JP2019512662A - 温度変動吸着式ガス分離 - Google Patents

温度変動吸着式ガス分離 Download PDF

Info

Publication number
JP2019512662A
JP2019512662A JP2018550406A JP2018550406A JP2019512662A JP 2019512662 A JP2019512662 A JP 2019512662A JP 2018550406 A JP2018550406 A JP 2018550406A JP 2018550406 A JP2018550406 A JP 2018550406A JP 2019512662 A JP2019512662 A JP 2019512662A
Authority
JP
Japan
Prior art keywords
stream
oxidant
separator
low pressure
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018550406A
Other languages
English (en)
Other versions
JP2019512662A5 (ja
Inventor
ブーレ,アンドレ
ヒアヴィ,ソヘイル
Original Assignee
インベンティーズ サーマル テクノロジーズ インコーポレイテッド
インベンティーズ サーマル テクノロジーズ インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インベンティーズ サーマル テクノロジーズ インコーポレイテッド, インベンティーズ サーマル テクノロジーズ インコーポレイテッド filed Critical インベンティーズ サーマル テクノロジーズ インコーポレイテッド
Publication of JP2019512662A publication Critical patent/JP2019512662A/ja
Publication of JP2019512662A5 publication Critical patent/JP2019512662A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0462Temperature swing adsorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/06Returning energy of steam, in exchanged form, to process, e.g. use of exhaust steam for drying solid fuel or plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B31/00Modifications of boiler construction, or of tube systems, dependent on installation of combustion apparatus; Arrangements of dispositions of combustion apparatus
    • F22B31/08Installation of heat-exchange apparatus or of means in boilers for heating air supplied for combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/04Arrangements of recuperators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40043Purging
    • B01D2259/4005Nature of purge gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/60Sorption with dry devices, e.g. beds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

静電式沈殿器、任意選択的な排ガス脱硫器、及び温度変動吸着式ガス分離器を内蔵した、燃焼用後排気低減用の燃焼システム及び燃焼システムの動作プロセスが提供される。極低圧蒸気流が、温度変動吸着式ガス分離器に対する第1の再生流として使用される。この極低圧蒸気流は、極低圧蒸気タービンまたは補助汽缶から任意選択的に回収可能である。温度変動吸着式ガス分離器中での少なくとも1種の吸着剤材料の再生に好適な温度の流体流を、第2の再生流として使用し得る。この流体流は、静電式沈殿器、酸化剤予熱器、または補助加熱器から任意選択的に回収可能である。【選択図】図1

Description

本技術は一般に化石燃料燃焼器により生成された燃焼ガスの温度変動吸着式ガス分離のためのプロセス、及びそのためのシステムに関する。特に、本技術は二酸化炭素の温度変動吸着式ガス分離器を内蔵した石炭焚き汽缶の動作プロセス、及びそれを内蔵したシステムに関する。
温度変動吸着法は多成分混合ガスの吸着分離に使用される技術分野では公知となっている。多くの従来型の温度変動吸着プロセスは、供給混合ガスの一成分を吸着材料に選択的に吸着させることにより供給ガス残留成分から吸着成分を分離させると共に吸着成分を脱着させることにより吸着材料を従前通りに再生させるように使用され、これにより吸着材料の循環的再利用を可能にしている。一部の方法では、蒸気形態の水流を再生流として使用することにより吸着材料を再生させている。しかし、当該技術による他の方法では、これに代わる高温の流体流、例えば、燃焼ガス流、高温不活性ガス流または高温空気流等もまた、吸着材料の再生用の再生流として使用可能である。
ガス分離が望ましい工業プロセスの一類型には燃焼プロセスが含まれ、酸化剤及び典型的には炭素含有の燃料を燃焼させることにより、燃焼ガス及び/または好適な作動流体の膨張により、例えば、熱、燃焼ガス流(燃焼排ガスストリームとしても公知)及び機械動力を発生させている。燃焼ガス流からの1種以上のガス成分の分離は、燃焼ガス流からの二酸化炭素ガスの除去及び/または封鎖等をさせる上で望ましい。
温度変動吸着式ガス分離器を内蔵した燃焼プロセス及びシステムでは、蒸気の利用可能性が限定的であること、及び/または蒸気が高価値であり得ることから、吸着材料の再生に消費される蒸気量または高エクセルギー(または蒸気流の有用エネルギー)の蒸気量を低減させるのが望ましい可能性もある。このことは、先行技術の一部の態様による温度変動吸着式ガス分離プロセスを内蔵した燃焼系システムに対しては運転コストの増大ともなり得る。一部の公知の設計で再生用蒸気の消費を低減させるために、代替的な再生流、例えば、燃焼ガス流、を使用して、少なくとも部分的な吸着材料の再生及び/または吸着材料の少なくとも一部分の再生をさせる試みも実行可能である。しかし、一部のそのような用途では、燃焼ガス流が不必要に高レベルの汚染物質、例えば、粒子等、を含有するため、再生用に使用した場合には吸着材料の性能を不必要に低下させる可能性もある。更に、排ガス脱硫器等の、ある種の後燃焼排気低減のプロセス及び装置を使用した一部の用途では、吸着材料の再生に望ましい温度での燃焼ガス流の利用可能性は限定的であるかまたはあり得ない。
本開示に従った種々の実施形態では、温度変動吸着式ガス分離器を内蔵した燃焼システムは:
一次酸化剤流を回収するように一次酸化剤ファンを経由して一次酸化剤源に、二次酸化剤流を回収するように二次酸化剤ファンを経由して二次酸化剤源に流体接続されて、予熱済一次酸化剤流及び予熱済二次酸化剤流を形成する、酸化剤予熱器;
燃料流を含む、燃料源;
酸化剤予熱器から予熱済一次酸化剤流及び予熱済二次酸化剤流の少なくとも一方を回収して燃料源からの燃料流と共にこれを燃焼させて燃焼ガス流を生成するように流体接続され、かつ燃焼ガス流を酸化剤予熱器に導入させるように流体接続された、燃焼器;
給水源;
燃焼器及び酸化剤予熱器に流体接続された高温側及び給水源から水及び/または凝縮液流の少なくとも一方を回収するように流体接続された低温側を有し、低温側中の水流及び/または凝縮液流を高圧蒸気流に変換する、一体型熱交換機;
一体型熱交換機の高温側から燃焼ガス流を回収して第1の処置済燃焼ガス流を形成するように流体接続された、粒子捕集器;
粒子捕集器から第1の処置済燃焼ガス流の一部分を回収するように流体接続された、直接接触型冷却器、及び
直接接触型冷却器から第1の処置済燃焼ガス流を供給流として回収すると共に粒子捕集器から第1の処置済燃焼ガス流の一部分を再生流として回収することにより前記供給流から少なくとも第1の成分を分離させるように流体接続された、温度変動吸着式ガス分離器
を備え得る。
本開示に従った更なる実施形態では、温度変動吸着式ガス分離器を内蔵した燃焼システムは:
一次酸化剤流を回収するように一次酸化剤ファンを経由して一次酸化剤源に、二次酸化剤流を回収するように二次酸化剤ファンを経由して二次酸化剤源に流体接続されて、予熱済一次酸化剤流及び予熱済二次酸化剤流を形成する、酸化剤予熱器;
燃料源;
酸化剤予熱器から予熱済一次酸化剤流及び予熱済二次酸化剤流を回収し、燃料源から燃料流を回収し、かつ燃焼ガス流を酸化剤予熱器に導入させるように流体接続された、燃焼ガス流生成用の燃焼器;
給水源;
燃焼器及び酸化剤予熱器に流体接続された高温側及び給水源から水及び/または凝縮液流の少なくとも一方を回収するように流体接続された低温側を有し、低温側中の水及び/または凝縮液流を高圧蒸気流に変換する、一体型熱交換機;
酸化剤予熱器から燃焼ガス流を回収して第1の処置済燃焼ガス流を形成するように流体接続された、少なくとも1つの粒子捕集器;
粒子捕集器から第1の処置済燃焼ガス流を、または酸化剤予熱器から燃焼ガス流を回収して第2の処置済燃焼ガス流を形成するように流体接続された、排ガス脱硫器;
粒子捕集器及び排ガス脱硫器の少なくとも一方から第2の処置済燃焼ガス流の少なくとも一部分を回収するように流体接続された、直接接触型冷却器、及び
直接接触型冷却器から第2の処置済燃焼ガス流を供給流として回収して供給流から少なくとも第1の成分を分離するように流体接続された、温度変動吸着式ガス分離器
を備え得る。
種々の実施形態では、粒子捕集器及び温度変動吸着式ガス分離器を備えた燃焼システムの動作プロセスが提供される。そのような一実施形態では、動作プロセスは:
燃料流を燃焼器に導入すると共に燃焼器に酸化剤流を導入して、酸化剤流と共に燃料流を燃焼させることにより燃焼ガス流を生成するステップ;
燃焼ガス流を粒子捕集器に導入して燃焼ガス流に対して粒子レベルを低減させた第1の処置済燃焼ガス流を形成するステップ;
第1の処置済燃焼ガス流の少なくとも一部分を直接接触型冷却器に導入して第1の処置済燃焼ガス流の温度を低下させることにより供給流を形成するステップ;
供給流を温度変動吸着式ガス分離器に導入して温度変動吸着式ガス分離器中で供給流の少なくとも第1の成分を少なくとも1種の吸着材料に吸着させることにより、温度変動吸着式ガス分離器から第1の生成物ストリームを回収するステップ;
低圧蒸気流を温度変動吸着式ガス分離器に導入して温度変動吸着式ガス分離器中で少なくとも1種の吸着材料に吸着された第1の成分の第1の部分を脱着させることにより、温度変動吸着式ガス分離器から第2の生成物ストリームを回収するステップ、及び
第1の処置済燃焼ガス流の少なくとも一部分を温度変動吸着式ガス分離器に導入して温度変動吸着式ガス分離器中で吸着材料に吸着された第1の成分の第2の部分を脱着させることにより、温度変動吸着式ガス分離器から第3の生成物ストリームを回収するステップ
を含む。
種々の実施形態では、粒子捕集器、排ガス脱硫器及び温度変動吸着式ガス分離器を備えた燃焼システムの動作プロセスが提供される。そのような一実施形態では、動作プロセスは:
一次酸化剤流を酸化剤予熱器に導入して予熱済一次酸化剤流を形成させ、二次酸化剤流を酸化剤予熱器に導入して予熱済二次酸化剤流を形成させ、燃料流を導入して予熱済一次酸化剤源と化合させて複合燃料流を形成するステップ;
予熱済二次酸化剤流及び複合燃料流を汽缶に導入すると共に予熱済二次酸化剤流及び複合燃料流を燃焼させて燃焼ガス流を生成するステップ;
燃焼ガス流を酸化剤予熱器に導入するステップ;
燃焼ガス流を粒子捕集器に導入して第1の処置済燃焼ガス流を形成するステップ;
第1の処置済燃焼ガス流を静電式沈殿器に導入して第2の処置済燃焼ガス流を形成するステップ;
第2の処置済燃焼ガス流の少なくとも一部分を直接接触型冷却器に導入して供給流を形成するステップ;
供給流を温度変動吸着式ガス分離器に導入して温度変動吸着式ガス分離器中で供給流の少なくとも第1の成分を少なくとも1種の吸着剤材料に吸着させることにより温度変動吸着式ガス分離器から第1の生成物ストリームを回収するステップ、及び
低圧蒸気流を温度変動吸着式ガス分離器に導入して温度変動吸着式ガス分離器中で少なくとも1種の吸着材料に吸着された第1の成分の第1の部分を脱着させることにより温度変動吸着式ガス分離器から第2の生成物ストリームを回収するステップ
を含む。
種々の実施形態では、燃焼器、蒸気タービン、及び温度変動吸着式ガス分離器を備えた燃焼システムの動作プロセスが提供される。そのような一実施形態では、動作プロセスは:
燃料流を燃焼器に導入すると共に酸化剤流を燃焼器に導入してこの燃料流を酸化剤流と共に燃焼させることにより燃焼ガス流を生成するステップ;
水流及び/または凝縮液流の少なくとも一方を熱交換装置に導入するステップ;
熱交換装置に接触するように燃焼ガス流を方向付けて熱交換装置中の水流及び/または凝縮液流を高圧蒸気流に変換するステップ、及び
中圧タービン及び低圧タービンの少なくとも一方を有する蒸気タービンに高圧蒸気流を導入するステップ
を含む。
図1は、静電式沈殿器、温度変動吸着式ガス分離器、及び低圧蒸気タービンを備えた、本開示の実施形態に従った燃焼システムの簡単な概略図を示す。低圧蒸気流は、低圧蒸気タービンから回収されて温度変動吸着式ガス分離器に第1の再生流として導入され得る。静電式沈殿器から回収された第1の処置済燃焼ガス流の一部分は、温度変動吸着式ガス分離器に供給流及び第2の再生流として導入され得る。 図2は、静電式沈殿器、温度変動吸着式ガス分離器、及び補助汽缶を備えた、別の実施形態に従った燃焼システムの簡単な概略図を示す。補助汽缶は、凝縮液流及び/または水流を低圧蒸気流に変換するために使用され、この低圧蒸気流は補助汽缶から回収可能であり、温度変動吸着式ガス分離器に第1の再生流として導入され得る。静電式沈殿器から回収された第1の処置済燃焼ガス流の一部分は、供給流第2の再生流及びとして温度変動吸着式ガス分離器に導入され得る。 図3は、静電式沈殿器、排ガス脱硫器、温度変動吸着式ガス分離器、及び低圧蒸気タービンを備えた、更なる実施形態に従った実施形態燃焼システムの簡単な概略図を示す。第3の処置済燃焼ガス流の少なくとも一部分は、排ガス脱硫器から回収されて温度変動吸着式ガス分離器に供給流として導入され得る。低圧蒸気流は、低圧蒸気タービンから回収されて温度変動吸着式ガス分離器に第1の再生流として導入され得る。予熱済酸化剤流の一部分は、酸化剤予熱器から回収されて温度変動吸着式ガス分離器に第2の再生流として導入され得る。 図4は、静電式沈殿器、排ガス脱硫器、温度変動吸着式ガス分離器、及び補助汽缶を備えた、代替的実施形態に従った燃焼システムの簡単な概略図を示す。第3の処置済燃焼ガス流の少なくとも一部分は、排ガス脱硫器から回収されて温度変動吸着式ガス分離器に供給流として導入され得る。補助汽缶は、凝縮液流及び/または水流を低圧蒸気流に変換するために使用可能であり、この低圧蒸気流は補助汽缶から回収可能であり、温度変動吸着式ガス分離器に第1の再生流として導入され得る。予熱済酸化剤流の一部分は、酸化剤予熱器から回収されて温度変動吸着式ガス分離器に第2の再生流として導入され得る。 図5は、静電式沈殿器、排ガス脱硫器、温度変動吸着式ガス分離器、低圧蒸気タービン及び補助加熱器を備えた、更なる実施形態に従った燃焼システムの簡単な概略図を示す。第3の処置済燃焼ガス流の少なくとも一部分は、排ガス脱硫器から回収されて温度変動吸着式ガス分離器に供給流として導入され得る。低圧蒸気流は、低圧蒸気タービンから回収されて温度変動吸着式ガス分離器に第1の再生流として導入され得る。補助加熱器は、温度変動吸着式ガス分離器からの第4の生成物ストリームの一部分の温度を上昇させるために使用され得る。第4の生成物ストリームの当該部分は、補助加熱器から回収可能であり、温度変動吸着式ガス分離器に第2の再生流として導入され得る。 図6は、静電式沈殿器、排ガス脱硫器、温度変動吸着式ガス分離器、補助汽缶及び補助加熱器を備えた、別の実施形態に従った燃焼システムの簡単な概略図を示す。第3の処置済燃焼ガス流の少なくとも一部分は、排ガス脱硫器から回収されて温度変動吸着式ガス分離器に供給流として導入され得る。補助汽缶は、凝縮液流及び/または水流を低圧蒸気流に変換するように使用され得るが、この低圧蒸気流は補助汽缶から回収可能であり、温度変動吸着式ガス分離器に第1の再生流として導入され得る。補助加熱器は、温度変動吸着式ガス分離器からの第4の生成物ストリームの一部分の温度を上昇させるために使用され得る。第4の生成物ストリームの当該部分は、補助加熱器から回収可能であり、温度変動吸着式ガス分離器に第2の再生流として導入され得る。 図7は、第1段凝縮器、排出器、第2段凝縮器、及び圧縮機を備え、温度変動吸着式ガス分離器から第2の生成物ストリームを回収する、本開示の実施形態に従った温度変動吸着式ガス分離器構成の簡単な概略図を示す。
類似の参照符号は図面のうちのいくつかの図を通して対応する部品を示す。
一部の従来型燃焼システムは、燃焼ガス流中の粒子の量またはレベルを低減させるための後燃焼排気低減装置、例えば、静電式沈殿器(本明細書中「ESP」と呼ぶ)、機械式捕集器またはサイクロン、織布濾過器またはバグハウス、湿式スクラバ、またはディーゼル粒子濾過器等の粒子濾過器、もしくはそれらの組合せ等、を使用可能である。一部の従来型のシステムはまた、燃焼ガス流中の硫黄酸化物(本明細書中「SOx」と呼ぶ)の量またはレベルを低減させるための後燃焼排気低減装置、例えば、排ガス脱硫器(本明細書中「FGD」と呼ぶ)等、を使用可能である。一部の従来型燃焼システムの用途では、燃焼器、例えば、石炭焚き汽缶等、から生成された燃焼ガス流は、温度変動吸着式ガス分離器及び温度変動吸着式ガス分離プロセスでの吸着材料再生用の再生流としての使用に望ましい好適な熱エネルギー量または好適な温度を有し得る。しかし、燃焼ガス流(例えば、ESPによる処置または処理の上流からのまたはこれに先立つもの等)はまた高レベルの粒子を含有している可能性があるため、TSA分離器用の供給流及び/またはTSA分離器中での吸着材料再生用の再生流としての燃焼ガス流の使用は望ましくない場合もあり得る。更に、FGDを使用した従来型燃焼システムでは、粒子レベルを低減させたFGDによる処理済みのこの下流の第1の処置済燃焼ガス流は、再生には不十分な熱エネルギー量であるかまたは所望未満の温度でしかないかもしれず、FGDの第1の処置済燃焼ガス流の吸着材料再生用の再生流としての使用には望ましくない結果を招き得る。
本開示の一態様では、プロセスは、燃料燃焼器(本明細書中「燃焼器」と呼ぶ)を備えた燃焼システムを動作させるために提供されるものであり、この燃料燃焼器には、例えば、石炭焚き燃焼器(石炭焚き発電プラント等の、固形、微粉末、ガス化または他の形態の石炭燃料式燃焼器を含む)、バイオマス固形及び/または液体燃料燃焼器、蒸気発生器/汽缶燃焼器、プロセスヒータ燃焼器(例えば、プロセス流体及び/またはガスを加熱するための精製及び/または工業プロセスに使用され得る)、またはディーゼル機関もしくは他の好適な内燃機関等、が含まれる。そのような一態様では、燃焼システムはまた、任意選択的な粒子捕集器、及び温度変動吸着式ガス分離器(本明細書中「TSA分離器」と呼ぶ)を備え得る。
本開示に従った実施形態では、温度変動吸着式ガス分離プロセス(本明細書中「TSAプロセス」と呼ぶ)及びTSA分離器は、少なくとも第1の流体成分及び第2の流体成分を含む多成分混合流体から少なくとも1種の流体成分、例えば、第1の成分等、を分離させるために使用可能である。一態様では、TSAプロセスは、少なくとも1つの吸着ステップ及び1つ以上の再生ステップ、例えば、TSA分離器中で少なくとも1種の吸着材料(本明細書中「吸着材料」と呼ぶ)に吸着された少なくとも1種の成分、例えば、第1の成分等、の少なくとも第1の部分を脱着させるための第1の再生ステップ等、及び任意選択的に、TSA分離器中で吸着材料に吸着された少なくとも1種の成分、例えば、第1の成分等、の少なくとも第2の部分を脱着させ、かつ/または他の成分、例えば、第3の成分等、の脱着をさせるための第2の再生ステップ等、を使用し得る。一態様では、TSAプロセスはまた、任意選択的な温度調節ステップを含み、TSA分離器の吸着接触器及び/または吸着剤区画から他の流体成分を脱着または掃除させ、かつ/または吸着ステップの開始に先立ってTSA分離器の接触器及び/または区画中で吸着材料の温度を変更させ得る。一実施形態では、少なくとも1つの再生ステップ、例えば、第1の再生ステップ等、は主に、TSA分離器内での吸着材料の加熱により、もしくは吸着材料の温度変動、及び/または分圧変動、例えば、(第1の再生流の少なくとも1種の成分と少なくとも1種の吸着材料に吸着された少なくとも1種の成分との分圧または濃度差)、及び/または吸着エネルギー熱の変動、例えば、第1の再生流の少なくとも1種の成分と少なくとも1種の吸着材料に吸着された少なくとも1種の成分との吸着エネルギー熱の差異により、推進可能である。別の実施形態では、1つ以上の二次脱着メカニズム、例えば、温度変動、分圧変動、真空、パージ、またはパージ流体等による置換パージ等、もまた、1種以上の吸着成分の脱着に使用可能である。そのような一実施形態では、吸着材料に吸着された成分の脱着のための追加の再生ステップは主に、1つ以上の:TSA分離器内での吸着材料の温度変動、TSA分離器内での分圧または成分濃度の変動、TSA分離器の圧力変動、吸着エネルギー熱の変動、または置換パージ、により推進可能である。一態様では、任意選択的な温度調節ステップは主に、置換パージにより推進可能である。したがって、本開示の態様を例示的TSAプロセス及び例示的TSA分離器に関して開示するが、ある特定の実施形態では、特に少なくとも1つのプロセスステップ、例えば、再生または温度調節ステップ等、が減圧で、例えば、亜大気圧または部分真空圧等、で実施される場合、接触器に含まれる1種以上の吸着材料に対する1種以上の成分の吸着及び特に脱着は、1つ以上の吸着推進力により推進可能であり、この吸着推進力は、例えば:吸着材料温度の1つ以上の熱変動または吸着材料に対して吸着/脱着される1種以上の流体成分の吸着熱、TSA分離器内の分圧または成分濃度の変動、TSA分離器の圧力変動、吸着エネルギー熱の変動、または置換パージ、もしくはこれらの組合せ等、から成るがこれらに限定はされないことが理解される。したがって、本開示に説明する実施形態または態様のいずれの目的に対しても、本開示で言及する吸着型プロセス及びシステム、例えば、例示的TSAプロセス及び分離器の実施形態等、は、本開示のプロセス及びシステムの種々の企図された用途に従った流体成分の吸着及び/または脱着の提供に好適であり得るように、そのような吸着推進力のうちの任意の1つ以上または組合せを制限なく含み得ることが理解され得る。
本開示に従った一態様では、多成分混合流体から少なくとも第1の成分、例えば、二酸化炭素(本明細書中「CO2」と呼ぶ)、硫黄酸化物、窒素、酸素、及び/または重金属、のうちの1種以上等、を分離させるための例示的TSAプロセス及び例示的TSA分離器が提供される。そのような一態様では、多成分混合流体は、例えば、燃焼器により生成された燃焼ガス流または排ガスを含み得る。一態様では、多成分混合流体は、例示的TSAプロセス及び例示的TSA分離器に対する供給流として使用可能であり、少なくとも第1の成分及び第2の成分、例えば、窒素(本明細書中「N2」と呼ぶ)等を含み得る。一実施形態では、TSAプロセスは、吸着ステップ、第1の再生ステップ、任意選択的な第2の再生ステップ、及び任意選択的な温度調節ステップを含む一方、TSA分離器は、少なくとも1種の吸着剤材料を有する単一の回転型接触器を備え、この回転型接触器は少なくとも1つの包囲体中に収容された4つの区画、例えば、第1の区画、第2の区画、第3の区画、及び第4の区画等、を通過する中心軸を中心に循回または回転する。例示的TSAプロセス中、TSAプロセスの第1のステップまたは吸着ステップはTSA分離器の第1の区画中で生じ、TSAプロセスの第2のステップまたは第1の再生ステップはTSA分離器の第2の区画中で生じ、TSAプロセスの任意選択的な第3のステップまたは任意選択的な第2の再生ステップはTSA分離器の第3の区画中で生じ、TSAプロセスの任意選択的な第4のステップまたは任意選択的な温度調節ステップはTSA分離器の第4の区画中で生じ得る。あるいは、TSAプロセスの追加のステップ及びTSA分離器の追加の区画は、例えば、事前再生区画(第1の再生区画に隣接し、かつ/またはシーケンス上第1の再生区画に先行する)中で生じ得る事前再生ステップ(吸着ステップに後続し、第1の再生ステップ先行する)、及び接触器の還流区画(吸着区画の側面に隣接)中で生じ得る還流ステップ(吸着ステップに先行または後続)に使用可能である。本開示の実施形態では、TSA分離器は、供給流から少なくとも1種の流体成分の所望の吸着を実施するための任意の好適な吸着材料を使用し得る。この吸着材料として、例えば、乾燥剤、活性炭、黒鉛、炭素分子ふるい、活性アルミナ、分子ふるい、アルミノ燐酸塩、シリコアルミノ燐酸塩、ゼオライト吸着剤、イオン交換型ゼオライト、親水性ゼオライト、疎水性ゼオライト、改質ゼオライト、天然ゼオライト、フォージャサイト、斜プチロル沸石、モルデン沸石、金属交換型シリコアルミノ燐酸塩、単極性樹脂、双極性樹脂、芳香性架橋ポリスチレン固着剤、臭素化芳香性固着剤、メタクリル酸エステル共重合体、炭素繊維、炭素ナノチューブ、ナノ材料、金属塩吸着剤、過塩素酸、シュウ酸塩、アルカリ土類金属粒子、ETS、CTS、金属酸化物、担持アルカリ炭酸塩、アルカリ促進ヒドロタルサイト、化学吸着剤、アミン、有機金属反応体、及び有機金属骨格構造吸着材料、ならびにこれらの組合せが含まれるが、これらに限定はされない。
本開示の一実施形態では、温度変動吸着式ガス分離器、及び任意選択的な粒子捕集器、例えば、静電式沈殿器等、を備えた燃焼システムの動作プロセスが提供される。そのような一実施形態では、温度変動吸着式ガス分離器は、供給流から少なくとも第1の成分(例えば、二酸化炭素(本明細書中「CO2」と呼ぶ)、硫黄酸化物、窒素、酸素、及び/または重金属等)を分離可能である。燃焼システムの燃焼器または汽缶に対して使用される一次酸化剤流は、1つ以上の一次酸化剤源から回収されて一次酸化剤ファン及び酸化剤予熱器に導入され、この一次酸化剤流の温度を、例えば、約250〜300℃に上昇させることにより予熱済一次酸化剤流を形成し得る。燃料源は、燃焼器または汽缶に使用するための燃料流を導入してこれを予熱済一次酸化剤流と化合させて複合燃料流を形成し、これが燃焼器または汽缶に導入され得る。燃焼器または汽缶に使用するこの二次酸化剤流は、1つ以上の二次酸化剤源から回収して二次酸化剤ファン及び酸化剤予熱器に導入することにより、この二次酸化剤流の温度が上昇される。そのような一実施形態では、二次酸化剤流の温度は、例えば、約250〜300℃に上昇されて、汽缶への予熱済二次酸化剤流の導入前に予熱済二次酸化剤流が形成され得る。予熱済二次酸化剤流及び複合燃料流は、混合及び燃焼されて燃焼ガス流及び熱を生成し得る。
一実施形態では、燃焼器または汽缶に任意選択的に内蔵可能な一体型熱交換機は、燃焼器から燃焼ガス流を回収するように流体接続された高温側及び給水源に流体接続された低温側を備え得る。燃焼ガス流は、一体型熱交換機に熱を供給してこの一体型熱交換機の低温側で給水源から回収された水及び/または凝縮液流を高圧蒸気流に変換させ得る。この高圧蒸気流は、一体型熱交換機の高温側から回収されると共に蒸気タービン、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービンに任意選択的に導入されて、例えば、発電機への動力供給が可能であり、あるいは工業プロセスに任意選択的に導入されてこれに使用され得る。
本開示の一態様では、燃焼ガス流は、一体型熱交換機の高温側から回収されると共に酸化剤予熱器に導入され、ここで燃焼ガス流がこの酸化剤予熱器導入された一次酸化剤流及び二次酸化剤流に熱を供給及び伝達してこれらの温度を上昇させ得る。燃焼ガス流は、酸化剤予熱器から回収されて処理用の任意選択的な粒子捕集器、例えば、静電式沈殿器またはESP等、に導入され、ここで燃焼ガス流中の粒子が分離されて、燃焼ガス流中の粒子の量またはレベルに対して低減された量またはレベルの粒子を有する第1の処置済燃焼ガス流が形成され得る。そのような一実施形態では、第1の処置済燃焼ガス流は、例えば、約150〜200℃の範囲の温度を有し得る。第1の処置済燃焼ガス流は、ESPから回収されてファン、例えば、誘導式通風ファン等、に導入され、このファンにより第1の処置済燃焼ガス流が任意選択的な燃焼ガス弁、例えば、分流加減器弁等、に方向付け及び導入される。これにより、第1の処置済燃焼ガス流の少なくとも一部分は煙突に任意選択的に方向付け及び導入されて周囲環境への分散及び放出がされると共に燃焼システムからの回収がされ得る。
一プロセス実施形態では、任意選択的な燃焼ガス弁はまた、第1の処置済燃焼ガス流の少なくとも一部分を昇圧器ファンに選択的に向けてこれに導入し、この昇圧器ファンがこの第1の処置済燃焼ガス流を熱伝達装置、例えば、直接接触型冷却器(本明細書中「DCC」と呼ぶ)等、に向けてこれに導入させることにより、この第1の処置済燃焼ガス流の温度が低下され得る。そのような一実施形態では、DCCは、例示的TSAプロセスの第1のステップまたは吸着ステップ中にTSA分離器の第1の区画に第1の処置済燃焼ガス流を供給流として導入させる前に、この第1の処置済燃焼ガス流の温度を、例えば、約50℃以下、または具体的には約40℃以下、またはより具体的には約30℃以下等、の温度に低下させ得る。第1の処置済燃焼ガス流はTSA分離器の第1の区画中で少なくとも1種の吸着材料に接触するため、この第1の処置済燃焼ガス流の第1の成分、例えば、CO2等、の少なくとも一部分が少なくとも1種の吸着材料により吸着されることにより、第1の処置済燃焼ガス流の非吸着成分から第1の成分が分離され得る。第1の処置済燃焼ガス流の一部分及び/または第1の処置済燃焼ガス流の非吸着成分は、供給流に対して第1の成分が減損された、TSA分離器の第1の区画から回収可能な第1の生成物ストリームを形成し得る。第1の生成物ストリームは、より高温の第1の処置済燃焼ガス流の一部分と任意選択的に化合するように方向付けられて十分な浮揚性を有する第2の処置済燃焼ガス流が形成され、この第2の処置済燃焼ガス流が煙突に導入されて周囲環境に分散及び放出されて排ガスとして燃焼システムから回収可能である。任意選択的に、第1の生成物ストリームの少なくとも一部分は、例示的TSAプロセスの第1のステップまたは吸着ステップ中にTSA分離器の第1の区画に導入される供給流の一部分を形成するように周期的に方向付けられ得る。TSA分離器に対する第1の処置済燃焼ガス流の少なくとも一部分の供給流としての使用は、粒子汚染により生じ得る少なくとも1種の吸着材料及び/またはTSA分離器の性能劣化を低減させる上で好都合であり得る。
別のプロセス実施形態では、例えば、低圧蒸気流の形態の第3の成分または水(本明細書中「H2O」と呼ぶ)流等、を含む第1の再生流は、例えば、蒸気タービンの中圧タービンと低圧タービンとの間の、または低圧タービンの下流の場所、等の蒸気タービンから回収されて極低圧蒸気タービンまたはVLPタービンに導入されて、機械的に連結された装置、例えば、補助発電機、水ポンプまたはファン等、に動力供給を行い得る。そのような一実施形態では、VLPタービンは、燃焼システムの効率を好都合に上昇させるようにそのような機械的に連結された装置に動力供給を行い得る。一実施形態では、極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約150絶対kPa未満、またはより具体的には約20絶対kPa未満等、はVLPタービンから回収されて例示的TSAプロセスの第2のステップまたは第1再生ステップ中にTSA分離器の第2の区画に第1の再生流として導入されて少なくとも1種の吸着材料の温度を上昇させることにより、少なくとも1種の吸着材料に吸着された第1の成分の少なくとも一部分を脱着させ得る。TSA分離器の第2の区画中の第1の再生流、例えば、第3の成分またはH2O等、及び/または少なくとも1種の吸着材料に吸着された脱着成分、例えば、第1の成分またはCO2等、の少なくとも一部分は、TSA分離器の第2の区画から回収可能な第2の生成物ストリームを形成し得る。この第2の生成物ストリームは、少なくとも1つの凝縮器、例えば、水分離器、冷却器、または凝縮型熱交換機等、に導入されて、この第2の生成物ストリームから凝縮性成分、例えば、第3の成分またはH2O等、が分離されることにより、凝縮器及び流体接続されたTSA分離器の第2の区画中に圧力低下を生じながら凝縮液流及び実質的に第1の成分を含み高純度である精製されたの第2の生成物ストリームを形成させ得る。一実施形態では、そのような圧力低下は、亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機等、または凝縮器の下流に流体接続された弁、例えば、逆止弁等、を使用することにより支援及び/または維持が可能である。そのような一実施形態では、結果として生じたTSA分離器の第2の区画中の圧力低下は、少なくとも1種の吸着材料に吸着された少なくとも1種の成分の脱着の援助となり得る。更なる実施形態では、精製されたの第2の生成物ストリームを、少なくとも1つの凝縮器から回収して圧縮機、例えば、中段冷却付の多段圧縮機等、に導入することにより、圧縮機及び燃焼システムから回収可能で最終利用に向けられ得る高純度かつ高圧の圧縮状態の第2の生成物ストリームが生成され得る。第2の生成物としての二酸化炭素を吸着ガス分離させる場合には、例えば、封鎖、増油回収または工業プロセス等、が含まれ得る。あるいは、蒸気流、例えば、高圧蒸気流、低圧蒸気流、または極低圧蒸気流等、の一部分は、汽缶または蒸気タービンから回収されて例示的TSAプロセスの第2のステップまたは第1の再生ステップ中にTSA分離器の第2の区画に第1の再生流として導入され得、かつ/または複数の第1の再生流には、例えば、低圧蒸気流及び再生に好適な圧力及び/または温度で(供給流または第1の処置済燃焼ガス流に対して)第1の成分が富化されたまたは実質的に第1の成分を含む流体流等、を使用可能である。任意選択的に、複数の極低圧蒸気流はVLPタービンから回収されて複数のTSA分離器に導入され得る。
代替的なプロセス実施形態では、複数の凝縮器、例えば、水分離器、冷却器、または凝縮熱交換機等、を直列に使用及び流体接続可能であり、凝縮器間及び/または凝縮器の下流に流体接続させた、少なくとも1つの弁、例えば、逆止弁等、及びまたは亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機等、を任意選択的に有し得る。そのような一代替的実施形態では、TSA分離器の第2の区画から回収した第2の生成物ストリームは、第1段凝縮器に導入されて、凝縮器及び流体接続されたTSA分離器の第2の区画内に圧力降下を生じながら凝縮液流及び実質的に第1の成分を含み高純度である精製されたの第2の生成物ストリームを形成し得る。精製されたの第2の生成物ストリームは第1段凝縮器から回収されて排出器の低圧口に導入され得る一方、凝縮液流は第2段凝縮器から回収されて燃焼システムのプロセス用に任意選択的に使用され得る。任意選択的に、高純度かつ高圧の圧縮状態の第2の生成物ストリームの少なくとも一部分は、圧縮機から回収されて動力流として排出器の高圧口に導入されることにより、排出器の低圧口の圧力を低下させると共に第1段凝縮器及びTSA分離器の第2の区画中の圧力低下及び/または低下圧力の維持を援助し得る。排出器の低圧口及び高圧口に導入された第2の生成物ストリームは、排出器内で化合後、排出器から回収されて第2段凝縮器に導入されて、これに流体接続された上流側凝縮器及び接触器の圧力降下を増大及び/または維持し、凝縮液流及び第1段凝縮器から回収される精製されたの第2の生成物ストリームに対してより高純度の精製されたの第2の生成物ストリームを形成し得る。この精製されたの第2の生成物ストリームは、第2段凝縮器及び/または排出器から回収されて圧縮機に導入され得る一方、凝縮液流は第2段凝縮器から回収されて燃焼システムのプロセス用に任意選択的に使用され得る。任意選択的には、追加の凝縮器段、ポンプ及び/または弁を使用して、精製されたの第2の生成物ストリームから凝縮性成分を更に分離させると共に凝縮器及びTSA分離器の第2の区画の圧力降下を増大及び/または維持させ得る。
別の代替的なプロセス実施形態では、VLPタービン、及びVLPタービンまたは蒸気タービンからの蒸気流の使用の代替例として、補助汽缶を使用して、TSA分離器に対する第1の再生流としての使用に供し得る極低圧蒸気流を生成可能である。水源、例えば、DCC、圧縮機及び/または燃焼システム外部の水源等、は補助汽缶に水流及び/または凝縮液流を導入して、これを凝縮液及び/または水流を極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約150絶対kPa未満等、に変換させ得る。任意選択的には、凝縮液流の少なくとも一部分は、凝縮器及びDCCの少なくとも一方から回収されると共に補助汽缶に導入されて極低圧蒸気流の一部分への変換に供され得る。補助汽缶は、任意の好適な装置、例えば、汽缶または熱交換機であればよく、凝縮液及び/または水流の蒸気流への変換に供され得る。そのような一実施形態では、極低圧蒸気流は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に、補助汽缶から回収されると共にTSA分離器の第2の区画に第1の再生流として導入され得る。この極低圧蒸気流を、TSA分離器中で少なくとも1種の吸着材料の温度を上昇させることにより、少なくとも1種の吸着材料に吸着された第1の成分の少なくとも一部分を脱着させ得る。TSA分離器の第2の区画中の第1の再生流、例えば、第3の成分またはH2O等、及び/または少なくとも1種の吸着材料に吸着された脱着成分、例えば、第1の成分またはCO2等、の少なくとも一部分は、TSA分離器の第2の区画から回収可能な第2の生成物ストリームを形成し得る。第2の生成物ストリームは、少なくとも1つの凝縮器、例えば、水分離器、冷却器、または凝縮型熱交換器等、に導入されて、縮液流及び実質的に第1の成分を含み高純度である精製されたの第2の生成物ストリームを形成させ得る。精製されたの第2の生成物ストリームは、凝縮器から回収されて圧縮機、例えば、中段冷却付の多段圧縮機等、に導入されて、圧縮機及び燃焼システムから回収可能で最終利用、例えば、封鎖、増油回収または工業プロセス等、に向けられ得る高純度で高圧の圧縮状態の第2の生成物ストリームを生成させ得る。任意選択的には、複数の凝縮器を直列に流体接続して使用することにより、凝縮器間及び/または凝縮器の下流に流体接続した、亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機もしくは弁、例えば、逆止弁等、を任意選択的に有し得る。任意選択的な排出器は、圧縮機から高純度で高圧の圧縮状態の第2の生成物ストリームの少なくとも一部分を回収すると共にこの圧縮状態の第2の生成物ストリームを排出器に対する動力流として導入させるように流体接続可能である。凝縮器またはポンプから回収した精製されたの第2の生成物ストリームは、圧縮機に導入可能である。
更なるプロセス実施形態では、任意選択的な燃焼ガス弁はまた、例示的TSAプロセスの第3のステップまたは第2の再生ステップ中にTSA分離器の第3の区画に第2の再生流として第1の処置済燃焼ガス流の少なくとも一部分を選択的に方向付け及び導入させて、少なくとも1種の吸着材料に吸着された、少なくとも1種の成分、例えば、第1の成分及び/または第3の成分の少なくとも一部分を脱着させ得る。TSA分離器の第3の区画中の第2の再生流、例えば、第1の処置済燃焼ガス流等、及び/または残留成分の少なくとも一部分は、TSA分離器の第3の区画から回収可能な第3の生成物ストリームを形成し得る。第3の生成物ストリームは、ファンに向けて流動するよう方向付けられると共に、このファンが、この第3の生成物ストリームを方向付け及び導入して第1の処置済燃焼ガス流と任意選択的に化合させて、例示的TSAプロセスの第1のステップまたは吸着ステップ中にTSA分離器の第1の区画に供給流の一部分として導入させ得る。燃焼ガス流中の粒子の量またはレベルに対して低減された量またはレベルの粒子及び好適な熱エネルギー量を有し、またはTSA分離器の第3の区画中で少なくとも1種の吸着材料からの成分の脱着に望ましい好適な温度の第1の処置済燃焼ガス流の導入及び使用は、TSA分離器中で少なくとも1種の吸着材料の再生に消費される蒸気量を低減させる上で、及びTSA分離器中での少なくとも1種の吸着材料の粒子汚染による性能劣化を低減させる上で好都合であり得る。あるいは、第2の再生流は、再生に好適な圧力及び/または温度で空気流、不活性ガス流、または(供給流または第1の処置済燃焼ガス流に対して)第1の成分が富化された、または第1の成分を実質的に含む流体流を含み得る。
プロセス実施形態では、温度調節流は、例示的TSAプロセスの第4のステップまたは温度調節ステップ中に温度調節源から回収されてTSA分離器の第4の区画に導入され得る。この温度調節流は、TSA分離器の第4の区画中で少なくとも1種の吸着材料からの成分の脱着または掃除、ならびに/もしくはその温度を変更させ得る。TSA分離器の第4の区画中の温度調節流及び/または残留成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分は、例えば、約40〜60℃の温度でTSA分離器の第4の区画から回収可能な第4の生成物ストリームを形成し得る。第4の生成物ストリームは、ファン、例えば、誘導式通風ファン等、に導入されて、酸化剤予熱器及び汽缶に導入される二次酸化剤流の少なくとも一部分を形成するように任意選択的に方向付けられ、かつ/または酸化剤予熱器及び汽缶に導入される一次酸化剤流の少なくとも一部分を少なくとも周期的に形成するように任意選択的には方向付けられ得る。
本開示に従った別のプロセス実施形態では、任意選択的な粒子捕集器(例えば、静電式沈殿器等)、排ガス脱硫器及び温度変動吸着式ガス分離器を内蔵した燃焼システムの動作プロセスが提供される。そのような一実施形態では、温度変動吸着式ガス分離器は、供給流から少なくとも第1の成分、例えば、二酸化炭素(本明細書中「CO2」と呼ぶ)、硫黄酸化物、窒素、酸素、及び/または重金属等、を分離し得る。燃焼システムの燃焼器または汽缶に使用する一次酸化剤流は、1つ以上の一次酸化剤源から回収されて一次酸化剤ファン及び酸化剤予熱器に導入されて、一次酸化剤流の温度を、例えば、約250〜300℃超、等に上昇させて、予熱済一次酸化剤流を形成し得る。燃料源は、燃焼器または汽缶に使用するための燃料流を導入すると共にこれを予熱済一次酸化剤流と化合させることにより、燃焼器または汽缶に導入する複合燃料流を形成し得る。燃焼器または汽缶に使用する二次酸化剤流は、1つ以上の二次酸化剤源から回収されて二次酸化剤ファン及び酸化剤予熱器に導入され、この二次酸化剤流の温度が、例えば、約250〜300℃超等、に上昇されることにより、汽缶への予熱済二次酸化剤流の導入前に予熱済二次酸化剤流を形成し得る。この予熱済二次酸化剤流及び複合燃料流は、混合及び燃焼されることにより、燃焼ガス流熱及び熱を生成し得る。
燃焼器または汽缶に任意選択的に内蔵可能な一体型熱交換機は、燃焼器から燃焼ガス流を回収するように流体接続された高温側、及び給水源から水及び/または凝縮液流を回収するように流体接続された低温側を備え得る。燃焼ガス流は、一体型熱交換機に熱を供給して、この一体型熱交換機の低温側で給水源から回収した水及び/または凝縮液流を高圧蒸気流に変換させ得る。高圧蒸気流は、一体型熱交換機の高温側から回収されて、蒸気タービン、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービンに任意選択的に導入されて、例えば、発電機に動力供給をするか、または工業プロセスに任意選択的に導入されてこれに使用される。
そのような一実施形態では、燃焼ガス流は、一体型熱交換機の高温側から回収されると共に酸化剤予熱器に導入され、ここでこの燃焼ガス流が熱を供給してこの酸化剤予熱器導入された一次及び二次酸化剤流の温度を上昇させ得る。この燃焼ガス流は、酸化剤予熱器から回収されて任意選択的な粒子捕集器、例えば、静電式沈殿器またはESP等、導入されて処理を施されて燃焼ガス流中の粒子が分離されることにより、燃焼ガス流中の粒子の量またはレベルに対して低減された量またはレベルの粒子を有する第1の処置済燃焼ガス流を形成し得る。一態様では、第1の処置済燃焼ガスの温度は、例えば、約150〜200℃に上昇され得る。第1の処置済燃焼ガス流は、ESPから回収されてファン、例えば、誘導式通風ファン等、に導入されることにより、この第1の処置済燃焼ガス流は排ガス脱硫器またはFGDに導入されるように方向付けられて、ここで硫黄酸化物が第1の処置済燃焼ガス流から分離されて、燃焼ガス流中の粒子及び硫黄酸化物のレベルに対して低減させたレベルの粒子及び低減されたレベルの硫黄酸化物を有する第3の処置済燃焼ガス流を形成し得る。一態様では、第3の処置済燃焼ガス流は、例えば、約40〜60℃の温度を有し得る。一実施形態では、第3の処置済燃焼ガス流は、FGDから回収されて任意選択的な燃焼ガス弁、例えば、分流加減器弁等、に導入され、これによりこの第3の処置済燃焼ガス流の少なくとも一部分が煙突に選択的に向けられてこれに導入されて、周囲環境に分散及び放出されて燃焼システムからの回収がされ得る。
そのような一プロセス実施形態では、任意選択的な燃焼ガス弁はまた、第3の処置済燃焼ガス流の少なくとも一部分を昇圧器ファンに選択的に向けてこれに導入した後、この第3の処置済燃焼ガス流を熱伝達装置、例えば、直接接触型冷却器またはDCC等、に向けてこれに導入して、この第3の処置済燃焼ガス流の温度を低下させ得る。そのような一実施形態では、例示的TSAプロセスの第1のステップまたは吸着ステップ中にTSA分離器の第1の区画にこの第3の処置済燃焼ガス流を供給流として導入させる前に、この第3の処置済燃焼ガス流の温度を、例えば、約50℃以下、または具体的には約40℃以下、またはより具体的には約30℃以下等、に低下させ得る。第3の処置済燃焼ガス流がTSA分離器の第1の区画中で少なくとも1種の吸着材料に接触すると、この第3の処置済燃焼ガス流の第1の成分(一実施形態では、例えば、CO2等を含み得る)の少なくとも一部分が、少なくとも1種の吸着材料により吸着されることにより、第3の処置済燃焼ガス流の非吸着成分から第1の成分が分離され得る。この第3の処置済燃焼ガス流及び/または第3の処置済燃焼ガス流の非吸着成分の一部分は、供給流に対して第1の成分を減損されかつTSA分離器の第1の区画から回収可能である第1の生成物ストリームを形成し得る。第1の生成物ストリームは、より高温の第3の処置済燃焼ガス流の一部分と任意選択的に化合するように方向付けられて第4の処置済燃焼ガス流を形成し得るが、この第4の処置済燃焼ガス流は、周囲環境に分散及び放出されるように排気煙突に導入されると共に排ガス流として燃焼システムから回収されるように、十分な浮揚性を有するのが望ましい。任意選択的には、第1の生成物ストリームの少なくとも一部分は、例示的TSAプロセスの第1のステップまたは吸着ステップ中にTSA分離器の第1の区画に導入される供給流の一部分を形成するように周期的に方向付けられ得る。一実施形態では、TSA分離器に対する供給流としての第3の処置済燃焼ガス流の少なくとも一部分の使用は、粒子汚染により生じ得る少なくとも1種の吸着材料及び/またはTSA分離器の性能劣化を低減させる上で好都合であり得る。
別のプロセス実施形態では、例えば、第3の成分または低圧蒸気流形態の水(本明細書中「H2O」と呼ぶ)流等、を含む第1の再生流は、例えば、中圧タービンと低圧タービンとの間または低圧タービンの下流の場所の、蒸気タービンから回収されて極低圧蒸気タービンまたはVLPタービンに導入され、機械的に連結された装置、例えば、補助発電機、水ポンプまたはファン等、に動力供給すると共に、燃焼システムの効率を上昇させる上で好都合であり得る。一実施形態では、極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約150絶対kPa未満、またはより具体的には約20絶対kPa未満等、は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中にVLPタービンから回収されると共にTSA分離器の第2の区画に第1の再生流として導入され、これにより少なくとも1種の吸着材料の温度が上昇さることにより、この少なくとも1種の吸着材料に吸着された第1の成分の少なくとも一部分を脱着させ得る。TSA分離器の第2の区画中の第1の再生流、例えば、第3の成分またはH2O等、及び/または少なくとも1種の吸着材料に吸着された脱着成分、例えば、第1の成分またはCO2等、の少なくとも一部分は、TSA分離器の第2の区画から回収可能な第2の生成物ストリームを形成し得る。この第2の生成物ストリームは、少なくとも1つの凝縮器、例えば、水分離器、冷却器、または凝縮型熱交換機等、に導入されることにより、凝縮器及び流体接続されたTSA分離器の第2の区画中に圧力低下を生じながら、第2の生成物ストリームから凝縮性成分、例えば、第3の成分またはH2O等、が分離されて、凝縮液流及び望ましくは実質的に第1の成分を含み高純度である精製されたの第2の生成物ストリームを形成し得る。そのような一実施形態では、圧力低下は、亜吸気圧で動作する、少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機等、または凝縮器の下流に流体接続された弁、例えば、逆止弁等、を使用することにより支援及び/または維持可能である。一態様では、結果として生じるTSA分離器の第2の区画中の圧力低下は、少なくとも1種の吸着材料に吸着された少なくとも1種の成分を脱着させる上で援助となり得る。精製されたの第2の生成物ストリームは、少なくとも1つの凝縮器及び/またはポンプから回収されて圧縮機、例えば、中段冷却付の多段圧縮機等、に導入されて高純度かつ高圧の圧縮状態の第2の生成物ストリームを生成し得るが、この第2の生成物ストリームは圧縮機及び燃焼システムから回収可能であり、最終利用、例えば、封鎖、増油回収または工業プロセス等、に向けられ得る。あるいは、蒸気流、例えば、高圧蒸気流、低圧蒸気流、または極低圧蒸気流等、の一部分は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に汽缶または蒸気タービンから回収されてTSA分離器の第2の区画に第1の再生流として導入され得、かつ/または複数の第1の再生流には、例えば、低圧蒸気流、第1の成分が(供給流、燃焼ガス流または処置済燃焼ガス流に対して)富化された流体流及び/または第1の成分を実質的に含む流体流等、を使用可能である。任意選択的には、複数の極低圧蒸気流、をVLPタービンから回収してこれらを複数のTSA分離器に導入させ得る。
代替的なプロセス実施形態では、複数の凝縮器、例えば、水分離器、冷却器、または凝縮熱交換機等、を直列に使用及び流体接続可能であり、凝縮器間及び/または凝縮器の下流に流体接続させた、少なくとも1つの弁、例えば、逆止弁等、及び/または亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機等、を任意選択的に有させ得る。TSA分離器の第2の区画から回収された第2の生成物ストリームは、第1段凝縮器に導入されて、凝縮器及び流体接続されたTSA分離器の第2の区画内に圧力降下を生じながら、凝縮液流及び実質的に第1の成分を含み高純度である精製されたの第2の生成物ストリームを形成し得る。この精製されたの第2の生成物ストリームは、第1段凝縮器から回収されて排出器の低圧口に導入され得る一方、凝縮液流は第2段凝縮器から回収されて燃焼システムのプロセス用に任意選択的に使用され得る。任意選択的には、高純度かつ高圧の圧縮状態の第2の生成物ストリームの少なくとも一部分は、圧縮機から回収されて動力流として排出器の高圧口に導入されることにより、排出器の低圧口の圧力を低下させると共に第1段凝縮器及びTSA分離器の第2の区画中の圧力低下及び/または低下圧力の維持を援助可能である。排出器の低圧口及び高圧口に導入された第2の生成物ストリームは、排出器内での化合後、排出器から回収されて第2段凝縮器に導入されて、上流側凝縮器及び接触器に流体接続された圧力降下を増大及び/または維持することにより、凝縮液流及び第1段凝縮器から回収された精製されたの第2の生成物ストリームに対してより高い純度の精製されたの第2の生成物ストリームを形成し得る。この精製されたの第2の生成物ストリームは第2段凝縮器から回収されて圧縮機に導入され得る一方、凝縮液流は第2段凝縮器から回収されて燃焼システムのプロセス用に任意選択的に使用され得る。任意選択的には、追加の凝縮器段、ポンプ及び/または弁を使用して、精製されたの第2の生成物ストリームから凝縮性成分を更に分離させると共に、凝縮器及びTSA分離器の第2の区画の圧力降下を増大及び/または維持させ得る。
代替的なプロセス実施形態では、VLPタービン、及びVLPタービンまたは蒸気タービンからの蒸気流の使用の代替例として、補助汽缶を使用して、TSA分離器に対する第1の再生流としての使用に供し得る蒸気流、例えば、極低圧蒸気流等、を生成可能である。水源、例えば、DCC、圧縮機及び/または燃焼システム外部の水源等、は、補助汽缶に水流及び/または凝縮液流を導入させることにより、凝縮液及び/または水流を極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約150絶対kPa未満、またはより具体的には約20絶対kPa未満等、に変換させ得る。任意選択的に、凝縮液流の少なくとも一部分は、凝縮器及びDCCの少なくとも一方から回収されると共に補助汽缶に導入されて極低圧蒸気流の一部分への変換に供され得る。補助汽缶は、任意の好適な装置、例えば、汽缶または熱交換機であればよく、凝縮液及び/または水流の蒸気流への変換に供され得る。極低圧蒸気流は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に補助汽缶から回収されてTSA分離器の第2の区画に第1の再生流として導入され得る。そのような一実施形態では、極低圧蒸気流は、TSA分離器中で少なくとも1種の吸着材料の温度を上昇させることにより少なくとも1種の吸着材料に吸着された第1の成分の少なくとも一部分を脱着させ得る。第1の再生流、例えば、第3の成分またはH2O等、及び/またはTSA分離器の第2の区画中で少なくとも1種の吸着材料に吸着された脱着成分、例えば、第1の成分またはCO2等、の少なくとも一部分は、TSA分離器の第2の区画から回収可能な第2の生成物ストリームを形成し得る。この第2の生成物ストリームは、少なくとも1つの凝縮器、例えば、水分離器、冷却器、または凝縮型熱交換機等、に導入されて、凝縮器及び流体接続されたTSA分離器の第2の区画中に圧力低下を生じながら、この第2の生成物ストリームから凝縮性成分、例えば、第3の成分またはH2O等、が分離されることにより凝縮液流及び実質的に第1の成分を含み高純度である精製されたの第2の生成物ストリームを形成し得る。特定の実施形態では、圧力低下は、亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機等、または凝縮器の下流に流体接続された弁、例えば、逆止弁等、を使用することにより支援及び/または維持が可能である。そのような一実施形態では、結果として生じたTSA分離器の第2の区画中の圧力低下は、少なくとも1種の吸着材料に吸着された少なくとも1種の成分を脱着させる上で援助となり得る。高純度の精製されたの第2の生成物ストリームは、少なくとも1つの凝縮器から回収されると共に圧縮機、例えば、中段冷却付の多段圧縮機等、に導入され、圧縮機及び燃焼システムから回収可能で最終利用、例えば、封鎖、増油回収または工業プロセス等、に向けられ得る高圧の圧縮状態の第2の生成物ストリームを生成し得る。任意選択的には、複数の凝縮器を直列に流体接続させて使用して、凝縮器間及び/または凝縮器の下流に流体接続された、亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機もしくは弁、例えば、逆止弁等、を任意選択的に有させ得る。任意選択的な排出器は、圧縮機から圧縮状態の第2の生成物ストリームの少なくとも一部分を回収すると共に排出器用の動力流として圧縮状態の第2の生成物ストリームの少なくとも一部分を導入するように流体接続され得る。凝縮器または排出器から回収した第2の生成物ストリームは、圧縮機に導入させ得る。あるいは、蒸気流、例えば、高圧蒸気流、低圧蒸気流、または極低圧蒸気流等、の一部分は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に汽缶または蒸気タービンから回収されると共にTSA分離器の第2の区画に第1の再生流として導入され得、かつ/または複数の第1の再生流は、例えば、低圧蒸気流及び再生に好適な圧力及び/または温度で(供給流または第3の処置済燃焼ガス流に対して)第1の成分が富化されたかまたは実質的に第1の成分を含む流体流が使用され得る。任意選択的には、複数の極低圧蒸気流は、VLPタービンから回収されて複数のTSA分離器に導入され得る。
特定のプロセス実施形態では、予熱済二次酸化剤流の一部分は、例示的TSAプロセスの第3のステップまたは第2の再生ステップ中に、酸化剤予熱器から回収されると共TSA分離器に第2の再生流として導入されるように方向付けられ得る。予熱済二次酸化剤流は、好適な温度、例えば、約250〜300℃等、で酸化剤予熱器から回収可能である。そのような一実施形態では、予熱済二次酸化剤流は、TSA分離器の第3の区画への導入前に任意選択的な補完用の熱交換機に任意選択的に導入されて、この予熱済二次酸化剤流の温度が第2の再生流に好適な温度、例えば、約100〜180℃、または特に約130〜150℃等、に低下され得る。そのような一実施形態では、第2の再生流は、TSA分離器の第3の区画中で少なくとも1種の吸着材料に吸着された少なくとも1種の成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分を脱着させ得る。TSA分離器の第3の区画中で第2の再生流または予熱済二次酸化剤流、及び/または残留成分の少なくとも一部分は、TSA分離器の第3の区画から回収可能な第3の生成物ストリームを形成し得る。一実施形態では、第3の生成物ストリームは、ファン、例えば、誘導式通風ファン等、に流入するように方向付けられ、ここでこの第3の生成物ストリームが導入されると共に化合して複合二次酸化剤流の少なくとも一部分を形成し得る。例示的TSAプロセスの第3のステップまたは第2の再生ステップ中の第2の再生流としての予熱済二次酸化剤流の一部分の導入及び使用は、TSAプロセス及びTSA分離器を内蔵した新型または現存型燃焼システム用の追加の機器に対する要件を低減させる上で、及び/または現存型燃焼システムの改良に対する修正範囲を低減させる上で好都合であり得る。あるいは、酸化剤予熱器は、第2の再生流に好適な温度、例えば、約100〜180℃、または特に約130〜150℃等、で予熱済二次酸化剤流の一部分を供給及び回収するように修正可能であり、これにより任意選択的な補完用の熱交換機に代替され得る。
更なる代替的なプロセス実施形態では、好適な流体流、例えば、1つ以上の:TSA分離器から回収された第1、第2、第3、または第4の生成物ストリームのうちの一部分、空気流、酸化剤流、不活性ガス流、(供給流または第1の処置済燃焼ガス流に対して)第1の成分を富化された流体流、または第1の成分を実質的に含む流体流等;を、第2の再生流として使用することにより、第2の再生流源、例えば、TSA分離器、外気、外気ファン、不活性ガス源、圧縮機またはTSAの生成物ストリーム用の圧縮機の中段等、から回収されると共に補助加熱器に導入されることにより、流体流の温度をTSA分離器中の少なくとも1種の吸着材料再生に好適な温度、またはTSA分離器への導入に先立つ再生流として好適な温度に上昇させ得る。そのような一実施形態では、補助加熱器は、ガス間熱交換機、液体ガス熱交換機、燃焼加熱器、蒸気圧縮機、第2の生成物ストリーム用の圧縮機中段冷却器、電熱器、またはこれらの任意の組合せを備え得る。一態様では、第4の生成物ストリームの一部分は、例えば、約40〜60℃の温度でTSA分離器の第4の区画から回収されて補助加熱器、例えば、ガス間熱交換機等、に導入され、これによりTSA分離器の第3の区画への第2の再生流としての導入に先立って、温度をTSA分離器中での少なくとも1種の吸着材料再生に好適な温度、例えば、約100℃超、または特に約130℃超等、に上昇させ得る。第2の再生流は、TSA分離器の第3の区画中でTSA分離器の第3の区画中で少なくとも1種の吸着材料に吸着された少なくとも1種の成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分を脱着させ得る。TSA分離器の第3の区画中の第2の再生流、例えば、第4の生成物ストリーム、脱着及び/または残留成分等、の少なくとも一部分は、TSA分離器の第3の区画から回収可能であり、ファン、例えば、誘導式通風ファン等、に方向付けられる第3の生成物ストリームを形成し得る。この第3の生成物ストリームは、ファンから回収されて二次酸化剤ファン及び酸化剤予熱器への導入前に二次酸化剤流と任意選択的に化合するように方向付けられ得る。任意選択的には、汽缶により生成された燃焼ガス流の一部分は、この汽缶または酸化剤予熱器から回収されると共に補助加熱器に導入されてこの補助加熱器に熱を供給及び伝達することにより流体流の温度を、TSA分離器中での少なくとも1種の吸着材料再生に好適に、またはTSA分離器に対する第2の再生流、例えば、第4のTSA分離器からの生成物ストリーム等、としての使用に好適に上昇させ得る。燃焼ガス流の当該部分は、補助加熱器への導入及びESPへの導入に先立って燃焼ガス流の温度に対して低下された温度で補助加熱器から回収可能である。あるいは、任意の好適なガス流または液体流、例えば、圧縮機からのガス流またはVLPタービンから回収された蒸気流等、は、補助加熱器に対して熱を供給及び伝達するように使用可能である。あるいは、補助加熱器は、液体またはガス燃料を使用する燃焼加熱器、例えば、天然ガス焚き加熱器、プロパン加熱器、ガソリン加熱器、またはディーゼル加熱器等、を備え得る。
更なるプロセス実施形態では、温度調節流は、例示的TSAプロセスの第4のステップまたは温度調節ステップ中に温度調節源から回収されてTSA分離器の第4の区画に導入され得る。温度調節流は、TSA分離器の第4の区画中で少なくとも1種の吸着材料からの成分の脱着または掃除、ならびに/もしくはその温度の変更をさせ得る。TSA分離器の第4の区画中の温度調節流及び/または残留成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分は、例えば、約40〜60℃の温度でTSA分離器の第4の区画から回収可能な第4の生成物ストリームを形成し得る。第4の生成物ストリームは、ファン、例えば、誘導式通風ファン等、に導入されて、酸化剤予熱器及び汽缶に導入される二次酸化剤流の少なくとも一部分を形成するように任意選択的に方向付けられ、かつ/または酸化剤予熱器及び汽缶に導入される一次酸化剤流の少なくとも一部分を少なくとも周期的に形成するように任意選択的に方向付けられ得る。酸化剤予熱器及び汽缶に導入される一次酸化剤流の少なくとも一部分を形成するような第4の生成物ストリームの少なくとも一部分の方向付けは、予熱済二次酸化剤流の一部分をTSA分離器の第3の区画用の再生流として使用した場合、TSA分離器の第3の区画中で脱着された成分、例えば、CO2等、の再循環及び/または濃度上昇を制限及び/または低減する上で好都合であり得る。
代替的実施形態では、事前再生ステップ(吸着ステップに後続し第1の再生ステップ先行する)は、は事前再生区画(例えば、第1の再生区画に隣接してかつ/または第1の再生区画にシーケンス上先行して位置する)中で使用可能であり、事前再生流、例えば、蒸気流及び/または供給流に対して第1の成分が富化された流体流等、の吸着接触器の事前再生区画への導入、及び事前再生区画中で少なくとも1種の吸着材料に吸着された少なくとも1種の成分、例えば、第1の成分等、の少なくとも一部分の脱着が含まれ得る。そのような一実施形態では、事前再生流の少なくとも一部分及び少なくとも1種の吸着材料から脱着された成分の一部分は、事前再生区画及び接触器から回収可能な多量の還流流を形成し得る。還流ステップ(吸着ステップに先行または後続)は、接触器の還流区画(例えば、吸着区画の側部に隣接して位置)中で使用され、ここで多量の還流流が還流区画中に再循環または導入され得ると共に多量の還流流の少なくとも1種の成分、例えば、第1の成分等、の少なくとも一部分がこの還流区画中で少なくとも1種の吸着材料に吸着され得る。そのような一実施形態では、多量の還流流の非吸着成分の少なくとも一部分は、供給流に対して少なくとも1種の成分、例えば、第1の成分等、が減損された、還流区画、接触器、TSA分離器及び燃焼システムから回収可能である第5の生成物ストリームを形成または生成し得る。
図1は本開示の実施形態に従った燃焼システム1の簡単な概略図を示し、粒子捕集器(例えば、静電式沈殿器またはESP)37、TSA分離器100、及び極低圧蒸気タービン(本明細書中「VLPタービン」と呼ぶ)またはVPLタービン121を含む。TSA分離器100は、燃焼システム1との一体化により、燃焼システム1内の燃焼器により生成された多成分混合流体または供給流、例えば、燃焼ガス流または排ガス流等、からの少なくとも第1の成分、例えば、二酸化炭素(本明細書中「CO2」と呼ぶ)、硫黄酸化物、窒素、酸素、及び/または重金属等、の吸着ガス分離に供し得る。TSA分離器に対する供給流及び/または再生流としての(燃焼器からの回収燃焼ガス流中の粒子レベルに対して)ESPによる処理により低減された粒子レベルの第1の処置済燃焼ガス流の使用は、汚染により生じ得るETSA分離器中の吸着材料の性能劣化を低減させる上で好都合であり得る。VLPタービンの使用は燃焼システムの効率全体を上昇させる上で好都合であり得る。
一実施形態では、燃焼システム1は、任意選択的に一次酸化剤源20、一次酸化剤ファン22、任意選択的に二次酸化剤源26、二次酸化剤ファン28、一次側回路及び二次側回路を内蔵した高温側(図1には示さず)及び低温側を有する酸化剤加熱器または酸化剤予熱器30(いずれも図1には示さず)、任意選択的に燃料源24、一体型熱交換機(図1には示さず)を有する燃焼器または汽缶34、給水源50、蒸気タービン51、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービン等(いずれも図1には示さず)、VLPタービン121、ESP37、ファン39、任意選択的に弁101、昇圧器ファン110、直接接触型冷却器またはDCC113、第1の区画115、第2の区画123、第3の区画131、及び第4の区画142を有するTSA分離器100、凝縮器125、圧縮機127、ファン133、ファン144、及び煙突41を備え得る。
一次酸化剤源20は、一次酸化剤ファン22、酸化剤予熱器30の低温側一次側回路(図1には示さず)、及び汽缶34に流体接続され得る。燃料源24は汽缶34に流体接続され得る。一次酸化剤源20は、一次酸化剤流21、例えば、外気流等、を導入して一次酸化剤ファン22に導入可能な一次酸化剤流146の少なくとも一部分を任意選択的に形成し、酸化剤予熱器30の低温側一次側回路(図1には示さず)に導入可能な一次酸化剤流23を形成することにより、予熱済一次酸化剤流31を、例えば、約250〜300℃の温度で生成させるように流体接続される。燃料源24は、例えば、石炭または微粉炭であり、燃料流25を導入して予熱済一次酸化剤流31と任意選択的に化合させることにより汽缶34中に導可能な複合燃料流33を形成するように流体接続される。
二次酸化剤源26は、二次酸化剤ファン28、酸化剤予熱器30の低温側二次側回路(図1には示さず)、及び汽缶34に流体接続され得る。二次酸化剤源26は、二次酸化剤流27、例えば、外気流等、を導入して二次酸化剤ファン28に導入可能な二次酸化剤流148の少なくとも一部分を任意選択的に形成し、酸化剤予熱器30の低温側二次側回路(図1には示さず)に導入可能な二次酸化剤流29を形成することにより、予熱済二次酸化剤流32を、例えば、約250〜300℃の温度で生成可能に流体接続される。この予熱済二次酸化剤流32は汽缶34に導入され得る。
汽缶34の一体型熱交換機または具体的には一体型熱交換機低温側(いずれも図1には示さず)は、給水源50、蒸気タービン51、及びVLPタービン121に流体接続され得る。一体型熱交換機の高温側(図1には示さず)は、汽缶34から燃焼ガス流を回収するように流体接続され得る。汽缶34は、酸化剤予熱器30の低温側(図1には示さず)及び高温側(図1には示さず)の一次側及び二次側回路、ESP37、ファン39、任意選択的な燃焼ガス弁101、昇圧器ファン110、DCC113、TSA分離器100の第1の区画115、煙突41及び周囲環境42に流体接続され得る。汽缶34は、酸化剤予熱器30の低温側二次側回路(図1には示さず)から予熱済二次酸化剤流32を回収してこの予熱済二次酸化剤流32の少なくとも一部分を複合燃料流33と共に燃焼させることにより、一体型熱交換機の高温側(図1には示さず)及び汽缶34から、例えば、約500〜600℃の温度で回収可能な燃焼ガス流35として多成分混合流体または燃焼ガス流を生成し得る。
給水源50は、水流52及び/または凝縮液流(図1には示さず)の少なくとも一方を汽缶34内蔵された少なくとも1つの一体型熱交換機(図1には示さず)の低温側に導入するように流体接続され得る。燃焼ガス流35は、少なくとも1つの一体型熱交換機(図1には示さず)の低温側内で水流52に熱伝達することによりこれを高圧蒸気流53に変換し、この高圧蒸気流53が蒸気タービン51、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービン等、に導入されて、発電機(図1には示さず)に対して任意選択的に動力供給を行い得る。低圧蒸気流54は、蒸気タービン51、例えば、低圧タービンの下流等、から回収することにより凝縮器(図1には示さず)経由で給水源50に再循環可能である。
燃焼ガス流35は、一体型熱交換機(図1には示さず)の高温側及び汽缶34から回収されて酸化剤予熱器30の高温側(図3には示さず)に導入され、ここで燃焼ガス流35は酸化剤予熱器30の低温側の一次側及び二次側回路(図1には示さず)に熱を伝達し得る。この燃焼ガス流35は、酸化剤予熱器30から、例えば、約200〜250℃の温度で燃焼ガス流36として回収可能である。燃焼ガス流36は、ESP37に導入され、ここで燃焼ガス流36中の粒子(図1には示さず)、例えば、飛灰等、の少なくとも一部分がESP37により分離及び除去されることにより、燃焼ガス流35及び36中の粒子の量またはレベルに対して粒子の量またはレベルが低減された第1の処置済燃焼ガス流を形成し得る。ESP37により分離された粒子(図1には示さず)は燃焼システム1から回収可能である。第1の処置済燃焼ガス流38は、例えば、約150〜200℃の温度であり、ファン39、例えば、誘導式通風ファン等、に導入されて第1の処置済燃焼ガス流40が形成され得る。
システム実施形態では、任意選択的な燃焼ガス弁101、例えば、分流加減器弁等、は、煙突41、ファン39経由でESP37、DCC113及び昇圧器ファン110経由でTSA分離器100の第1の区画115、及びTSA分離器100の第3の区画131に流体接続され得る。任意選択的な燃焼ガス弁101は、第1の処置済燃焼ガス流40の少なくとも一部分を第1の処置済燃焼ガス流102として方向付けて、煙突41に導入して燃焼システム1から排ガス流118として周囲環境42に放出及び分散させる前に第2の処置済燃焼ガス流117の一部分を任意選択的に形成し;第1の処置済燃焼ガス流40の少なくとも一部分を第1の処置済燃焼ガス流103として方向付け;かつ/または第1の処置済燃焼ガス流40の少なくとも一部分を第1の処置済燃焼ガス流130として方向付けるように流体接続され得る。あるいは、任意選択的な燃焼ガス弁101は、第1の処置済燃焼ガス流40の少なくとも一部分を第1の処置済燃焼ガス流102として方向付け、第1の処置済燃焼ガス流40の少なくとも一部分を第1の処置済燃焼ガス流103として方向付けると共に、任意選択的な追加の分流装置(図1には示さず)を使用して第1の処置済燃焼ガス流103の一部分を第1の処置済燃焼ガス流130中に方向付け得る。
TSA分離器100は、少なくとも1つの包囲体(図1には示さず)中に収容された4区画、例えば、第1の区画115、第2の区画123、第3の区画131、及び第4の区画142、を通過する中心軸を中心に循回または回転する少なくとも1つの接触器(図1には明示せず)を備え得る。一実施形態に従った例示的なTSAプロセス中、TSAプロセスの第1のステップまたは吸着ステップが第1の区画115中で生じ、TSAプロセスの第2のステップまたは第1の再生ステップが第2の区画123中で生じ、TSAプロセスの第3のステップまたは第2の再生ステップが第3の区画131中で生じ、TSAプロセスの第4のステップまたは温度調節ステップが第4の区画142中で生じ得る。
本開示に従ったシステム実施形態では、TSA分離器100の第1の区画115は、ファン39経由でESP37、任意選択的な燃焼ガス弁101、昇圧器ファン110、及びDCC113に流体接続されて、例示的TSAプロセスの第1のステップまたは吸着ステップ中に第1の処置済燃焼ガス流114を多成分混合流体または供給流として導入し得る。多成分混合流体は少なくとも、第1の成分、例えば、1種以上の:二酸化炭素、硫黄酸化物、窒素、酸素、及び/または重金属;及び第2の成分、例えば、窒素(本明細書中「N2」と呼ぶ)を含み得る。TSA分離器100の第1の区画115はまた、煙突41に、及びそれにより周囲環境42に流体接続され得る。一実施形態では、(燃焼ガス流35及び36中の粒子レベルに対して)粒子レベルを低減させた静電式沈殿器からの回収による第1の処置済燃焼ガス流の供給流としての使用は、粒子汚染によるTSA分離器100中の吸着材料の性能劣化を低減させる上で望ましい。任意選択的な燃焼ガス弁101から回収して昇圧器ファン110に導入させ得る第1の処置済燃焼ガス流103は、DCC113に導入可能な第1の処置済燃焼ガス流111及び第1の処置済燃焼ガス流112の少なくとも一部分を形成し得る。第1の処置済燃焼ガス流112の温度は、DCC113により低下され、例えば、約50℃以下、または特に約40℃以下、またはより具体的には約30℃以下の温度で第1の処置済燃焼ガス流114を生成し得る。この第1の処置済燃焼ガス流114がTSA分離器100の第1の区画115に導入され、ここでこの第1の処置済燃焼ガス流114の第1の成分、例えば、CO2等、の少なくとも一部分、が少なくとも1種の吸着材料(図1には示さず)に吸着されることにより、第1の処置済燃焼ガス流114の非吸着成分から第1の成分が分離され得る。第1の処置済燃焼ガス流114の一部分及び/または第1の処置済燃焼ガス流114の非吸着成分は、供給流または第1の処置済燃焼ガス流112に対して第1の成分が減損され、TSA分離器100の第1の区画115から回収可能であり、かつ第1の処置済燃焼ガス流102の一部分と任意選択的に化合し得る、第1の生成物ストリーム116を形成し得る。これにより第2の処置済燃焼ガス流117が形成されて煙突41に導入され、燃焼システム1から周囲環境42中に排ガス流118として放出及び分散され得る。任意選択的には、TSA分離器100の第1の区画115は再循環回路(図1には示さず)に流体接続され、ここで少なくとも周期的に、第1の生成物ストリーム116の少なくとも一部分がTSA分離器100の第1の区画115から回収されると共に周期的に方向付けられて、TSA分離器100の第1の区画115に導入する第1の処置済燃焼ガス流112または第1の処置済燃焼ガス流114の一部分が形成され得る。
システム実施形態では、TSA分離器100の第2の区画123は、任意選択的VLPタービン121、蒸気タービン51、及び汽缶34に流体接続され、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に、例えば、約300絶対kPa未満、または具体的には約150絶対kPa未満、またはより具体的には約20絶対kPa未満等、の極低圧蒸気流122の形態で第3の成分または、例えば、水(本明細書中「H2O」と呼ぶ)を実質的に含む流体流を、第1の再生流として導入し得る。TSA分離器100の第2の区画123は、凝縮器125、圧縮機127、及び、最終利用129、例えば、工業プロセス等、用に流体接続され得る。蒸気タービン51は例えば、中圧タービンと低圧タービンとの間または低圧タービンの下流の場所に流体接続され、VLPタービン121中に低圧蒸気流120を導入することにより、機械的に連結された装置(図1には示さず)、例えば、補助発電機、ファンまたはポンプに動力供給を行い得る。VLPタービン121は、TSA分離器100の第2の区画123中に極低圧蒸気流122を導入して、少なくとも1種の吸着材料(図1には示さず)の温度を上昇させることにより、この少なくとも1種の吸着材料(図1には示さず)上に吸着された第1の成分の少なくとも一部分を脱着させるように流体接続され得る。TSA分離器100の第2の区画123中の第1の再生流または極低圧蒸気流122及び/または少なくとも1種の吸着材料(図1には示さず)上に吸着された脱着成分、例えば、第1の成分またはCO2、の少なくとも一部分は、TSA分離器100の第2の区画123から回収可能な第2の生成物ストリーム124を形成し得る。第2の生成物ストリーム124は、凝縮器125、例えば、水分離器、冷却器、または凝縮型熱交換機等、に導入されてこの第2の生成物ストリーム124から凝縮性成分、例えば、第3の成分またはH2O等、が分離されることにより、凝縮液流(図1には示さず)及び望ましくは高純度であるの精製されたの第2の生成物ストリーム126を形成し得る。この精製されたの第2の生成物ストリーム126は、凝縮器125から回収されて圧縮機127に導入されることにより、燃焼システム1から回収されて最終利用129に向けられる前に高圧で高純度の圧縮状態の第2の生成物ストリーム128を生成可能である。最終利用129には、一実施形態では、例えば、封鎖、増油回収または工業プロセスが含まれる。任意選択的には、圧縮機127の吸気口は亜外気圧で動作し得る。任意選択的には、亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機等、または弁、例えば、逆止弁等、(いずれも図1には示さず)は、凝縮器125の下流であって圧縮機127の上流に流体接続され得る。代替的実施形態では、TSA分離器100の第2の区画123は、蒸気タービン51からの低圧蒸気流120の一部分または汽缶34からの高圧蒸気流50の一部分として極低圧蒸気流122を回収するように流体接続され得る。
システム実施形態では、TSA分離器100の第3の区画131は、ファン39経由でESP37に、及び任意選択的な燃焼ガス弁101に流体接続され、例示的TSAプロセスの第3のステップまたは第2の再生ステップ中に第2の再生流として第1の処置済燃焼ガス流40の少なくとも一部分または第1の処置済燃焼ガス流130を導入し得る。TSA分離器100の第3の区画131はまた、DCC113及びファン133を経由してTSA分離器100の第1の区画115にも流体接続され得る。一実施形態では、第1の処置済燃焼ガス流130は、例えば、約100〜180℃、または特に約130〜150℃の温度であり、任意選択的な燃焼ガス弁101から回収されてTSA分離器100の第3の区画131に導入されて、少なくとも1種の吸着材料(図1には示さず)上に吸着された少なくとも1種の成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分を脱着させ得る。TSA分離器100の第3の区画131中の第2の再生流または第1の処置済燃焼ガス流130、残留成分、及び/または脱着成分の少なくとも一部分は、TSA分離器100の第3の区画132から回収可能な第3の生成物ストリーム132を形成し得る。この第3の生成物ストリーム132は、ファン133に導入されて第3の生成物ストリーム134を形成し、任意選択的な導入及び第1の処置済燃焼ガス流111との化合により第1の処置済燃焼ガス流112の一部分を形成し得る。一実施形態では、燃焼ガス流35及び36中の粒子レベルに対して低減された粒子レベル、及び、例えば、TSA分離器100の第3の区画131中の少なくとも1種の吸着材料(図1には示さず)からの脱着成分に望ましい好適な熱エネルギー量を有するかまたは好適な温度の、ファン39経由でESP37から回収された、第1の処置済燃焼ガス流40及び第1の処置済燃焼ガス流130の使用は、TSA分離器100中での少なくとも1種の吸着材料(図1には示さず)の再生に消費される蒸気量を低減させる上で及び、TSA分離器100中での少なくとも1種の吸着材料(図1には示さず)の粒子汚染による性能劣化を低減させる上で好都合である。
システム実施形態では、TSA分離器100の第4の区画142は、酸化剤予熱器30、一次側ファン酸化剤ファン22、二次酸化剤ファン28、及びファン144を経由して汽缶34に流体接続され、酸化剤予熱器30に、二次酸化剤流148の少なくとも一部分として第4の生成物ストリーム147を任意選択的に導入し、一次酸化剤流146の少なくとも一部分として第4の生成物ストリーム145の少なくとも一部分を任意選択的に導入させ得る。TSA分離器100の第4の区画142はまた、温度調節源140、例えば、周囲環境等、にも流体接続され、例示的TSAプロセスの第4のステップまたは温度調節ステップ中にTSA分離器100の第4の区画142に温度調節流141、例えば、外気流等、を導入し得る。そのような一実施形態では、温度調節流141は、TSA分離器100の第4の区画142から成分を脱着または掃除可能であり、かつ/またはTSA分離器100の第4の区画142中で少なくとも1種の吸着材料(図1には示さず)の温度を変更可能である。TSA分離器100の第4の区画142中の温度調節流141及び/または残留成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分は、TSA分離器100の第4の区画142から回収可能な第4の生成物ストリーム143aを形成し得る。一実施形態では、第4の生成物ストリーム143a(例えば、約40〜60℃の温度であり得る)は、ファン144、例えば、誘導式通風ファン等、に導入されて第4の生成物ストリーム145を形成し得る。任意選択的には、第4の生成物ストリーム145の少なくとも一部分は、一次酸化剤流146を形成するように方向付けられるか、または一次酸化剤流21と化合するように方向付けられて、一次酸化剤流146を形成し得る。第4の生成物ストリーム145の少なくとも一部分は第4の生成物ストリーム147を形成し得るが、この第4の生成物ストリーム147は二次酸化剤流148を形成するように方向付けられるか、または二次酸化剤流27と化合して二次酸化剤流148を形成するように方向付けられ得る。代替的構成では、ファン144は、温度調節源140及びTSA分離器100の第4の区画142に流体接続されて、温度調節源140から温度調節流141を回収すると共にTSA分離器100の第4の区画142に温度調節流141を導入し得る。
燃焼システム1の代替的実施形態では、燃焼システム1中の低圧蒸気流120、VLPタービン121、及び極低圧蒸気流122を、任意選択的な補助汽缶(図1には示さず)により置換することにより、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に凝縮器125から回収された凝縮液流(図1には示さず)及び追加の水流(図1には示さず)を蒸気流に変換させて第1の再生流として使用可能である。そのような例示的実施形態に従った代替的構成を図2に示す。
図2は本開示の代替的実施形態に従った燃焼システム2を示す簡単な概略図であり、任意選択的な粒子捕集器37(例えば、静電式沈殿器またはESP37等、を備え得る)、TSA分離器100、及び補助汽缶15を内蔵している。TSA分離器100は、燃焼システム2との一体化により、燃焼システム2内で燃焼器により生成された多成分混合流体または供給流(例えば、燃焼ガス流または排ガス流等)からの少なくとも第1の成分(例えば、1種以上の:二酸化炭素、硫黄酸化物、窒素、酸素、及び/または重金属を含み得る)の吸着ガス分離に供し得る。燃焼システム2は、任意選択的に一次酸化剤源20、一次酸化剤ファン22、任意選択的に二次酸化剤源26、二次酸化剤ファン28、一次側回路及び二次側回路含む高温側(図2には示さず)及び低温側を有する酸化剤加熱器または酸化剤予熱器30(いずれも図2には示さず)、任意選択的に燃料源24、一体型熱交換機(図2には示さず)を有する燃焼器または汽缶34、給水源50、段蒸気タービン51、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービン(いずれも図2には示さず)、ESP37、ファン39、任意選択的な燃焼ガス弁101、昇圧器ファン110、直接接触型冷却器またはDCC113、第1の区画115、第2の区画123、第3の区画131及び第4の区画142を有するTSA分離器100、凝縮器125、圧縮機127、補助汽缶151、ファン133、ファン144、及び煙突41を備える。
代替的実施形態では、TSA分離器100の第2の区画123及び燃焼システム2は、補助汽缶151及び凝縮器125に流体接続され、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に補助汽缶151から極低圧蒸気流152を回収すると共に極低圧蒸気流152を第1の再生流として導入し得る。TSA分離器100及び燃焼システム2の第2の区画123はまた、圧縮機127及び最終利用129にも流体接続され得る。例えば、DCC113、圧縮機127及び/または水源(図2には示さず)から回収される水または凝縮液流(図2には示さず)ならびに凝縮器125から回収される任意選択的な凝縮液流150は、補助汽缶151に導入されて水及び/または凝縮液流(図2には示さず)を極低圧蒸気流152に変換させ得る。一実施形態では、この極低圧蒸気流152は、例えば、約300絶対kPa未満、または特に約150絶対kPa未満またはとりわけ約20絶対kPa未満の蒸気圧を有し得る。補助汽缶151は、任意の好適な流体加熱装置、例えば、汽缶または熱交換機であればよく、凝縮液及び/または水流の蒸気流への変換に供される。
代替的実施形態では、燃焼システム(図1または2には示さず)は、排ガス脱硫器に流体接続されたTSA分離器及び任意選択的な粒子捕集器、例えば、静電式沈殿器、機械式捕集器またはサイクロン、織布濾過器またはバグハウス、湿式スクラバまたは粒子濾過器(ディーゼル粒子濾過器等)等、を内蔵する。このTSA分離器は、燃焼器から回収される燃焼ガス流中の硫黄酸化物及び粒子の量またはレベルに対して低減された量またはレベルの硫黄酸化物及び粒子を有する第3の処置済燃焼ガス流の少なくとも一部分を排ガス脱硫器から回収して、TSA分離器へこれを供給流の少なくとも一部分として導入させ、特に、TSA分離器の第1の区画へこれを供給流の少なくとも一部分として導入させ得る。TSA分離器は、燃焼システムとの一体化により、排ガス脱硫器から回収される多成分混合流体または供給流からの少なくとも第1の成分(例えば、1種以上の:二酸化炭素、硫黄酸化物、窒素、酸素、及び/または重金属等)の吸着ガス分離に供し得る。TSA分離器はまた、任意選択的な粒子捕集器に流体接続されて、TSA分離器に第1の処置済燃焼ガス流の一部分を再生流として導入させ、特に、TSA分離器に第1の処置済燃焼ガス流の一部分を第2の再生流として導入させ、または特に、TSA分離器の第3の区画に第1の処置済燃焼ガス流の一部分を第2の再生流として導入させ得る。
図1及び2を参照して、代替的実施形態では、図1に示す燃焼システム1及び図2に示す燃焼システム2は、任意選択的な排ガス脱硫器(図1には示さず及び2)を備え得るが、この排ガス脱硫器は、ファン39、DCC133、昇圧器ファン110及び任意選択的な燃焼ガス弁101等を経由してESP37とTSA分離器100の第1の区画115との間に流体接続させ得る。TSA分離器100の第3の区画131は、任意選択的な排ガス脱硫器(図1には示さず及び2)の上流にファン39を経由してESP37に流体接続され、例示的TSAプロセスの第3のステップまたは第2の再生ステップ中に第2の再生流として第1の処置済燃焼ガス流40または第1の処置済燃焼ガス流130の少なくとも一部分を回収及び導入可能である。
図3は本開示の実施形態に従った燃焼システム3の簡単な概略図を示し、排ガス脱硫器またはFGD300及び粒子捕集器(例えば、静電式沈殿器)またはESP37、ならびにTSA分離器100を含み、極低圧蒸気タービンまたはVLPタービン121を備えている。TSA分離器100は、燃焼システム3との一体化により、燃焼システム3内で燃焼器により生成された多成分混合流体または供給流、例えば、燃焼ガス流または排ガス流等、からの少なくとも第1の成分(例えば、1種以上の:二酸化炭素(本明細書中「CO2」と呼ぶ)、硫黄酸化物、窒素、酸素、及び/または重金属等)の吸着ガス分離に供し得る。静電式沈殿器及び排ガス脱硫器を使用する燃焼システムは、燃焼器または汽缶から回収される未処理の燃焼ガス流中の粒子レベル及びSOxに対して低減されたレベルの粒子及び硫黄酸化物(本明細書中「SOx」と呼ぶ)を有する第3の処置済燃焼ガス流を生成させ得る。しかし、一実施形態では、排ガス脱硫器から回収される第3の処置済燃焼ガス流は、TSAプロセス及びTSA分離器に対する再生流としての使用に望まれるより低い温度であることもあり得る。一実施形態では、燃焼器内で燃焼用の酸化剤流として通常は使用される予熱済の高温の二次酸化剤流の一部分を、TSAプロセス及びTSA分離器用の再生流として使用可能である。
特定の実施形態では、汽缶34中で燃焼用の高温の酸化剤流として使用される予熱済二次酸化剤流32、または予熱済酸化剤流330の一部分は、TSA分離器100中で再生流として、または特に、TSA分離器100中で第2の再生流として、またはとりわけ、TSA分離器100の第3の区画131中で第2の再生流として使用可能である。そのような一実施形態では、再生流としての予熱済酸化剤流330の使用は、蒸気代替物を再生流として使用することによりTSA分離器100中での少なくとも1種の吸着材料(図3には示さず)の再生に消費される蒸気量を低減させる上で好都合であり、燃焼システム3に追加機器を実質的に追加せずに従来型の燃焼または汽缶系中に通常存在する流体流の一部分を使用する上で好都合であり得る。
一実施形態では、燃焼システム3は、任意選択的に一次酸化剤源20、一次酸化剤ファン22、任意選択的に二次酸化剤源26、二次酸化剤ファン28、一次側回路及び二次側回路を内蔵した高温側(図3には示さず)及び低温側を有する酸化剤加熱器または酸化剤予熱器30(いずれも図3には示さず)、任意選択的な補完用の熱交換機(図3には示さず)、任意選択的な燃料源24、一体型熱交換機(図3には示さず)を有する燃焼器または汽缶34、給水源50、蒸気タービン51、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービン(いずれも図3には示さず)、VLPタービン121、ESP37、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、DCC113、第1の区画115、第2の区画123、第3の区画131、及び第4の区画142を有するTSA分離器100、凝縮器125、圧縮機127、ファン144、ファン332、及び煙突41を備える。
一次酸化剤源20は、一次酸化剤ファン22、酸化剤予熱器30の低温側一次側回路(図3には示さず)、及び汽缶34に流体接続され得る。燃料源24は汽缶34に流体接続され得る。一次酸化剤源20は、一次酸化剤流21、例えば、外気流等、を導入して一次酸化剤流350の少なくとも一部分を任意選択的に形成するように流体接続され得る。この一次酸化剤流350の少なくとも一部分は一次酸化剤ファン22に導入されて一次酸化剤流23を形成し、この一次酸化剤流23が酸化剤予熱器30の低温側一次側回路(図3には示さず)に導入されて予熱済一次酸化剤流31を生成する。一実施形態では、この予熱済一次酸化剤流31は例えば、約250〜300℃の温度で提供可能である。燃料源24(例えば、1種以上の石炭または微粉炭を含み得る)は、燃料流25を導入して予熱済一次酸化剤流31と化合させて汽缶34中に導入可能な複合燃料流33を形成するように流体接続される。
一態様では、二次酸化剤源26は、二次酸化剤ファン28、酸化剤予熱器30の低温側二次側回路(図3には示さず)、及び汽缶34に流体接続され得る。二次酸化剤源26は、二次酸化剤流27、例えば、外気流等、を導入して二次酸化剤ファン28に導入可能な二次酸化剤流351の少なくとも一部分を任意選択的に形成することにより、二次酸化剤流29を形成させるように流体接続される。この二次酸化剤流29は、酸化剤予熱器30の低温側二次側回路(図3には示さず)に導入されて予熱済二次酸化剤流32を生成し得る。一実施形態では、この予熱済二次酸化剤流32は、例えば、約250〜300℃の温度で提供され得る。この予熱済二次酸化剤流32は汽缶34に導入され得る。
一態様では、一体型熱交換機、具体的には汽缶34の一体型熱交換機の低温回路(いずれも図3には示さず)は、給水源50、蒸気タービン51、及びVLPタービン121に流体接続され得る。一体型熱交換機の高温側(図3には示さず)は、汽缶34から燃焼ガス流を受容するように流体接続され得る。汽缶34は、酸化剤予熱器30の低温側(図3には示さず)及び高温側(図3には示さず)の一次側及び二次側回路、ESP37、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、DCC113、TSA分離器100の第1の区画115、煙突41及び周囲環境42に流体接続され得る。汽缶34は、酸化剤予熱器30の低温側二次側回路(図3には示さず)から予熱済二次酸化剤流32を回収し、予熱済二次酸化剤流32の少なくとも一部分を複合燃料流33と共に燃焼させて、この汽缶34の一体型熱交換機の高温側(図3には示さず)から回収可能な多成分混合流体または燃焼ガス流35を生成し得る。一実施形態では、この多成分混合流体または燃焼ガス流35は、例えば、約500〜600℃の温度での回収可能である。
給水源50は、汽缶34に内蔵した少なくとも1つの一体型熱交換機(図3には示さず)に水流52及び/または凝縮液流の少なくとも一方(図1には示さず)を導入するように流体接続され得る。燃焼ガス流35は、少なくとも1つの一体型熱交換機の低温側(図3には示さず)内で水流52に熱伝達をしてこれを高圧蒸気流53に変換し、この高圧蒸気流53を蒸気タービン51に導入することにより発電機(図3には示さず)に任意選択的に動力供給を行い得る。低圧蒸気流54は、例えば、低圧タービン下流の蒸気タービン51から回収され、凝縮器(図3には示さず)を経由して給水源50に再循環され得る。
燃焼ガス流35は、一体型熱交換機(図3には示さず)及び汽缶34の高温側から回収されて酸化剤予熱器30の高温側(図3には示さず)に導入され、ここで燃焼ガス流35が酸化剤予熱器30の低温側の一次側及び二次側回路(図3には示さず)に熱伝達を行い得る。燃焼ガス流35は、燃焼ガス流36として酸化剤予熱器30から回収可能である。一実施形態では、燃焼ガス流36の回収は、例えば、約200〜250℃の温度で行われ得る。そのような一実施形態では、燃焼ガス流36はESP37に導入され、ここで燃焼ガス流36中の粒子(図3には示さず)、例えば、飛灰等、の少なくとも一部分がESP37により分離及び除去されることにより、燃焼ガス流35及び36中の粒子レベルに対して低減された粒子レベルの第1の処置済燃焼ガス流38が形成され得る。一態様では、ESP37により分離された粒子(図3には示さず)は燃焼システム3から回収可能である。特定の実施形態では、第1の処置済燃焼ガス流38は、例えば、約150〜200℃の温度であり、ファン39、例えば、誘導式通風ファン等、に導入されて第1の処置済燃焼ガス流40を形成し、これがFGD300に導入され得る。第1の処置済燃焼ガス流40中のSOxの少なくとも一部分は、FGD300により分離及び除去されることにより第3の処置済燃焼ガス流301が形成得される。一実施形態では、この第3の処置済燃焼ガス流301は、例えば、約40〜60℃の温度であり、かつ燃焼ガス流35及び36中の粒子及びSOxのレベルに対して低減されたレベルのSOx及び粒子を有し得る。
一実施形態では、任意選択的な燃焼ガス弁101、例えば、分流加減器弁等、はFGD300、煙突41、及びDCC113及び昇圧器ファン1経由で10TSA分離器100の第1の区画115に流体接続され得る。任意選択的な燃焼ガス弁101は、第3の処置済燃焼ガス流301の少なくとも一部分を第3の処置済燃焼ガス流302として方向付けることにより、煙突41に導入して燃焼システム3から周囲環境42中に排ガス流314として放出及び分散せせる前に第4の処置済燃焼ガス流313の一部分を任意選択的に形成し、かつ/または第3の処置済燃焼ガス流301の少なくとも一部分を第3の処置済燃焼ガス流303として方向付けるように流体接続され得る。
TSA分離器100は、少なくとも1つの包囲体(図3には示さず)中に収容された4区画、例えば、第1の区画115、第2の区画123、第3の区画131、及び第4の区画142、を通過する中心軸を中心に循回または回転する少なくとも1つの接触器(図3には明示せず)を備え得る。例示的TSAプロセス中、第1のステップまたはTSAプロセスの吸着ステップが第1の区画115中で生じ、第2のステップまたはTSAプロセスの第1の再生ステップが第2の区画123中で生じ、第3のステップまたはTSAプロセスの第2の再生ステップが第3の区画131中で生じ、第4のステップまたはTSAプロセスの温度調節ステップが第4の区画142中で生じ得る。
一実施形態では、TSA分離器100の第1の区画115は、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、及びDCC113等を経由してESP37、に流体接続され、例示的TSAプロセスの第1のステップまたは吸着ステップ中に第3の処置済燃焼ガス流311を多成分混合流体または供給流として導入し得る。この多成分混合流体は、第1の成分(例えば、1種以上の:二酸化炭素、硫黄酸化物、窒素、酸素、及び/または重金属を含み得る)、及び第2の成分、例えば、窒素(本明細書中「N2」と呼ぶ)等、を少なくとも含み得る。TSA分離器100の第1の区画115はまた、煙突41及び周囲環境42に流体接続され得る。第3の処置済燃焼ガス流303は、任意選択的な燃焼ガス弁101から回収されると共に昇圧器ファン110に導入されることにより、第3の処置済燃焼ガス流310を形成し、これがDCC113に導入され得る。この第3の処置済燃焼ガス流310の温度が、DCC113により低下されることにより、第3の処置済燃焼ガス流311が生成され得る。一実施形態では、この第3の処置済燃焼ガス流311は、例えば、約50℃以下、または特に約40℃以下、または特に約30℃以下の温度で生成されてTSA分離器100の第1の区画115に導入され、ここで第3の処置済燃焼ガス流311の第1の成分、例えば、CO2等、の少なくとも一部分が少なくとも1種の吸着材料(図3には示さず)により吸着されることにより、第3の処置済燃焼ガス流311の非吸着成分から第1の成分が分離され得る。そのような一実施形態では、第3の処置済燃焼ガス流311及び/または第3の処置済燃焼ガス流311の非吸着成分の一部分は第1の生成物ストリーム312を形成し得るが、この第1の生成物ストリーム312は供給流または第3の処置済燃焼ガス流311に対して第1の成分が減損されていると共にTSA分離器100の第1の区画115から回収可能であり、これが第3の処置済燃焼ガス流302の一部分と任意選択的に化合して第4の処置済燃焼ガス流313を形成可能であり、この第4の処置済燃焼ガス流313が煙突41に導入されて燃焼システム3から排ガス流314として周囲環境42に放出及び分散され得る。任意選択的には、TSA分離器100の第1の区画115は、再循環回路(図3には示さず)に流体接続され、ここで少なくとも周期的に、第1の生成物ストリーム312の少なくとも一部分がTSA分離器100の第1の区画115から回収可能であり、TSA分離器100の第1の区画115に導入される第3の処置済燃焼ガス流310または第3の処置済燃焼ガス流311の一部分を形成するように周期的に方向付けられ得る。
特定の実施形態では、TSA分離器100の第2の区画123は、任意選択的なVLPタービン121、蒸気タービン51及び汽缶34に流体接続されて、例示的TSAプロセスの第2のステップまたは第1の再生ステップ中に第1の再生流として、例えば、約300絶対kPa未満、または具体的には約150絶対kPa未満、またはより具体的には約20絶対kPa未満の極低圧蒸気流122の形態で第3の成分、または水(本明細書中「H2O」と呼ぶ)を実質的に含む流体流を回収及び導入し得る。TSA分離器100の第2の区画123は、凝縮器125、圧縮機127、及び最終利用129に流体接続され得る。蒸気タービン51は、例えば、中圧タービンと低圧タービンとの間または低圧タービンの下流の場所に流体接続され、VLPタービン121に低圧蒸気流120を導入することにより、機械的に連結された装置(図3には示さず)、例えば、補助発電機、ファンまたはポンプ等、に動力供給を行い得る。一実施形態では、VLPタービン121は、TSA分離器100の第2の区画123中に極低圧蒸気流122を導入するように流体接続され、少なくとも1種の吸着材料(図3には示さず)の温度を上昇させて少なくとも1種の吸着材料(図3には示さず)に吸着された第1の成分の少なくとも一部分を脱着させ得る。TSA分離器100の第2の区画123中第1の再生流または極低圧蒸気流122ならびに/もしくは少なくとも1種の吸着材料(図3には示さず)に吸着された脱着成分(例えば、CO2等の第1の成分を含む)の少なくとも一部分は、TSA分離器100の第2の区画123から回収可能な第2の生成物ストリーム124を形成し得る。この第2の生成物ストリーム124は、凝縮器125、例えば、水分離器、冷却器、または凝縮型熱交換機に導入され、第2の生成物ストリーム124から凝縮性成分、例えば、第3の成分またはH2O等、を分離させることにより凝縮液流(図3には示さず)及び高純度の精製されたの第2の生成物ストリーム126が形成され得る。この精製されたの第2の生成物ストリーム126は、凝縮器125から回収されて圧縮機127に導入されて、燃焼システム3からの回収及び最終利用129への方向付け前に高圧で高純度の圧縮状態の第2の生成物ストリーム128が生成され得る。一実施形態では、最終利用129には、例えば、封鎖、増油回収または工業プロセスが含まれ得る。任意選択的には、圧縮機127の吸気口は亜外気圧で動作し得る。任意選択的には、亜吸気圧で動作する少なくとも1つのポンプ、例えば、排出器、真空ポンプ、圧縮機または多段圧縮機、または弁、例えば、逆止弁、(いずれも図1には示さず)は、凝縮器125の下流であって圧縮機127の上流に流体接続され得る。代替的実施形態では、TSA分離器100の第2の区画123は、蒸気タービン51からの低圧蒸気流120の一部分または汽缶34からの高圧蒸気流50の一部分として極低圧蒸気流122を回収するように流体接続され得る。
別の特定の実施形態では、TSA分離器100の第3の区画131は、酸化剤予熱器30の低温側二次側回路(図3には示さず)、二次酸化剤ファン28、及び二次酸化剤源26に流体接続されて、例示的TSAプロセスの第3のステップまたは第2の再生ステップ中に予熱済二次酸化剤流32の少なくとも一部分を予熱済酸化剤流330として導入して第2の再生流としての使用に供し得る。TSA分離器100の第3の区画131はまた、酸化剤予熱器30の低温側二次側回路(図3には示さず)、二次酸化剤ファン28及びファン332を経由して汽缶34に流体接続され得る。一実施形態では、予熱済二次酸化剤流32の一部分は、例えば、約250〜300℃の温度で提供され、例えば、予熱済酸化剤流330の温度を第2の再生流に好適な温度に低下させるように任意選択的な補完用の熱交換機(図3には示さず)に導入され得る。一実施形態では、この温度は例えば、約100〜180℃、または特に約130〜150℃の温度であり得る。予熱済酸化剤流330は、TSA分離器100の第3の区画131に選択的に制御及び導入されて、少なくとも1種の吸着材料(図3には示さず)に吸着された少なくとも1種の成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分を脱着させ得る。TSA分離器100の第3の区画131中の第2の再生流または予熱済酸化剤流330、残留成分、ならびに/もしくは脱着成分の少なくとも一部分は、TSA分離器100の第3の区画132からの回収可能な第3の生成物ストリーム331を形成し得る。この第3の生成物ストリーム331は、ファン332、例えば、誘導式通風ファン等、に導入されて第3の生成物ストリーム333を形成するが、この第3の生成物ストリーム333は二次酸化剤ファン28への流入前に任意選択的に導入されて二次酸化剤流27と化合して二次酸化剤流351の一部分を形成し得る。そのような一実施形態では、例示的TSAプロセスの第3のステップまたは第2の再生ステップ中のTSA分離器用再生流または第2の再生流としての予熱済二次酸化剤流32または予熱済酸化剤流330の一部分の使用は、TSAプロセス及びTSA分離器を内蔵した新型または現存型燃焼システムに対する追加機器の要件を低減させる上で、ならびに/もしくは現存型燃焼システムの改良のための修正範囲を低減させる上で好都合であり得る。代替的実施形態構成では、ファン332は、酸化剤予熱器30の低温側二次側回路(図3には示さず)及びTSA分離器100の第3の区画131に流体接続され、酸化剤予熱器30の低温側二次側回路(図3には示さず)から予熱済酸化剤流330を回収すると共にTSA分離器100の第3の区画131に予熱済酸化剤流330を導入させ得る。あるいは、予熱済酸化剤流330は、酸化剤予熱器(図3には示さず)の低温側二次側回路(図3には示さず)から回収して、第2の再生流に好適な温度でこの予熱済酸化剤流330を供給するように修正可能である。一実施形態では、この温度は、例えば、約100〜180℃、または特に約130〜150℃であり、任意選択的な補完用の熱交換機(図3には示さず)の代わりを補い得る。
一実施形態では、TSA分離器100の第4の区画142は、酸化剤加熱器30の低温側の一次側及び二次側回路(図3には示さず)、一次酸化剤ファン22、二次酸化剤ファン28及びファン144を経由して汽缶34に流体接続され、汽缶43に一次酸化剤流350、23及び予熱済一次酸化剤流31及び複合燃料流33の少なくとも一部分として第4の生成物ストリーム143及び145の少なくとも一部分を任意選択的に導入させ、かつ/または汽缶34に二次酸化剤流351、29及び予熱済酸化剤流の少なくとも一部分として第4の生成物ストリーム143a、145及び147の少なくとも一部分を任意選択的に導入させ得る。TSA分離器100の第4の区画142はまた、温度調節源140、例えば、周囲環境等、に流体接続されて、例示的TSAプロセスの第4のステップまたは温度調節ステップ中にこのTSA分離器100の第4の区画142に温度調節流141、例えば、外気流等、を導入し得る。温度調節流141は、TSA分離器100の第4の区画142中で少なくとも1種の吸着材料(図3には示さず)からの成分の脱着または掃除ならびに/もしくはその温度の変更をさせ得る。TSA分離器100の第4の区画142中の温度調節流141及び/または残留成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分は、TSA分離器100の第4の区画142から回収可能な第4の生成物ストリーム143aを形成し得る。一実施形態では、第4の生成物ストリーム143aは、例えば、約40〜60℃の温度で回収されてファン144(例えば、誘導式通風ファン等)に導入されて第4の生成物ストリーム145を形成し得る。第4の生成物ストリーム145の少なくとも一部分は第4の生成物ストリーム147を形成し得るが、この第4の生成物ストリーム147は二次酸化剤流351を形成するように任意選択的に方向付けられるか、または二次酸化剤流27と化合して二次酸化剤流351の一部分を形成するように任意選択的に方向付けられ得る。第4の生成物ストリーム145の少なくとも一部分は、少なくとも周期的に一次酸化剤流350を形成するように任意選択的に方向付けられるか、または一次酸化剤流21と化合して一次酸化剤流350を形成するように任意選択的に方向付けられ得る。そのような一実施形態では、一次酸化剤流350の少なくとも一部分を形成する第4の生成物ストリーム145の少なくとも一部分の方向付けは、TSA分離器100の第3の区画131中で脱着される成分、例えば、第1の成分またはCO2等、の再循環及び/または濃度上昇を制限及び/または低減させる上で好都合であり得る。このような再循環及び/または濃度上昇は、例えば、予熱済酸化剤流330、TSA分離器100の第3の区画131、第3の生成物ストリーム331、ファン332、第3の生成物ストリーム333、第3の生成物ストリーム334、二次酸化剤流351、二次酸化剤ファン28、二次酸化剤流29、酸化剤予熱器30の低温側二次側回路(図3には示さず)、及び予熱済二次酸化剤流32等を備えた実質的な流体接続ループ中で生じ得る。代替的実施形態構成では、ファン144は、温度調節源140及びTSA分離器100の第4の区画142に流体接続されて、温度調節源140から温度調節流141を回収すると共にTSA分離器100の第4の区画142に温度調節流141を導入させ得る。
代替的実施形態では、燃焼システム3、低圧蒸気流120、VLPタービン121、及び燃焼システム3中の極低圧蒸気流122を補助汽缶(図3には示さず)により置換することにより、例示的TSAプロセスの第2のステップまたは第1再生ステップ中で凝縮器125から回収された凝縮液流(図3には示さず)及び追加の水流(図3には示さず)を蒸気流に変換させてこれを第1の再生流として使用可能である。そのような例示的実施形態に従った代替的構成を図4に示す。
図4は本開示の代替的実施形態に従った燃焼システム4の簡単な概略図を示し、排ガス脱硫器(またはFGD)300及び粒子捕集器37(例えば、静電式沈殿器またはESP37等)、TSA分離器100、及び補助汽缶151を内蔵している。TSA分離器100は、燃焼システム4との一体化により、燃焼システム4内で燃焼器により生成された多成分混合流体または供給流(例えば、燃焼ガス流または排ガス流を含み得る)からの少なくとも第1の成分(一実施形態では、例えば、1種以上の:二酸化炭素、硫黄酸化物、窒素、酸素、及び/または重金属を含み得る)の吸着ガス分離に供し得る。燃焼システム4は、任意選択的に一次酸化剤源20、一次酸化剤ファン22、任意選択的に二次酸化剤源26、二次酸化剤ファン28、一次側回路及び二次側回路を内蔵した高温側(図4には示さず)及び低温側を有する(いずれも図4には示さず)酸化剤加熱器または酸化剤予熱器30、任意選択的な燃料源24、一体型熱交換機(図4には示さず)を有する燃焼器または汽缶34、給水源50、蒸気タービン51、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービン(いずれも図4には示さず)、ESP37、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、直接接触型冷却器またはDCC113、第1の区画115、第2の区画123、第3の区画131及び第4の区画142を有するTSA分離器100、凝縮器125、圧縮機127、補助汽缶151、ファン332、ファン144、及び煙突41を備え得る。
代替的実施形態では、TSA分離器100の第2の区画123及び燃焼システム4は、補助汽缶151及び凝縮器125に流体接続されて、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に補助汽缶151から極低圧蒸気流152を回収すると共にこの極低圧蒸気流152を第1の再生流として導入し得る。TSA分離器100の第2の区画123及び燃焼システム4はまた、圧縮機127及び最終利用129にも流体接続され得る。例えば、DCC113、圧縮機127及び/または水源(図4には示さず)から回収された水または凝縮液流(図4には示さず)、及び任意選択的に、凝縮器125から回収された凝縮液流150を、補助汽缶151に導入することにより、水及び/または凝縮液流(図4には示さず)を極低圧蒸気流152に変換させ得る。一実施形態では、この極低圧蒸気流152は、例えば、約300絶対kPa未満、特に約150絶対kPa未満または特に約20絶対kPa未満の圧力の蒸気流を含み得る。補助汽缶151は、任意の好適な装置、例えば、汽缶または熱交換機等、であればよく、凝縮液及び/または水流を蒸気流に変換可能である。
図5は、補助加熱器531を追加して、排ガス脱硫器またはFGD300及び粒子捕集器、例えば、静電式沈殿器またはESP37、及びTSA分離器100、極低圧蒸気タービンまたはVPLタービン121を内蔵した実施形態燃焼システム5の簡単な概略図を示す。TSA分離器100は、燃焼システム5との一体化により、燃焼システム5内で燃焼器により生成された多成分混合流体または供給流、例えば、燃焼ガス流または排ガス等、からの少なくとも第1の成分、例えば、二酸化炭素、硫黄酸化物、窒素、酸素、及び/または重金属等、の吸着ガス分離に供し得る。静電式沈殿器及び排ガス脱硫器を使用する燃焼システムは、燃焼器または汽缶から回収された未処理の燃焼ガス流中の粒子及びSOxのレベルに対して低減されたレベルの粒子及びSOxを有する処置済燃焼ガスを生成可能である。しかし、排ガス脱硫器から回収された第3の処置済燃焼ガス流は、TSAプロセス及びTSA分離器に対する再生流としての使用に望まれるよりも低い温度である可能性もある。補助加熱器を使用することにより、再生流としての使用に好適な流体流の温度を少なくとも1種の吸着材料の再生に好適な温度またはTSAプロセス及びTSA分離器に対する再生流に好適な温度に上昇させることが可能である。
一実施形態では、補助加熱器531、例えば、ガス間熱交換機、液体ガス熱交換機、ガス焚き加熱器、液体燃料加熱器、または固体燃料加熱器等、を使用することにより、好適な流体流、例えば、空気流、TSA分離器からの生成物ストリーム、第1の成分を(例えば、燃焼ガス流35または第3の処置済燃焼ガス流311等、に対して)富化された流体流、第1の成分を実質的に含む流体流、燃焼器中の燃焼に通常使用される酸化剤流、または不活性ガス流等、の温度を、少なくとも1種の吸着材料の再生に好適な温度に上昇させ得る。この好適な流体流はこの後、TSA分離器100中で再生流として、または特に、TSA分離器100中で第2の再生流として、またはとりわけ、TSA分離器100の第3の区画131中で第2の再生流として使用可能である。そのような一実施形態では、補助加熱器531の使用は、燃焼器中で燃焼に通常使用される酸化剤流の一部分の使用が、例えば、現存の燃焼システムの改良には望まれ得ないような燃焼システム用途に対して好都合であり得る。再生流としての蒸気代替物、例えば、高温の第4の生成物ストリーム等、の使用は、TSA分離器100中での少なくとも1種の吸着材料(図5には示さず)の再生に消費される蒸気量を低減させる上で好都合であり得る。
燃焼システム5は、任意選択的に一次酸化剤源20、一次酸化剤ファン22、任意選択的に二次酸化剤源26、二次酸化剤ファン28、一次側回路及び二次側回路を内蔵した高温側(図5には示さず)及び低温側(いずれも図5には示さず)を有する酸化剤加熱器または酸化剤予熱器30、任意選択的な燃料源24、一体型熱交換機(図5には示さず)を有する燃焼器または汽缶34、給水源50、蒸気タービン51、例えば、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する多段蒸気タービン(いずれも図5には示さず)等、VLPタービン121、ESP37、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、DCC113、第1の区画115、第2の区画123、第3の区画131、及び第4の区画142を有するTSA分離器100、凝縮器125、圧縮機127、補助加熱器531、ファン144、ファン332、及び煙突41を備える。
一次酸化剤源20は、一次酸化剤ファン22、酸化剤予熱器30の低温側一次側回路(図5には示さず)、及び汽缶34に流体接続され得る。燃料源24は汽缶34に流体接続され得る。一次酸化剤源20は、一次酸化剤流21、例えば、外気流等、を導入すると共に一次酸化剤ファン22に導入可能な一次酸化剤流350の少なくとも一部分を任意選択的に形成することにより一次酸化剤流23を形成させるように流体接続され得る。この一次酸化剤流23は、酸化剤予熱器30の低温側一次側回路(図5には示さず)に導入されて、例えば、約250〜300℃の温度で予熱済一次酸化剤流31を生成させ得る。燃料源24(一実施形態では、例えば、石炭または微粉炭から成り得る)は、燃料流25を導入して予熱済一次酸化剤流31と化合させることにより汽缶34中に導入され得る複合燃料流33を形成するように流体接続され得る。
二次酸化剤源26は、二次酸化剤ファン28、酸化剤予熱器30の低温側二次側回路(図5には示さず)、及び汽缶34に流体接続され得る。二次酸化剤源26は、二次酸化剤流27、例えば、外気流等、を導入すると共に二次酸化剤ファン28に導入可能な二次酸化剤流351の少なくとも一部分を任意選択的に形成するように流体接続される。これにより二次酸化剤流29が形成されて、これが酸化剤予熱器30の低温側二次側回路(図5には示さず)に導入され、予熱済二次酸化剤流32を生成させ得る。一実施形態では、この予熱済二次酸化剤流32は、例えば、約250〜300℃の温度で生成可能である。予熱済二次酸化剤流32は汽缶34に導入される。
汽缶34の一体型熱交換機または具体的には一体型熱交換機の低温回路(いずれも図5には示さず)は、給水源50、蒸気タービン51、及びVLPタービン121に流体接続され得る。一体型熱交換機の高温側(図1には示さず)は、汽缶34から燃焼ガス流を受容するように流体接続され得る。汽缶34は、補助加熱器531、酸化剤予熱器30の低温側(図5には示さず)及び高温側(図5には示さず)の一次側及び二次側回路、ESP37、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、DCC113、TSA分離器100の第1の区画115、煙突41、及び周囲環境42に流体接続され得る。汽缶34は、酸化剤予熱器30の低温側二次側回路(図5には示さず)から予熱済二次酸化剤流32を回収すると共にこの予熱済二次酸化剤流32の少なくとも一部分を複合燃料流33と共に燃焼させて、汽缶34及び一体型熱交換機の高温側(図5には示さず)から回収される多成分混合流体または燃焼ガス流35を生成させ得る。一実施形態では、この多成分混合流体または燃焼ガス流35は、例えば、約500〜600℃の温度で回収可能である。
給水源50は、水流52及び/または凝縮液流(図5には示さず)の少なくとも一方を、汽缶34に内蔵された少なくとも1つの一体型熱交換機(図5には示さず)に導入させるように流体接続され得る。燃焼ガス流35は、少なくとも1つの一体型熱交換機(図5には示さず)の低温側内の水流52に熱を伝達することによりこれを高圧蒸気流53に変換し、この高圧蒸気流53を蒸気タービン51に導入することにより発電機(図5には示さず)に動力供給を任意選択的に行い得る。低圧蒸気流54は、例えば、低圧タービンの下流の蒸気タービン51から回収して凝縮器(図5には示さず)経由で給水源50に再循環させ得る。
燃焼ガス流35は、一体型熱交換機(図5には示さず)及び汽缶34の高温側から回収されると共に酸化剤予熱器30の高温側(図5には示さず)に導入されて、ここで燃焼ガス流35が酸化剤予熱器30の低温側の一次側及び二次側回路(図5には示さず)に熱伝達を行い得る。燃焼ガス流35は、酸化剤予熱器30から燃焼ガス流36として回収可能である。一実施形態では、この燃焼ガス流36は、例えば、約200〜250℃の温度で回収可能である。燃焼ガス流36は、ESP37に導入され、ここで燃焼ガス流36中の粒子(図5には示さず)、例えば、飛灰等、の少なくとも一部分がESP37により分離及び除去されて、燃焼ガス流35及び36中の粒子レベルに対して低減された粒子レベルの第1の処置済燃焼ガス流38が形成され得る。ESP37により分離された粒子(図5には示さず)は燃焼システム5から回収可能である。一態様では、第1の処置済燃焼ガス流38は、例えば、約150〜200℃の温度で回収されてファン39、例えば、誘導式通風ファン等、に導入されることにより、第1の処置済燃焼ガス流40が形成されてこれがFGD300に導入され得る。第1の処置済燃焼ガス流40中のSOxの少なくとも一部分は、FGD300により分離及び除去されることにより第3の処置済燃焼ガス流301が形成され得る。一実施形態では、この第3の処置済燃焼ガス流301は、例えば、約40〜60℃の温度であり、燃焼ガス流35及び36中の粒子及びSOxのレベルに対して低減されたレベルのSOx及び粒子を有し得る。
一実施形態では、任意選択的な燃焼ガス弁101、例えば、分流加減器弁等、はFGD300、煙突41、ならびにDCC113及び昇圧器ファン1経由で10TSA分離器100の第1の区画115に流体接続され得る。任意選択的な燃焼ガス弁101は、第3の処置済燃焼ガス流301の少なくとも一部分を第3の処置済燃焼ガス流302として方向付けて、これを排ガス流314として煙突41に導入して燃焼システム5からの周囲環境42に放出及び分散させる前に第4の処置済燃焼ガス流313の一部分を任意選択的に形成させるように、かつ/または第3の処置済燃焼ガス流301の少なくとも一部分を第3の処置済燃焼ガス流303として方向付けるように流体接続され得る。
TSA分離器100は、少なくとも1つの包囲体(図5には示さず)に収容された4区画、例えば、第1の区画115、第2の区画123、第3の区画131、及び第4の区画142、を通過する中心軸を中心に循回または回転する少なくとも1つの接触器(図5には示さず)を備え得る。例示的TSAプロセス中、TSAプロセスの第1のステップまたは吸着ステップは第1の区画115中で生じ、TSAプロセスの第2のステップまたは第1の再生ステップは第2の区画123中で生じ、TSAプロセスの第3のステップまたは第2の再生ステップは第3の区画131で生じ、TSAプロセスの第4のステップまたは温度調節ステップは第4の区画142中で生じ得る。
一実施形態では、TSA分離器100の第1の区画115は、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、及びDCC113等を経由してESP37に流体接続され、例示的TSAプロセスの第1のステップまたは吸着ステップ中に第3の処置済燃焼ガス流311を多成分混合流体または供給流として導入し得る。多成分混合流体は少なくとも、第1の成分(例えば、1種以上の:二酸化炭素、硫黄酸化物、窒素、酸素、及び/また重金属を含み得る)及び第2の成分、例えば、窒素(本明細書中「N2」と呼ぶ)を含み得る。TSA分離器100の第1の区画115はまた煙突41及び周囲環境42にも流体接続され得る。第3の処置済燃焼ガス流303は、任意選択的な燃焼ガス弁101から回収されると共に昇圧器ファン110に導入されて、第3の処置済燃焼ガス流310が形成されてこれがDCC113に導入され得る。第3の処置済燃焼ガス流310の温度は、DCC113により低下されて第3の処置済燃焼ガス流311が生成され得る。一実施形態では、この第3の処置済燃焼ガス流311は、例えば、約50℃以下、または特に約40℃以下、または特に約30℃以下の温度で生成されてTSA分離器100の第1の区画115に導入され得、ここで第3の処置済燃焼ガス流311中の第1の成分、例えば、CO2等、の少なくとも一部分が少なくとも1種の吸着材料(図5には示さず)により吸着されることにより、第3の処置済燃焼ガス流311の非吸着成分から第1の成分が分離され得る。第3の処置済燃焼ガス流311及び/または第3の処置済燃焼ガス流311の非吸着成分の一部分により、供給流または第3の処置済燃焼ガス流311に対して第1の成分が減損された、TSA分離器100の第1の区画115から回収可能な第1の生成物ストリーム312が形成されこれが任意選択的に第3の処置済燃焼ガス流302の一部分と化合することにより、第4の処置済燃焼ガス流313が形成され得る。この第4の処置済燃焼ガス流313は、煙突41に導入されて燃焼システム5からの排ガス流314として周囲環境42に放出及び分散され得る。任意選択的には、TSA分離器100の第1の区画115は再循環回路(図5には示さず)に流体接続され、ここで少なくとも周期的に、第1の生成物ストリーム312の少なくとも一部分がTSA分離器100の第1の区画115から回収されてTSA分離器100の第1の区画115に導入される第3の処置済燃焼ガス流310または第3の処置済燃焼ガス流311の一部分を形成可能なように周期的に方向付けられ得る。
一実施形態では、TSA分離器100の第2の区画123は、任意選択的なVLPタービン121、蒸気タービン51及び汽缶34に流体接続されて、例えば、極低圧蒸気流122の形態で第3の成分、例えば、または水(本明細書中「H2O」と呼ぶ)等、を実質的に含む流体流を回収及び導入し得る。一実施形態では、この極低圧蒸気流122は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に第1の再生流として約300絶対kPa未満、または特に約150絶対kPa未満、または特に約20絶対kPa未満、の圧力の蒸気流を含み得る。TSA分離器100の第2の区画123は、凝縮器125、圧縮機127、及び最終利用129に流体接続され得る。蒸気タービン51は例えば、中圧タービンと低圧タービンまたは低圧タービン下流との間の場所に流体接続されて、VLPタービン121に低圧蒸気流120を導入することにより、これに機械的に連結された装置(図5には示さず)、例えば、補助発電機、ファンまたはポンプに動力を供給し得る。VLPタービン121は、TSA分離器100の第2の区画123に極低圧蒸気流122を導入して少なくとも1種の吸着材料(図5には示さず)の温度を上昇させることにより、少なくとも1種の吸着材料(図5には示さず)に吸着された第1の成分の少なくとも一部分を脱着させるように流体接続され得る。TSA分離器100の第2の区画123中の第1の再生流または極低圧蒸気流122及び/または少なくとも1種の吸着材料(図5には示さず)に吸着された脱着成分、例えば、第1の成分またはCO2等、の少なくとも一部分は、TSA分離器100の第2の区画123から回収可能な第2の生成物ストリーム124を形成し得る。第2の生成物ストリーム124は、凝縮器125、例えば、水分離器、冷却器、または凝縮型熱交換機等、に導入されて、第2の生成物ストリーム124から凝縮性成分、例えば、第3の成分またはH2O等、が分離されることにより、凝縮液流(図5には示さず)及び高純度の精製されたの第2の生成物ストリーム126が形成され得る。精製されたの第2の生成物ストリーム126は、凝縮器125から回収されて圧縮機127に導入されて、燃焼システム5からの回収及び最終利用129への方向付け前に高圧で高純度の圧縮状態の第2の生成物ストリーム128を生成し得る。一実施形態では、この最終利用129には、例えば、封鎖、増油回収または工業プロセスがまれ得る。任意選択的には、圧縮機127の吸気口は亜外気圧で動作し得る。任意選択的には、少なくとも1つのポンプ、例えば、排出器、真空ポンプ、亜吸気圧で動作する圧縮機または多段圧縮機等、または弁、例えば、逆止弁、(いずれも図5には示さず)は凝縮器125の下流であって圧縮機127の上流に流体接続され得る。代替的実施形態では、TSA分離器100の第2の区画123は、蒸気タービン51から極低圧蒸気流122及び汽缶34から高圧蒸気流53の一部分を回収するように流体接続され得る。
一実施形態では、TSA分離器100の第3の区画131は、補助加熱器531、TSA分離器100の第4の区画142、または温度調節源140に流体接続されて、例示的TSAプロセスの第3のステップまたは第2の再生ステップ中に第4の生成物ストリーム533を第2の再生流として回収及び導入し得る。TSA分離器100の第3の区画131はまた、酸化剤予熱器30の低温側二次側回路(図5には示さず)、二次酸化剤ファン28及びファン332を経由して汽缶34に流体接続され得る。第4の生成物ストリーム143aは、一実施形態では、例えば、約40〜60℃の温度であり、TSA分離器100の第4の区画142から回収されて、第4の生成物ストリーム143aまたは第4の生成物ストリーム143bの一部分が補助加熱器531に導入され、この補助加熱器531が第4の生成物ストリーム143bの温度を第2の再生流または第4の生成物ストリーム533を形成する少なくとも1種の吸着材料の再生に好適な温度に上昇させ得る。この温度は、一実施形態では、例えば、約100〜180℃、または特に約130〜150℃の温度であり得る。第4の生成物ストリーム533は、TSA分離器100の第3の区画131に第2の再生流として選択的に制御及び導入されて、少なくとも1種の吸着材料(図5には示さず)に吸着された少なくとも1種の成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分を脱着させ得る。第2の再生流または第4の生成物ストリーム533、残留成分ならびに/もしくはTSA分離器100の第3の区画131中の脱着成分の少なくとも一部分は、TSA分離器100の第3の区画132から回収可能な第3の生成物ストリーム331を形成し得る。第3の生成物ストリーム331は、ファン332、例えば、誘導式通風ファンに導入されて第3の生成物ストリーム333の一部分を形成し得るが、この第3の生成物ストリーム333は二次酸化剤ファン28への流入前に任意選択的に二次酸化剤流27に導入されてこれと化合して二次酸化剤流351の一部分を形成し得る。補助加熱器531は、汽缶34及びESP37に流体接続されて、汽缶34から燃焼ガス流530を回収すると共にこの燃焼ガス流530を補助加熱器531に導入することにより、補助汽缶531から燃焼ガス流532を回収すると共にこの燃焼ガス流532をESP37に導入させるか、またはESP37への導入に先立ってこの燃焼ガス流532を燃焼ガス流36と化合させるように導入させ得る。補助加熱器531から回収された燃焼ガス流532は、補助加熱器531に導入された燃焼ガス流530に対して低下した温度またはより低い温度であり得る。
代替的実施形態構成では、ファン332は、TSA分離器100の第4の区画142及び補助加熱器531に流体接続されて、TSA分離器100の第4の区画142から第4の生成物ストリーム143aまたは第4の生成物ストリーム143bを回収すると共にこの第4の生成物ストリーム143aまたは第4の生成物ストリーム143bを補助加熱器531に導入させ得るか、もしくは、ファン332が、補助加熱器531及びTSA分離器100の第3の区画131に流体接続されて、補助加熱器531から第4の生成物ストリーム533を回収すると共にこの第4の生成物ストリーム533を再生流、例えば、第2の再生流等、としてTSA分離器100の第3の区画131に導入させ得る。あるいは、補助加熱器531は、酸化剤予熱器30の高温側(図5には示さず)及びESP37に流体接続されて、酸化剤予熱器30の高温側(図5には示さず)から燃焼ガス流530を回収してこの燃焼ガス流530を補助加熱器531に導入させると共に、補助汽缶531から燃焼ガス流532を回収してこの燃焼ガス流532をESP37に導入させ得る。あるいは:補助加熱器531は、TSA分離器100の第2の区画123及びTSA分離器100の第3の区画131に流体接続されて、少なくとも周期的に第2の生成物ストリーム124の少なくとも一部分を受容して第2の再生流を形成するこの第2の生成物ストリーム124の少なくとも一部分の温度を上昇させて、TSA分離器100の第3の区画131にこの高温の第2の生成物ストリーム124の少なくとも一部分を第2の再生流として導入し得る。一実施形態では、補助加熱器531は、凝縮器125及びTSA分離器100の第3の区画131に流体接続されて、少なくとも周期的に精製されたの第2の生成物ストリーム126の少なくとも一部分を受容することにより、第2の再生流を形成するこの第2の生成物ストリーム126の少なくとも一部分の温度を上昇させてTSA分離器100の第3の区画131にこの高温の精製されたの第2の生成物ストリーム126の少なくとも一部分を第2の再生流として導入させ得る。また、補助加熱器531は、圧縮機127に流体接続されて、圧縮機127の中段からの圧縮状態の第2の生成物ストリームの少なくとも一部分または圧縮状態の第2の生成物ストリーム128少なくとも一部分を回収すると共にこの圧縮状態の第2の生成物ストリームの少なくとも一部分の温度を上昇させてこの高温の圧縮状態の第2の生成物ストリームの少なくとも一部分を第2の再生流としてTSA分離器100の第3の区画131に導入させ得る。
一実施形態では、TSA分離器100の第4の区画142は、酸化剤加熱器30の低温側の一次側及び二次側回路(図5には示さず)、一次酸化剤ファン22、二次酸化剤ファン28及びファン144を経由して汽缶34に流体接続されて、汽缶43に一次酸化剤流350、23及び予熱済一次酸化剤流31及び複合燃料流33の少なくとも一部分として第4の生成物ストリーム143a及び145の少なくとも一部分を任意選択的に導入させ、かつ/または汽缶34に二次酸化剤流351、29及び予熱済酸化剤流32の少なくとも一部分として第4の生成物ストリーム143a、145及び147の少なくとも一部分を任意選択的に導入させ得る。TSA分離器100の第4の区画142は、温度調節源140、例えば、周囲環境等、に流体接続されて、例示的TSAプロセスの第4のステップまたは温度調節ステップ中にTSA分離器100の第4の区画142に温度調節流141、例えば、外気流等、を導入し得る。一実施形態では、温度調節流141は、TSA分離器100の第4の区画142中で少なくとも1種の吸着材料(図5には示さず)からの成分の脱着または掃除、ならびに/もしくはその温度を変更させ得る。TSA分離器100の第4の区画142中の温度調節流141及び/または残留成分、例えば、第1の成分及び/または第3の成分等、の少なくとも一部分は、TSA分離器100の第4の区画142から回収可能な第4の生成物ストリーム143aを形成し得る。一態様では、第4の生成物ストリーム143aは、例えば、約40〜60℃の温度で回収されると共にファン144、例えば、誘導式通風ファン等、に導入されて、第4の生成物ストリーム145を形成し得る。第4の生成物ストリーム145の少なくとも一部分は第4の生成物ストリーム147を形成するが、この第4の生成物ストリーム147は二次酸化剤流351を形成するように任意選択的に方向付けられるか、または二次酸化剤流27と化合して二次酸化剤流351の一部分を形成するように任意選択的に方向付けられ得る。第4の生成物ストリーム145の少なくとも一部分は、一次酸化剤流350を形成するように少なくとも周期的に任意選択的に方向付けられるか、または一次酸化剤流21と化合して一次酸化剤流350を形成するように任意選択的に方向付けられ得る。代替的実施形態構成では、ファン144は、温度調節源140及びTSA分離器100の第4の区画142に流体接続されて、温度調節源140から温度調節流141を回収すると共にこの温度調節流141をTSA分離器100の第4の区画142に導入させるか、もしくはTSA分離器100の第4の区画142、補助加熱器531、一次酸化剤ファン22及び二次酸化剤ファン28に流体接続されて、TSA分離器100の第4の区画142から第4の生成物ストリーム143aを回収してこの第4の生成物ストリーム143b、145及び147を補助汽缶531、一次酸化剤ファン22及び二次酸化剤ファン28に導入させ得る。
代替的実施形態では、燃焼システム5、低圧蒸気流120、VLPタービン121、及び燃焼システム5中の極低圧蒸気流122を補助汽缶(図5には示さず)により置換することにより、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に凝縮器125及び追加の水流(図5には示さず)から回収した凝縮液流(図5には示さず)を蒸気流に変換させてこれを第1の再生流として利用可能である。そのような例示的実施形態に従った代替的構成を図6に示す。
図6は本開示の代替的実施形態に従った燃焼システム6を示す簡単な概略図であり、排ガス脱硫器またはFGD300及び粒子捕集器37(例えば、静電式沈殿器またはESP37)、及びTSA分離器100、補助加熱器531、ならびに補助汽缶151を内蔵している。TSA分離器100は、燃焼システム6との一体化により、燃焼システム6内で燃焼器により生成された多成分混合流体または供給流、例えば、燃焼ガス流または排ガス流等、からの少なくとも第1の成分(一実施形態では、例えば、1種以上の:二酸化炭素、硫黄酸化物、窒素、酸素、及び/または重金属を含み得る)の吸着ガス分離に供し得る。燃焼システム6は、任意選択的に一次酸化剤源20、一次酸化剤ファン22、任意選択的に二次酸化剤源26、二次酸化剤ファン28、一次側回路及び二次側回路含む高温側(図6には示さず)及び低温側(いずれも図6には示さず)を有する酸化剤加熱器または酸化剤予熱器30、任意選択的に燃料源24、一体型熱交換機(図6には示さず)を有する燃焼器または汽缶34、給水源50、蒸気タービン51(一実施形態では、高圧タービンまたは段、中圧タービンまたは段、及び低圧タービンまたは段を有する、例えば、多段蒸気タービン等、を備え得る)(いずれも図6には示さず)、ESP37、ファン39、FGD300、任意選択的な燃焼ガス弁101、昇圧器ファン110、直接接触型冷却器またはDCC113、第1の区画115、第2の区画123、第3の区画131及び第4の区画142を有するTSA分離器100、凝縮器125、圧縮機127、補助加熱器531、補助汽缶151、ファン332、ファン144、及び煙突41を備え得る。
代替的実施形態では、TSA分離器100の第2の区画123及び燃焼システム6は、補助汽缶151及び凝縮器125に流体接続されて、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に補助汽缶151から極低圧蒸気流152を回収すると共にこの極低圧蒸気流152を第1の再生流として導入し得る。TSA分離器100の第2の区画123及び燃焼システム6はまた、圧縮機127、及び最終利用129にも流体接続され得る。例えば、DCC113、圧縮機127及び/または水源(図6には示さず)から回収された水または凝縮液流(図6には示さず)及び任意選択的には、凝縮器125から回収された凝縮液流150は、補助汽缶151に導入されることにより、水及び/または凝縮液流(図6には示さず)を、例えば、極低圧蒸気流152に変換させ得る。一実施形態では、この極低圧蒸気流152は、約300絶対kPa未満、または特に約150絶対kPa未満または特に約20絶対kPa未満の圧力の蒸気流から成り得る。補助汽缶151は、凝縮液及び/または水流の蒸気流への変換用の任意の好適な装置、例えば、汽缶または熱交換機であればよい。
図7は、第1段凝縮器、ポンプまたは具体的には排出器、第2段凝縮器、及び圧縮機を使用した例示的構成を示す。この構成は、本開示の実施形態に従った上述の燃焼システム1〜6及びTSA分離器に対して使用可能である。TSA分離器100の第2の区画123は、第1段凝縮器601、排出器603、第2段凝縮器605、圧縮機127、及び最終利用129に流体接続され得る。第1段凝縮器601及び第2段凝縮器605は、例えば、凝縮器、水分離器、冷却器、または凝縮型熱交換機等であり、冷却液源(図7には示さず)に流体接続され得る。冷却液流、例えば、外気流または水流等、(いずれも図7には示さず)は、第1段凝縮器601及び第2段凝縮器605に供給すると共にこれらから回収することにより、第1段凝縮器601及び第2段凝縮器605に対して冷却及び熱除去を行い得る。第2の生成物ストリーム124は、TSA分離器100の第2の区画123から回収されると共に第1段凝縮器601に導入され、ここで凝縮性成分、例えば、第3の成分またはH2O等、が凝縮して、第1段凝縮器601及びTSA分離器100の第2の区画123内に圧力降下を生じる一方で凝縮液流606及び高純度の精製されたの第2の生成物ストリーム602を形成させ得る。精製されたの第2の生成物ストリーム602は、第1段凝縮器601から回収されると共に排出器603低圧口(図7には示さず)に導入され得る。高純度で高圧圧縮状態の第2の生成物ストリーム610は、例えば、第1の圧縮段の後方等、の圧縮機127から回収されると共に動力流として排出器603の高圧口(図7には示さず)に導入され、この排出器603が第1段凝縮器601及びTSA分離器100の第2の区画123中でこの圧力を更に低下させ、かつ/または低加下圧力を維持し得る。TSA分離器100の第2の区画123中の圧力低下は、少なくとも1種の吸着材料に吸着された成分の脱着を促進させて再生プロセス及び第1の再生ステップ中に蒸気の消費を低減させる上で好都合であり得る。精製されたの第2の生成物ストリーム604は、排出器603から回収されて第2段凝縮器605に導入されて、ここで凝縮性成分、例えば、第3の成分またはH2O等、が凝縮して凝縮液流607及び高純度の精製されたの第2の生成物ストリーム126が形成され得る。この精製されたの第2の生成物ストリーム126は、第2段凝縮器605から回収されると共に圧縮機127に導入されて、これにより精製されたの第2の生成物ストリーム126の圧力が上昇されることにより圧縮状態の第2の生成物ストリーム128が生成され、この圧縮状態の第2の生成物ストリーム128が圧縮機127から回収されて最終利用129に向けられ得る。一実施形態では、凝縮液流606は第1段凝縮器601から回収可能であり、凝縮液流607は任意選択的に少なくとも1つのポンプ(図7には示さず)を有する第2段凝縮器605から回収されて任意選択的に化合されることにより凝縮液流150を形成可能である。圧縮機127は、圧縮機127からの回収可能な凝縮液流611を生成し得る。任意選択的には、直列流体接続された追加の凝縮器、凝縮器段、ポンプ及び弁(いずれも図7には示さず)を使用可能である。任意選択的には、圧縮機127は、補助加熱器または補助熱交換機を任意選択的に経由してTSA分離器、例えば、第1の再生区画または第2の再生区画等、に流体接続され、ここで圧縮状態の第2の生成物ストリームの少なくとも一部分が、圧縮機127の下流または圧縮機127中段で回収されて再生流として、例えば、第1の及び/または第2の再生流の少なくとも一部分等、としての使用に供され得る。補助加熱器または補助熱交換機は、圧縮状態の第2の生成物ストリームの温度を少なくとも1種の吸着材料の再生に好適な温度に、または再生流に好適な温度に上昇させ得る。
代替的実施形態の図1、2、3、4、5、及び6を参照して、TSA分離器100は、静止した接触器、1つの包囲体中に収容された複数の接触器、または個々の包囲体中に収容された複数の接触器に対して流体流及び区画が移動可能である2つ以上の区画を通して移動する接触器に対して区画及び流体流が静止した2つ以上の区画を備え得る。TSA分離器100は、追加の区画、例えば、再生区画及び再生ステップまたは第1の再生区画及び第1の再生ステップに隣接してかつ/もしくはシーケンス上先行して位置する事前再生区画、及び吸着区画ならびに吸着ステップに隣接してかつ/もしくはシーケンス上先行してまたはシーケンス上後続して位置する還流区画を備え得る。事前再生区画及び還流区画は、事前再生区画から多量の還流流を回収すると共にこの多量の還流流を還流区画に導入するように流体接続され得る。事前再生区画は事前再生流源から事前再生流、例えば、蒸気流、空気流、または第1の成分が富化された流れを受容するように流体接続され得る。還流区画は還流区画から第5の生成物ストリームを回収すると共にこれを煙突経由で、例えば、周囲環境等、に排出させるように流体接続され得る。あるいは、TSA分離器から導入及び回収される流体流のうちのいずれかがTSA分離器から導入及び回収された供給流の方向に対して並流または逆流する方向に流動し得る、燃焼システム及びTSA分離器を構成可能である。一実施形態では、少なくとも1つの粒子捕集器、例えば、機械式捕集器またはサイクロン、織布濾過器またはバグハウス等、湿式スクラバ、及びディーゼル粒子濾過器等、を静電集塵器の代替物として使用して燃焼ガス流の粒子レベルを低減させ得る。一態様では、一次酸化剤源20、二次酸化剤源26及び温度調節源140は、1つ以上の酸化剤源であり得る。燃焼器中で燃焼用反応体として使用する酸化剤流には、大気レベル以上に酸素を補充または酸素を富化させた空気、実質上の酸素、酸素を減損させた空気、大気より低い酸素含有量のガス流、及び再循環燃焼ガスが含まれ得るが、これらに限定はされない。別の態様では、燃焼システムの燃焼器は、少なくとも1つの:タービン燃料燃焼器、例えば、ガスタービン燃焼器、複合サイクルガスタービン燃焼器、軽炭化水素燃焼器、液体燃料(例えば、油/灯油/ディーゼル/ガソリン/ジェット燃料及び他の液体燃料焚き)燃焼器、石炭焚き燃焼器(石炭焚き発電プラント等の、固形、微粉末、ガス化、または他の形態の石炭燃料式燃焼器を含む)、バイオマス固形及び/または液体燃料燃焼器、蒸気発生器/汽缶燃焼器、及びプロセスヒータ燃焼器(例えば、プロセス流体及び/またはガスの加熱のための精製及び/または工業プロセスに使用され得る)等、例えば、任意の燃焼器、例えば、化石燃料等の炭素質燃料燃焼式の内燃または往復機関、タービン、または炉等、を備え得る。燃焼システムは、酸化剤源からは酸化剤流を、燃料源からは燃料流を回収してこの酸化剤流を燃料流と混合及び燃焼させて燃焼ガス流を形成させるように流体接続された燃焼器を内蔵可能であり、この燃焼器は燃焼ガス流を粒子捕集器に導入させるように流体接続可能である。直接接触型冷却器は、TSA分離器に供給流として使用される処置済燃焼ガス流の温度を低下させるように使用される任意の好適な熱伝達装置または熱交換装置であり得る。酸化剤予熱器は、任意の好適な予熱器、例えば、ロータリ型熱交換機等、を備え得る。
一実施形態では、燃焼システムの動作プロセスであって:燃料源;酸化剤源;燃焼器;給水源;熱交換装置;任意選択的に少なくとも1つの排気後処理装置;蒸気タービン;補助給水源,補助熱交換機;任意選択的な極低圧蒸気タービン(本明細書中「VLPタービン」と呼ぶ);吸着式ガス分離器、及び凝縮器、を備える燃焼システムの動作プロセスが提供される。燃料流は、燃料源から回収されて燃焼器、例えば、汽缶またはガスタービン、もしくは内燃機関に導入され得る。酸化剤流は、酸化剤源から回収されて燃焼器に導入され、ここで燃料流及び酸化剤流が混合及び燃焼されて燃焼ガス流を生成し得る。水及び/または凝縮液流は、給水源から回収されて熱交換装置、例えば、ガス液体熱交換機、一体型汽缶を内蔵した熱交換機、熱回収型蒸気発生器等、の低温側に導入され得る。燃焼器は、熱交換装置の高温側に燃焼ガス流を導入して熱交換装置の中の低温側中の水及び/または凝縮液流を高圧蒸気流に変換させるように熱を供給するように流体接続され、この高圧蒸気流がその後蒸気タービンに導入され得る。燃焼ガス流の少なくとも一部分は、燃焼器及び/または熱交換装置の高温側の少なくとも一方から回収されてTSA分離器、例えば、TSA分離器の第1の区画等、に導入されて、供給流、例えば、燃焼ガス流等、としての多成分混合流体から少なくとも第1の成分、例えば、二酸化炭素、硫黄酸化物、窒素及び重金属等、が分離され得る。高圧蒸気流は例えば、高圧タービン、中圧タービン及び低圧タービンに向けられ得る。高圧蒸気流の一部分は、好ましくは任意選択的に約周囲圧力(例えば、蒸気タービンがほぼ海面レベルの高度にあるとき約100絶対kPa)以上の低圧の低圧蒸気流として蒸気タービンから回収可能である。周囲圧力が約100kPaであり得るそのような一例示的実施形態では、低圧蒸気流は、例えば、中圧タービンの下流であって低圧タービンの上流の、または低圧タービンの下流の場所の蒸気タービンからの、例えば、約600絶対kPa未満で任意選択的に約100絶対kPa超、具体的には、約300絶対kPa未満で任意選択的に約100絶対kPa超、またはより具体的には、約200絶対kPa未満で任意選択的に約100絶対kPa超、または最も具体的には、約150絶対kPa未満で任意選択的に約100絶対kPa超、の圧力を有し得る。蒸気タービンから回収された低圧蒸気流は、補助熱交換機の低温側中の水及び/または凝縮液流を極低圧蒸気流、例えば、約300絶対kPa未満または具体的には約200絶対kPa未満またはより具体的には約150絶対kPa未満等、に変換する熱源としての補助熱交換機の高温側に、またはVLPタービンからの極低圧蒸気流の回収に先立って少なくとも1つの機械的に連結された装置、例えば、補助発電機、ポンプまたは圧縮機等、に動力供給をするVLPタービンに、導入され得る。水及び/または凝縮液流は、補助給水源から回収されて補助熱交換機の低温側に導入されることにより、極低圧蒸気流が生成される。極低圧蒸気流は補助熱交換機の低温側から回収される。極低圧蒸気流の少なくとも一部分は、補助熱交換機またはVLPタービンからの極低圧蒸気流の回収に先立って、任意選択的なVLPタービン及び少なくとも1つの機械的に連結された装置、例えば、補助発電機、ポンプまたは圧縮機等、に任意選択的に導入されてこれらに動力供給をするように使用され得る。極低圧蒸気流の少なくとも一部分は、TSA分離器からの回収が可能なTSA分離器の生成物ストリーム、例えば、第2の生成物ストリーム等、の一部分の形成に先立って、補助熱交換機の低温側から回収されて再生流、例えば、第1の再生流等、としてTSA分離器に導入されて、TSA分離器中で少なくとも1種の吸着剤材料の少なくとも一部分を再生させ得る。第2の生成物ストリームは、凝縮器、例えば、凝縮型熱交換機等、に導入されて、凝縮液流及び精製されたの第2の生成物ストリームを分離及び生成させ得る。凝縮器から回収された凝縮液流は、任意選択的に再循環されて補助給水源に導入され得る。熱交換装置の低温側からの補助熱交換機及び補助凝縮液源の低温側の流体分離は、熱交換装置の低温側に取込まれた汚染物質を低減させる上で好都合であり得る。そのような一実施形態では、VLPタービンの使用は、さもなければ排出されるかまたは利用され得ないエネルギーの回収及び使用に好都合であり、かつ/または再生流としての極低圧蒸気流の使用はTSAプロセス及びTSA分離器の動作費用低減となり得る高エネルギーの高圧蒸気流の消費低減に好都合であり得る。あるいは、低圧蒸気流の一部分は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に蒸気タービンから回収されると共に第1の再生流としてTSA分離器の第2の区画に導入され得る。
一実施形態では、燃焼システムは:燃料源;及び酸化剤源;燃料源からの燃料流及び酸化剤源からの酸化剤流を回収して燃焼ガス流を生成するように流体接続された燃焼器、例えば、汽缶、ガスタービン、または内燃機関等;給水源;給水源から水及び/または凝縮液流を回収するように流体接続された低温側ならびに燃焼器から燃焼ガス流の少なくとも一部分を回収して高圧蒸気流を生成するように流体接続された高温側を有する、熱交換装置、例えば、汽缶内の一体型熱交換機または熱回収型蒸気発生器等;燃焼器及び/または熱交換装置の少なくとも一方から燃焼ガス流の少なくとも一部分を回収するように流体接続された、任意選択的に少なくとも1つの排気後処理装置、例えば、粒子捕集器及び/または排ガス脱硫器等;低温側熱交換装置から高圧蒸気流を回収して少なくとも低圧蒸気流を生成するように流体接続された少なくとも1つの蒸気タービン;蒸気タービンから低圧蒸気流を回収して極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約200絶対kPa未満またはより具体的には約150絶対kPa未満等、を生成するように流体接続された任意選択的な極低圧流タービンまたはVPLタービン;補助給水源;補助熱交換機の低温側に水及び/または凝縮液流を回収するように流体接続され、かつ補助熱交換機の高温側に蒸気タービンからの低圧蒸気流または熱交換装置の高温側のからの燃焼ガス流少なくとも一方を回収および導入するように流体接続された補助熱交換機、及び温度変動吸着式ガス分離器の第1の区画への供給流として燃焼器、熱交換装置または排気後処理装置の高温側の少なくとも一方から生成された燃焼ガス流の少なくとも一部分を回収するように流体接続され、蒸気タービンから温度変動吸着式ガス分離器の第2の区画に第1の再生流として低圧蒸気流を回収するように任意選択的に流体接続され、VLPタービンから温度変動吸着式ガス分離器の第2の区画に第1の再生流として極低圧蒸気流を回収するように任意選択的に流体接続され、かつ補助熱交換機の低温側から温度変動吸着式ガス分離器の第2の区画に第1の再生流として極低圧蒸気流を回収するように任意選択的に流体接続された、温度変動吸着式ガス分離器、を備える。そのような一実施形態では、VLPタービンは、蒸気タービン、例えば、中圧タービンの下流であって低圧タービンの上流、または低圧タービンの下流等、に流体接続されて、蒸気タービンから周囲圧力以上の低圧蒸気流を回収し得、ここで蒸気タービンからの低圧蒸気流がVLPタービンに導入されて、VLPタービン及びこれに機械的に連結された装置、例えば、補助発電機等、に動力を供給し得る。任意選択的には、VLPタービンは、複数の流体接続された蒸気タービンから複数の低圧蒸気流を回収し得る。
代替的実施形態では、燃焼システムは:燃料源;及び酸化剤源;燃料源からの燃料流及び酸化剤源からの酸化剤流を回収して燃焼ガス流を生成するように流体接続された燃焼器、例えば、汽缶、ガスタービン、または内燃機関等;給水源;熱交換装置、例えば、燃焼器から燃焼ガス流の少なくとも一部分を回収するように流体接続され、かつ水及び/または凝縮液流を回収するために給水源に流体接続されて高圧蒸気流を生成させる汽缶または熱回収型蒸気発生器中の一体型熱交換機;任意選択的に少なくとも1つの排気後処理装置、例えば、燃焼器及び/または熱交換装置の少なくとも一方から燃焼ガス流の少なくとも一部分を回収するように流体接続された粒子捕集器及び/または排ガス脱硫器;熱交換装置から高圧蒸気流を回収するように流体接続され、任意選択的に低圧段として任意選択的な背圧タービンを有し、極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約200絶対kPa未満またはより具体的には150絶対kPa未満等、を生成する、少なくとも1つの蒸気タービン;蒸気タービンから極低圧蒸気流の少なくとも一部分を回収して追加の動力を発生する、例えば、補助発電機に動力供給する等、ように流体接続された、蒸気タービンとは任意選択的に別個の凝縮用蒸気タービン、及び燃焼器、熱交換装置及び/または排気後処理装置の少なくとも1つから燃焼ガス流の少なくとも一部分を回収し、例えば、TSA分離器の第1の区画に燃焼ガス流を導入するように流体接続されて、蒸気タービンから回収された極低圧蒸気流の一部分を回収すると共に、例えば、TSA分離器の第2の区画に極低圧蒸気流を導入するように流体接続された、TSA分離器、を備え得る。極低圧蒸気流の少なくとも一部分は、凝縮用蒸気タービンに導入されて降下され、少なくとも1つの機械的に連結された装置、例えば、補助発電機に動力を供給して、極低圧蒸気流の一部分が再生流としてTSA分離器中に使用及び導入され得る一方で追加の電力を発生させかつ/またはエネルギー損失を低減させ得る。あるいは、低圧蒸気流の一部分は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に蒸気タービンから回収されると共に第1の再生流としてTSA分離器の第2の区画に導入され得る。
別の代替的実施形態では、燃焼システムは:燃料源;及び酸化剤源;燃料源からの燃料流及び酸化剤源からの酸化剤流を回収して燃焼ガス流を生成するように流体接続された、燃焼器、例えば、汽缶、ガスタービン、または内燃機関等;給水源;熱交換装置、例えば、燃焼器から燃焼ガス流の少なくとも一部分を回収するように流体接続され、かつ水及び/または凝縮液流を回収するために給水源に流体接続されて高圧蒸気流を生成させる、汽缶または熱回収型蒸気発生器中の一体型熱交換機等;任意選択的に少なくとも1つの排気後処理装置、例えば、燃焼器及び/または熱交換装置の少なくとも一方から燃焼ガス流の少なくとも一部分を回収するように流体接続された粒子捕集器及び/または排ガス脱硫器;熱交換装置から高圧蒸気流を回収するように流体接続されて少なくとも低圧蒸気流を生成する、高圧タービン、中圧タービン及び低圧タービン、を例えば有する蒸気タービン;蒸気タービン、例えば、蒸気タービンの中圧タービンの下流、蒸気タービンの低圧タービンの上流、または蒸気タービンの低圧タービンの下流等、から低圧蒸気流の少なくとも一部分を回収すると共にこの低圧蒸気流を補助熱交換機の高温側に導入するように流体接続されて、補助給水源から水及び/または凝縮液流を回収すると共にこの水及び/または凝縮液流を補助熱交換機の低温側に導入するように流体接続され、極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約200絶対kPa未満またはより具体的には150絶対kPa未満等、を生成する、補助熱交換機;燃焼器、熱交換装置及び/または排気後処理装置の少なくとも1つから燃焼ガス流の少なくとも一部分を回収すると共にこの燃焼ガス流の少なくとも一部分を例えばTSA分離器の第1の区画に導入するように流体接続されて、補助熱交換機の低温側から極低圧蒸気流を回収すると共にこの極低圧蒸気流をTSA分離器の第2の区画に導入するように流体接続された、TSA分離器、及びTSA分離器の第2の区画から第2の生成物ストリームを回収するように流体接続されて、凝縮器から凝縮液流を回収すると共にこの凝縮液流を補助給水源に導入するように任意選択的に流体接続された、凝縮器、例えば、凝縮型熱交換機、を備え得る。補助給水源は任意選択的に、直接接触型冷却器、凝縮器、及び/または圧縮機から少なくとも1つの凝縮液流を回収するように流体接続され得る。あるいは、低圧蒸気流の一部分は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に蒸気タービンから回収されると共に第1の再生流としてTSA分離器の第2の区画に導入され得る。
別の代替的実施形態では、燃焼システムは:燃料源;及び酸化剤源;燃料源からの燃料流及び酸化剤源からの酸化剤流を回収して燃焼ガス流を生成するように流体接続された燃焼器、例えば、汽缶、ガスタービン、または内燃機関等;給水源;燃焼器から熱源として燃焼ガス流の少なくとも一部分を回収するように流体接続されて、水及び/または凝縮液流を回収するために給水源に流体接続されて高圧蒸気流を生成させる、熱交換装置、例えば、汽缶中の一体型熱交換機または熱回収型蒸気発生器等;燃焼器及び/または熱交換装置の少なくとも一方から燃焼ガス流の少なくとも一部分を回収するように流体接続された、任意選択的に少なくとも1つの排気後処理装置、例えば、粒子捕集器及び/または排ガス脱硫器等;補助給水源;補助熱交換機の高温側が燃焼器、排気後処理装置、または熱交換装置の少なくとも1つから燃焼ガス流の少なくとも一部分を回収するように任意選択的に流体接続されて、補助給水源から水及び/または凝縮液流を回収および導入してこの水及び/または凝縮液流を補助熱交換機の低温側に導入するように流体接続されて、極低圧蒸気流、例えば、約300絶対kPa未満、または具体的には約200絶対kPa未満またはより具体的には150絶対kPa未満等、を生成する、熱交換装置と任意選択的に一体の補助熱交換機;補助熱交換機から極低圧蒸気流の少なくとも一部分を任意選択的に回収するように流体接続された、任意選択的に極低圧蒸気タービンまたはVLPタービン;燃焼器、熱交換装置及び/または排気後処理装置、例えば、TSA分離器の第1の区画等、の少なくとも1つから燃焼ガス流の少なくとも一部分を回収するように流体接続されて、補助熱交換機の低温側から極低圧蒸気流の少なくとも一部分を回収してこの極低圧蒸気流を再生流としてTSA分離器の第2の区画に導入するように流体接続されたTSA分離器、及びTSA分離器の第2の区画から第2の生成物ストリームを回収するように流体接続されて、凝縮器から凝縮液流を回収してこの凝縮液流を補助給水源に導入するように任意選択的に流体接続された、凝縮器、例えば、凝縮型熱交換機等、を備え得る。補助給水源は任意選択的に熱交換機に熱を供給及び伝達するために少なくとも1つの凝縮液流を回収して、凝縮液流、例えば、凝縮器から回収された凝縮液流及びTSA分離器の第2の生成物ストリーム、直接接触型冷却器、凝縮器、及び/または圧縮機からの凝縮液流等、を加熱し得るように流体接続され得る。VLPタービンは、機械的に接続された装置、例えば、補助発電機等、に動力を供給して追加の動力を生成させ得る。あるいは、低圧蒸気流の一部分は、例示的TSAプロセスの第2のステップまたは第1再生ステップ中に蒸気タービンから回収されると共に第1の再生流としてTSA分離器の第2の区画に導入され得る。
本明細書に説明した例示的実施形態は、網羅的であるようにまたは本技術の範囲を開示した厳密な形態に限定するように意図されたものではない。これらの例示的実施形態は、当業者がその教示を理解可能なように本技術の原理及びその応用及び実際使用について説明するように選択及び記述したものである。
以上の開示に鑑みれば当業者に明らかであるように、この技術の慣例的方法でその範囲から逸脱することなく多数の改変及び修正が可能である。したがって、本技術の範囲は以下の特許請求の範囲により定義した本質内容に従って解され得る。

Claims (43)

  1. 温度変動吸着式ガス分離器を内蔵した燃焼システムであって:
    (a)一次酸化剤源及び二次酸化剤源に流体接続されて予熱済一次酸化剤流及び予熱済二次酸化剤流を提供するように動作可能な、酸化剤予熱器;
    (b)燃料源;
    (c)前記酸化剤予熱器からの前記予熱済一次酸化剤流及び前記予熱済二次酸化剤流の少なくとも一方、ならびに前記燃焼用燃料源からの燃料流を回収すると共に燃焼ガス流を生成するように流体接続され、かつ前記燃焼ガス流を前記酸化剤予熱器に導入するように流体接続された、燃焼器;
    (d)給水源;
    (e)前記燃焼器に流体接続された高温側ならびに前記給水源から水及び/または凝縮液流の少なくとも一方を回収するように流体接続された低温側を有し、前記低温側から高圧蒸気流を生成する、一体型熱交換機;
    (f)前記酸化剤予熱器から前記燃焼ガス流を回収して第1の処置済燃焼ガス流を形成するように流体接続された、粒子捕集器;
    (g)前記粒子捕集器から前記第1の処置済燃焼ガス流の一部分を回収するように流体接続された、直接接触型冷却器、及び
    (h)前記直接接触型冷却器から前記第1の処置済燃焼ガス流を少なくとも第1の成分を含む供給流として回収すると共に、前記粒子捕集器から前記第1の処置済燃焼ガス流の一部分を再生流として回収するように流体接続され、かつ前記供給流から前記第1の成分の少なくとも一部分を分離して第2の生成物ストリームを生成するように動作可能である、温度変動吸着式ガス分離器
    を備える燃焼システム。
  2. 前記一体型熱交換機から前記高圧蒸気流を回収するように流体接続された第1の蒸気タービン及び前記第1の蒸気タービンから低圧蒸気流を回収して極低圧蒸気流を生成するように流体接続された第2の蒸気タービンを更に備え、該第2の蒸気タービンは前記極低圧蒸気流を前記温度変動吸着式ガス分離器に導入するように流体接続される、請求項1に記載の燃焼システム。
  3. 前記温度変動吸着式ガス分離器から前記第2の生成物ストリームを回収して凝縮液流を形成するように流体接続された凝縮器、及び前記凝縮器から凝縮液流の少なくとも一部分を回収して低圧蒸気流を生成するように流体接続された補助汽缶であって、前記低圧蒸気流を前記温度変動吸着式ガス分離器に導入するように流体接続された、補助汽缶を更に備える、請求項1に記載の燃焼システム。
  4. 前記温度変動吸着式ガス分離器は、第3の生成物ストリームを生成するように動作可能であり、かつ前記温度変動吸着式ガス分離器から前記第3の生成物ストリームを回収すると共に前記温度変動吸着式ガス分離器に導入される前記供給流の一部分として前記第3の生成物ストリームを導入するように流体接続される、請求項1に記載の燃焼システム1。
  5. 温度調節流を前記温度変動吸着式ガス分離器に導入して第4の生成物ストリームを生成するように流体接続された温度調節源を更に備え、前記温度変動吸着式ガス分離器は前記第4の生成物ストリームを前記酸化剤予熱器に導入するように流体接続される、請求項1に記載の燃焼システム。
  6. 温度変動吸着式ガス分離器を内蔵した燃焼システムであって:
    (a)一次酸化剤源及び二次酸化剤源に流体接続されて予熱済一次酸化剤流及び予熱済二次酸化剤流を提供するように動作可能な、酸化剤予熱器;
    (b)燃料源;
    (c)前記酸化剤予熱器からの前記予熱済一次酸化剤流及び前記予熱済二次酸化剤流の少なくとも一方、ならびに前記燃焼用燃料源からの燃料流を回収すると共に燃焼ガス流を生成するように流体接続され、かつ前記燃焼ガス流を前記酸化剤予熱器に導入するように流体接続された、燃焼器;
    (d)給水源;
    (e)前記燃焼器に流体接続された高温側ならびに前記給水源から水及び/または凝縮液流の少なくとも一方を回収するように流体接続された低温側を有し、前記低温側から高圧蒸気流を生成する、一体型熱交換機;
    (f)前記酸化剤予熱器から前記燃焼ガス流を回収して第1の処置済燃焼ガス流を形成するように流体接続された、粒子捕集器;
    (g)前記粒子捕集器から前記第1の処置済燃焼ガス流を回収すると共に第3の処置済燃焼ガス流を形成するように流体接続された、排ガス脱硫器;
    (h)前記排ガス脱硫器から前記第3の処置済燃焼ガス流の少なくとも一部分を回収するように流体接続された、直接接触型冷却器、及び
    (i)前記直接接触型冷却器から前記第3の処置済燃焼ガス流を少なくとも第1の成分を含む供給流として回収するように流体接続され、かつ前記供給流から前記第1の成分の少なくとも一部分を分離するように動作可能である、温度変動吸着式ガス分離器
    を備える燃焼システム。
  7. 前記温度変動吸着式ガス分離器は、前記酸化剤予熱器から再生流として前記一次予熱済酸化剤流または前記二次予熱済酸化剤流の一部分を回収するように流体接続される、請求項6に記載の燃焼システム。
  8. 補助加熱器を更に備え、前記温度変動吸着式ガス分離器は前記補助加熱器から再生流を回収するように流体接続される、請求項6に記載の燃焼システム。
  9. 前記補助加熱器は、前記温度変動吸着式ガス分離器の第2の生成物ストリーム、精製されたの第2の生成物ストリーム、前記温度変動吸着式ガス分離器の第3の生成物ストリーム、または前記温度変動吸着式ガス分離器の第4の生成物ストリームのうちの少なくとも1つの少なくとも一部分を回収するように流体接続される、請求項8に記載の燃焼システム。
  10. 前記補助加熱器は、前記燃焼器、一体型熱交換機、または前記酸化剤予熱器のうちの少なくとも1つに流体接続されて前記燃焼ガス流の少なくとも一部分を回収する、請求項8に記載の燃焼システム。
  11. 前記一体型熱交換機から前記高圧蒸気流を回収して低圧蒸気流を生成するように流体接続された第1の蒸気タービン、及び前記第1の蒸気タービンから前記低圧蒸気流を回収して極低圧蒸気流を生成するように流体接続された第2の蒸気タービンを更に備え、前記極低圧蒸気タービンは前記極低圧蒸気流を前記温度変動吸着式ガス分離器に導入するように流体接続される、請求項6、7、または8のうちいずれか一項に記載の燃焼システム。
  12. 前記温度変動吸着式ガス分離器は、前記一体型熱交換機、前記第1の蒸気タービン、及び前記第2の蒸気タービンのうちの少なくとも1つから再生流として高圧蒸気流、低圧蒸気流、または極低圧蒸気流のうちの少なくとも1つを回収するように流体接続される、請求項11に記載の燃焼システム。
  13. 前記温度変動吸着式ガス分離器から第2の生成物ストリームを回収して凝縮液流を形成するように流体接続された凝縮器、および前記凝縮器から凝縮液流の少なくとも一部分を回収して低圧蒸気流を生成するように流体接続され補助汽缶であって、前記温度変動吸着式ガス分離器中に前記低圧蒸気流を導入するように流体接続された補助汽缶を更に備える、請求項6、7、または8のうちいずれか一項に記載の燃焼システム。
  14. 前記温度変動吸着式ガス分離器は、前記温度変動吸着式ガス分離器により生成された第3の生成物ストリームを前記酸化剤加熱器に導入させるように流体接続される、請求項6、7、または8のうちいずれか一項に記載の燃焼システム。
  15. 温度調節流を前記温度変動吸着式ガス分離器に導入して第4の生成物ストリームを生成するように流体接続された温度調節源を更に備え、前記温度変動吸着式ガス分離器は前記第4の生成物ストリームを前記酸化剤予熱器に導入するように流体接続される、請求項6に記載の燃焼システム。
  16. 粒子捕集器及び温度変動吸着式ガス分離器を備えた燃焼システムの動作プロセスであって:
    (a)燃料流及び酸化剤流を燃焼器に導入して前記酸化剤流で前記燃料流を燃焼させて粒子及び少なくとも第1の成分を含む燃焼ガス流を生成すること;
    (b)前記燃焼ガス流を粒子捕集器中に導入して前記粒子の少なくとも一部分を除去することにより前記燃焼ガス流に対して粒子が減損された第1の処置済燃焼ガス流を生成すること;
    (c)前記第1の処置済燃焼ガス流の少なくとも一部を直接接触型冷却器に導入して該第1の処置済燃焼ガス流の温度を低下させることにより供給流を形成すること;
    (d)前記供給流を前記温度変動吸着式ガス分離器に導入して該温度変動吸着式ガス分離器中で前記第1の成分の少なくとも一部分を少なくとも1種の吸着剤材料に吸着させることにより、前記温度変動吸着式ガス分離器から前記供給流に対して前記第1の成分が減損された第1の生成物ストリームを回収すること;
    (e)低圧蒸気流を前記温度変動吸着式ガス分離器に導入して該温度変動吸着式ガス分離器中で前記少なくとも1種の吸着剤材料に吸着された前記第1の成分の第1の部分を脱着させることにより、前記温度変動吸着式ガス分離器から第2の生成物ストリームを回収すること、及び
    (f)前記第1の処置済燃焼ガス流の少なくとも一部分を前記温度変動吸着式ガス分離器中に導入して該温度変動吸着式ガス分離器中で前記吸着剤材料に吸着された前記第1の成分の第2の部分を脱着させることにより、前記温度変動吸着式ガス分離器からの第3の生成物ストリームを回収すること
    を含む燃焼システムの動作プロセス。
  17. 前記低圧蒸気流は極低圧蒸気流を含み、ステップ(e)の前に、水流及び前記燃焼ガス流を一体型熱交換機中に導入すること、前記水流を高圧蒸気流に変換すること、前記高圧蒸気流を少なくとも1つの蒸気タービンに導入すること、及び前記少なくとも1つの蒸気タービンから少なくとも前記極低圧蒸気流を回収することを更に含む請求項16に記載の動作プロセス。
  18. ステップ(e)の前に、凝縮液流または水流の少なくとも一方を補助汽缶に導入すること、前記凝縮液流または前記水流の少なくとも一方を低圧蒸気流に変換すること、及び前記補助汽缶から前記低圧蒸気流を回収することを更に含む、請求項16に記載の動作プロセス。
  19. 温度調節流を前記温度変動吸着式ガス分離器に導入すると共に前記温度変動吸着式ガス分離器から第4の生成物ストリームを回収することを更に含む、請求項16に記載の動作プロセス。
  20. 前記第4の生成物ストリームを前記燃焼器に前記酸化剤流の一部分として導入することを更に含む、請求項19に記載の動作プロセス。
  21. 前記酸化剤流は予熱済酸化剤流を含む、請求項16に記載の動作プロセス。
  22. 前記第2の生成物ストリームを少なくとも1つの凝縮器に導入して凝縮液流を形成すると共に前記少なくとも1つの凝縮器及び前記温度変動吸着式ガス分離器中で少なくとも1つの流体圧力を低下させることを更に含む、請求項16に記載の動作プロセス。
  23. 粒子捕集器、排ガス脱硫器及び温度変動吸着式ガス分離器を備えた燃焼システムの動作プロセスであって:
    (a)一次酸化剤流及び二次酸化剤流を酸化剤予熱器に導入して予熱済一次酸化剤流及び予熱済二次酸化剤流を形成し、燃料流を導入して前記予熱済一次酸化剤流と化合させることにより複合燃料流を形成すること;
    (b)前記予熱済二次酸化剤流及び前記複合燃料流を汽缶に導入して前記予熱済二次酸化剤流及び前記複合燃料流を燃焼させることにより粒子及び少なくとも第1の成分を含む燃焼ガス流を生成すること;
    (c)前記燃焼ガス流を前記酸化剤予熱器に導入すること;
    (d)前記燃焼流を前記粒子捕集器に導入して前記粒子の第1の部分を除去することにより前記燃焼ガス流に対して粒子が減損された第1の処置済燃焼ガス流を生成すること;
    (e)前記第1の処置済燃焼ガス流を前記静電式沈殿器に導入して前記粒子の第2の部分を除去することにより前記燃焼ガス流に対して粒子が減損された第3の処置済燃焼ガス流を生成すること;
    (f)前記第3の処置済燃焼ガス流の少なくとも一部分を直接接触型冷却器に導入して供給流を生成すること;
    (g)前記供給流を前記温度変動吸着式ガス分離器に導入して該温度変動吸着式ガス分離器中で少なくとも1種の吸着剤材料に前記供給流の前記第1の成分の少なくとも一部分を吸着させると共に、前記温度変動吸着式ガス分離器から前記供給流に対して前記第1の成分が減損された第1の生成物ストリームを回収すること、及び
    (h)低圧蒸気流を前記温度変動吸着式ガス分離器に導入して該温度変動吸着式ガス分離器中で前記少なくとも1種の吸着剤材料上に吸着された前記第1の成分の第1の部分を脱着させると共に、前記温度変動吸着式ガス分離器からの第2の生成物ストリームを回収すること
    を含む動作プロセス。
  24. 前記低圧蒸気流は極低圧蒸気流を含み、ステップ(h)の前に、水流を高圧蒸気流に変換させる一体型熱交換機に前記水流を導入すること、前記高圧蒸気流を少なくとも1つの蒸気タービンに導入すること、及び前記少なくとも1つの蒸気タービンから少なくとも前記極低圧蒸気流を回収することを更に含む、請求項23に記載の動作プロセス。
  25. ステップ(h)の前に、凝縮液流または水流の少なくとも一方を補助汽缶に導入すること、前記凝縮液流または前記水流の少なくとも一方を低圧蒸気流に変換すること、及び前記補助汽缶からの前記低圧蒸気流を回収することを更に含む、請求項23に記載の動作プロセス。
  26. 前記予熱済二次酸化剤流の一部分を前記温度変動吸着式ガス分離器に導入して該温度変動吸着式ガス分離器中で前記少なくとも1種の吸着剤材料上に吸着された前記第1の成分の第2の部分を脱着させると共に前記温度変動吸着式ガス分離器からの第3の生成物ストリームを回収することを更に含む、請求項23に記載の動作プロセス。
  27. 前記第3の生成物ストリームを導入して前記二次酸化剤流と化合させると共に前記二次酸化剤流を前記酸化剤予熱器に導入することを更に含む、請求項26に記載の動作プロセス。
  28. 温度調節流を前記温度変動吸着式ガス分離器に導入すると共に前記温度変動吸着式ガス分離器からの第4の生成物ストリームを回収することを更に含む、請求項23に記載の動作プロセス。
  29. 前記第4の生成物ストリームを導入して前記二次酸化剤流と化合させると共に前記二次酸化剤流を前記酸化剤予熱器に導入することを更に含む、請求項28に記載の動作プロセス。
  30. 前記第4の生成物ストリームを少なくとも周期的に導入して前記一次酸化剤流と化合させると共に前記一次酸化剤流を前記酸化剤予熱器に導入することを更に含む、請求項28及び29のうちいずれか一項に記載の動作プロセス。
  31. 補助加熱器中に前記第4の生成物ストリームの一部分を導入して前記第4の生成物ストリームの温度を前記少なくとも1種の吸着剤材料の再生に好適な温度に上昇させること、前記補助加熱器からの前記第4の生成物ストリームを回収すること、及び前記第4の生成物ストリームを前記温度変動吸着式ガス分離器に導入して該温度変動吸着式ガス分離器中で前記少なくとも1種の吸着剤材料上に吸着された前記第1の成分の第2の部分を脱着させると共に前記温度変動吸着式ガス分離器から第3の生成物ストリームを回収することを更に含む、請求項28に記載の動作プロセス。
  32. 前記燃焼ガス流の一部分を前記補助加熱器に導入すること、前記補助加熱器からの前記燃焼ガス流の前記部分を回収すること、及び前記燃焼ガス流の前記部分を前記粒子捕集器に導入することを更に含む、請求項31に記載の動作プロセス。
  33. 前記第2の生成物ストリームを少なくとも1つの凝縮器に導入して、凝縮液流を形成すると共に前記少なくとも1つの凝縮器及び前記温度変動吸着式ガス分離器中で少なくとも1つの流体圧力を低下させることを更に含む、請求項23に記載の動作プロセス。
  34. 燃焼器、蒸気タービン、及び温度変動吸着式ガス分離器を備えた燃焼システムの動作プロセスであって:
    (a)燃料流を燃焼器に導入し、酸化剤流を前記燃焼器に導入し、かつ前記酸化剤流と共に前記燃料流を燃焼させることにより燃焼ガス流を生成すること;
    (b)水流及び/または凝縮液流の少なくとも一方を熱交換機に導入すること;
    (c)前記燃焼ガス流を前記熱交換機に接触するよう方向付けて、前記熱交換機中の水流及び/または凝縮液流の少なくとも一方を高圧蒸気流に変換すること、ならびに
    (d)高圧タービン、中圧タービン及び低圧タービンを備えた一体型蒸気タービン中に前記高圧蒸気流を導入すること
    を含む動作プロセス。
  35. 前記中圧タービンの下流であって前記低圧タービンの上流から前記高圧蒸気流の一部分を低圧蒸気流として回収すると共に前記低圧蒸気流の少なくとも一部分を補助熱交換機に導入すること、水流または凝縮液流の少なくとも一方を前記補助熱交換機に導入すること、水流または凝縮液流の少なくとも一方を極低圧蒸気流に変換すること、及び前記極低圧蒸気流を前記温度変動吸着式ガス分離器に導入することを更に含む、請求項34に記載の動作プロセス。
  36. 前記低圧タービンの下流からの前記高圧蒸気流の一部分を低圧蒸気流として回収すると共に前記低圧蒸気流を補助熱交換機に導入すること、水流または凝縮液流の少なくとも一方を前記補助熱交換機に導入すること、水流または凝縮液流の少なくとも一方を極低圧蒸気流に変換すること、及び前記極低圧蒸気流を前記温度変動吸着式ガス分離器に導入することを更に含む、請求項34に記載の動作プロセス。
  37. 水流または凝縮液流の少なくとも一方を低圧蒸気流に変換させる補助熱交換機に水流または凝縮液流の少なくとも一方を導入すること、前記低圧蒸気流を極低圧蒸気流を形成する極低圧蒸気タービンに導入すること、前記極低圧蒸気タービンから前記極低圧蒸気流を回収すると共に該極低圧蒸気流を前記温度変動吸着式ガス分離器に導入することを更に含む、請求項34に記載の動作プロセス。
  38. 前記中圧タービンの下流であって前記低圧タービンの上流から前記高圧蒸気流の一部分を低圧蒸気流として回収すると共に前記低圧蒸気流の少なくとも一部分を極低圧蒸気タービンに導入すること、極低圧蒸気流を形成すること、及び前記極低圧蒸気流を前記温度変動吸着式ガス分離器に導入することを更に含む、請求項34に記載の動作プロセス。
  39. 前記温度変動吸着式ガス分離器中で少なくとも1種の吸着剤材料上に吸着された第1の成分の少なくとも一部分を脱着させることを更に含む、請求項35〜38のうちいずれか一項に記載の動作プロセス。
  40. 前記極低圧蒸気タービンは、機械的に連結された装置に機械的に接続されてこれに動力供給する、請求項37及び38のうちいずれか一項に記載の動作プロセス。
  41. 前記機械的に連結された装置は発電機を備える、請求項40に記載の動作プロセス。
  42. 前記熱交換機は、ガス液体熱交換機、汽缶を内蔵した熱交換機、または熱回収型蒸気発生器のうちの少なくとも1つを備える、請求項34に記載の動作プロセス。
  43. 前記燃焼器は、汽缶、ガスタービン、または内燃機関のうちの少なくとも1つを備える、請求項34に記載の動作プロセス。
JP2018550406A 2016-03-31 2017-03-30 温度変動吸着式ガス分離 Pending JP2019512662A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662316410P 2016-03-31 2016-03-31
US62/316,410 2016-03-31
PCT/CA2017/050388 WO2017165972A1 (en) 2016-03-31 2017-03-30 Combustion system incorporating temperature swing adsorptive gas separation

Publications (2)

Publication Number Publication Date
JP2019512662A true JP2019512662A (ja) 2019-05-16
JP2019512662A5 JP2019512662A5 (ja) 2020-05-07

Family

ID=59962368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018550406A Pending JP2019512662A (ja) 2016-03-31 2017-03-30 温度変動吸着式ガス分離

Country Status (10)

Country Link
US (2) US11224834B2 (ja)
EP (2) EP3426981B1 (ja)
JP (1) JP2019512662A (ja)
KR (1) KR20180132777A (ja)
CN (1) CN109416176B (ja)
AU (1) AU2017244040B2 (ja)
BR (1) BR112018070207A2 (ja)
CA (1) CA3057696A1 (ja)
DK (1) DK3426981T3 (ja)
WO (1) WO2017165972A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019512662A (ja) * 2016-03-31 2019-05-16 インベンティーズ サーマル テクノロジーズ インコーポレイテッド 温度変動吸着式ガス分離
AU2020440901A1 (en) * 2020-08-14 2022-03-03 Huaneng Clean Energy Research Institute System and method for integrated removal of multiple pollutants in flue gas with near-zero emission
CN113074402B (zh) * 2021-04-16 2022-07-19 太原理工大学 热电机组高背压供热优化方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577229A (en) 1980-06-16 1982-01-14 Hitachi Ltd Waste gas desulfurizing method
JPS62255718A (ja) * 1986-04-28 1987-11-07 Mitsubishi Heavy Ind Ltd 蒸気式空気予熱器の制御方法
US5298054A (en) * 1990-10-01 1994-03-29 Fmc Corporation Pressure and temperature swing adsorption system
US5085674A (en) * 1990-10-25 1992-02-04 Union Carbide Industrial Gases Technology Corporation Duplex adsorption process
CN2216858Y (zh) * 1994-06-28 1996-01-10 冶金工业部重庆钢铁设计研究院 组合式压缩空气净化装置
CN1078090C (zh) * 1995-05-23 2002-01-23 波克股份有限公司 从气流中脱除全氟代烃
US7247279B2 (en) * 2000-08-01 2007-07-24 Enviroscrub Technologies Corporation System for removal of pollutants from a gas stream
US20030037672A1 (en) * 2001-08-27 2003-02-27 Shivaji Sircar Rapid thermal swing adsorption
JP4875303B2 (ja) 2005-02-07 2012-02-15 三菱重工業株式会社 二酸化炭素回収システム、これを用いた発電システムおよびこれら方法
US8087926B2 (en) 2005-12-28 2012-01-03 Jupiter Oxygen Corporation Oxy-fuel combustion with integrated pollution control
JP5557213B2 (ja) 2007-06-27 2014-07-23 ジョージア テック リサーチ コーポレーション 吸着繊維組成物および温度スイング吸着の方法
US7708804B2 (en) * 2007-07-11 2010-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Process and apparatus for the separation of a gaseous mixture
DE102008012735B4 (de) * 2008-03-05 2013-05-08 Thyssenkrupp Uhde Gmbh Verfahren und Vorrichtung zur Abscheidung von Fremdgasen aus einem reduzierenden Nutzgas durch dampfbetriebene Druckwechseladsorption
US8591627B2 (en) * 2009-04-07 2013-11-26 Innosepra Llc Carbon dioxide recovery
US8084010B2 (en) 2008-04-14 2011-12-27 Plasma Energy Technologies Inc. Coal/coke/heavy residual oil boiler with sulfur and carbon dioxide capture and recovery
DE102008062497A1 (de) 2008-12-16 2010-06-17 Linde-Kca-Dresden Gmbh Verfahren und Vorrichtung zur Behandlung eines kohlendioxidhaltigen Gasstroms aus einer Großfeuerungsanlage
GB0823449D0 (en) * 2008-12-24 2009-01-28 Johnson Matthey Plc Process
CN101856589A (zh) * 2009-04-07 2010-10-13 毕亚凡 一种富含一氧化碳的工业尾气的净化方法
US20120167620A1 (en) * 2009-05-15 2012-07-05 Eva Marfilia Van Dorst Method and system for separating co2 from synthesis gas or flue gas
JP5484811B2 (ja) * 2009-07-17 2014-05-07 三菱重工業株式会社 二酸化炭素の回収システム及び方法
EP2305363A1 (en) 2009-09-29 2011-04-06 Alstom Technology Ltd Power plant for CO2 capture
EP2335804B1 (en) 2009-12-04 2014-09-10 Alstom Technology Ltd A method and a device for cleaning a carbon dioxide rich flue gas
US20110139046A1 (en) * 2009-12-16 2011-06-16 Foster Wheeler Energy Corporation Emissionless Oxyfuel Combustion Process and a Combustion System Using Such a Process
CN101721878A (zh) * 2010-01-18 2010-06-09 哈尔滨工业大学 一种降温吸附低压电脱附捕获co2的方法及系统
US8591634B2 (en) * 2010-01-28 2013-11-26 Air Products And Chemicals, Inc. Method and equipment for selectively collecting process effluent
US8012446B1 (en) * 2010-07-08 2011-09-06 Air Products And Chemicals, Inc. Recycle TSA regen gas to boiler for oxyfuel operations
US8268044B2 (en) * 2010-07-13 2012-09-18 Air Products And Chemicals, Inc. Separation of a sour syngas stream
CN103180028B (zh) 2010-08-27 2016-07-06 英温提斯热力技术有限公司 使用导热接触器结构吸附分离气体的方法
NO333145B1 (no) 2010-10-28 2013-03-18 Sargas As Varmeintegrering i et CO2-fangstanlegg
US8715394B2 (en) 2010-11-24 2014-05-06 Lehigh University Autothermal cycle for CO2 capture
US9062690B2 (en) * 2010-11-30 2015-06-23 General Electric Company Carbon dioxide compression systems
ES2671887T3 (es) 2010-12-17 2018-06-11 Research Triangle Institute Recuperación de calor de la captura de CO2 basada en sorbentes
JP5812694B2 (ja) 2011-05-31 2015-11-17 川崎重工業株式会社 二酸化炭素回収方法および装置
US9073005B2 (en) 2011-06-09 2015-07-07 Sri International Falling microbead counter-flow process for separating gas mixtures
CA2964550C (en) 2011-07-02 2019-07-23 Inventys Thermal Technologies Inc. System and method for integrated adsorptive gas separation of combustion gases
US8414852B1 (en) 2011-11-21 2013-04-09 Fluor Technologies Corporation Prevention of nitro-amine formation in carbon dioxide absorption processes
JP5864281B2 (ja) * 2012-01-20 2016-02-17 株式会社日立製作所 Co2分離回収装置
US9399187B2 (en) * 2012-09-24 2016-07-26 Enverid Systems, Inc. Air handling system with integrated air treatment
BE1021343B1 (nl) 2012-10-05 2015-11-05 Atlas Copco Airpower, Naamloze Vennootschap Werkwijze voor het onttrekken van een gas uit een gasmengsel en inrichting daarbij toegepast.
US8926941B2 (en) * 2012-12-31 2015-01-06 Chevron U.S.A. Inc. Capture of CO2 from hydrogen plants using a temperature swing adsorption method
CA2896836C (en) 2012-12-31 2021-12-28 Inventys Thermal Technologies Inc. System and method for integrated carbon dioxide gas separation from combustion gases
US9694312B2 (en) * 2013-03-13 2017-07-04 Korea Research Institute Of Chemical Technology Carbon dioxide capture apparatus
JP6163994B2 (ja) * 2013-09-18 2017-07-19 株式会社Ihi 酸素燃焼ボイラの排ガスクーラ蒸気発生防止装置
US9308486B2 (en) 2013-11-20 2016-04-12 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Method of using a structured adsorbent bed for capture of CO2 from low pressure and low pressure concentration sources
US9314731B2 (en) 2013-11-20 2016-04-19 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude RTSA method using adsorbent structure for CO2 capture from low pressure and low concentration sources
US20160010852A1 (en) 2014-07-10 2016-01-14 Babcock & Wilcox Power Generation Group, Inc. Energy recovery for waste gas capture systems
CN204193775U (zh) * 2014-09-13 2015-03-11 山东莱钢节能环保工程有限公司 石灰窑烟气co2捕集利用系统
CN104826446B (zh) * 2015-05-29 2016-09-21 南京都乐制冷设备有限公司 一种丙烯腈气体的吸附回收装置及回收方法
JP2019512662A (ja) * 2016-03-31 2019-05-16 インベンティーズ サーマル テクノロジーズ インコーポレイテッド 温度変動吸着式ガス分離

Also Published As

Publication number Publication date
WO2017165972A1 (en) 2017-10-05
DK3426981T3 (da) 2022-06-20
US11224834B2 (en) 2022-01-18
EP3426981A4 (en) 2019-12-04
US20220088531A1 (en) 2022-03-24
CN109416176B (zh) 2021-08-31
EP4027056A1 (en) 2022-07-13
KR20180132777A (ko) 2018-12-12
BR112018070207A2 (pt) 2019-01-29
EP3426981A1 (en) 2019-01-16
AU2017244040B2 (en) 2022-11-24
CN109416176A (zh) 2019-03-01
EP3426981B1 (en) 2022-04-20
CA3057696A1 (en) 2017-10-05
US20190107009A1 (en) 2019-04-11
AU2017244040A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
US11378274B2 (en) System and method for integrated carbon dioxide gas separation from combustion gases
EP2747871B1 (en) System and method for integrated adsorptive gas separation of combustion gases
US20220088531A1 (en) Combustion system incorporating temperature swing adsorptive gas separation
JP5512547B2 (ja) 圧縮前の煙道ガスの濾過を伴う炭素含有燃料を燃焼させるためのプロセス
JP7210674B2 (ja) 再生のために蒸気を使用する吸着ガス分離
US8752384B2 (en) Carbon dioxide capture interface and power generation facility
JP2019510627A (ja) 多段吸着ガス分離プロセス及びシステム
WO2012164371A2 (en) Flue gas recirculation
US20180133640A1 (en) System and method for integrated adsorptive gas separation of combustion gases
Fan et al. Method of and apparatus for CO 2 capture in oxy-combustion

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200326