JP4505886B2 - Solid electrolyte battery - Google Patents

Solid electrolyte battery Download PDF

Info

Publication number
JP4505886B2
JP4505886B2 JP18360899A JP18360899A JP4505886B2 JP 4505886 B2 JP4505886 B2 JP 4505886B2 JP 18360899 A JP18360899 A JP 18360899A JP 18360899 A JP18360899 A JP 18360899A JP 4505886 B2 JP4505886 B2 JP 4505886B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
powder
positive electrode
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18360899A
Other languages
Japanese (ja)
Other versions
JP2001015162A (en
Inventor
和宏 野田
壽和 安田
毅 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP18360899A priority Critical patent/JP4505886B2/en
Publication of JP2001015162A publication Critical patent/JP2001015162A/en
Application granted granted Critical
Publication of JP4505886B2 publication Critical patent/JP4505886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、固体電解質を備える固体電解質電池に関する。
【0002】
【従来の技術】
ビデオテープレコーダをはじめとする通信機器等の電子機器の小型化や軽量化に伴い、それらの電源としての電池に対しても、より軽量であり、より小型であり、より薄型であること等が求められている。
【0003】
それに伴い、ポリエチレンオキシドやポリフォスファゼン等を電解質材料に用いた高分子固体電解質電池の研究が盛んに行われている。この高分子固体電解質電池は、電解質が固体であり漏液の心配が無いため、電解液系電池のように外装材を金属製の電池缶にする必要もなく、比較的軽量にできる上、耐熱性に優れること、電池構成が簡素化できること等の利点を有する。
【0004】
例えば、高分子固体電解質、特にポリマーマトリクス中に電解液を全く含まない固体電解質を電池に用いる場合、その負極及び正極の両電極と電解質との間の接触は固体同士の接触であるため、電極と高分子固体電解質とが互いの表面で接するのみである。それに対し、電解液系電池は、電解質が液体であるため、電極の内部まで電解質が浸透する。そのため、電解質が液体である電解液系電池と比べ、高分子固体電解質電池は、電極内部まで均一且つ十分にイオン伝導性を確保することが難しく、電池の内部インピーダンスが高くなり、十分な電極利用率及び十分な負荷特性を得ることが困難である。
【0005】
そのため、固体電解質を用いた二次電池は、負極活物質層と正極活物質層の両方、或いはどちらか一方に、予め、電解質として用いる固体電解質を一定量含有させている。この場合、高分子固体電解質電池であれば高分子固体電解質を、無機固体電解質電池であれば無機固体電解質を、それぞれ電極用合剤中に混練することで負極活物質及び/又は正極活物質とイオン導電体との接触面積を向上させて、イオン伝導性を確保している。
【0006】
【発明が解決しようとする課題】
イオン導電性は、負極活物質層又は正極活物質層に固体電解質を含有させることによって向上することができる。しかし一方で、電極活物質層内における固体電解質の含有量が多くなると、電極中の活物質密度は相対的に低くなり、実質的な電池容量は低下するという問題がある。
【0007】
本発明は、このような従来の実情に鑑みて提案されたものであり、固体電解質電池の電極のイオン導電性を向上させ、内部インピーダンスの上昇に伴うサイクル特性等の劣化を防止し、負荷特性に優れた固体電解質電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
上述の目的を達成する本発明に係る固体電解質電池は、負極活物質を含む負極活物質層と、正極活物質としてLiCoO 及びグラファイト粉末を含む正極活物質層と、高分子固体電解質とを備え、正極活物質層に、25℃におけるイオン伝導度が1.0×10 −4 S/cm以上であり、正極活物質の粒径よりも小さいLiO−Al−TiO−P 正極活物質に対して、11重量%以上50重量%以下の範囲で混練されている。
【0009】
以上のように構成された本発明に係る固体電解質電池は、実質的な電池容量を低下することなく十分なイオン伝導性を確保し、内部インピーダンスが上昇して起こるサイクル特性の劣化を低減し、優れた負荷特性を実現する。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を用いて詳細に説明する。図1は本発明を適用した固体電解質電池の一構成例を示すものである。本発明に係る固体電解質電池1は、負極2と、負極2と対向して配された正極3と、負極2と正極3との間に配された高分子固体電解質4とを備え、絶縁材料からなる外装ケース5により覆われて密閉されている。そして、負極2には負極端子6が、正極3には正極端子7がそれぞれ接続されており、これら負極端子6と正極端子7とは、外装ケース5の周縁部である封口部に挟み込まれている。
【0011】
負極2は、負極活物質を含有する負極活物質層2aが、負極集電体2b上に形成されてなるものである。この負極集電体2bとしては、例えば銅箔等の金属箔が用いられる。負極活物質層2aに含有される負極活物質としては、作製する電池の種類により異なり、特に限定されるものではない。例えば、リチウム電池或いはリチウムイオン電池を作製する場合、負極活物質としては、リチウム金属やリチウム金属を含む合金、並びに、リチウム金属の吸蔵放出が可能な炭素質材料や、リチウム金属の吸蔵放出が可能な無機材料が用いられる。
【0012】
リチウム合金としては、リチウム−アルミニウム合金、リチウム−亜鉛合金、リチウム−スズ合金、リチウム−鉛合金、リチウム−インジウム合金等が挙げられる。
【0013】
また、リチウム等のアルカリ金属の吸蔵放出が可能な炭素質材料としては、例えば、ポリアセチレンやポリピロール等の導電性ポリマ、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、黒鉛類、難黒鉛化炭素類、ガラス状炭素類、有機高分子化合物焼成体(有機高分子材料を500℃以上の適温にて、真空下或いは不活性ガス気流下で焼成したもの。)、炭素繊維、活性炭等が例示される。また、リチウムの吸蔵放出が可能な無機材料としては酸化スズ、酸化鉄、酸化チタン等の酸化物、ケイ素質材料またはその化合物、スズ化合物等が挙げられる。
【0014】
正極3は、正極活物質を含有する正極活物質層3aが、正極集電体3b上に形成されてなるものである。この正極集電体3bとしては、例えばアルミニウム箔等の金属箔が用いられる。正極活物質は、作製する電池の種類によって異なり、特に限定さるものではない。
【0015】
例えば、正極活物質は、リチウム電池、あるいはリチウムイオン電池を作製する場合、リチウムの吸蔵放出が可能な材料であればよく特に限定されない。例えば、正極活物質は、目的とする電池の種類に応じて、TiS2,MoS2,NbSe2,V25等のリチウムを含有しない金属酸化物や金属硫化物、または一般式LixMO2(但しMは、Co,Ni,Mn等の遷移金属を表し、0.05≦x≦1.10である。)、またはLiNipM1qM2r2(但しM1及びM2は、Al,Mn,Fe,Co,Ni,Cr,Ti,Znから選ばれる少なくとも1種の元素であるか、またはP,B等の非金属元素でも良い。また、p+q+r=1である。)で表すことのできるリチウム遷移金属複合酸化物が用いられる。特に、正極活物質としては、高電圧及び高エネルギー密度が得られ、サイクル特性に優れる点から、リチウムコバルト酸化物やリチウムニッケル酸化物を用いることが好ましい。
【0016】
高分子固体電解質4は、ポリマとリチウム塩との複合体で且つイオン導電性を示す化合物であれば特に限定されないが、高いイオン伝導性を示すポリエチレンオキシドに代表されるポリエーテル系高分子固体電解質及びそれらの誘導体、または、ポリフォスファゼンやポリシロキサンとポリエーテルとの共重合体を用いることが好ましい。
【0017】
リチウム塩は、電解質塩自体が上記ポリエーテル共重合体に溶解して、イオン伝導性を示すものであれば良く、特に限定されるものではない。例えば、六フッ化リン酸リチウム(LiPF6)、過塩素酸リチウム(LiClO4)、六フッ化ヒ素リチウム(LiAsF6)、四フッ化ホウ酸リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)、ビストリフルオロメチルスルホニルイミドリチウム([LiN(CF3SO22])等の従来公知のリチウム塩を用いることができる。
【0018】
そして、本実施の形態に係る固体電解質電池では、上述の負極活物質層2a又は正極活物質層3aに、無機固体電解質粉末が混練されている。無機固体電解質粉末は、リチウムイオン伝導性を示し、25℃におけるイオン伝導度が、1.0×10-4S/cm以上のリチウムイオン導電体である。25℃におけるイオン伝導性が1.0×10-4S/cmを下回ると、電池として機能できるイオン伝導度の確保が困難となり、電池として十分な負荷特性を得ることができないためである。
【0019】
無機固体電解質粉末は、上述の条件を満たす物質であれば特に限定することなく使用できる。例えば、無機固体電解質粉末としては、Li2O−SiO2,Li2O−Al23,Li2O−P25等を主成分とする酸化物ガラスセラミクス、La0.51Li0.34TiO2.94或いはこれらに異種元素を添加したペロヴスカイト系セラミクス、Li2S−SiS2,Li2S−GeS2等を主成分とする硫化物系ガラス等が挙げられる。
【0020】
また、無機固体電解質粉末の含有量は、負極活物質層2a又は正極活物質層3aに対して、1重量%以上50重量%以下であるとする。無機固体電解質粉末の含有量が1重量%より少ない場合、負極及び/又は正極内におけるイオン伝導体の占める割合が小さすぎるために、イオン伝導度の確保が困難となり、十分な負荷特性を得ることができない。逆に、無機固体電解質粉末の含有量が50重量%を上回る場合、イオン伝導度は高くなるが、無機固体電解質粉末の増加に伴って、負極2に含まれる負極活物質密度及び/又は正極3に含まれる正極活物質密度が小さくなるため、電池容量が低下する。
【0021】
更に、無機固体電解質粉末の粒径は、負極活物質及び正極活物質の粒径よりも小さいこととする。無機固体電解質粉末は、均一に分散されているほど電極活物質とイオン伝導体との接触面積が大きくなり、良好なイオン伝導性が確保できる。また、無機固体電解質粉末の粒径が電極活物質の粒径よりも小さいと、無機固体電解質粉末が、電極活物質の隙間に入り込み、イオン伝導性が向上する。
【0022】
なお、電解質は、膨潤溶媒を含有しない固体電解質に限定されず、膨潤溶媒を必要とするゲル電解質であっても良い。また、電池の形状は、特に限定されることなく、例えばフィルム型,巻回型,積層型,円筒型,角型,コイン型,ボタン型等の種々の形状で用いることができる。更に、上述の固体電解質電池は、一次電池であっても二次電池であっても良い。
【0023】
【実施例】
発明の実施例、参考例及び比較例について詳細に説明するが、本発明はこれら実施例に限定されるものではない。以下のようにして、固体電解質電池を作製した。
【0024】
参考例1
LiCoO粉末と、グラファイト粉末と、ポリフッ化ビニリデン(以下PVdFと記す)と、La0.51Li0.34TiO2.94粉末との混合量を、重量比で80:6:3:11となるように秤量し、これら粉末を混練して正極用合剤を調製した。この正極用合剤をN−メチル−2−ピロリドン中で分散させてスラリー状液とし、このスラリー状液をアルミニウム集電体上に塗布し乾燥した後、プレス加工を行った。以上の工程を経ることによって得られたものを正極3として用いた。参考例1は、La 0.51 Li 0.34 TiO 2.94 粉末を用いたものであり、本願発明の参考例となるものである。
【0025】
この正極3を2cm×4cmの長方形に切り出した後、この正極3上に、オリゴアルキルエーテル側鎖を有するポリエチレンオキシド共重合体(分子量80万)とLiBF4複合体とを溶解させたアセトニトリル溶液を塗布した後、溶媒であるアセトニトリルを乾燥除去し、厚さ50μmの膜状の高分子固体電解質4を得た。次に、この高分子固体電解質4上に厚さ30μmのリチウム金属を負極2として配設した。負極2に負極端子を、正極3に正極端子をそれぞれ接続し電極積層体とした。最後に、この電極積層体を外装ケースに収納し、外装ケースを封印した。このとき、外装ケースにはアルミ箔の両面にポリオレフィン系ポリマがコートされたラミネート材を用いた。さらに、この外装ケースの封口部に正極端子と負極端子とを挟み込んで薄型の固体電解質電池1とした。
【0026】
参考例2
LiCoO粉末と、グラファイト粉末と、PVdFと、La0.51Li0.34TiO2.94粉末との混合量を、重量比で70:6:3:21とする以外は実施例1と同様に正極3を作製し、同様の方法にて固体電解質電池1を作製した。参考例2は、La 0.51 Li 0.34 TiO 2.94 粉末を用いたものであり、本願発明の参考例となるものである。
【0027】
参考例3
LiCoO粉末と、グラファイト粉末と、PVdFと、La0.51Li0.34TiO2.94粉末との混合量を、重量比で41:6:3:50とする以外は実施例1と同様に正極3を作製し、同様の方法にて固体電解質電池1を作製した。参考例3は、La 0.51 Li 0.34 TiO 2.94 粉末を用いたものであり、本願発明の参考例となるものである。
【0028】
参考例4
La0.51Li0.34TiO2.94粉末の代わりにLiO−Al−TiO−P粉末を用いて、LiCoO粉末と、グラファイト粉末と、PVdFと、LiO−Al−TiO−P粉末との混合量を、重量比で90:6:3:1とする以外は、実施例1と同様に正極3を作製し、同様の方法にて固体電解質電池1を作製した。この参考例4は、Li O−Al −TiO −P 粉末の含有量が1重量%であり、本願発明の参考例となるものである。
【0029】
実施例5
La0.51Li0.34TiO2.94粉末の代わりにLi2O−Al23−TiO2−P25粉末を用いて、LiCoO2粉末と、グラファイト粉末と、PVdFと、Li2O−Al23−TiO2−P25粉末との混合量を、重量比で80:6:3:11とする以外は実施例1と同様に正極3を作製し、同様の方法にて固体電解質電池1を作製した。
【0030】
実施例6
La0.51Li0.34TiO2.94粉末の代わりにLi2O−Al23−TiO2−P25粉末を用いて、LiCoO2粉末と、グラファイト粉末と、PVdFと、Li2O−Al23−TiO2−P25粉末との混合量を、重量比で70:6:3:21とする以外は、実施例1と同様に正極3を作製し、同様の方法にて固体電解質電池1を作製した。
【0031】
実施例7
La0.51Li0.34TiO2.94粉末の代わりにLi2O−Al23−TiO2−P25粉末を用いて、LiCoO2粉末と、グラファイト粉末と、PVdFと、Li2O−Al23−TiO2−P25粉末との混合量を、重量比で41:6:3:50とする以外は実施例1と同様にした。
【0032】
参考例8
La0.51Li0.34TiO2.94粉末の代わりにLiO−Al−TiO−P粉末を用いて、LiCoO粉末と、グラファイト粉末と、PVdFと、LiO−Al−TiO−P粉末との混合量を、重量比で40:6:3:51とする以外は、実施例1と同様に正極3を作製し、同様の方法にて固体電解質電池1を作製した。この参考例8は、Li O−Al −TiO −P 粉末の含有量が51重量%であり、本願発明の参考例となるものである。
【0033】
比較例
正極用合剤中にLa0.51Li0.34TiO2.94粉末、Li2O−Al23−TiO2−P25粉末等の無機固体電解質粉末を含有させず、LiCoO2粉末と、グラファイト粉末と、PVdF粉末との混合量を、重量比で91:6:3とする以外は実施例1と同様に正極3を作製し、同様の方法にて固体電解質電池1を作製した。
【0034】
以上のようにして製作された固体電解質電池1について、放電試験を行った。放電試験としては、まず、それぞれの固体電解質電池を50℃の空気中で、0.1mAで定電流充電し、電池電圧が4.2Vに達した後、4.2Vで定電圧充電し、電流値が10μAになった時点を満充電とした。その後、3.0Vまで0.1mAで定電流放電を行った。0.1mAでの定電流放電を、電流電圧が3.0Vとなるまで行ったときの放電容量を定格容量とする。
【0035】
また、0.3mA、0.75mA、1.5mAで同様に定電流放電を行い、そのときの放電容量の、上記定格容量に対する割合(%)を求めた。
【0036】
参考例1乃至参考例4、実施例5乃至実施例7、参考例8及び比較例の固体電解質電池について、定格容量と、各電流での放電時における放電容量の定格容量に対する割合とを、無機固体電解質粉末の添加量と併せて表1に示す。
【0037】
【表1】

Figure 0004505886
【0038】
表1によると、固体電解質電池1の放電容量は、放電電流が大きくなるにつれ、基準とする定格容量と比較して低下していく。また、比較例1の固体電解質電池1は、無機固体電解質粉末を含有している参考例1乃至参考例4、実施例5乃至実施例7、参考例8の固体電解質電池1に比べて、定格容量が低い。無機固体電解質粉末を全く含有していない比較例1の固体電解質電池1は、放電電流値が大きくなると放電容量が極端に低下し、測定不可能な値まで低下する。
【0039】
一方、正極3に無機固体電解質粉末を含有する固体電解質電池1では、無機固体電解質粉末の含有量が多い方が、定電流放電時における放電容量が大きくなっている。しかし、参考例8のように無機固体電解質粉末の含有量が50重量%を上回ると放電容量の値は著しく低下している。また、参考例4のように無機固体電解質粉末の含有量が1重量%場合も放電容量の値は極端に低下している。無機固体電解質粉末の含有量が1重量%と50重量%の中間付近の値である実施例5は、最も良好な負荷特性を示す。
【0040】
実施例より、無機固体電解質粉末の含有量が、1重量%以上50重量%以下である時に良好な負荷特性が得られることが判る。
【0041】
なお、本発明の実施の形態では、正極に無機固体電解質粉末を含有する例を示したが、負極に含有させても良い。また、負極及び正極の両方に無機固体電解質粉末を含有させても良い。
【0042】
また、本発明で用いることのできる無機固体電解質粉末は、正極活物質及び負極活物質との反応性或いは耐酸化性等を考慮し、電気化学的に安定であること、固体電解質のイオン伝導度が高いこと等の条件を満たす、LiO−Al−TiO−P粉末である
【0043】
【発明の効果】
以上詳細に説明したように本発明に係る固体電解質電池によれば、固体電解質電池の電極のイオン伝導性が向上され、内部インピーダンスが上昇して起こるサイクル特性の劣化が低減され、優れた負荷特性を実現することができる。
【図面の簡単な説明】
【図1】本発明を適用した固体電解質電池の一構成例を示す要部概略断面図である。
【符号の説明】
1 固体電解質電池、2 負極、2a 負極活物質層、2b 負極集電体、3 正極、3a 正極活物質、3b 正極集電体、4 高分子固体電解質、5 外装ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid electrolyte battery including a solid electrolyte.
[0002]
[Prior art]
As electronic devices such as video tape recorders and other communication devices become smaller and lighter, the batteries as their power sources are also lighter, smaller and thinner. It has been demanded.
[0003]
Accordingly, research on polymer solid electrolyte batteries using polyethylene oxide, polyphosphazene or the like as an electrolyte material has been actively conducted. Since this polymer solid electrolyte battery is solid and there is no risk of leakage, there is no need to use a metal battery can as the exterior material unlike an electrolyte battery. It has advantages such as excellent performance and simplification of the battery configuration.
[0004]
For example, when a polymer solid electrolyte, particularly a solid electrolyte containing no electrolyte in a polymer matrix is used for a battery, the contact between the negative electrode and the positive electrode and the electrolyte is a solid-to-solid contact. And the solid polymer electrolyte are only in contact with each other on the surface. On the other hand, in the electrolyte battery, since the electrolyte is liquid, the electrolyte penetrates into the electrode. Therefore, compared to electrolyte-based batteries in which the electrolyte is liquid, it is difficult for solid polymer electrolyte batteries to ensure uniform and sufficient ion conductivity up to the inside of the electrode, the internal impedance of the battery is increased, and sufficient use of the electrode Rate and sufficient load characteristics are difficult to obtain.
[0005]
For this reason, in a secondary battery using a solid electrolyte, a certain amount of a solid electrolyte used as an electrolyte is previously contained in either or both of the negative electrode active material layer and the positive electrode active material layer. In this case, a polymer solid electrolyte for a polymer solid electrolyte battery and an inorganic solid electrolyte for an inorganic solid electrolyte battery are kneaded in an electrode mixture, respectively. Ion conductivity is ensured by improving the contact area with the ionic conductor.
[0006]
[Problems to be solved by the invention]
The ionic conductivity can be improved by including a solid electrolyte in the negative electrode active material layer or the positive electrode active material layer. On the other hand, however, when the content of the solid electrolyte in the electrode active material layer increases, there is a problem that the active material density in the electrode becomes relatively low, and the substantial battery capacity decreases.
[0007]
The present invention has been proposed in view of such conventional circumstances, and improves the ionic conductivity of the electrode of the solid electrolyte battery, prevents deterioration of cycle characteristics and the like due to an increase in internal impedance, and provides load characteristics. An object of the present invention is to provide a solid electrolyte battery excellent in.
[0008]
[Means for Solving the Problems]
A solid electrolyte battery according to the present invention that achieves the above object includes a negative electrode active material layer including a negative electrode active material, a positive electrode active material layer including LiCoO 2 and graphite powder as a positive electrode active material, and a polymer solid electrolyte. , the positive electrode active material layer, and the ionic conductivity at 25 ° C. is 1.0 × 10 -4 S / cm or more, smaller than the particle diameter of the positive electrode active material Li 2 O-Al 2 O 3 -TiO 2 - P 2 O 5 is kneaded in the range of 11 wt% to 50 wt% with respect to the positive electrode active material.
[0009]
The solid electrolyte battery according to the present invention configured as described above ensures sufficient ionic conductivity without reducing the substantial battery capacity, reduces deterioration of cycle characteristics caused by an increase in internal impedance, Realizes excellent load characteristics.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration example of a solid electrolyte battery to which the present invention is applied. A solid electrolyte battery 1 according to the present invention includes a negative electrode 2, a positive electrode 3 disposed to face the negative electrode 2, and a polymer solid electrolyte 4 disposed between the negative electrode 2 and the positive electrode 3, and an insulating material. It is covered and sealed with an outer case 5 made of A negative electrode terminal 6 is connected to the negative electrode 2, and a positive electrode terminal 7 is connected to the positive electrode 3, and the negative electrode terminal 6 and the positive electrode terminal 7 are sandwiched between sealing portions that are peripheral portions of the outer case 5. Yes.
[0011]
The negative electrode 2 is formed by forming a negative electrode active material layer 2a containing a negative electrode active material on a negative electrode current collector 2b. For example, a metal foil such as a copper foil is used as the negative electrode current collector 2b. The negative electrode active material contained in the negative electrode active material layer 2a varies depending on the type of battery to be produced and is not particularly limited. For example, when producing a lithium battery or a lithium ion battery, the negative electrode active material can be lithium metal or an alloy containing lithium metal, a carbonaceous material capable of occluding and releasing lithium metal, and occluding and releasing lithium metal. Inorganic materials are used.
[0012]
Examples of the lithium alloy include a lithium-aluminum alloy, a lithium-zinc alloy, a lithium-tin alloy, a lithium-lead alloy, and a lithium-indium alloy.
[0013]
Examples of carbonaceous materials capable of occluding and releasing alkali metals such as lithium include conductive polymers such as polyacetylene and polypyrrole, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphite, and the like. , Non-graphitizable carbons, glassy carbons, organic polymer compound fired bodies (organic polymer materials fired at an appropriate temperature of 500 ° C. or higher under vacuum or inert gas stream), carbon fiber And activated carbon. Examples of the inorganic material capable of occluding and releasing lithium include oxides such as tin oxide, iron oxide, and titanium oxide, silicon materials or compounds thereof, tin compounds, and the like.
[0014]
The positive electrode 3 is formed by forming a positive electrode active material layer 3a containing a positive electrode active material on a positive electrode current collector 3b. As the positive electrode current collector 3b, for example, a metal foil such as an aluminum foil is used. A positive electrode active material changes with kinds of battery to produce, and is not specifically limited.
[0015]
For example, the positive electrode active material is not particularly limited as long as it is a material that can occlude and release lithium when a lithium battery or a lithium ion battery is manufactured. For example, the positive electrode active material may be a metal oxide or metal sulfide that does not contain lithium, such as TiS 2 , MoS 2 , NbSe 2 , V 2 O 5 , or the general formula LixMO 2 ( where M is, Co, Ni, represents a transition metal such as Mn, is 0.05 ≦ x ≦ 1.10.), or LiNi p M1 q M2 r O 2 ( where M1 and M2, Al, Mn, It may be at least one element selected from Fe, Co, Ni, Cr, Ti, and Zn, or may be a nonmetallic element such as P or B. Further, p + q + r = 1. Transition metal composite oxide is used. In particular, as the positive electrode active material, it is preferable to use lithium cobalt oxide or lithium nickel oxide because high voltage and high energy density can be obtained and cycle characteristics are excellent.
[0016]
The polymer solid electrolyte 4 is not particularly limited as long as it is a complex of a polymer and a lithium salt and is a compound exhibiting ionic conductivity, but a polyether polymer solid electrolyte represented by polyethylene oxide exhibiting high ionic conductivity. And derivatives thereof, or a copolymer of polyphosphazene or polysiloxane and polyether.
[0017]
The lithium salt is not particularly limited as long as the electrolyte salt itself dissolves in the polyether copolymer and exhibits ionic conductivity. For example, lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium hexafluoroarsenide (LiAsF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF) 3 SO 3 ), bistrifluoromethylsulfonylimido lithium ([LiN (CF 3 SO 2 ) 2 ]) and the like can be used in the prior art.
[0018]
And in the solid electrolyte battery which concerns on this Embodiment, the inorganic solid electrolyte powder is knead | mixed by the above-mentioned negative electrode active material layer 2a or the positive electrode active material layer 3a. The inorganic solid electrolyte powder is a lithium ion conductor that exhibits lithium ion conductivity and has an ion conductivity at 25 ° C. of 1.0 × 10 −4 S / cm or more. If the ionic conductivity at 25 ° C. is less than 1.0 × 10 −4 S / cm, it is difficult to secure ionic conductivity that can function as a battery, and sufficient load characteristics as a battery cannot be obtained.
[0019]
The inorganic solid electrolyte powder can be used without particular limitation as long as it satisfies the above-mentioned conditions. For example, as the inorganic solid electrolyte powder, oxide glass ceramics mainly composed of Li 2 O—SiO 2 , Li 2 O—Al 2 O 3 , Li 2 O—P 2 O 5 , La 0.51 Li 0.34 TiO 2.94 or perovskite-based ceramics which these were added to different element, sulfide glass mainly composed of Li 2 S-SiS 2, Li 2 S-GeS 2 , and the like.
[0020]
The content of the inorganic solid electrolyte powder is a negative electrode active against material layer 2a or the cathode active material layer 3a, and is 1 1% by weight to 50% by weight. When the content of the inorganic solid electrolyte powder is less than 1 1% by weight, for the ratio of the ion conductor in the anode and / or the positive electrode is too small, it becomes difficult to ensure the ionic conductivity to obtain a satisfactory load characteristics I can't. On the contrary, when the content of the inorganic solid electrolyte powder exceeds 50% by weight, the ionic conductivity increases, but as the inorganic solid electrolyte powder increases, the density of the negative electrode active material and / or the positive electrode 3 contained in the negative electrode 2 increases. Since the density of the positive electrode active material contained in the battery becomes small, the battery capacity decreases.
[0021]
Furthermore, the particle size of the inorganic solid electrolyte powder is smaller than the particle size of the negative electrode active material and the positive electrode active material. As the inorganic solid electrolyte powder is more uniformly dispersed, the contact area between the electrode active material and the ionic conductor increases, and good ionic conductivity can be ensured. Further, when the particle size of the inorganic solid electrolyte powder is smaller than the particle size of the electrode active material, the inorganic solid electrolyte powder enters the gaps of the electrode active material, and ion conductivity is improved.
[0022]
The electrolyte is not limited to a solid electrolyte containing no swelling solvent, and may be a gel electrolyte that requires a swelling solvent. The shape of the battery is not particularly limited, and can be used in various shapes such as a film type, a wound type, a laminated type, a cylindrical type, a square type, a coin type, and a button type. Furthermore, the above-mentioned solid electrolyte battery may be a primary battery or a secondary battery.
[0023]
【Example】
EXAMPLES Examples , reference examples and comparative examples of the invention will be described in detail, but the present invention is not limited to these examples. A solid electrolyte battery was produced as follows.
[0024]
Reference example 1
The mixing amount of LiCoO 2 powder, graphite powder, polyvinylidene fluoride (hereinafter referred to as PVdF), and La 0.51 Li 0.34 TiO 2.94 powder is 80: 6: 3: 11 by weight ratio. The mixture was weighed and kneaded with these powders to prepare a positive electrode mixture. This positive electrode mixture was dispersed in N-methyl-2-pyrrolidone to form a slurry liquid. The slurry liquid was applied onto an aluminum current collector and dried, followed by pressing. What was obtained by passing through the above process was used as the positive electrode 3. Reference Example 1 uses La 0.51 Li 0.34 TiO 2.94 powder and is a reference example of the present invention.
[0025]
After this positive electrode 3 was cut into a 2 cm × 4 cm rectangle, an acetonitrile solution in which a polyethylene oxide copolymer having an oligoalkyl ether side chain (molecular weight of 800,000) and a LiBF 4 complex were dissolved on the positive electrode 3 was obtained. After coating, acetonitrile as a solvent was removed by drying to obtain a membrane-like polymer solid electrolyte 4 having a thickness of 50 μm. Next, lithium metal having a thickness of 30 μm was disposed on the polymer solid electrolyte 4 as the negative electrode 2. A negative electrode terminal was connected to the negative electrode 2 and a positive electrode terminal was connected to the positive electrode 3 to form an electrode laminate. Finally, this electrode laminate was stored in an outer case, and the outer case was sealed. At this time, a laminate material in which a polyolefin polymer was coated on both surfaces of an aluminum foil was used for the outer case. Further, a thin solid electrolyte battery 1 was obtained by sandwiching a positive electrode terminal and a negative electrode terminal in the sealing portion of the outer case.
[0026]
Reference example 2
The same as Example 1 except that the mixing amount of LiCoO 2 powder, graphite powder, PVdF, and La 0.51 Li 0.34 TiO 2.94 powder is 70: 6: 3: 21 by weight ratio. A positive electrode 3 was prepared and a solid electrolyte battery 1 was prepared in the same manner. Reference Example 2 uses La 0.51 Li 0.34 TiO 2.94 powder and is a reference example of the present invention.
[0027]
Reference example 3
The same as Example 1 except that the mixing amount of LiCoO 2 powder, graphite powder, PVdF, and La 0.51 Li 0.34 TiO 2.94 powder is 41: 6: 3: 50 by weight ratio. A positive electrode 3 was prepared and a solid electrolyte battery 1 was prepared in the same manner. Reference Example 3 uses La 0.51 Li 0.34 TiO 2.94 powder and is a reference example of the present invention.
[0028]
Reference example 4
Using Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder instead of La 0.51 Li 0.34 TiO 2.94 powder, LiCoO 2 powder, graphite powder, PVdF, Li A positive electrode 3 was prepared in the same manner as in Example 1 except that the mixing amount with the 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder was 90: 6: 3: 1 by weight ratio. The solid electrolyte battery 1 was produced by the method described above. In Reference Example 4, the content of the Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder is 1% by weight, which is a reference example of the present invention.
[0029]
Example 5
Using Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder instead of La 0.51 Li 0.34 TiO 2.94 powder, LiCoO 2 powder, graphite powder, PVdF, and Li 2 O—Al 2 O A positive electrode 3 was produced in the same manner as in Example 1 except that the mixing amount with the 3- TiO 2 -P 2 O 5 powder was 80: 6: 3: 11 by weight ratio, and the solid electrolyte battery was produced in the same manner. 1 was produced.
[0030]
Example 6
Using Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder instead of La 0.51 Li 0.34 TiO 2.94 powder, LiCoO 2 powder, graphite powder, PVdF, and Li 2 O—Al 2 O A positive electrode 3 was produced in the same manner as in Example 1 except that the mixing amount with the 3- TiO 2 -P 2 O 5 powder was 70: 6: 3: 21 by weight ratio, and the solid electrolyte was produced in the same manner. Battery 1 was produced.
[0031]
Example 7
Using Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder instead of La 0.51 Li 0.34 TiO 2.94 powder, LiCoO 2 powder, graphite powder, PVdF, and Li 2 O—Al 2 O The same procedure as in Example 1 was performed except that the mixing amount with the 3- TiO 2 -P 2 O 5 powder was 41: 6: 3: 50 by weight.
[0032]
Reference Example 8
Using Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder instead of La 0.51 Li 0.34 TiO 2.94 powder, LiCoO 2 powder, graphite powder, PVdF, Li A positive electrode 3 was prepared in the same manner as in Example 1 except that the mixing amount with the 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder was 40: 6: 3: 51 in weight ratio. The solid electrolyte battery 1 was produced by the method described above. In Reference Example 8, the content of the Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder is 51% by weight, which is a reference example of the present invention.
[0033]
Comparative example In the positive electrode mixture, an inorganic solid electrolyte powder such as La 0.51 Li 0.34 TiO 2.94 powder, Li 2 O—Al 2 O 3 —TiO 2 —P 2 O 5 powder or the like was not contained, and LiCoO 2 The positive electrode 3 was produced in the same manner as in Example 1 except that the mixing amount of the powder, graphite powder, and PVdF powder was 91: 6: 3 by weight, and the solid electrolyte battery 1 was produced in the same manner. did.
[0034]
The solid electrolyte battery 1 manufactured as described above was subjected to a discharge test. As a discharge test, first, each solid electrolyte battery was charged at a constant current of 0.1 mA in air at 50 ° C., and after the battery voltage reached 4.2 V, it was charged at a constant voltage of 4.2 V. The time when the value reached 10 μA was regarded as full charge. Then, constant current discharge was performed at 0.1 mA up to 3.0V. The discharge capacity when the constant current discharge at 0.1 mA is performed until the current voltage reaches 3.0 V is defined as the rated capacity.
[0035]
Moreover, constant current discharge was similarly performed at 0.3 mA, 0.75 mA, and 1.5 mA, and the ratio (%) of the discharge capacity to the rated capacity was determined.
[0036]
For the solid electrolyte batteries of Reference Example 1 to Reference Example 4, Example 5 to Example 7, Reference Example 8 and Comparative Example, the rated capacity and the ratio of the discharge capacity to the rated capacity at the time of discharging at each current were determined as inorganic. It shows in Table 1 together with the addition amount of solid electrolyte powder.
[0037]
[Table 1]
Figure 0004505886
[0038]
According to Table 1, the discharge capacity of the solid electrolyte battery 1 decreases as compared with the standard rated capacity as the discharge current increases. Further, the solid electrolyte battery 1 of Comparative Example 1 is rated more than the solid electrolyte battery 1 of Reference Examples 1 to 4, Example 5 to Example 7, and Reference Example 8 containing inorganic solid electrolyte powder. The capacity is low. In the solid electrolyte battery 1 of Comparative Example 1 that does not contain any inorganic solid electrolyte powder, when the discharge current value is increased, the discharge capacity is extremely reduced and the value is unmeasurable.
[0039]
On the other hand, in the solid electrolyte battery 1 containing the inorganic solid electrolyte powder in the positive electrode 3, the discharge capacity during constant current discharge is larger when the content of the inorganic solid electrolyte powder is larger. However, when the content of the inorganic solid electrolyte powder exceeds 50% by weight as in Reference Example 8, the value of the discharge capacity is remarkably lowered. Further, when the content of the inorganic solid electrolyte powder is 1% by weight as in Reference Example 4, the value of the discharge capacity is extremely reduced. Actual施例content of the inorganic solid electrolyte powder is Ru value der near the middle of the 1 wt% and 50 wt%. 5 shows the best load characteristics.
[0040]
From the examples , it can be seen that good load characteristics can be obtained when the content of the inorganic solid electrolyte powder is 11 wt% or more and 50 wt% or less.
[0041]
In the embodiment of the present invention, the example in which the positive electrode contains the inorganic solid electrolyte powder has been described, but the negative electrode may contain the inorganic solid electrolyte powder. Moreover, you may contain an inorganic solid electrolyte powder in both a negative electrode and a positive electrode.
[0042]
The inorganic solid electrolyte powder that can be used in the present invention is electrochemically stable in consideration of reactivity with the positive electrode active material and the negative electrode active material or oxidation resistance, and the ionic conductivity of the solid electrolyte. meet the conditions such as the high, a Li 2 O-Al 2 O 3 -TiO 2 -P 2 O 5 powder.
[0043]
【The invention's effect】
As described above in detail, according to the solid electrolyte battery according to the present invention, the ion conductivity of the electrode of the solid electrolyte battery is improved, the deterioration of the cycle characteristics caused by the increase in internal impedance is reduced, and the excellent load characteristics Can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of an essential part showing one structural example of a solid electrolyte battery to which the present invention is applied.
[Explanation of symbols]
1 solid electrolyte battery, 2 negative electrode, 2a negative electrode active material layer, 2b negative electrode current collector, 3 positive electrode, 3a positive electrode active material, 3b positive electrode current collector, 4 polymer solid electrolyte, 5 exterior case

Claims (1)

負極活物質を含む負極活物質層と、
正極活物質としてLiCoO 及びグラファイト粉末を含む正極活物質層と、
高分子固体電解質とを備え、
上記正極活物質層に、25℃におけるイオン伝導度が1.0×10 −4 S/cm以上であり、上記正極活物質の粒径よりも小さいLiO−Al−TiO−P が上記正極活物質に対して、11重量%以上50重量%以下の範囲で混練されている固体電解質電池。
A negative electrode active material layer containing a negative electrode active material;
A positive electrode active material layer containing LiCoO 2 and graphite powder as a positive electrode active material;
A polymer solid electrolyte,
In the positive electrode active material layer, Li 2 O—Al 2 O 3 —TiO 2 — having an ionic conductivity at 25 ° C. of 1.0 × 10 −4 S / cm or more and smaller than the particle size of the positive electrode active material. P against 2 O 5 the upper Symbol positive electrode active material, solid electrolyte cell are kneaded in a range of 50 wt% or less 11% by weight or more.
JP18360899A 1999-06-29 1999-06-29 Solid electrolyte battery Expired - Fee Related JP4505886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18360899A JP4505886B2 (en) 1999-06-29 1999-06-29 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18360899A JP4505886B2 (en) 1999-06-29 1999-06-29 Solid electrolyte battery

Publications (2)

Publication Number Publication Date
JP2001015162A JP2001015162A (en) 2001-01-19
JP4505886B2 true JP4505886B2 (en) 2010-07-21

Family

ID=16138784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18360899A Expired - Fee Related JP4505886B2 (en) 1999-06-29 1999-06-29 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JP4505886B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2268316C (en) * 1999-04-07 2003-09-23 Hydro-Quebec Lipo3 composite
JP4213474B2 (en) * 2001-04-24 2009-01-21 パナソニック株式会社 Secondary battery and manufacturing method thereof
KR100470594B1 (en) * 2001-09-14 2005-02-07 주식회사 엠에프에스컴퍼니 Rechargeable Lithium Polymer Battery and Method for Making the Same
JP5319879B2 (en) * 2006-10-31 2013-10-16 株式会社オハラ Lithium secondary battery and electrode for lithium secondary battery
JP2011065982A (en) 2009-08-18 2011-03-31 Seiko Epson Corp Lithium battery electrode body and lithium battery
US20110300432A1 (en) 2010-06-07 2011-12-08 Snyder Shawn W Rechargeable, High-Density Electrochemical Device
JP2012014892A (en) * 2010-06-30 2012-01-19 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
WO2016187510A1 (en) 2015-05-20 2016-11-24 Sion Power Corporation Protective layers for electrodes
JP6861723B2 (en) * 2015-12-11 2021-04-21 ブルー・ソリューションズ・カナダ・インコーポレイテッド Battery with an electrochemical cell with variable impedance
KR102349772B1 (en) 2016-05-20 2022-01-10 시온 파워 코퍼레이션 Electrode and electrochemical cell protective layer
KR20190127674A (en) * 2017-03-31 2019-11-13 구라시키 보세키 가부시키가이샤 Electrode Sheet, All Solid Battery, Manufacturing Method of Electrode Sheet and Manufacturing Method of All Solid Battery
JP7237296B2 (en) * 2018-07-03 2023-03-13 川上 総一郎 storage device
US20210313562A1 (en) * 2020-04-07 2021-10-07 Nanostar Inc. Amorphous Silicon in Solid Electrolytes, Compositions and Anodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142874A (en) * 1995-11-15 1997-06-03 Ohara Inc Lithium ion conductive glass ceramic and its production
JPH1092445A (en) * 1996-09-19 1998-04-10 Kaageo P-Shingu Res Lab:Kk Whole solid type lithium battery
JPH11111266A (en) * 1997-09-30 1999-04-23 Yuasa Corp High polymer electrolyte secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63298980A (en) * 1987-05-28 1988-12-06 Yuasa Battery Co Ltd Solid electrolyte battery
JP3244291B2 (en) * 1991-01-23 2002-01-07 三洋電機株式会社 Battery
JPH05266891A (en) * 1992-03-23 1993-10-15 Ricoh Co Ltd Electrochemical active composite particulate and secondary battery electrode using same particulate
JP3384661B2 (en) * 1995-10-03 2003-03-10 三洋電機株式会社 Solid electrolyte battery and method for manufacturing solid electrolyte battery
JP3588885B2 (en) * 1995-12-21 2004-11-17 ソニー株式会社 Non-aqueous electrolyte battery
JPH1197027A (en) * 1997-09-18 1999-04-09 Ricoh Co Ltd Nonaqueous electrolyte secondary cell
JPH11120992A (en) * 1997-10-08 1999-04-30 Ricoh Co Ltd Nonaqueous electrolyte secondary battery
JP2000294291A (en) * 1999-02-03 2000-10-20 Sanyo Electric Co Ltd Polymer electrolyte battery
CA2268346A1 (en) * 1999-04-07 2000-10-07 Hydro-Quebec Lipo3 commutation electrode
CA2268316C (en) * 1999-04-07 2003-09-23 Hydro-Quebec Lipo3 composite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142874A (en) * 1995-11-15 1997-06-03 Ohara Inc Lithium ion conductive glass ceramic and its production
JPH1092445A (en) * 1996-09-19 1998-04-10 Kaageo P-Shingu Res Lab:Kk Whole solid type lithium battery
JPH11111266A (en) * 1997-09-30 1999-04-23 Yuasa Corp High polymer electrolyte secondary battery

Also Published As

Publication number Publication date
JP2001015162A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
US7326493B2 (en) Lithium electrochemical generator comprising at least a bipolar electrode with conductive aluminium or aluminium alloy substrates
US8349489B2 (en) Cathode active material, cathode therewith and nonaqueous electrolyte secondary battery
JP4029266B2 (en) Nonaqueous electrolyte battery and method for producing nonaqueous electrolyte battery
KR100464746B1 (en) Positive Electrode Active Material And Lithium Ion Secondary Cell
EP1777761B1 (en) Lithium Rechargeable Battery
US20020076611A1 (en) Use of heat-treated electrodes containing a polyamic acid-PVDF binder mixture
KR20050079899A (en) Electrode additives coated with electro conductive material and lithium secondary comprising the same
EP1030398A1 (en) Gel electrolyte and gel electrolyte battery
KR19990037490A (en) Solid electrolyte cell and manufacturing method thereof
JP3507926B2 (en) Solid-state battery
JP4505886B2 (en) Solid electrolyte battery
KR100485204B1 (en) Cathode for Lithium Secondary Battery
JP2009087885A (en) Method for manufacturing positive electrode
JP2012160463A (en) Method for manufacturing positive electrode for lithium ion battery, and method for manufacturing lithium ion battery
JP6656370B2 (en) Lithium ion secondary battery and battery pack
KR20200050628A (en) Composite Electrode Including Polymer Solid Electrolyte for All-Solid-State Battery, Method Of Manufacturing The Same, And All-Solid-State Lithium Battery Comprising The Same
KR20220034586A (en) Negative electrode material, negative electrode and secondary battery comprising the same
JP2001283913A (en) Lithium battery
JP2023508273A (en) Positive electrode for secondary battery, method for producing the same, and lithium secondary battery including the same
JP2002216744A (en) Nonaqueous electrolyte battery and manufacturing method of positive electrode for nonaqueous electrolyte battery
JP2003115324A (en) Nonaqueous electrolyte battery
JP4845245B2 (en) Lithium battery
CN111095612B (en) Positive electrode for secondary battery and secondary battery comprising same
JPH1145720A (en) Lithium secondary battery
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees