JP2019521444A5 - - Google Patents

Download PDF

Info

Publication number
JP2019521444A5
JP2019521444A5 JP2019500348A JP2019500348A JP2019521444A5 JP 2019521444 A5 JP2019521444 A5 JP 2019521444A5 JP 2019500348 A JP2019500348 A JP 2019500348A JP 2019500348 A JP2019500348 A JP 2019500348A JP 2019521444 A5 JP2019521444 A5 JP 2019521444A5
Authority
JP
Japan
Prior art keywords
unit
process model
model
modeled
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019500348A
Other languages
English (en)
Other versions
JP2019521444A (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2017/040725 external-priority patent/WO2018009546A1/en
Publication of JP2019521444A publication Critical patent/JP2019521444A/ja
Publication of JP2019521444A5 publication Critical patent/JP2019521444A5/ja
Priority to JP2021064734A priority Critical patent/JP7394805B2/ja
Pending legal-status Critical Current

Links

Description

本発明を例示的な実施形態を参照しながら具体的に図示・説明したが、当業者であれば、添付の特許請求の範囲に包含された本発明の範囲を逸脱しない範疇で形態や細部に様々な変更を施せることを理解するであろう。
なお、本発明は、態様として以下の内容を含む。
〔態様1〕
コンピュータに実装され、オンラインのユニットプロセスモデルを生成する方法であって、
産業プラントのプラントワイドプロセスモデルであって、前記産業プラントのオフライン操業を実行するように構成されているプラントワイドプロセスモデルを特定する過程と、
特定された前記プラントワイドプロセスモデルに含まれる、モデル化された動作ユニットであって、前記産業プラントにおける実際の動作ユニットに対応するモデル化された動作ユニットを選択する選択過程と、
特定された前記プラントワイドプロセスモデルを、選択された前記モデル化された動作ユニットのユニットプロセスモデルに変換する変換過程と、
前記ユニットプロセスモデルを、前記実際の動作ユニットの計器によって収集されたリアルタイム測定値に基づいて機能できるように再校正する再校正過程と、
再校正された前記ユニットプロセスモデルであって、前記実際の動作ユニットの前記計器によって収集されたリアルタイム測定値に基づいて、前記産業プラントにおける前記実際の動作ユニットの動作挙動を予測するKPIを算出するユニットプロセスモデルを前記産業プラントにおいてオンラインで配備する配備過程と、
前記実際の動作ユニットを、当該実際の動作ユニットの予測された前記動作挙動に従って制御する制御過程と、
を備える、方法。
〔態様2〕
態様1に記載の方法において、前記プラントワイドプロセスモデルが第一原理モデルであり、かつ、前記変換過程及び前記再校正過程から得られる前記ユニットプロセスモデルが第一原理モデルである、方法。
〔態様3〕
態様1に記載の方法において、前記動作ユニットが蒸留塔である、方法。
〔態様4〕
態様1に記載の方法において、特定された前記プラントワイドプロセスモデルを変換する前記変換過程が、
選択された前記モデル化された動作ユニットとは無関係な変数及び式を除去する除去副過程、
選択された前記モデル化された動作ユニットの仕様を標準仕様に置換する置換副過程、
計算基準を標準形式に変換する変換副過程、
選択された前記モデル化された動作ユニットのプロセス変数
を再設定する再設定副過程、ならびに
選択された前記モデル化された動作ユニットの制御ループであって、選択された前記モデル化された動作ユニットの動作目的を特定する制御ループを決定する決定副過程、
を含む、方法。
〔態様5〕
態様4に記載の方法において、前記プロセス変数を再設定する前記再設定副過程が、
選択された前記モデル化された動作ユニットの操作変数及び出力変数を特定すること、ならびに
特定された前記操作変数及び前記出力変数のそれぞれを、少なくとも1つの計器タグにマッピングすること、
を有する、方法。
〔態様6〕
態様1に記載の方法において、前記ユニットプロセスモデルを再校正する前記再校正過程が、
リアルタイムプラントヒストリアンから取り出されたプラントデータに基づくデータセットであって、校正された時間ホライズン中に定常状態で収集された、前記プラントデータのサブセットを含むデータセットを生成する生成副過程、
前記ユニットプロセスモデルにおけるモデル化された流量を調和させる副過程であって、前記ユニットプロセスモデルが前記産業プラントにおいて実際の流量計器によって収集された測定値を用いて機能することを可能にする、流量調和副過程、
前記ユニットプロセスモデルにおけるモデル化された温度を調和させる副過程であって、前記ユニットプロセスモデルが前記産業プラントにおいて実際の流量計器によって収集された測定値を用いて機能することを可能にする、温度調和副過程、
選択された前記モデル化された動作ユニットに入る原料ストリームの組成を前記ユニットプロセスモデルが推定することを可能にする原料推定手段を構築する構築副過程、ならびに
選択された前記モデル化された動作ユニットが蒸留塔である場合、前記ユニットプロセスモデルにおける当該蒸留塔の内部の液体・蒸気往来流を表す流体力学的モデルを調整する調整副過程、
を含む、方法。
〔態様7〕
態様6に記載の方法において、モデル化された流量を調和させる前記流量調和副過程又はモデル化された温度を調和させる前記温度調和副過程が、さらに、
前記実際の計器それぞれにおける期待誤差を選択すること、
前記データセットの前記プラントデータを、トレーニングセットとテストセットに分けること、
最適化モデルを前記トレーニングセットにおける各データ点について生成することであって、当該最適化モデルの解を求めることにより、前記モデル化された流量又は前記モデル化された温度についての校正パラメータを決定すること、および
シミュレーションモデルを前記テストセットにおける各データ点について生成することであって、当該シミュレーションモデルの解を求めることにより、決定された前記校正パラメータの品質を決定すること、
を有する、方法。
〔態様8〕
態様7に記載の方法において、前記モデル化された流量についての前記校正パラメータが、前記実際の流量計器によって測定された流量と前記ユニットプロセスモデルによって算出された流量との差分を表す流量オフセットである、方法。
〔態様9〕
態様7に記載の方法において、前記モデル化された温度についての前記校正パラメータが、
前記実際の温度計器によって測定された温度と前記ユニットプロセスモデルによって算出された温度との分離度を表す効率パラメータ、および
前記実際の動作ユニットにおいて測定された圧力降下が前記ユニットプロセスモデルによって算出された圧力降下と合致するか否かを表す通気パラメータを含む、方法。
〔態様10〕
態様1に記載の方法において、再校正された前記ユニットプロセスモデルを前記産業プラントにおいてオンラインで配備する前記配備過程が、
前記ユニットプロセスモデルの動的に実行可能なバージョンを生成する副過程であって、前記実際の動作ユニットの前記計器によるリアルタイム測定値を前記ユニットプロセスモデルによって算出される対応する数値にリンクする変数を生成する、副過程、
前記実際の動作ユニットのリアルタイム測定値を取り出す副過程であって、前記モデルに、リンクされた変数をリアルタイム測定値と関連付けて設定する、副過程、
前記ユニットプロセスモデルの前記動的に実行可能なバージョンの解を求める副過程であって、リンクされた変数を算出されるモデル値に関連付けて設定し、前記モデル化された動作ユニットのKPIについての数値を決定する、副過程、ならびに
決定された前記KPIを、当該KPIに基づいて前記実際の動作ユニットを予測及び制御するように構成されたプラントコンピュータによるアクセスのために、リアルタイムヒストリアンに書き込む副過程、
を含む、方法。
〔態様11〕
態様1に記載の方法において、さらに、
再校正された前記ユニットプロセスモデルを、前記実際の動作ユニットの事象についての指示案内のユーザへの提供を自動化しているルールエンジンを生成するように適用する過程、
を備える、方法。
〔態様12〕
オンラインのユニットプロセスモデルを生成するコンピュータシステムであって、
プロセッサと、
コンピュータコード命令が記憶されたメモリと、
を備え、前記メモリは、前記プロセッサにより実行されると前記コンピュータコード命令が
a)モデル変換手段であって、
産業プラントのプラントワイドプロセスモデルであって、前記産業プラントのオフライン操業を実行するように構成されたプラントワイドプロセスモデルを取得し、
取得された前記プラントワイドプロセスモデルに含まれる、モデル化された動作ユニットであって、前記産業プラントでの実際の動作ユニットに対応するモデル化された動作ユニットを選択し、
取得された前記プラントワイドプロセスモデルを、選択された前記モデル化された動作ユニットのユニットプロセスモデルに変換するように構成された、モデル変換手段、
b)前記モデル変換手段に応答して、前記ユニットプロセスモデルを再校正するように構成されたモデル校正手段であって、前記再校正により、前記ユニットプロセスモデルが、前記実際の動作ユニットの計器によって収集されたリアルタイム測定値に基づいて機能できるようにする、モデル校正手段、および
c)再校正された前記ユニットプロセスモデルを前記産業プラントにおいてオンラインで配備するように接続された配備エンジンであって、配備された前記ユニットプロセスモデルは、前記実際の動作ユニットの前記計器によって収集されたリアルタイム測定値に基づいて、前記産業プラントでの前記実際の動作ユニットの動作挙動を予測するKPIを算出する、配備エンジン
を当該コンピュータシステムに実装させるように、前記プロセッサに作動的に接続されており、
前記配備エンジンは、前記実際の動作ユニットを、当該実際の動作ユニットの予測された前記動作挙動に従って制御するように構成された制御システム通信する、コンピュータシステム。
〔態様13〕
態様12に記載のコンピュータシステムにおいて、取得された前記プラントワイドプロセスモデルおよび再校正された前記ユニットプロセスモデルが第一原理モデルである、コンピュータシステム。
〔態様14〕
態様12に記載のコンピュータシステムにおいて、前記動作ユニットが蒸留塔である、コンピュータシステム。
〔態様15〕
態様12に記載のコンピュータシステムにおいて、前記モデル変換手段が、さらに、前記プラントワイドプロセスを、
選択された前記モデル化された動作ユニットとは無関係な変数及び式を除去し、
選択された前記モデル化された動作ユニットの仕様を標準仕様に置換し、
計算基準を標準形式に変換し、
選択された前記モデル化された動作ユニットのプロセス変数を再設定し、
選択された前記モデル化された動作ユニットの制御ループであって、選択された前記モデル化された動作ユニットの動作目的を特定する制御ループを決定することによって
変換するように構成されている、コンピュータシステム。
〔態様16〕
態様15に記載のコンピュータシステムにおいて、前記モデル変換手段が、さらに、前記プロセス変数を、
選択された前記モデル化された動作ユニットの操作変数及び出力変数を特定し、
特定された前記操作変数及び前記出力変数のそれぞれを、少なくとも1つの計器タグにマッピングすることによって
再設定するように構成されている、コンピュータシステム。
〔態様17〕
態様12に記載のコンピュータシステムにおいて、前記モデル校正手段が、
リアルタイムプラントヒストリアンから取り出されたプラントデータに基づくデータセットであって、校正された時間ホライズン中に定常状態で収集された、前記プラントデータのサブセットを含むデータセットを生成するように構成されたデータセット生成部、
前記ユニットプロセスモデルにおけるモデル化された流量を調和させるように構成された流量調和部であって、当該調和は、前記ユニットプロセスモデルが前記産業プラントにおいて実際の流量計器によって収集された測定値を用いて機能することを可能にする、流量調和部、
前記ユニットプロセスモデルにおけるモデル化された温度を調和させるように構成された温度調和部であって、当該調和は、前記ユニットプロセスモデルが前記産業プラントにおいて実際の流量計器によって収集された測定値を用いて機能することを可能にする、温度調和部、
選択された前記モデル化された動作ユニットに入る原料ストリームの組成を前記ユニットプロセスモデルが推定することを可能にする原料推定手段を構築するように構成された原料推定手段構築部、ならびに
選択された前記モデル化された動作ユニットが蒸留塔である場合、前記ユニットプロセスモデルにおける当該蒸留塔の内部の液体・蒸気往来流を表す流体力学的モデルを調整するように構成された流体力学的モデル調整部、
を含む、コンピュータシステム。
〔態様18〕
態様17に記載のコンピュータシステムにおいて、前記流量調和部および前記温度調和部が、さらに、
前記実際の計器それぞれにおける期待誤差を選択し、
前記データセットの前記プラントデータを、トレーニングセットとテストセットに分けて、
最適化モデルを前記トレーニングセットにおける各データ点について生成し、当該最適化モデルの解を求めることにより、前記モデル化された流量又は前記モデル化された温度についての校正パラメータを決定し、
シミュレーションモデルを前記テストセットにおける各データ点について生成し、当該シミュレーションモデルの解を求めることにより、決定された前記校正パラメータの品質を決定するように構成されている、コンピュータシステム。
〔態様19〕
態様18に記載のコンピュータシステムにおいて、前記校正パラメータが:
前記モデル化された流量については、前記実際の流量計器によって測定された流量と前記ユニットプロセスモデルによって算出された流量との差分を表す流量オフセットであり、
前記モデル化された温度については、前記実際の温度計器によって測定された温度と前記ユニットプロセスモデルによって算出された温度との分離度を表す効率パラメータ、および前記実際の動作ユニットにおいて測定された圧力降下が前記ユニットプロセスユニットによって算出された圧力降下と合致するか否かを表す通気パラメータである、コンピュータシステム。
〔態様20〕
態様12に記載のコンピュータシステムにおいて、前記配備モジュールが、さらに、
前記実際の動作ユニットの前記計器によるリアルタイム測定値を前記ユニットプロセスモデルによって算出される対応する数値にリンクする変数を生成することを含み、前記ユニットプロセスモデルの動的に実行可能なバージョンを生成し、
前記実際の動作ユニットのリアルタイム測定値を取り出し、前記モデルに、リンクされた変数をリアルタイム測定値と関連付けて設定し、
前記ユニットプロセスモデルの前記動的に実行可能なバージョンの解を求め、リンクされた変数を算出されるモデル値と関連付けて設定し、前記モデル化された動作ユニットのKPIの数値を決定し、
決定された前記KPIを、当該KPIに基づいて前記実際の動作ユニットを予測及び制御するように構成されたプラントコンピュータによるアクセスのために、リアルタイムヒストリアンに書き込むように構成されている、コンピュータシステム。
〔態様21〕
態様12に記載のコンピュータシステムにおいて、前記配備モジュールが、さらに、再校正された前記ユニットプロセスモデルを適用し、前記実際の動作ユニットの事象についての指示案内のユーザへの提供を自動化しているルールエンジンを生成する、コンピュータシステム。
〔態様22〕
コード命令が記憶された非過渡的なコンピュータ読取り可能記憶媒体、
を備える、コンピュータプログラムプロダクトであって、
前記記憶媒体は、オンラインのユニットプロセスモデルを生成するプロセッサにより実行されると前記コード命令が、当該プロセッサに:
産業プラントのプラントワイドプロセスモデルであって、前記産業プラントのオフライン操業を実行するように構成されているプラントワイドプロセスモデルを取得する手順、
取得された前記プラントワイドプロセスモデルに含まれる、モデル化された動作ユニットであって、前記産業プラントにおける実際の動作ユニットに対応するモデル化された動作ユニットを選択する手順、
取得された前記プラントワイドプロセスモデルを、選択された前記モデル化された動作ユニットの第一原理ユニットプロセスモデルに変換する手順、
前記ユニットプロセスモデルを、前記実際の動作ユニットの計器によって収集されたリアルタイム測定値に基づいて機能できるように再校正して、再校正された第一原理ユニットプロセスモデルとする手順、
再校正された前記第一原理ユニットプロセスモデルであって、前記実際の動作ユニットの前記計器によって収集されたリアルタイム測定値に基づいて、前記産業プラントにおける前記実際の動作ユニットの動作挙動を予測するKPIを算出する第一原理ユニットプロセスモデルを前記産業プラントにおいてオンラインで配備する手順、
前記実際の動作ユニットを、当該実際の動作ユニットの予測された前記動作挙動に従って制御する手順
を実行させるように、当該プロセッサに作動的に接続されている、コンピュータプログラムプロダクト。

Claims (22)

  1. コンピュータに実装され、オンラインのユニットプロセスモデルを生成する方法であって、
    産業プラントのプラントワイドプロセスモデルであって、前記産業プラントのオフライン操業を実行するように構成されているプラントワイドプロセスモデルを特定する過程と、
    特定された前記プラントワイドプロセスモデルに含まれる、モデル化された動作ユニットであって、前記産業プラントにおける実際の動作ユニットに対応するモデル化された動作ユニットを選択する選択過程と、
    特定された前記プラントワイドプロセスモデルを、選択された前記モデル化された動作ユニットのユニットプロセスモデルに変換する変換過程と、
    前記ユニットプロセスモデルを、前記実際の動作ユニットの計器によって収集されたリアルタイム測定値に基づいて機能できるように再校正する再校正過程と、
    再校正された前記ユニットプロセスモデルであって、前記実際の動作ユニットの前記計器によって収集されたリアルタイム測定値に基づいて、前記産業プラントにおける前記実際の動作ユニットの動作挙動を予測するKPIを算出するユニットプロセスモデルを前記産業プラントにおいてオンラインで配備する配備過程と、
    前記実際の動作ユニットを、当該実際の動作ユニットの予測された前記動作挙動に従って制御する制御過程と、
    を備える、方法。
  2. 請求項1に記載の方法において、前記プラントワイドプロセスモデルが第一原理モデルであり、かつ、前記変換過程及び前記再校正過程から得られる前記ユニットプロセスモデルが第一原理モデルである、方法。
  3. 請求項1に記載の方法において、前記動作ユニットが蒸留塔である、方法。
  4. 請求項1に記載の方法において、特定された前記プラントワイドプロセスモデルを変換する前記変換過程が、
    選択された前記モデル化された動作ユニットとは無関係な変数及び式を除去する除去副過程、
    選択された前記モデル化された動作ユニットの仕様を標準仕様に置換する置換副過程、
    計算基準を標準形式に変換する変換副過程、
    選択された前記モデル化された動作ユニットのプロセス変数
    を再設定する再設定副過程、ならびに
    選択された前記モデル化された動作ユニットの制御ループであって、選択された前記モデル化された動作ユニットの動作目的を特定する制御ループを決定する決定副過程、
    を含む、方法。
  5. 請求項4に記載の方法において、前記プロセス変数を再設定する前記再設定副過程が、
    選択された前記モデル化された動作ユニットの操作変数及び出力変数を特定すること、ならびに
    特定された前記操作変数及び前記出力変数のそれぞれを、少なくとも1つの計器タグにマッピングすること、
    を有する、方法。
  6. 請求項1に記載の方法において、前記ユニットプロセスモデルを再校正する前記再校正過程が、
    リアルタイムプラントヒストリアンから取り出されたプラントデータに基づくデータセットであって、校正された時間ホライズン中に定常状態で収集された、前記プラントデータのサブセットを含むデータセットを生成する生成副過程、
    前記ユニットプロセスモデルにおけるモデル化された流量を調和させる副過程であって、前記ユニットプロセスモデルが前記産業プラントにおいて実際の流量計器によって収集された測定値を用いて機能することを可能にする、流量調和副過程、
    前記ユニットプロセスモデルにおけるモデル化された温度を調和させる副過程であって、前記ユニットプロセスモデルが前記産業プラントにおいて実際の温度計器によって収集された測定値を用いて機能することを可能にする、温度調和副過程、
    選択された前記モデル化された動作ユニットに入る原料ストリームの組成を前記ユニットプロセスモデルが推定することを可能にする原料推定手段を構築する構築副過程、ならびに
    選択された前記モデル化された動作ユニットが蒸留塔である場合、前記ユニットプロセスモデルにおける当該蒸留塔の内部の液体・蒸気往来流を表す流体力学的モデルを調整する調整副過程、
    を含む、方法。
  7. 請求項6に記載の方法において、モデル化された流量を調和させる前記流量調和副過程又はモデル化された温度を調和させる前記温度調和副過程が、さらに、
    前記実際の計器それぞれにおける期待誤差を選択すること、
    前記データセットの前記プラントデータを、トレーニングセットとテストセットに分けること、
    最適化モデルを前記トレーニングセットにおける各データ点について生成することであって、当該最適化モデルの解を求めることにより、前記モデル化された流量又は前記モデル化された温度についての校正パラメータを決定すること、および
    シミュレーションモデルを前記テストセットにおける各データ点について生成することであって、当該シミュレーションモデルの解を求めることにより、決定された前記校正パラメータの品質を決定すること、
    を有する、方法。
  8. 請求項7に記載の方法において、前記モデル化された流量についての前記校正パラメータが、前記実際の流量計器によって測定された流量と前記ユニットプロセスモデルによって算出された流量との差分を表す流量オフセットである、方法。
  9. 請求項7に記載の方法において、前記モデル化された温度についての前記校正パラメータが、
    前記実際の温度計器によって測定された温度と前記ユニットプロセスモデルによって算出された温度との分離度を表す効率パラメータ、および
    前記実際の動作ユニットにおいて測定された圧力降下が前記ユニットプロセスモデルによって算出された圧力降下と合致するか否かを表す通気パラメータを含む、方法。
  10. 請求項1に記載の方法において、再校正された前記ユニットプロセスモデルを前記産業プラントにおいてオンラインで配備する前記配備過程が、
    前記ユニットプロセスモデルの動的に実行可能なバージョンを生成する副過程であって、前記実際の動作ユニットの前記計器によるリアルタイム測定値を前記ユニットプロセスモデルによって算出される対応する数値にリンクする変数を生成する、副過程、
    前記実際の動作ユニットのリアルタイム測定値を取り出す副過程であって、前記モデルに、リンクされた変数をリアルタイム測定値と関連付けて設定する、副過程、
    前記ユニットプロセスモデルの前記動的に実行可能なバージョンの解を求める副過程であって、リンクされた変数を算出されるモデル値に関連付けて設定し、前記モデル化された動作ユニットのKPIについての数値を決定する、副過程、ならびに
    決定された前記KPIを、当該KPIに基づいて前記実際の動作ユニットを予測及び制御するように構成されたプラントコンピュータによるアクセスのために、リアルタイムヒストリアンに書き込む副過程、
    を含む、方法。
  11. 請求項1に記載の方法において、さらに、
    再校正された前記ユニットプロセスモデルを、前記実際の動作ユニットの事象についての指示案内のユーザへの提供を自動化しているルールエンジンを生成するように適用する過程、
    を備える、方法。
  12. オンラインのユニットプロセスモデルを生成するコンピュータシステムであって、
    プロセッサと、
    コンピュータコード命令が記憶されたメモリと、
    を備え、前記メモリは、前記プロセッサにより実行されると前記コンピュータコード命令が
    a)モデル変換手段であって、
    産業プラントのプラントワイドプロセスモデルであって、前記産業プラントのオフライン操業を実行するように構成されたプラントワイドプロセスモデルを取得し、
    取得された前記プラントワイドプロセスモデルに含まれる、モデル化された動作ユニットであって、前記産業プラントでの実際の動作ユニットに対応するモデル化された動作ユニットを選択し、
    取得された前記プラントワイドプロセスモデルを、選択された前記モデル化された動作ユニットのユニットプロセスモデルに変換するように構成された、モデル変換手段、
    b)前記モデル変換手段に応答して、前記ユニットプロセスモデルを再校正するように構成されたモデル校正手段であって、前記再校正により、前記ユニットプロセスモデルが、前記実際の動作ユニットの計器によって収集されたリアルタイム測定値に基づいて機能できるようにする、モデル校正手段、および
    c)再校正された前記ユニットプロセスモデルを前記産業プラントにおいてオンラインで配備するように構成された配備エンジンであって、配備された前記ユニットプロセスモデルは、前記実際の動作ユニットの前記計器によって収集されたリアルタイム測定値に基づいて、前記産業プラントでの前記実際の動作ユニットの動作挙動を予測するKPIを算出する、配備エンジン
    を当該コンピュータシステムに実装させるように、前記プロセッサに作動的に接続されており、
    前記配備エンジンは、前記実際の動作ユニットを、当該実際の動作ユニットの予測された前記動作挙動に従って制御するように構成された制御システム通信する、コンピュータシステム。
  13. 請求項12に記載のコンピュータシステムにおいて、取得された前記プラントワイドプロセスモデルおよび再校正された前記ユニットプロセスモデルが第一原理モデルである、コンピュータシステム。
  14. 請求項12に記載のコンピュータシステムにおいて、前記動作ユニットが蒸留塔である、コンピュータシステム。
  15. 請求項12に記載のコンピュータシステムにおいて、前記モデル変換手段が、さらに、前記プラントワイドプロセスを、
    選択された前記モデル化された動作ユニットとは無関係な変数及び式を除去し、
    選択された前記モデル化された動作ユニットの仕様を標準仕様に置換し、
    計算基準を標準形式に変換し、
    選択された前記モデル化された動作ユニットのプロセス変数を再設定し、
    選択された前記モデル化された動作ユニットの制御ループであって、選択された前記モデル化された動作ユニットの動作目的を特定する制御ループを決定することによって
    変換するように構成されている、コンピュータシステム。
  16. 請求項15に記載のコンピュータシステムにおいて、前記モデル変換手段が、さらに、前記プロセス変数を、
    選択された前記モデル化された動作ユニットの操作変数及び出力変数を特定し、
    特定された前記操作変数及び前記出力変数のそれぞれを、少なくとも1つの計器タグにマッピングすることによって
    再設定するように構成されている、コンピュータシステム。
  17. 請求項12に記載のコンピュータシステムにおいて、前記モデル校正手段が、
    リアルタイムプラントヒストリアンから取り出されたプラントデータに基づくデータセットであって、校正された時間ホライズン中に定常状態で収集された、前記プラントデータのサブセットを含むデータセットを生成するように構成されたデータセット生成部、
    前記ユニットプロセスモデルにおけるモデル化された流量を調和させるように構成された流量調和部であって、当該調和は、前記ユニットプロセスモデルが前記産業プラントにおいて実際の流量計器によって収集された測定値を用いて機能することを可能にする、流量調和部、
    前記ユニットプロセスモデルにおけるモデル化された温度を調和させるように構成された温度調和部であって、当該調和は、前記ユニットプロセスモデルが前記産業プラントにおいて実際の温度計器によって収集された測定値を用いて機能することを可能にする、温度調和部、
    選択された前記モデル化された動作ユニットに入る原料ストリームの組成を前記ユニットプロセスモデルが推定することを可能にする原料推定手段を構築するように構成された原料推定手段構築部、ならびに
    選択された前記モデル化された動作ユニットが蒸留塔である場合、前記ユニットプロセスモデルにおける当該蒸留塔の内部の液体・蒸気往来流を表す流体力学的モデルを調整するように構成された流体力学的モデル調整部、
    を含む、コンピュータシステム。
  18. 請求項17に記載のコンピュータシステムにおいて、前記流量調和部および前記温度調和部が、さらに、
    前記実際の計器それぞれにおける期待誤差を選択し、
    前記データセットの前記プラントデータを、トレーニングセットとテストセットに分けて、
    最適化モデルを前記トレーニングセットにおける各データ点について生成し、当該最適化モデルの解を求めることにより、前記モデル化された流量又は前記モデル化された温度についての校正パラメータを決定し、
    シミュレーションモデルを前記テストセットにおける各データ点について生成し、当該シミュレーションモデルの解を求めることにより、決定された前記校正パラメータの品質を決定するように構成されている、コンピュータシステム。
  19. 請求項18に記載のコンピュータシステムにおいて、前記校正パラメータが:
    前記モデル化された流量については、前記実際の流量計器によって測定された流量と前記ユニットプロセスモデルによって算出された流量との差分を表す流量オフセットであり、
    前記モデル化された温度については、前記実際の温度計器によって測定された温度と前記ユニットプロセスモデルによって算出された温度との分離度を表す効率パラメータ、および前記実際の動作ユニットにおいて測定された圧力降下が前記ユニットプロセスモデルによって算出された圧力降下と合致するか否かを表す通気パラメータである、コンピュータシステム。
  20. 請求項12に記載のコンピュータシステムにおいて、前記配備エンジンが、さらに、
    前記実際の動作ユニットの前記計器によるリアルタイム測定値を前記ユニットプロセスモデルによって算出される対応する数値にリンクする変数を生成することを含み、前記ユニットプロセスモデルの動的に実行可能なバージョンを生成し、
    前記実際の動作ユニットのリアルタイム測定値を取り出し、前記モデルに、リンクされた変数をリアルタイム測定値と関連付けて設定し、
    前記ユニットプロセスモデルの前記動的に実行可能なバージョンの解を求め、リンクされた変数を算出されるモデル値と関連付けて設定し、前記モデル化された動作ユニットのKPIの数値を決定し、
    決定された前記KPIを、当該KPIに基づいて前記実際の動作ユニットを予測及び制御するように構成されたプラントコンピュータによるアクセスのために、リアルタイムヒストリアンに書き込むように構成されている、コンピュータシステム。
  21. 請求項12に記載のコンピュータシステムにおいて、前記配備エンジンが、さらに、再校正された前記ユニットプロセスモデルを適用し、前記実際の動作ユニットの事象についての指示案内のユーザへの提供を自動化しているルールエンジンを生成する、コンピュータシステム。
  22. コード命令が記憶された非過渡的なコンピュータ読取り可能記憶媒体、
    を備える、コンピュータプログラムプロダクトであって、
    前記記憶媒体は、オンラインのユニットプロセスモデルを生成するプロセッサにより実行されると前記コード命令が、当該プロセッサに:
    産業プラントのプラントワイドプロセスモデルであって、前記産業プラントのオフライン操業を実行するように構成されているプラントワイドプロセスモデルを取得する手順、
    取得された前記プラントワイドプロセスモデルに含まれる、モデル化された動作ユニットであって、前記産業プラントにおける実際の動作ユニットに対応するモデル化された動作ユニットを選択する手順、
    取得された前記プラントワイドプロセスモデルを、選択された前記モデル化された動作ユニットの第一原理ユニットプロセスモデルに変換する手順、
    前記ユニットプロセスモデルを、前記実際の動作ユニットの計器によって収集されたリアルタイム測定値に基づいて機能できるように再校正して、再校正された第一原理ユニットプロセスモデルとする手順、
    再校正された前記第一原理ユニットプロセスモデルであって、前記実際の動作ユニットの前記計器によって収集されたリアルタイム測定値に基づいて、前記産業プラントにおける前記実際の動作ユニットの動作挙動を予測するKPIを算出する第一原理ユニットプロセスモデルを前記産業プラントにおいてオンラインで配備する手順、
    前記実際の動作ユニットを、当該実際の動作ユニットの予測された前記動作挙動に従って制御する手順
    を実行させるように、当該プロセッサに作動的に接続されている、コンピュータプログラムプロダクト。
JP2019500348A 2016-07-07 2017-07-05 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法 Pending JP2019521444A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021064734A JP7394805B2 (ja) 2016-07-07 2021-04-06 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662359379P 2016-07-07 2016-07-07
US62/359,379 2016-07-07
PCT/US2017/040725 WO2018009546A1 (en) 2016-07-07 2017-07-05 Computer system and method for the dynamic construction and online deployment of an operation-centric first-principles process model for predictive analytics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021064734A Division JP7394805B2 (ja) 2016-07-07 2021-04-06 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法

Publications (2)

Publication Number Publication Date
JP2019521444A JP2019521444A (ja) 2019-07-25
JP2019521444A5 true JP2019521444A5 (ja) 2020-07-27

Family

ID=59579903

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019500348A Pending JP2019521444A (ja) 2016-07-07 2017-07-05 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法
JP2021064734A Active JP7394805B2 (ja) 2016-07-07 2021-04-06 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021064734A Active JP7394805B2 (ja) 2016-07-07 2021-04-06 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法

Country Status (4)

Country Link
US (1) US10990067B2 (ja)
EP (1) EP3482261B1 (ja)
JP (2) JP2019521444A (ja)
WO (1) WO2018009546A1 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10990067B2 (en) 2016-07-07 2021-04-27 Aspen Technology, Inc. Computer system and method for the dynamic construction and online deployment of an operation-centric first-principles process model for predictive analytics
US11310125B2 (en) 2018-05-25 2022-04-19 At&T Intellectual Property I, L.P. AI-enabled adaptive TCA thresholding for SLA assurance
EP3605249A1 (de) * 2018-08-02 2020-02-05 Siemens Aktiengesellschaft Verfahren zur synchronisierung, verfahren zum betreiben einer industriellen anlage, vorrichtung, computerprogrammprodukt und computerlesbares medium
US11934159B2 (en) 2018-10-30 2024-03-19 Aspentech Corporation Apparatus and methods for non-invasive closed loop step testing with controllable optimization relaxation
PL3705963T3 (pl) * 2019-03-08 2022-11-07 Abb Schweiz Ag Sposób inżynierii automatyzacji opartej na intencjach
US11853032B2 (en) 2019-05-09 2023-12-26 Aspentech Corporation Combining machine learning with domain knowledge and first principles for modeling in the process industries
US20200387818A1 (en) * 2019-06-07 2020-12-10 Aspen Technology, Inc. Asset Optimization Using Integrated Modeling, Optimization, and Artificial Intelligence
US11782401B2 (en) 2019-08-02 2023-10-10 Aspentech Corporation Apparatus and methods to build deep learning controller using non-invasive closed loop exploration
GB201913601D0 (en) * 2019-09-20 2019-11-06 Microsoft Technology Licensing Llc Privacy enhanced machine learning
WO2021076760A1 (en) 2019-10-18 2021-04-22 Aspen Technology, Inc. System and methods for automated model development from plant historical data for advanced process control
US20210125068A1 (en) * 2019-10-28 2021-04-29 MakinaRocks Co., Ltd. Method for training neural network
CN114787837A (zh) 2019-11-26 2022-07-22 巴斯夫欧洲公司 采用机器学习方法预测工业老化过程
JP6939872B2 (ja) * 2019-12-13 2021-09-22 栗田工業株式会社 蒸留塔管理システム、蒸留塔状態分析方法及び蒸留塔管理方法
CN111210131B (zh) * 2019-12-30 2023-08-18 浙江中控技术股份有限公司 面向流程工业的物料统计平衡方法
EP3862832A1 (en) * 2020-02-07 2021-08-11 Basf Se Generating a representation of a process network comprising at least two interconnected chenical plants
US11698609B2 (en) * 2020-02-20 2023-07-11 Honeywell International Inc. Cascaded model predictive control with abstracting constraint boundaries
US11656606B2 (en) 2020-08-20 2023-05-23 International Business Machines Corporation Site-wide operations management optimization for manufacturing and processing control
US11774924B2 (en) 2020-12-03 2023-10-03 Aspentech Corporation Method and system for process schedule reconciliation using algebraic model optimization
WO2022120360A1 (en) * 2020-12-03 2022-06-09 Aspen Technology, Inc. Method and system for process schedule reconciliation using machine learning and algebraic model optimization
RU2754239C1 (ru) * 2020-12-22 2021-08-30 Владимир Сергеевич Пахомов Способ структурно-параметрического синтеза средств поддержки принятия решений при управлении развитием сложной организационно-технической системы и устройство для его реализации
US11630446B2 (en) 2021-02-16 2023-04-18 Aspentech Corporation Reluctant first principles models
EP4341223A1 (en) 2021-05-19 2024-03-27 Glass Service, A.S. Method of control, control system and glass furnace, in particular for temperature/thermal control
CN117836730A (zh) * 2021-08-06 2024-04-05 巴斯夫欧洲公司 使用混合模型监控和/或控制化工厂的方法
US20240022492A1 (en) * 2022-07-12 2024-01-18 Parallel Wireless, Inc. Top KPI Early Warning System

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088630A (en) * 1997-11-19 2000-07-11 Olin Corporation Automatic control system for unit operation
AU6294999A (en) * 1998-10-06 2000-04-26 Pavilion Technologies, Inc. Method and system for monitoring and controlling a manufacturing system
US9983559B2 (en) * 2002-10-22 2018-05-29 Fisher-Rosemount Systems, Inc. Updating and utilizing dynamic process simulation in an operating process environment
JP4789277B2 (ja) * 2004-04-22 2011-10-12 横河電機株式会社 プラント運転支援装置
US7447554B2 (en) 2005-08-26 2008-11-04 Cutler Technology Corporation Adaptive multivariable MPC controller
US8380842B2 (en) 2007-04-26 2013-02-19 Mtelligence Corporation System and methods for the universal integration of plant floor assets and a computerized management system
DE112009005510A5 (de) * 2008-01-31 2013-06-20 Fisher-Rosemount Systems, Inc. Robuster adaptiver modellprädiktiver Regler mit Abstimmung zum Ausgleich einer Modellfehlanpassung
US9141911B2 (en) * 2009-05-29 2015-09-22 Aspen Technology, Inc. Apparatus and method for automated data selection in model identification and adaptation in multivariable process control
US8452459B2 (en) 2009-08-31 2013-05-28 Fisher-Rosemount Systems, Inc. Heat exchange network heat recovery optimization in a process plant
US8452719B2 (en) * 2010-06-29 2013-05-28 Rockwell Automation Technologies, Inc. Extrapolating empirical models for control, prediction, and optimization applications
CA2804954C (en) 2010-07-23 2020-06-30 Saudi Arabian Oil Company Machines, computer program products, and computer-implemented methods providing an integrated node for data acquisition and control
SG192951A1 (en) 2011-02-28 2013-09-30 Yokogawa Electric Corp Energy management method and system thereof, and gui method
US9529348B2 (en) * 2012-01-24 2016-12-27 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for deploying industrial plant simulators using cloud computing technologies
WO2014145977A1 (en) 2013-03-15 2014-09-18 Bates Alexander B System and methods for automated plant asset failure detection
WO2015149928A2 (en) * 2014-03-31 2015-10-08 Basf Se Method and device for online evaluation of a compressor
US20160171414A1 (en) * 2014-12-11 2016-06-16 Saudi Arabian Oil Company Method for Creating an Intelligent Energy KPI System
US10031510B2 (en) 2015-05-01 2018-07-24 Aspen Technology, Inc. Computer system and method for causality analysis using hybrid first-principles and inferential model
US20170308802A1 (en) 2016-04-21 2017-10-26 Arundo Analytics, Inc. Systems and methods for failure prediction in industrial environments
US10990067B2 (en) 2016-07-07 2021-04-27 Aspen Technology, Inc. Computer system and method for the dynamic construction and online deployment of an operation-centric first-principles process model for predictive analytics
WO2018011742A1 (en) 2016-07-13 2018-01-18 Incelligent P.C. Early warning and recommendation system for the proactive management of wireless broadband networks
JP7107926B2 (ja) 2016-10-21 2022-07-27 データロボット, インコーポレイテッド 予測データ分析のためのシステムおよび関連する方法および装置
US20180157225A1 (en) 2016-12-05 2018-06-07 Honeywell International Inc. Apparatus and method for automatic model identification from historical data for industrial process control and automation systems
WO2018223000A1 (en) 2017-06-02 2018-12-06 Aspen Technology, Inc. Computer system and method for building and deploying predictive inferential models online
US11853032B2 (en) 2019-05-09 2023-12-26 Aspentech Corporation Combining machine learning with domain knowledge and first principles for modeling in the process industries
US20200387818A1 (en) 2019-06-07 2020-12-10 Aspen Technology, Inc. Asset Optimization Using Integrated Modeling, Optimization, and Artificial Intelligence

Similar Documents

Publication Publication Date Title
JP2019521444A5 (ja)
JP7394805B2 (ja) 予測分析用の動作中心型第一原理プロセスモデルの動的構築及びオンライン配備のためのコンピュータシステム及び方法
JP7461440B2 (ja) 根本的原因分析を実行してプラントワイド操業での希少イベントの発生の予測モデルを構築するコンピュータシステムおよび方法
JP2020522800A (ja) 予測推論モデルをオンラインで構築し配備するコンピュータシステム及び方法
JP6356978B2 (ja) 無線又は間欠プロセス計測値を伴うプロセス制御システムにおける予測手段の使用
JP5005695B2 (ja) 適応多変数mpcコントローラ
CN101925866B (zh) 具有用来补偿模型失配的调节的鲁棒的自适应模型预测控制器
JP4786072B2 (ja) 多入力/多出力論理装置及び該多入力/多出力論理装置を使用してプロセスを制御する方法
JP6985833B2 (ja) データ処理装置、制御システム、データ処理方法及びプログラム
JP2017062822A (ja) コンピュータ実施方法、処理モデル展開システム、処理監視システム
US20130116802A1 (en) Tracking simulation method
CA2762484A1 (en) Apparatus and method for model quality estimation and model adaptation in multivariable process control
JP2003295907A (ja) 変動性プロセス遅延に対する高度プロセス制御ブロックの適応
JP7289924B2 (ja) 最適化緩和を制御可能とした非干渉性の閉ループステップ試験の装置および方法
das Neves et al. Intelligent control system for extractive distillation columns
JP7045857B2 (ja) モデル予測制御アプリケーションにおける最高性能値に関する優れた性能のためのシステム及び方法
US20210133372A1 (en) Simulation method and system for the management of a pipeline network
JP2009163507A (ja) 熱交換機器診断システム
JP5125754B2 (ja) Pidコントローラのチューニング装置、pidコントローラのチューニング用プログラムおよびpidコントローラのチューニング方法
JP5077831B2 (ja) プラント制御システムおよびプラント制御方法
JP7451154B2 (ja) 水質推定装置、方法、およびプログラム
JP4664842B2 (ja) エネルギープラントの最適運用システムと方法、およびプログラム
JP7043261B2 (ja) モデル予測コントローラ及び推定器の機器点検のためのシステム及び方法
JPWO2021156484A5 (ja)
JP7486514B2 (ja) パラメータを低次元化された空間にマッピングすることによって、プロセスの動的挙動の変化を監視するためのシステム及び方法