法としては、例えば、スプレー法、ダイコート法等の一般的な方法を採用することができる。   Next, a solid electrolyte layer is formed on the surface of the positive electrode layer of the positive electrode body or the negative electrode layer of the negative electrode body. The method for forming the solid electrolyte on the surface of the positive electrode layer or the negative electrode layer is not particularly limited. For example, a solid electrolyte powder in which a binder or the like is added to a sulfide-based solid electrolyte, if necessary, is dispersed in a solvent to prepare a solid electrolyte slurry, and the solid electrolyte slurry is applied to the surface of the negative electrode layer or the positive electrode layer. The method of apply | coating and drying is mentioned. The solvent for dispersing the solid electrolyte powder is not particularly limited, and examples thereof include heptane, pentane, octane, propane, and butane. Moreover, as a method for applying the solid electrolyte slurry, for example, a general method such as a spray method or a die coating method can be employed.

正極層、固体電解質層、負極層がこの順序で積層されるように、上記にて作製した固体電解質層付き正極体と負極体、或いは、正極体と固体電解質層付き負極体を積層し、その後プレスすることで単電池が得られる。プレス圧は、特に限定されず、通常、0.1〜5トン/cm2程度でよい。 The positive electrode body with a solid electrolyte layer and the negative electrode body prepared above are laminated, or the positive electrode body and the negative electrode body with a solid electrolyte layer are laminated so that the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are laminated in this order. A single cell is obtained by pressing. The press pressure is not particularly limited, and may usually be about 0.1 to 5 ton / cm 2 .

上記単電池の作製工程において、正極層、負極層及び固体電解質層のうち、ヤング率の異なる外周領域と内側領域を有する層は、例えば、次のようにして作製することができる。すなわち、硫化物系固体電解質として硫化物系ガラス体(ヤング率が相対的に小さい)を含有する外周領域用電極材スラリーと、硫化物系固体電解質として硫化物系結晶体(ヤング率が相対的に大きい)を含有する内側領域用電極材スラリーとを、それぞれ調製し、集電体の対応する領域にそれぞれ塗布、乾燥することで、ヤング率の異なる外周領域と内側領域とを有する正極層、負極層が得られる。
同様に、硫化物系固体電解質として硫化物系ガラス体を含有する外周領域用固体電解質スラリーと、硫化物系固体電解質として硫化物系結晶体を含有する内側領域用固体電解質スラリーとを、それぞれ調製し、対応する領域にそれぞれ塗布、乾燥することで、ヤング率の異なる外周領域と内側領域とを有する固体電解質層が得られる。
In the manufacturing process of the unit cell, among the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, a layer having an outer peripheral region and an inner region having different Young's moduli can be manufactured, for example, as follows. That is, an electrode material slurry for a peripheral region containing a sulfide-based glass body (relatively low Young's modulus) as a sulfide-based solid electrolyte, and a sulfide-based crystal (relative Young's modulus as a sulfide-based solid electrolyte) A positive electrode layer having an outer peripheral region and an inner region having different Young's moduli, respectively, by preparing each of the electrode material slurries for the inner region containing A negative electrode layer is obtained.
Similarly, a solid electrolyte slurry for an outer peripheral region containing a sulfide-based glass body as a sulfide-based solid electrolyte and a solid electrolyte slurry for an inner region containing a sulfide-based crystal as a sulfide-based solid electrolyte were prepared, respectively. Then, a solid electrolyte layer having an outer peripheral region and an inner region having different Young's moduli can be obtained by applying and drying the respective regions.

或いは、硫化物系固体電解質として硫化物系ガラス体を含有する電極材スラリーを集電体に一様に塗布、乾燥した後、内側領域に対応する領域を、加熱、好ましくは加熱加圧することで、該領域の硫化物系ガラス体を結晶化し、ヤング率の異なる外周領域と内側領域とを有する正極層、負極層を得ることもできる。
同様に、硫化物系固体電解質として硫化物系ガラス体を含有する固体電解質スラリーを一様に塗布、乾燥した後、内側領域に対応する領域を、加熱、好ましくは加熱加圧することで、該領域の硫化物系ガラス体を結晶化し、ヤング率の異なる外周領域と内側領域とを有する固体電解質層を得ることもできる。
このように、層を形成した後に層中の硫化物系ガラス体を結晶化することにより、ヤング率の異なる領域を形成する場合、正極層、固体電解質層及び負極層が積層した単電池の状態で、内側領域に対応する領域を加熱することによって、正極層、固体電解質層及び負極層の全てに一括で内側領域と外周領域とを形成することができる。
Alternatively, an electrode material slurry containing a sulfide-based glass body as a sulfide-based solid electrolyte is uniformly applied to the current collector and dried, and then the region corresponding to the inner region is heated, preferably heated and pressurized. The sulfide glass body in this region can be crystallized to obtain a positive electrode layer and a negative electrode layer having an outer peripheral region and an inner region having different Young's moduli.
Similarly, after uniformly applying and drying a solid electrolyte slurry containing a sulfide-based glass body as a sulfide-based solid electrolyte, the region corresponding to the inner region is heated, preferably heated and pressurized, so that the region can be obtained. The sulfide-based glass body can be crystallized to obtain a solid electrolyte layer having an outer peripheral region and an inner region having different Young's moduli.
Thus, after forming the layer, by crystallizing the sulfide-based glass body in the layer to form regions having different Young's moduli, the state of the unit cell in which the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are laminated Thus, by heating the region corresponding to the inner region, the inner region and the outer peripheral region can be collectively formed on all of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer.

単電池は、通常、任意数積層し、固体電池が作製される。積層された単電池の両端に位置する単電池には、負極端子、正極端子がそれぞれ設けられ、任意の電池ケースに収容される。   An arbitrary number of unit cells are usually stacked to produce a solid battery. The unit cells located at both ends of the stacked unit cells are each provided with a negative electrode terminal and a positive electrode terminal, and are accommodated in an arbitrary battery case.

尚、ここでは、固体電解質層を、正極層上又は負極層上に形成したが、固体電解質スラリーを、不織布、ガラス繊維等の多孔質基材の表面に塗布、乾燥することで固体電解質層を形成することもできる。このようにして形成された固体電解質層は、正極層及び/又は負極層と積層後、プレス又は加熱、或いは、プレスと加熱(ホットプレス)を行うことで、単電池を作製することができる。
また、正極層や負極層は、電極材スラリーを集電体表面に塗布することで集電体上に形成する他、電極材スラリーを固体電解質層の表面に塗布することで固体電解質上に形成してもよい。
Here, although the solid electrolyte layer is formed on the positive electrode layer or the negative electrode layer, the solid electrolyte layer is formed by applying and drying the solid electrolyte slurry on the surface of a porous substrate such as a nonwoven fabric or glass fiber. It can also be formed. After the solid electrolyte layer formed in this manner is stacked with the positive electrode layer and / or the negative electrode layer, a unit cell can be manufactured by pressing or heating, or pressing and heating (hot pressing).
The positive electrode layer and the negative electrode layer are formed on the current collector by applying electrode material slurry to the surface of the current collector, and are formed on the solid electrolyte by applying electrode material slurry to the surface of the solid electrolyte layer. May be.

さらに、正極層、負極層、及び固体電解質層は、電極材粉末又は固体電解質粉末を粉末成形法により加圧成形することで形成することもできる。
また、本発明の全固体電池は、単電池を複数積層する積層型に限らず、正極層と負極層とを固体電解質層を挟んで捲回させた捲回型とすることもできる。
Furthermore, the positive electrode layer, the negative electrode layer, and the solid electrolyte layer can also be formed by press-molding electrode material powder or solid electrolyte powder by a powder molding method.
Further, the all solid state battery of the present invention is not limited to a stacked type in which a plurality of unit cells are stacked, but may be a wound type in which a positive electrode layer and a negative electrode layer are wound with a solid electrolyte layer interposed therebetween.

(実施例1)
<電池作製>
硫化物系ガラス体(LiPSガラス)のスラリーを調製し、多孔質基材上にスプレー塗布、乾燥することによって、固体電解質層体を作製した。
一方、正極活物質(LiCoO2)と硫化物系ガラス体(LiPSガラス)とを含有するスラリーを調製し、集電箔上にスプレー塗布、乾燥することによって、集電箔−正極層接合体を作製した。
また、負極活物質(グラファイト)と硫化物系ガラス体(LiPSガラス)とを含有するスラリーを調製し、集電箔上にスプレー塗布、乾燥することによって、集電箔−負極層接合体を作製した。
次に、上記にて作製した固体電解質層体、集電箔−正極層接合体及び集電箔−負極層接合体を、集電箔及び各層の積層順序が、集電箔−正極層−固体電解質層−負極層−集電箔、となるように重ねあわせた後、プレスして単電池を作製した。
続いて得られた単電池の面方向中央部をホットプレスし、正極層、固体電解質層、及び負極層の該中央部(内側領域)に含まれる硫化物系ガラス体を結晶化させた。
Example 1
<Battery fabrication>
A slurry of a sulfide-based glass body (Li 2 PS 4 glass) was prepared, and a solid electrolyte layer body was produced by spray coating on a porous substrate and drying.
On the other hand, a slurry containing a positive electrode active material (LiCoO 2) and a sulfide-based glass body (Li 2 PS 4 glass) is prepared, spray coated on the current collector foil, and dried, thereby collecting the current collector foil and the positive electrode layer. The body was made.
Also, a slurry containing a negative electrode active material (graphite) and a sulfide-based glass body (Li 2 PS 4 glass) is prepared, spray-coated on the current collector foil, and dried, thereby collecting the current collector foil and the negative electrode layer. The body was made.
Next, the solid electrolyte layer body, the current collector foil-positive electrode layer assembly and the current collector foil-negative electrode layer assembly prepared as described above were arranged such that the current collector foil and the stacking order of each layer were current collector foil-positive electrode layer-solid. After stacking so as to form an electrolyte layer-negative electrode layer-current collector foil, a single battery was produced by pressing.
Subsequently, the center portion in the surface direction of the obtained unit cell was hot-pressed to crystallize the sulfide-based glass body contained in the center portion (inner region) of the positive electrode layer, the solid electrolyte layer, and the negative electrode layer.

<面圧測定>
上記にて得られた全固体電池について、面の中心から距離が異なる位置に面圧センサを配置し、面圧分布を評価した。
結果を図4に示す。
<Surface pressure measurement>
About the all-solid-state battery obtained above, the surface pressure sensor was arrange | positioned in the position from which the distance differs from the center of a surface, and surface pressure distribution was evaluated.
The results are shown in FIG.

(比較例1)
<電池作製>
実施例1において、電解質としてLi7311結晶を用い、且つ、電極体中央部の熱処理(ホットプレス)を行わないこと以外は、同様にして全固体電池を作製した。
<面圧測定>
実施例と同様にして、得られた全固体電池の面圧を測定した。結果を図4に示す。
(Comparative Example 1)
<Battery fabrication>
In Example 1, an all solid state battery was produced in the same manner except that Li 7 P 3 S 11 crystal was used as the electrolyte and heat treatment (hot pressing) was not performed on the center of the electrode body.
<Surface pressure measurement>
The surface pressure of the obtained all solid state battery was measured in the same manner as in the example. The results are shown in FIG.

(結果)
図4に示すように、実施例1の全固体電池は、比較例1の全固体電池と比較して、面の中心から離れた領域(外周領域)における面圧が上昇し、面圧のバラツキが低減した。すなわち、本発明によれば、面圧のバラツキを緩和できることがわかった。
(result)
As shown in FIG. 4, the all-solid-state battery of Example 1 has an increased surface pressure in a region (outer peripheral region) away from the center of the surface compared to the all-solid-state battery of Comparative Example 1, and variations in surface pressure. Reduced. That is, according to the present invention, it was found that variations in surface pressure can be reduced.

1…固体電解質層(1A:外周領域、1B:内側領域)
2…正極層(2A:外周領域、2B:内側領域)
3…負極層(3A:ガラス領域、3B:内側領域)
4…単電池
5…集電体
6…正極端子
7…負極端子
1 ... Solid electrolyte layer (1A: outer peripheral region, 1B: inner region)
2 ... Positive electrode layer (2A: outer peripheral region, 2B: inner region)
3 ... negative electrode layer (3A: glass region, 3B: inner region)
4 ... Single cell 5 ... Current collector 6 ... Positive electrode terminal 7 ... Negative electrode terminal

Claims (2)

正極層と負極層との間に固体電解質層が介在してなる単電池を少なくとも1つ備える全固体電池であって、
前記正極層、前記負極層及び前記固体電解質層は、電解質として硫化物系固体電解質を含み、
前記正極層、前記負極層及び前記固体電解質層の少なくとも1つにおいて、該層の外周領域に含まれる前記硫化物系固体電解質のヤング率が、前記外周領域の内側に位置する内側領域に含まれる前記硫化物系固体電解質のヤング率よりも小さいことを特徴とする、全固体電池。
An all-solid battery comprising at least one unit cell in which a solid electrolyte layer is interposed between a positive electrode layer and a negative electrode layer,
The positive electrode layer, the negative electrode layer, and the solid electrolyte layer include a sulfide-based solid electrolyte as an electrolyte,
In at least one of the positive electrode layer, the negative electrode layer, and the solid electrolyte layer, the Young's modulus of the sulfide-based solid electrolyte included in the outer peripheral region of the layer is included in the inner region located inside the outer peripheral region. An all-solid-state battery characterized by having a Young's modulus smaller than that of the sulfide-based solid electrolyte.
前記外周領域に含まれる前記硫化物系固体電解質が硫化物系ガラス体であり、前記内側領域に含まれる前記硫化物系固体電解質が硫化物系結晶体である、請求項1に記載の全固体電池。   2. The all solid according to claim 1, wherein the sulfide-based solid electrolyte contained in the outer peripheral region is a sulfide-based glass body, and the sulfide-based solid electrolyte contained in the inner region is a sulfide-based crystal. battery.
JP2010015744A 2010-01-27 2010-01-27 All-solid battery Pending JP2011154902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010015744A JP2011154902A (en) 2010-01-27 2010-01-27 All-solid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010015744A JP2011154902A (en) 2010-01-27 2010-01-27 All-solid battery

Publications (1)

Publication Number Publication Date
JP2011154902A true JP2011154902A (en) 2011-08-11

Family

ID=44540725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010015744A Pending JP2011154902A (en) 2010-01-27 2010-01-27 All-solid battery

Country Status (1)

Country Link
JP (1) JP2011154902A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013140565A1 (en) * 2012-03-22 2013-09-26 株式会社 東芝 Electrochemical cell, method for producing electrochemical cell, battery pack, and vehicle
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2016164888A (en) * 2016-04-26 2016-09-08 株式会社東芝 Bipolar battery, battery pack, and car
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device
JP2020027701A (en) * 2018-08-09 2020-02-20 トヨタ自動車株式会社 Composite solid electrolyte and all-solid battery
WO2020137005A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
WO2020137006A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
JP2020161391A (en) * 2019-03-27 2020-10-01 トヨタ自動車株式会社 Battery pack
JP2020198268A (en) * 2019-06-05 2020-12-10 日産自動車株式会社 All-solid lithium ion secondary battery system, and device and method for charging all-solid lithium ion secondary battery
JP2020198269A (en) * 2019-06-05 2020-12-10 日産自動車株式会社 All-solid lithium ion secondary battery system, and device and method for charging all-solid lithium ion secondary battery
US20210408590A1 (en) * 2020-06-30 2021-12-30 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solid electrolyte-containing layer, method for manufacturing solid-state battery, and solid-state battery
WO2023087218A1 (en) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, secondary battery, battery module, battery pack, and power-consuming apparatus
WO2023171646A1 (en) * 2022-03-10 2023-09-14 三井金属鉱業株式会社 Electrode member and method for manufacturing same, battery member and method for manufacturing same, and method for manufacturing battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013140565A1 (en) * 2012-03-22 2015-08-03 株式会社東芝 Electrochemical cell, method for producing electrochemical cell, battery pack and vehicle
WO2013140565A1 (en) * 2012-03-22 2013-09-26 株式会社 東芝 Electrochemical cell, method for producing electrochemical cell, battery pack, and vehicle
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2016164888A (en) * 2016-04-26 2016-09-08 株式会社東芝 Bipolar battery, battery pack, and car
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device
JP7237296B2 (en) 2018-07-03 2023-03-13 川上 総一郎 storage device
JP7017128B2 (en) 2018-08-09 2022-02-08 トヨタ自動車株式会社 Composite solid electrolyte and all-solid-state battery
JP2020027701A (en) * 2018-08-09 2020-02-20 トヨタ自動車株式会社 Composite solid electrolyte and all-solid battery
WO2020137005A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
WO2020137006A1 (en) * 2018-12-28 2020-07-02 パナソニックIpマネジメント株式会社 Battery
CN112868124B (en) * 2018-12-28 2024-04-19 松下知识产权经营株式会社 Battery cell
CN112868124A (en) * 2018-12-28 2021-05-28 松下知识产权经营株式会社 Battery with a battery cell
JPWO2020137005A1 (en) * 2018-12-28 2021-11-25 パナソニックIpマネジメント株式会社 battery
JPWO2020137006A1 (en) * 2018-12-28 2021-11-25 パナソニックIpマネジメント株式会社 battery
JP7312970B2 (en) 2018-12-28 2023-07-24 パナソニックIpマネジメント株式会社 battery
JP7312969B2 (en) 2018-12-28 2023-07-24 パナソニックIpマネジメント株式会社 battery
JP7089678B2 (en) 2019-03-27 2022-06-23 トヨタ自動車株式会社 Batteries assembled
JP2020161391A (en) * 2019-03-27 2020-10-01 トヨタ自動車株式会社 Battery pack
JP2020198268A (en) * 2019-06-05 2020-12-10 日産自動車株式会社 All-solid lithium ion secondary battery system, and device and method for charging all-solid lithium ion secondary battery
JP7249884B2 (en) 2019-06-05 2023-03-31 日産自動車株式会社 All solid state lithium ion secondary battery system and device and method for charging all solid state lithium ion secondary battery
JP7249885B2 (en) 2019-06-05 2023-03-31 日産自動車株式会社 All solid state lithium ion secondary battery system and device and method for charging all solid state lithium ion secondary battery
JP2020198269A (en) * 2019-06-05 2020-12-10 日産自動車株式会社 All-solid lithium ion secondary battery system, and device and method for charging all-solid lithium ion secondary battery
CN113871701A (en) * 2020-06-30 2021-12-31 丰田自动车株式会社 Method for producing solid electrolyte-containing layer, method for producing solid battery, and solid battery
US20210408590A1 (en) * 2020-06-30 2021-12-30 Toyota Jidosha Kabushiki Kaisha Method for manufacturing solid electrolyte-containing layer, method for manufacturing solid-state battery, and solid-state battery
WO2023087218A1 (en) * 2021-11-18 2023-05-25 宁德时代新能源科技股份有限公司 Negative electrode sheet and preparation method therefor, secondary battery, battery module, battery pack, and power-consuming apparatus
WO2023171646A1 (en) * 2022-03-10 2023-09-14 三井金属鉱業株式会社 Electrode member and method for manufacturing same, battery member and method for manufacturing same, and method for manufacturing battery

Similar Documents

Publication Publication Date Title
JP2011154902A (en) All-solid battery
JP5413355B2 (en) All solid battery
US9577286B2 (en) Method of producing solid state lithium battery module
JP5516755B2 (en) Electrode body and all-solid battery
JP6172083B2 (en) Lithium solid state secondary battery and manufacturing method thereof
JP6085370B2 (en) All solid state battery, electrode for all solid state battery and method for producing the same
US10608239B2 (en) Method for producing electrode body
US20190207253A1 (en) Electrode layer material, electrode sheet for all-solid state secondary battery, all-solid state secondary battery, and methods for manufacturing electrode sheet for all-solid state secondary battery and all-solid state secondary battery
JPWO2017141735A1 (en) Solid electrolyte composition, electrode sheet for all-solid secondary battery and all-solid secondary battery, and electrode sheet for all-solid secondary battery and method for producing all-solid secondary battery
JP6149657B2 (en) All solid battery
US20100330430A1 (en) Lithium secondary battery with high energy density
CN107636868A (en) Rechargeable nonaqueous electrolytic battery and its manufacture method of negative pole and its negative electrode active material and anode active material particles
KR20160002364A (en) Solid state lithium secondary battery and method for producing the same
CN105981203A (en) Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, production method therefor, and non-aqueous electrolyte secondary battery
EP3576192A1 (en) Manufacturing method for electrode for all-solid-state battery and manufacturing method for all solid-state-battery
JP2011159534A (en) Lithium battery
JP2010225309A (en) Method for manufacturing cathode active material
WO2022057189A1 (en) Solid-state battery, battery module, battery pack, and related device thereof
JP2011154900A (en) All-solid battery
CN103081182A (en) Nonaqueous electrolyte battery
KR20220077081A (en) Coated cathode active material, method for producing coated cathode active material, and all solid state battery
JP2014049198A (en) Sintered body for battery, all solid state lithium battery, and method for producing sintered body for battery
JP5521719B2 (en) Current collector for all-solid-state secondary battery, electrode body for all-solid-state secondary battery, and all-solid-state secondary battery
KR20210082575A (en) A binder solution having lithium ion conductivity for all solid state battery and an electrode slurry comprising the same
JP6972965B2 (en) All solid state battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120703