JPH11260336A - Polymer electrolyte battery - Google Patents

Polymer electrolyte battery

Info

Publication number
JPH11260336A
JPH11260336A JP10073238A JP7323898A JPH11260336A JP H11260336 A JPH11260336 A JP H11260336A JP 10073238 A JP10073238 A JP 10073238A JP 7323898 A JP7323898 A JP 7323898A JP H11260336 A JPH11260336 A JP H11260336A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
electrolyte layer
glass fiber
nonwoven fabric
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10073238A
Other languages
Japanese (ja)
Inventor
Tetsuo Kawai
徹夫 川合
Katsuhiro Higaki
勝弘 檜垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP10073238A priority Critical patent/JPH11260336A/en
Publication of JPH11260336A publication Critical patent/JPH11260336A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polymer electrolyte battery, having superior loading property without causing short circuit by thinning the polymer electrolyte layer. SOLUTION: In this polymer electrolyte battery comprising a sheet-like positive pole 1, a sheet-like negative electrode 2, and a sheet-like polymer electrolyte layer 3, a glass fiber nonwoven fabric with a 1 μm or smaller fiber diameter and an 80-95% porosity is used as the supporting body of the polymer electrolyte layer 3. The thickness of the glass fiber nonwoven fabric is 40-100 μm, especially preferably 50-70 μm. By setting the thickness of the glass fiber nonwoven fabric as 40 μm or more, the polymer electrolyte layer is provided with a preferred strength, and the occurrence of short circuit is properly prevented. By setting the thickness of the glass fiber nonwoven fabric as 100 μm or less, the loading property and the energy density can be kept within the preferred range.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ポリマー電解質電
池に関し、さらに詳しくは、特に携帯用機器、電気自動
車、ロードレベリングなどに使用するのに適したポリマ
ー電解質電池に関する。
The present invention relates to a polymer electrolyte battery, and more particularly, to a polymer electrolyte battery particularly suitable for use in portable equipment, electric vehicles, road leveling, and the like.

【0002】[0002]

【従来の技術】シート状の電解質を用いることにより、
A4版、B5版などの大面積でしかも薄形の電池の作製
が可能になり、各種薄形製品への適用が可能になって、
電池の使用範囲が大きく広がっている。特にポリマー電
解質を用いた電池は、耐漏液性を含めた安全性、貯蔵性
が優れており、しかも薄く、フレキシブルなため、機器
の形状に合わせた電池を設計できるという、今までの電
池にない特徴を持っている。
2. Description of the Related Art By using a sheet-like electrolyte,
It is possible to manufacture large-area and thin batteries such as A4 and B5 plates and apply them to various thin products.
The range of use of batteries is greatly expanding. In particular, batteries using polymer electrolytes have excellent safety and storage properties, including liquid leakage resistance, and are thin and flexible, making it possible to design batteries that match the shape of equipment. Has features.

【0003】このポリマー電解質電池は、通常、アルミ
ニウムフィルムを芯材にしたラミネートフィルムを外装
体に用い、薄いシート状の電極とシート状のポリマー電
解質層とを組み合わせて、薄形電池に仕上げられる。
[0003] This polymer electrolyte battery is usually finished into a thin battery by using a laminate film having an aluminum film as a core material for an outer package and combining a thin sheet-like electrode and a sheet-like polymer electrolyte layer.

【0004】[0004]

【発明が解決しようとする課題】このポリマー電解質電
池では、電極やポリマー電解質層が本質的に遊離の液を
含まない関係上、本質的にはセパレータの必要はない
が、電池特性の向上を図るため、完全な固体の電解質で
はなく、ゲル状の電解質を用いている。
In the polymer electrolyte battery, since the electrodes and the polymer electrolyte layer essentially do not contain a free liquid, there is essentially no need for a separator, but the battery characteristics are improved. Therefore, a gel electrolyte is used instead of a completely solid electrolyte.

【0005】この、ゲル状電解質は完全固体電解質に比
べて軟らかく物理的強度が小さいため、ゲル状電解質だ
けで電極間の隔離を行おうとすると、プレスしたり折り
曲げたときに電解質層が破壊されて短絡が発生するおそ
れがあった。そのため、不織布をポリマー電解質層の支
持体として用いることが一般的に行われているが、有機
繊維不織布はその製法上の関係から、均質で薄いものを
作製することが困難であり、通常50μm以下のものを
工業的に入手するのは困難である。また、空孔率はせい
ぜい50〜80%であって、それ以上に空孔率の大きな
ものは得られないため、ポリマー電解質層の厚さが厚く
なり、負荷特性を低下させる原因になっていた。
Since the gel electrolyte is softer and has a lower physical strength than the solid electrolyte, if an attempt is made to separate the electrodes only by the gel electrolyte, the electrolyte layer is broken when pressed or bent. There was a risk of short circuit. For this reason, it is common practice to use a nonwoven fabric as a support for the polymer electrolyte layer. However, it is difficult to produce a uniform and thin organic fiber nonwoven fabric due to its manufacturing method. Is difficult to obtain industrially. Further, the porosity is at most 50 to 80%, and a porosity larger than that cannot be obtained, so that the thickness of the polymer electrolyte layer is increased, which causes a decrease in load characteristics. .

【0006】従って、本発明は、上記のような従来技術
における問題点を解決し、ポリマー電解質層の強度を高
め、ポリマー電解質層の厚さを薄くすることを可能に
し、負荷特性が優れたポリマー電解質電池を提供するこ
とを目的とする。
Accordingly, the present invention solves the above-mentioned problems in the prior art, increases the strength of the polymer electrolyte layer, enables the thickness of the polymer electrolyte layer to be reduced, and provides a polymer having excellent load characteristics. An object is to provide an electrolyte battery.

【0007】[0007]

【課題を解決するための手段】本発明は、ポリマー電解
質層の支持体として、繊維径が1μm以下で空孔率が8
0〜95%のガラス繊維不織布を用い、その空孔内にポ
リマー電解質を形成して、ポリマー電解質層を構成する
ことにより、上記課題を解決したものである。
According to the present invention, a support for a polymer electrolyte layer has a fiber diameter of 1 μm or less and a porosity of 8%.
The above problem has been solved by using a 0 to 95% glass fiber nonwoven fabric and forming a polymer electrolyte in the pores to form a polymer electrolyte layer.

【0008】すなわち、ガラス繊維不織布は、繊維自体
の強度が高いので、空孔率を大きくし、厚さを薄くして
も高い強度を確保でき、その薄く、かつ空孔率の大きい
ガラス繊維不織布を支持体に用いることによって、短絡
の発生を招くことなく、ポリマー電解質層の電気抵抗を
低下させることができ、それによって、負荷特性が優れ
たポリマー電解質電池が得られるようになる。
That is, since the glass fiber nonwoven fabric has high strength of the fiber itself, the porosity can be increased, and high strength can be ensured even if the thickness is reduced, and the thin glass fiber nonwoven fabric having a large porosity. By using as a support, the electric resistance of the polymer electrolyte layer can be reduced without causing a short circuit, whereby a polymer electrolyte battery having excellent load characteristics can be obtained.

【0009】[0009]

【発明の実施の形態】本発明においてポリマー電解質層
の支持体として用いるガラス繊維不織布は、たとえば、
ガラス繊維をアクリル系バインダーまたはアクリル−メ
ラミン系バインダーを用い、水性液から抄紙し、乾燥す
ることによって得られる。
BEST MODE FOR CARRYING OUT THE INVENTION The glass fiber non-woven fabric used as a support for the polymer electrolyte layer in the present invention is, for example,
The glass fiber is obtained by using an acrylic binder or an acrylic-melamine binder to make paper from an aqueous liquid and drying.

【0010】繊維径は、空孔率が大きく、かつ厚さの薄
い不織布を得るために、1μm以下であることを要し、
細いほど上記目的には好都合であるが、あまり細くなり
すぎると、理論的には作製可能であっても、工業的には
高価になり、実質上不織布材料として使用できないの
で、ガラス繊維としては1μm以下であって0.1μm
程度までのものを使用することが好ましい。
The fiber diameter must be 1 μm or less in order to obtain a nonwoven fabric having a large porosity and a small thickness.
The thinner is more convenient for the above purpose, but if it is too thin, it is theoretically possible to produce it, but it becomes industrially expensive and cannot be used substantially as a nonwoven fabric material. 0.1 μm below
It is preferred to use up to a degree.

【0011】ガラス繊維不織布の空孔率は80〜95%
であることを要するが、これは、空孔率が80%より低
い場合は繊維部分が多くなり、イオンの導通経路を阻害
して抵抗が大きくなり、また空孔率が95%より高い場
合は不織布としての強度を維持することが困難になり、
そのため短絡を発生しやすくなるからである。そして、
このガラス繊維不織布の空孔率としては85〜95%が
より好ましい。なお、この空孔率は特に明示がない限り
体積%である。
The porosity of the glass fiber nonwoven fabric is 80 to 95%
However, when the porosity is lower than 80%, the fiber portion is increased, the conduction path of ions is obstructed, the resistance is increased, and when the porosity is higher than 95%, It becomes difficult to maintain the strength as a nonwoven fabric,
This is because a short circuit is likely to occur. And
The porosity of this glass fiber nonwoven fabric is more preferably 85 to 95%. The porosity is% by volume unless otherwise specified.

【0012】また、ガラス繊維不織布の厚さは40〜1
00μm、特に50〜70μmが好ましい。ガラス繊維
不織布の厚さを40μm以上とすることにより、ポリマ
ー電解質層に好適な強度を持たせて短絡の発生をよりよ
く防止することができ、また、ガラス繊維不織布の厚さ
を100μm以下とすることにより、負荷特性やエネル
ギー密度を良好な範囲に保ち得る。
Further, the thickness of the glass fiber nonwoven fabric is 40 to 1
00 µm, particularly preferably 50 to 70 µm. By setting the thickness of the glass fiber non-woven fabric to 40 μm or more, the polymer electrolyte layer can have a suitable strength to prevent the occurrence of a short circuit, and the thickness of the glass fiber non-woven fabric to 100 μm or less. Thereby, the load characteristics and the energy density can be kept in good ranges.

【0013】リチウム系の電池にガラス繊維を用いる
と、リチウム金属とガラスとの反応によりガラスの溶解
が生じると言われているが、電解質をゲル状ポリマー電
解質にすることによって電極反応によるデンドライトの
発生が抑制されるので、ガラス繊維不織布を用いても実
質的な悪影響はない。また、ガラス繊維の表面にゲル状
ポリマー電解質層が形成されているので、仮にデンドラ
イトが発生しても直接ガラス繊維と接触することが非常
に少なく、実質的に悪影響はない。
It is said that when glass fibers are used in a lithium-based battery, the glass dissolves due to the reaction between the lithium metal and the glass. However, when the electrolyte is made into a gel polymer electrolyte, the generation of dendrite by the electrode reaction occurs. Is suppressed, so that the use of a glass fiber nonwoven fabric does not have a substantial adverse effect. Further, since the gel-like polymer electrolyte layer is formed on the surface of the glass fiber, even if the dendrite is generated, there is very little direct contact with the glass fiber, and there is substantially no adverse effect.

【0014】[0014]

【実施例】つぎに、実施例を挙げて本発明をより具体的
に説明する。ただし、本発明はそれらの実施例のみに限
定されるものではない。なお、以下においては、ポリマ
ー電解質層の支持体として種類の異なる不織布を用いて
実施例および比較例を説明していくが、それらの説明に
先立って正極および負極の作製について説明する。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples. In the following, Examples and Comparative Examples will be described using different types of nonwoven fabrics as a support for the polymer electrolyte layer. Prior to the description, preparation of the positive electrode and the negative electrode will be described.

【0015】正極の作製:正極活物質であるLiCoO
2 50重量部、電導助剤であるアセチレンブラック10
重量部、バインダであるポリフッ化ビニリデン10重量
部を均一になるように混合し、さらに電解液40重量部
を加えて混合してペースト状の正極合剤を調製した。上
記電解液はプロピレンカーボネートとエチレンカーボネ
ートとの体積比1:1の混合溶媒にLiPF6 を1.2
2モル/リットル溶解させたものである。そして、上記
のように調製したペースト状の正極合剤を集電体となる
アルミニウム箔の一方の面に塗布し、加熱してゲル化さ
せることによりアルミニウム箔上にゲル状の正極合剤層
を形成して、シート状の正極を作製した。
Preparation of positive electrode: LiCoO as positive electrode active material
2 50 parts by weight, acetylene black 10 is a conductive aid
Parts by weight and 10 parts by weight of polyvinylidene fluoride as a binder were uniformly mixed, and 40 parts by weight of an electrolytic solution were further added and mixed to prepare a paste-like positive electrode mixture. The electrolytic solution was prepared by adding LiPF 6 to a mixed solvent of propylene carbonate and ethylene carbonate at a volume ratio of 1: 1 with 1.2.
2 mol / liter dissolved. Then, the paste-like positive electrode mixture prepared as described above is applied to one surface of an aluminum foil serving as a current collector, and heated to gel to form a gel-like positive electrode mixture layer on the aluminum foil. The sheet was formed into a sheet-shaped positive electrode.

【0016】負極の作製:負極活物質である黒鉛40重
量部とポリフッ化ビニリデン5重量部と上記正極に用い
たものと同様の電解液55重量部を混合してペースト状
の負極合剤を調製し、このペースト状の負極合剤を集電
体となる銅箔の一方の面に塗布し、加熱してゲル化させ
ることにより銅箔上にゲル状の負極合剤層を形成して、
シート状の負極を作製した。
Preparation of negative electrode: 40 parts by weight of graphite as the negative electrode active material, 5 parts by weight of polyvinylidene fluoride, and 55 parts by weight of the same electrolytic solution as used for the positive electrode were mixed to prepare a paste-like negative electrode mixture. Then, this paste-like negative electrode mixture is applied to one surface of a copper foil to be a current collector, and heated and gelled to form a gel-like negative electrode mixture layer on the copper foil,
A sheet-shaped negative electrode was produced.

【0017】実施例1〜6 ガラス繊維をアクリル系バインダーを3重量%加えた水
性液中から抄紙し、乾燥してガラス繊維不織布を作製し
た。使用したガラス繊維の繊維径は0.5〜0.7μm
の範囲内のものであり、得られたガラス繊維不織布は6
種類で、厚さは40〜100μmの範囲内にあり、空孔
率は85〜95%の範囲内にあった。
Examples 1 to 6 Glass fibers were made from an aqueous solution containing 3% by weight of an acrylic binder and dried to prepare a glass fiber nonwoven fabric. The fiber diameter of the used glass fiber is 0.5 to 0.7 μm
And the obtained glass fiber nonwoven fabric is 6
By type, thickness was in the range of 40-100 μm and porosity was in the range of 85-95%.

【0018】得られたガラス繊維不織布をそれぞれ支持
体とし、それらのそれぞれに、3種類のアクリル系モノ
マー混合物15重量部とその重合開始剤である過酸化ベ
ンゾイル0.75重量部と前記同様の電解液85重量部
とを混合した溶液を含浸させ、加熱してモノマーを重合
させるとともに全体をゲル化させることにより、シート
状のゲル状ポリマー電解質層を作製した。上記のアクリ
ル系モノマー混合物は、2−エトキシエチルアクリレー
トとトリエチレングリコールジメタクリレートとエチレ
ングリコールエチルカーボネートメタクリレートとを重
量比50:13:33の割合で混合したものである。
Each of the obtained glass fiber nonwoven fabrics was used as a support, and each of them was combined with 15 parts by weight of a mixture of three kinds of acrylic monomers, 0.75 parts by weight of benzoyl peroxide as a polymerization initiator, and the same electrolytic solution as described above. A sheet-like gel-like polymer electrolyte layer was prepared by impregnating a solution obtained by mixing 85 parts by weight of the liquid, heating the monomer to polymerize it, and gelling the whole. The acrylic monomer mixture is obtained by mixing 2-ethoxyethyl acrylate, triethylene glycol dimethacrylate, and ethylene glycol ethyl carbonate methacrylate in a weight ratio of 50:13:33.

【0019】このポリマー電解質層を上記正極と負極と
の間に配置し、圧着してユニットセルを構成し、該ユニ
ットセルをポリエステルフィルム−アルミニウムフィル
ム−変性ポリオレフィンフィルムからなる三層構造のラ
ミネートフィルムで外装してポリマー電解質電池を作製
した。ただし、上記ユニットセルの作製にあたり、正極
と負極はそれぞれの合剤層がポリマー電解質層を介して
対向するように配置した。
The polymer electrolyte layer is disposed between the positive electrode and the negative electrode, and is pressed to form a unit cell. The unit cell is formed of a three-layer laminated film composed of a polyester film, an aluminum film, and a modified polyolefin film. A polymer electrolyte battery was produced by packaging. However, in producing the unit cell, the positive electrode and the negative electrode were arranged such that the respective mixture layers face each other with the polymer electrolyte layer interposed therebetween.

【0020】ここで、上記電池の概略構造を図1を参照
しつつ説明すると、シート状の正極1とシート状の負極
2との間にシート状のポリマー電解質層3が配置してユ
ニットセルが構成され、そのユニットセルをラミネート
フィルムからなる外装体4で外装し、正極1および負極
2から正極端子5および負極端子6を外装体4の外部に
引き出して電池が構成されている。
Here, the schematic structure of the battery will be described with reference to FIG. 1. A sheet-shaped polymer electrolyte layer 3 is arranged between a sheet-shaped positive electrode 1 and a sheet-shaped negative electrode 2 to form a unit cell. The unit cell is packaged with a package 4 made of a laminated film, and a positive electrode terminal 5 and a negative electrode terminal 6 are drawn out of the package 4 from the positive electrode 1 and the negative electrode 2 to form a battery.

【0021】比較例1 ポリマー電解質層の支持体として厚さ70μmで空孔率
75%のポリオレフィン不織布を用いた以外は、実施例
1と同様にしてポリマー電解質層およびポリマー電解質
電池を作製した。
Comparative Example 1 A polymer electrolyte layer and a polymer electrolyte battery were produced in the same manner as in Example 1 except that a polyolefin nonwoven fabric having a thickness of 70 μm and a porosity of 75% was used as a support for the polymer electrolyte layer.

【0022】比較例2 ポリマー電解質層の支持体として厚さ25μmで空孔率
50%の微孔性ポリエチレンフィルムを用いた以外は、
実施例1と同様にしてポリマー電解質層およびポリマー
電解質電池を作製した。
Comparative Example 2 A microporous polyethylene film having a thickness of 25 μm and a porosity of 50% was used as a support for a polymer electrolyte layer.
A polymer electrolyte layer and a polymer electrolyte battery were produced in the same manner as in Example 1.

【0023】比較例3 実施例1と同様のガラス繊維を用い、厚さ30μm、空
孔率90%のガラス繊維不織布を作製し、このガラス繊
維不織布を用いた以外は、実施例1と同様にしてポリマ
ー電解質層およびポリマー電解質電池を作製した。
Comparative Example 3 A glass fiber non-woven fabric having a thickness of 30 μm and a porosity of 90% was produced using the same glass fiber as in Example 1, and the same procedure as in Example 1 was carried out except that this glass fiber non-woven fabric was used. Thus, a polymer electrolyte layer and a polymer electrolyte battery were produced.

【0024】上記実施例1〜6および比較例1〜3の電
池の短絡発生率および負荷特性を調べた。その結果を表
1に示す。短絡発生率は各電池をそれぞれ100個ずつ
製造し、30mAで15分間充電した時の電圧を測定
し、3.0V未満は短絡が発生しているものと判定し、
3.0V以上は正常と判定することによって調べたもの
であり、負荷特性は、4.2V、0.2Cの定電流定電
圧(CCCV法)で8時間充電し、2Cと0.2Cでそ
れぞれ2.75Vまで放電して容量を測定し、その2C
で放電したときの容量を0.2Cで放電したときの容量
で除して比率で示したものである。
The short-circuit occurrence rate and load characteristics of the batteries of Examples 1 to 6 and Comparative Examples 1 to 3 were examined. Table 1 shows the results. The short-circuit occurrence rate measured the voltage when each battery was manufactured 100 pieces and was charged at 30 mA for 15 minutes, and when the voltage was less than 3.0 V, it was determined that a short-circuit occurred.
The load characteristics of 3.0 V or more were determined by judging that they were normal. The load characteristics were 4.2 V, 0.2 C constant current and constant voltage (CCCV method) for 8 hours, and 2 C and 0.2 C, respectively. Discharge to 2.75V and measure the capacity.
And the capacity at the time of discharging at 0.2 C is divided by the capacity at the time of discharging at 0.2 C, and is shown as a ratio.

【0025】[0025]

【表1】 [Table 1]

【0026】表1に示すように、ポリマー電解質層の支
持体としてガラス繊維不織布を用いた実施例1〜6は、
短絡の発生を引き起こすことなく、負荷特性が優れてい
た。ただし、比較例3に示すように、ガラス繊維不織布
の空孔率が高い状態で厚みが薄くなると短絡が発生する
傾向があった。また、実施例1〜6で用いたガラス繊維
不織布は、空孔率が大きかったが、必要な強度を有して
いたので、電池組立に際して支障はなかった。また、本
発明によれば、実施例1〜4などに示すように、支持体
の厚みを薄くすることができるので、それに応じて、電
池のエネルギー密度を高めることがきる。
As shown in Table 1, Examples 1 to 6 in which a glass fiber nonwoven fabric was used as a support for the polymer electrolyte layer were as follows:
The load characteristics were excellent without causing a short circuit. However, as shown in Comparative Example 3, when the porosity of the glass fiber nonwoven fabric was high and the thickness was reduced, a short circuit tended to occur. In addition, the glass fiber nonwoven fabric used in Examples 1 to 6 had a high porosity, but had the necessary strength, so that there was no problem in assembling the battery. Further, according to the present invention, as shown in Examples 1 to 4, the thickness of the support can be reduced, and accordingly, the energy density of the battery can be increased.

【0027】上記実施例では1個のユニットセルを外装
して電池に仕上げた場合について示したが、それに代え
て複数個のユニットセルを積層したユニットセル積層体
を外装して電池に仕上げてもよい。
In the above embodiment, the case where one unit cell is packaged and finished into a battery is shown. Alternatively, a unit cell laminate in which a plurality of unit cells are laminated is packaged and finished into a battery. Good.

【0028】なお、ポリマー電解質のゲル化に際して
は、実施例で示した以外に、たとえば、ラジカル重合型
の不飽和ポリエステル、または、ラジカル重合型のアク
リル系エポキシアクリレート、ウレタンアクリレート、
ポリエステルアクリレート、アルキッドアクリレート、
シリコンアクリレートなどの光硬化性樹脂を紫外線ある
いは電子線を用いてゲル化させるものであってもよい。
When the polymer electrolyte is gelled, in addition to those shown in the examples, for example, a radical polymerizable unsaturated polyester, or a radical polymerizable acrylic epoxy acrylate, urethane acrylate,
Polyester acrylate, alkyd acrylate,
A photocurable resin such as silicon acrylate may be gelled using ultraviolet light or an electron beam.

【0029】[0029]

【発明の効果】以上説明したように、本発明では、短絡
の発生を引き起こすことなく、負荷特性が優れたポリマ
ー電解質電池を提供することができた。
As described above, according to the present invention, a polymer electrolyte battery having excellent load characteristics without causing a short circuit can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るポリマー電解質電池の一例を模式
的に示す断面図である。
FIG. 1 is a cross-sectional view schematically showing one example of a polymer electrolyte battery according to the present invention.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 3 ポリマー電解質層 4 外装体 DESCRIPTION OF SYMBOLS 1 Positive electrode 2 Negative electrode 3 Polymer electrolyte layer 4 Package

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 シート状の正極、シート状の負極および
シート状のポリマー電解質層を有するポリマー電解質電
池において、上記ポリマー電解質層の支持体として、繊
維径が1μm以下で空孔率が80〜95%のガラス繊維
不織布を用いたことを特徴とするポリマー電解質電池。
1. A polymer electrolyte battery comprising a sheet-shaped positive electrode, a sheet-shaped negative electrode and a sheet-shaped polymer electrolyte layer, wherein the support of the polymer electrolyte layer has a fiber diameter of 1 μm or less and a porosity of 80 to 95. % Of a polymer electrolyte battery using a glass fiber non-woven fabric.
【請求項2】 ポリマー電解質層がゲル状ポリマー電解
質層である請求項1記載のポリマー電解質電池。
2. The polymer electrolyte battery according to claim 1, wherein the polymer electrolyte layer is a gel polymer electrolyte layer.
【請求項3】 ガラス繊維不織布の厚さが40〜100
μmである請求項1記載のポリマー電解質電池。
3. The glass fiber nonwoven fabric has a thickness of 40 to 100.
2. The polymer electrolyte battery according to claim 1, which has a thickness of μm.
JP10073238A 1998-03-06 1998-03-06 Polymer electrolyte battery Withdrawn JPH11260336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10073238A JPH11260336A (en) 1998-03-06 1998-03-06 Polymer electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10073238A JPH11260336A (en) 1998-03-06 1998-03-06 Polymer electrolyte battery

Publications (1)

Publication Number Publication Date
JPH11260336A true JPH11260336A (en) 1999-09-24

Family

ID=13512415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10073238A Withdrawn JPH11260336A (en) 1998-03-06 1998-03-06 Polymer electrolyte battery

Country Status (1)

Country Link
JP (1) JPH11260336A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103258A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
JP2012015056A (en) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd Molten salt battery
JP2013127982A (en) * 2013-02-22 2013-06-27 Idemitsu Kosan Co Ltd Solid electrolyte sheet for lithium battery, manufacturing method for the same, and all-solid secondary battery using the same
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2016136513A (en) * 2015-01-12 2016-07-28 アイメック・ヴェーゼットウェーImec Vzw Solid-state battery and method for fabrication
US9831480B2 (en) 2008-11-19 2017-11-28 Tdk Corporation Fiber-containing polymer film and method of manufacturing same, and electrochemical device and method of manufacturing same
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device
JP2021504916A (en) * 2018-02-09 2021-02-15 エルジー・ケム・リミテッド Solid polymer electrolyte and lithium secondary battery containing it

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103258A (en) * 2006-10-20 2008-05-01 Idemitsu Kosan Co Ltd Solid electrolyte sheet, electrode sheet, and all-solid secondary battery using it
US9831480B2 (en) 2008-11-19 2017-11-28 Tdk Corporation Fiber-containing polymer film and method of manufacturing same, and electrochemical device and method of manufacturing same
JP2012015056A (en) * 2010-07-05 2012-01-19 Sumitomo Electric Ind Ltd Molten salt battery
JP2014096311A (en) * 2012-11-12 2014-05-22 National Institute Of Advanced Industrial & Technology Solid electrolyte sheet, electrode sheet, and all solid secondary battery
JP2013127982A (en) * 2013-02-22 2013-06-27 Idemitsu Kosan Co Ltd Solid electrolyte sheet for lithium battery, manufacturing method for the same, and all-solid secondary battery using the same
JP2016136513A (en) * 2015-01-12 2016-07-28 アイメック・ヴェーゼットウェーImec Vzw Solid-state battery and method for fabrication
JP2021504916A (en) * 2018-02-09 2021-02-15 エルジー・ケム・リミテッド Solid polymer electrolyte and lithium secondary battery containing it
US11710852B2 (en) 2018-02-09 2023-07-25 Lg Energy Solution, Ltd. Separator for secondary battery and lithium secondary battery including same
JP2020009548A (en) * 2018-07-03 2020-01-16 川上 総一郎 Power storage device

Similar Documents

Publication Publication Date Title
JP4352475B2 (en) Solid electrolyte secondary battery
CN105470564A (en) Solid electrolyte membrane, preparation method of solid electrolyte membrane and lithium ion battery
JP2007012598A (en) Nonaqueous electrolyte secondary battery and battery module
JP2000268867A (en) Thin film type lithium secondary battery
JP2000149906A (en) Lithium secondary battery
JP3904935B2 (en) Method for producing lithium polymer secondary battery
JPH08329983A (en) Lithium battery
JP2001319689A (en) Lithium-polymer secondary battery
KR102298059B1 (en) Method of manufacturing lithium secondary battery
JPH11260336A (en) Polymer electrolyte battery
JP2000067917A (en) Polymer lithium ion secondary battery
JP2001319692A (en) Solid lithium-polymer battery
JP2003331838A (en) Lithium secondary battery
JP4318233B2 (en) Lithium secondary battery and manufacturing method thereof
JPH11219727A (en) Polymer battery
JP4132945B2 (en) Nonaqueous electrolyte lithium ion battery and separator therefor
JP3966602B2 (en) Polymer electrolyte battery
KR102053098B1 (en) Separator Adhesion Layer Having a Low Resistance and Manufacturing Method thereof
JP2000260470A (en) Polymer electrolyte battery
JP2001015165A (en) Manufacture of solid electrolyte, manufacture of secondary battery, and secondary battery
JPH11260346A (en) Polymer electrolyte battery
JP4682395B2 (en) Non-aqueous battery
JP2000067850A (en) Polymer electrolyte secondary battery
JPH11260340A (en) Polymer electrolyte battery
JPH11162506A (en) Manufacture of lithium battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510