JP2019509438A - ショックアブソーバのための緩動開放2方向バルブ機構 - Google Patents

ショックアブソーバのための緩動開放2方向バルブ機構 Download PDF

Info

Publication number
JP2019509438A
JP2019509438A JP2018543603A JP2018543603A JP2019509438A JP 2019509438 A JP2019509438 A JP 2019509438A JP 2018543603 A JP2018543603 A JP 2018543603A JP 2018543603 A JP2018543603 A JP 2018543603A JP 2019509438 A JP2019509438 A JP 2019509438A
Authority
JP
Japan
Prior art keywords
valve
port
restriction
main
main valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018543603A
Other languages
English (en)
Other versions
JP6946315B2 (ja
Inventor
マルンボー、ホーカン
ラ−ソン、フレドリック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohlins Racing AB
Original Assignee
Ohlins Racing AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohlins Racing AB filed Critical Ohlins Racing AB
Publication of JP2019509438A publication Critical patent/JP2019509438A/ja
Application granted granted Critical
Publication of JP6946315B2 publication Critical patent/JP6946315B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • F16F9/348Throttling passages in the form of annular discs or other plate-like elements which may or may not have a spring action, operating in opposite directions or singly, e.g. annular discs positioned on top of the valve or piston body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/465Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall using servo control, the servo pressure being created by the flow of damping fluid, e.g. controlling pressure in a chamber downstream of a pilot passage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/02Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally
    • B60G13/06Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type
    • B60G13/08Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers dissipating energy, e.g. frictionally of fluid type hydraulic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • F16F9/469Valves incorporated in the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/48Arrangements for providing different damping effects at different parts of the stroke
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/14Control of fluid pressure with auxiliary non-electric power
    • G05D16/16Control of fluid pressure with auxiliary non-electric power derived from the controlled fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2206/00Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
    • B60G2206/01Constructional features of suspension elements, e.g. arms, dampers, springs
    • B60G2206/40Constructional features of dampers and/or springs
    • B60G2206/41Dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • B60G2500/11Damping valves
    • B60G2500/112Fluid actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/16Running
    • B60G2800/162Reducing road induced vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/06Stiffness
    • F16F2228/066Variable stiffness

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Fluid-Damping Devices (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

第1ポート(7)および第2ポート(8)を有するバルブハウジング(2)と、第1ポート(7)および/または第2ポート(8)と流体連通しているパイロットチャンバ(3)と、を備えたショックアブソーバのためのバルブ機構が記載され、ここにおいて、パイロットチャンバ(3)内の油圧によりパイロット圧(Pp)が規定される。この機構はさらに、バルブハウジング(2)内に軸方向に移動可能に配置された主バルブ部(4)を備え、主バルブ部(4)は、主バルブ部(4)に作用するパイロット圧(Pp)に応じて第1ポート(7)と第2ポート(8)との間の主流体フローを制限するために、主バルブ座部と相互作用するように配置される。また、圧縮行程中は、主流体フローが第1制限部(R1)および協働して直列的に配置された第2制限部(R2)で制限され、反発行程中は、主流体フローが第3制限部(R3)で制限されるように、主バルブ座部(9)が第1圧縮行程位置と第2反発行程位置との間で移動可能である。
【選択図】図3b

Description

本発明は一般に、バルブ機構の分野に関する。特に本発明は、ショックアブソーバにおける減衰媒体のフローを制御するためのバルブ機構に関する。
一般に、パイロットバルブを含むショックアブソーバの技術分野内においては、ショックアブソーバの減衰媒体充填チャンバにおけるピストンの往復運動中の圧縮チャンバと反発チャンバとの間の減衰媒体のフローを制御するために、圧力調整器、つまりバルブ機構が使用される。ピストンは、ピストンロッドを介してホイールまたはシャーシに接続されるのに対し、チャンバは、ピストンが接続されていないホイールまたはシャーシのうちの一方に接続される。圧縮行程中、ピストンは、圧縮チャンバに向かう方向に軸方向に移動し、それによって圧縮チャンバ内の減衰媒体を加圧する。反発行程中、ピストンは反発チャンバに向かって、つまり反対方向に軸方向に移動し、それによって反発チャンバ内の減衰媒体を加圧する。ショックアブソーバの機能に従い、加圧された減衰媒体は、加圧されたチャンバから他のチャンバへ、つまり圧縮チャンバから反発チャンバへ、またはその逆に移される必要がある。ピストン、ひいてはショックアブソーバの減衰効果を得るために、つまりホイールとシャーシとの間の相対運動を減衰させるために、減衰媒体のフローは制御される必要がある。
ショックアブソーバにおける減衰媒体のフロー内の圧力の制御は、パイロット制御バルブによって生み出される圧力に依存する。ショックアブソーバの圧力調整器には、座部に作用するワッシャ、コーンまたはシムのような軸方向に移動可能または偏向可能なバルブ部が通常設けられる。圧力制御は、平衡つまり力のバランス、例えば一方向においてバルブ部に作用する圧力および/またはフローの力と、反対方向においてバルブ部に作用するばね力、摩擦力、またはパイロット圧力のうちの1つ以上のような反作用または反対の力との間の平衡によって達成される。圧力および/またはフローの力が反対または反作用の力よりも大きくなるように、ショックアブソーバのピストンが一定の速度で移動するとき、可動バルブ部は座部から離れるように強制され、それによってフロー通路を開く。よって可動バルブ部は、圧力調整器の調整領域に作用する圧力によって生産されるフローの関数として規定される行程で開くよう強制される。
上に記載した圧力調整式の伝統的なバルブ機構は一般に、圧力の閾値に達したとき、バルブ部が開かれ、圧縮チャンバと反発チャンバとの間の減衰媒体のフローが独特な方法で劇的に増大するという欠点を有する。このことは所望されるほど滑らかではない減衰特性を与える。代わりに、このような減衰は、初期のオーバーシュートやその後の振動のような不安定さを通例引き起こす動力へと作用する、角を有する鋭動開放(sharp opening)を有する。
EP0942195B1に示されているような最先端のショックアブソーバのためのバルブ機構は、緩動開放(soft opening)を可能にするバルブ構造を有し、所望の減衰特性を提供する。しかしながら、この解決策は一方のフロー方向には緩動開放を提供するものの、反対方向の減衰フローは全く望ましいものではない。よって、この解決策は、1方向バルブにおいては良好に働くが、2方向バルブにおいては所望の減衰特性を提供しない。
したがって、改良された減衰特性を有するショックアブソーバにおける使用のための2方向バルブ機構の必要性が存在する。
本発明の目的は、従来技術よりも滑らかな改良された減衰特性を提供する改良された2方向バルブ機構を提供することである。
本発明は、2方向バルブ機構が緩動開放特性を有するためには、反発行程と比較して圧縮行程において異なる制限境界面をバルブ機構が必要とするという本発明者の洞察に基づいている。この実現はまた、圧縮圧力領域と反発圧力領域との間の領域比が、2つの領域の和がパイロット圧領域に等しいという前提条件なしに設定され得るという驚くべき効果につながった。言い換えれば、圧縮圧力領域は反発圧力領域を減少させることなく増大させ得るし、逆もまた同様である。このことは、減衰特性がさらに改良され得るため、利点である。
上で言及した目的は、ショックアブソーバのためのバルブ機構を通じて実現され、このバルブ機構は、第1ポートと第2ポートとを備えるバルブハウジングと、第1ポートおよび/または第2ポートと流体連通するパイロットチャンバとを備え、パイロット圧は、パイロットチャンバ内の流体圧によって規定される。この機構はさらに、バルブハウジング内に軸方向に移動可能に配置された主バルブ部を備え、主バルブ部は、主バルブ部に作用するパイロット圧に応じて第1ポートと第2ポートとの間の主流体フローを制限するために、主バルブ座部と相互作用するように配置される。また圧縮行程中は、第1制限部および協働して直列的に配置された第2制限部で主流体フローが制限され、反発行程中は、第3制限部で主流体フローが制限されるように、主バルブ座部が第1圧縮行程位置と第2反発行程位置との間で移動可能である。
これにより、圧縮行程中は、流体的に結合され直列的に配置された2つの協働する径方向変位制限部によって有効にされる緩動開放を有し、反発行程中は、ひとつの第3制限部によって有効にされる通常の減衰曲線を有するバルブ機構が提供される。従って、圧縮行程において使用される2つの協働する第1および第2制限部の代わりに、第3制限部を反発フローが通過するようにすることによって、圧縮行程中の緩動開放を達成し得、反発行程においては通常のより鋭動開放を達成し得る。反発が同じ制限部を通過するが反対方向である場合、減衰特性は所望の要件を満たさないであろう。
また、この解決策では、パイロット圧領域を変更することなく、圧縮領域と反発領域との間の領域比を調整し得る。主バルブ座が固定されている解決策では、圧縮加圧領域と反発加圧領域との和が常にパイロット加圧領域に等しい。しかしながら、可動主バルブ部を有する場合、この和がパイロット加圧領域よりも大きい可能性がある。これにより、バルブ機構は、圧縮行程と反発行程との両方において、一方の力を損なうことなく所望の減衰力を生成するように形成され得る。
本出願の文脈では、いかなる「協働する」制限部も、何らかの方法で互いに依存し合い、ともに働くと理解されるべきである。例えば2つの協働する制限部のオリフィスは、同じ行程長に依存し得る。さらに本出願の文脈において、例えば「直列的に配置された」または「直列に配置された」2つの制限部は、一方の制限部が他方の制限部の上流に設けられると理解されるべきである。すなわち、流体は最初に一方の制限部を通過し、次いで他方の制限部を通過する、つまり流体は2つの平行な制限部内に制限されない。
一実施形態において、可動主バルブ座部は受動部であり、その軸方向位置は流体圧力および/または主バルブ部の位置によって制御される。
別の一実施形態において、第1制限部は、圧縮流体フロー方向を考慮して、第2制限部に対して上流に配置される。それにより、流体は最初に第1制限部によって制限され、続いて、第2制限部によって制限されており、このことはダンパーの所望の緩動開放特性に寄与する。
一実施形態において、第1および第2制限部は少なくとも部分的に周方向制限部として形成される。一実施形態において、第1制限部は第2制限部に対して径方向内側に配置される。これにより、各制限部が径方向に変位され周方向に形成されるとき、第1制限部のオリフィスは、少なくとも部分的に開かれたとき、第2制限部のオリフィスよりも常に小さくなる。
別の一実施形態において、第1制限部は、少なくとも部分的に開かれたとき、第2制限部のオリフィスよりも小さいオリフィスを有する。
これにより、第1および第2制限部が少なくとも部分的に開いているとき、第1制限部は第2制限部よりも常に小さくなっており、このことはダンパーの所望の緩動開放特性に寄与する。
別の一実施形態において、主バルブ座部が反発行程位置にあるとき、第1制限部および第2制限部は閉じられている。これにより、第1および第2制限部は反発フローに影響を与えないが、第3制限部が唯一反発フローを制限する。
一実施形態において、主バルブ座部が圧縮行程位置にあるとき、第3制限部は閉じられている。これにより、第3制限部は圧縮フローに影響を与えず、代わりに第1および第2制限部のみが圧縮フローを制限する。
一実施形態において、主バルブ座部は常に、主バルブ部とハウジングのいずれかに対して密接して配置されているか、または主バルブ部とハウジングとの間に挟まれている。これにより、第1および第2制限部および/または第3制限部は異なるフローで閉じられる。
一実施形態において、主バルブ座部は、圧縮行程中、常に主バルブ部に対して密接して配置される。
一実施形態において、主バルブ座部は、反発行程中、常にハウジングに対して密接して配置される。
一実施形態において、圧縮行程中に第1ポートからの圧力が閾値圧力値を下回ると、主バルブ座部は主バルブ部とハウジングとの間に挟まれる。さらに圧縮行程において、第1ポートからの圧力が閾値圧力値を上回るとき、主バルブ座部は主バルブ部に対して密接して配置されるが、バルブハウジングからは持上げられる。最後に、反発行程中、主バルブ座部は、第2ポートからの圧力レベルにかかわらず、ハウジングに対して密接して配置される。
別の一実施形態において、第1制限部、第2制限部および/または第3制限部のオリフィスは、バルブハウジングに対する主バルブ部の軸方向位置によって制御される。
これにより各制限部は、主バルブ部の軸方向位置を制御することによって制御され得る。これは例えばパイロット圧、ソレノイドのようなアクチュエータ、および/またはばね機構から生成された組み合わせの力によって達成され得る。
別の一実施形態において、バルブ機構は第2制限部と直列に配置された第4制限部を備える。一実施形態において、第4制限部は第1制限部と平行に配置される。一実施形態において、第4制限部は第1制限部に隣接して配置される。もちろん、これらの実施形態のすべても組み合わせ得る。
一実施形態において、第4制限部は、バルブハウジングに対する主バルブ部の軸方向位置に依存しない一定のオリフィスを有する。これにより、いつでも既定のオリフィスを有する第4制限部が達成される。よって、第4制限部のオリフィスは行程に依存しない。一実施形態において、第1制限部が少なくとも部分的に開かれているとき、第1および第4制限部が共通制限部として働くように、第4制限部は第1制限部に隣接して配置される。これにより、第1および第4制限部の合計オリフィスは、行程の開始時においては第2制限部の制限オリフィスよりも大きくなるが、より大きな行程においては第2制限部オリフィスよりも小さくなり得る。これにより、圧縮行程における合計制限特性は、ダンパーの所望の緩動開放特性に寄与するように制御され得る。
別の一実施形態において、反発行程中は可動主バルブ座部と主バルブ部との間の開口によって主流体フローが制限され、圧縮行程中は可動主バルブ座部と主バルブハウジングとの間の開口によって主流体フローが制限される。
別の一実施形態においては、バルブハウジングおよび可動主バルブ座部のうちの少なくとも一方が、径方向内壁および径方向外壁を有する幾何学的に規定された周方向アパーチャ(circumferential aperture)をさらに備え、径方向内壁が第1制限部の一部を形成し、径方向外壁が第2制限部の一部を形成する。
これにより、径方向内壁および外壁は、圧縮行程において緩動開放を達成する2つの協働する制限部を構成する。
一実施形態においては、圧縮行程中の主流体フローを制限するように、バルブハウジング内に周方向アパーチャが形成され、第1制限部および第2制限部を形成するため周方向アパーチャの径方向内壁および径方向外壁と協働するよう可動バルブ座部が寸法決めされ、適合される。
これにより、可動バルブ座部は、たとえばワッシャのような単純な部材であり得る。それにより、可動バルブ座部を生産するためのコストを低く抑え得る。さらにバルブハウジングは、既にかなり複雑な形状を有するため、例えば回転旋盤もしくはフライスカッターのような切削作業機械または類似のものにおいて形成されることになり、次いで追加の周方向アパーチャを形成することは、可動バルブ座部内にアパーチャ(aperture)を作るほどにはコストがかからない。よって、全体的により安価な解決策が提供され得る。
別の一実施形態において、可動主バルブ座部はワッシャまたはシムである。これにより、可動バルブ座部を低コストで提供することができる。可動バルブ座部がワッシャである実施形態においては、約0.5〜1.0mm、好ましくは約0.7mmの厚さを有し得る。可動バルブ座部がシムである実施形態においては、約0.1〜0.49mm、好ましくは約0.3mmの厚さを有し得る。
一実施形態において、可動主バルブ座部はシムである。一実施形態においては、主バルブ部を移動させることなく減衰媒体のフローを可能にするように、このシムは、圧縮行程中にその径方向外側端が所定の閾値を上回る圧力で曲がることを可能にする可撓性を有する。
可動バルブ部であるシムを有することの利点は、圧縮行程中に可動バルブ部に高圧の圧力パルスが加えられたときに、主バルブ部を移動させる必要なしに、減衰媒体が第2制限部を通過することを可能にするように、可動バルブ部の径方向外側端が曲がり得ることである。これにより、主バルブ部を移動させる必要なしに、短く激しい圧力上昇を処理し得る。このことは減衰特性の滑らかさをさらに増大させる。
一実施形態において、可動主バルブ座部は、第1および第2制限部が閉じられたときにシムの外端が少なくともわずかには曲げられるように、バルブハウジングに対して張力をかけたシムである。これにより、可動バルブ部が可撓性を有するとき、可撓性を通して可動バルブ部内の任意の不規則性が補償され得る。よって、公差範囲は生成中に増大し得る。
一実施形態において、可動バルブ座部は、反発行程中に周方向アパーチャの上部を閉じるワッシャまたはシムである。これにより、可動バルブ座部は、いかなる主流体が第1および第2制限部を過ぎて流れることをも防止し得る。
別の一実施形態においては、可動バルブ座部は、主バルブハウジングと噛み合う少なくとも3つの径方向指向突起(radial steering projections)を備えるワッシャまたはシムである。これにより、ワッシャ/シムは、ハウジングと噛み合うが可動主バルブ部の非軸方向移動を防止するように設計され得る。ワッシャ/シムは、ワッシャの動きを実質的に軸方向の移動に制限するような3つの指向突起(steering projections)を備える。また、その中心軸の周りの回転移動も許容される。これにより、いかなる「引出し挙動」も低減され得る、つまりハウジングに対してワッシャが傾斜してロックされることが防止され得、それにより、いつでも軸方向に移動可能となる。
別の一実施形態においては、ワッシャ/シムにおける少なくとも3つの径方向指向突起の間の空間が、圧縮行程の間の主流体フローを可能にするためのポートを形成する。
一実施形態において、指向突起および中間ポートは、突起のいずれかおよびワッシャの中心を通る直線が中間ポートをも通るように配置される。これにより、ワッシャの直径に沿った2つの正反対の突起が存在しないため、ワッシャ/シムが傾斜している(つまり、その中心軸に垂直な軸の周りを回転する)場合、詰まりが防止される。
別の一実施形態において、バルブ機構は、制御バルブ部に作用する作動力に応じて主バルブ部に対して軸方向に移動可能な制御バルブ部をさらに備え、制御バルブ部は、付勢部を用いて作動力の反対方向に弾性的に負荷をかけられ、制御バルブ部と主バルブ部との間の境界面は、第1ポートと第2ポートとの間の減衰媒体のブリードフロー(bleed flow)を制限する開口を備える。
本出願の文脈において、ブリードフローは、主流体フローに平行な減衰媒体のフローとして理解されるものである。さらにブリードフローは、最大主流体フローよりも実質的に低いフローである。
これにより、この機構は、減衰媒体の第1段階フローであり得る、制御された可変ブリードフローを可能にし得る。圧縮行程において、第1ポートから第2ポートへの減衰媒体のフローは、第1段階ではブリードフローのみであるが、第2段階では、主バルブ部によって制御される第1および第2制限部を主として通るフローに実質的になる。これにより、第1段階と第2段階との間の緩動開放がさらに改良される。
別の一実施形態において、制御バルブ部と主バルブ部との間の境界面におけるブリードフローを制限する開口の寸法は、主バルブ部に対する制御バルブ部の軸方向位置を用いて制御される。
一実施形態において、主バルブ座部は、第1ポート内の油圧に応じて主バルブ座部を主バルブ部に当接させて保持するように配置された第1持上げ表面領域を備える。
別の一実施形態において、主バルブ座部は、第2ポート内の油圧に応じて主バルブ座部を主バルブハウジングに当接させて保持するように配置された第2持上げ表面領域を備える。
さらに、一実施形態において、主バルブ部は、第1ポート内の油圧に応じて主バルブ部をバルブハウジングに対して軸方向に移動させるように配置された第1持上げ表面領域を備える。
一実施形態において、主バルブ部は、第2ポート内の油圧に応じて主バルブ部を主バルブ座部から軸方向に分離するように配置された第2持上げ表面領域を備える。
一実施形態において、制御バルブ部は、主バルブ部内に少なくとも部分的に配置される。別の一実施形態において、制御バルブ部に作用する作動力は、ソレノイドによって生成される。
一実施形態において、パイロット圧は、制御バルブ部内に組み込まれた圧力調整器によって調整される。
本発明のさらなる詳細および態様は、付随の図面を参照した下記の詳細な説明から明らかになるであろう。
図1は、バルブ機構の実施形態の分解図を示す。 図2は、第1ポートから第2ポートへの主フローを遮断するため、主バルブ部が閉位置にあるときの実施形態の断面を示す。 図3aは、図2の拡大断面を示し、ここで、第1ポートから第2ポートへの主フローを遮断するため、主バルブ部は閉位置にある。 図3bは、図3の拡大であるが、ここで、第1ポートから第2ポートへの調整された主フロー、つまり圧縮行程中のフローを可能にするため、主バルブ部および主バルブ座部が部分的に開いた位置にある。 図3cは図3の拡大であるが、ここで、第2ポートから第1ポートへの調整された主フロー、つまり反発行程中のフローを可能にするため、主バルブ部が部分的に開いた位置にある。 図4aは、主バルブ座部の側部の断面を示し、ここで、主バルブ部の閉位置中の持上げ表面領域が例示されている。 図4bは、調整された圧縮行程中の持上げ表面領域が例示されている主バルブ座部の側部の断面を示す。 図4cは、主バルブ座部の上面図を示す。 図4dは、オリフィス開口対行程長のグラフを示す。 図4eは、所与の行程長Sでの主バルブ座部ならびに第1、第2および第4オリフィスの例示を示す。 図4fは、3つの減衰特性シナリオにおけるフロー(q)対圧力(P)のグラフを示す。
本発明の現在好ましい実施形態が示された付随の図面を参照して、以下に本発明をより十分に記載する。しかしながら本発明は、多くの異なる形式で実施し得、本明細書に記載された実施形態に限定されると解釈されるべきではない。むしろ、これらの実施形態は、網羅性および完全性のために提供されており、発明の範囲を熟練した受け手に十分に伝えるものである。全体を通して、同様の参照記号は同様の要素を指す。
図1はバルブ機構の断面分解図を示している。バルブ機構1はバルブハウジング2を備えている。バルブハウジングは、図面の上に上部を、図面の下に下部を有し、これらは図面においては離れているが、使用時には、例えば圧入またはねじ係合によって機械的に結合される。この機構はさらに、主バルブ部4および制御バルブ部5を備え、制御バルブ部5の内部には、圧力調整器として作用するパイロットバルブ部6(図2に示される)がある。バルブ部は、付勢手段14、19(バネとして示される)によってハウジングの内側で付勢されている。図面はさらに、バルブハウジング2の下部内の第2ポート8を例示している。また、この機構は、可動主バルブ座部9を備えており、これは、以下の図面、特に図4cにさらに例示されている。図1のほとんどの詳細は、図2〜4に関してさらに説明され、それぞれの機能も記載される。図1は主に、各構成要素の形状を明確にし、それにより本願の読解および理解を容易にするために、本願に含まれる。
図2および図3aは、主バルブ部4が第1ポート7から第2ポート8への主フロー(図示せず)を遮断する閉位置にあるときのバルブ機構1の実施形態の断面を示し、ここにおいて、図3aは、図2の拡大断面である。バルブ機構1は、バルブハウジング2と、パイロットチャンバ3と、主バルブ部4と、制御バルブ部5とを備えている。バルブハウジング2は、第1ポート7および第2ポート8を備えている。例示された実施形態において、第1および第2ポートは、油圧流体の流入および排出のための流入ポートおよび排出ポートとしてそれぞれ機能する。パイロットチャンバ3は、主バルブ部の上面41とバルブハウジング2の内壁との間に形成される空間によって規定される。パイロットチャンバ3は、主バルブ部4内の第1軸方向貫通孔32を介して第1ポート7と、主バルブ部4内の第2軸方向貫通孔33を介して第2ポート8と、流体連通している。主バルブ部4の上面41に作用するパイロット圧Ppは、パイロットチャンバ3内の油圧によって規定される。
主バルブ部4は、バルブハウジング2内に軸方向に移動可能に配置されており、主バルブ部4の上面41に作用するパイロット圧Ppに応じて、第1ポート7と第2ポート8との間で主流体フロー10(図3bおよび3cに示される)内の圧力を制限または調整するために、可動主バルブ座部9と相互作用するように配置される。本実施形態においては、主バルブ部4は、閉位置にあるとき、主バルブ座部9に向かって保持される。主バルブ部は、可動主バルブ座部9に向かって所望の弾性荷重を達成するため、任意のばね部によって弾性的に負荷をかけられ得る、またはそれ自体が可撓性および/または弾性を有し得る。
制御バルブ部5は、実質的に円筒形であり、主バルブ部と同軸かつ部分的にその内部に配置されている。制御バルブ部5はさらにまた、制御バルブ部に作用する作動力に応じて、主バルブ部に対して軸方向に移動可能である。この実施形態においては、作動力は作動ロッド35によって受けられる。作動ロッドは、ソレノイドが電流に応じて力を及ぼす、軸方向に移動可能な磁性部であり得る。
さらに図2に示す状態は、主バルブ部4がパイロットチャンバ3に向かって持上げられたときにポート7および/または8からの圧力がまだ閾値に達していないことから導き出し得る。この閾値は、第1ポート7または第2ポート8のいずれか一方の圧力から発生された持上げ力が、主バルブ部4の持上げ領域42、43に作用し、パイロットチャンバ3における主バルブ部4の上面41に作用するパイロット圧Ppからの反作用力を超えたときに対応する。このことは図3bおよび図3cに関してさらに説明され、ここで、調整された主フロー10が例示されている。
図3aに示す拡大で最も明瞭に例示されているように、主バルブ部は、径方向内壁26および径方向外壁27を有する周方向アパーチャ25を備える。径方向内壁26に接続するように、第4制限部R1’を形成する別のアパーチャが存在する。第4制限部R1’は、ポート7内の圧力に応じて可動主バルブ部9を加圧するように、減衰流体が周方向アパーチャ25に入ることを可能にする。さらに図3aは、主バルブ部4の開口を通って第1ポートおよび第2ポートの間を流れ、制御バルブ部5内に入り、パイロットバルブ部6に沿って通り、次いで制御バルブ部5および主バルブ部4を通って戻るブリードフロー20を例示する。このブリードフローは、最大の主流体フローよりも実質的に低いフローである限定されたフローである。調整されたブリードフロー20は、図4fの第1段階フローq1、つまり、3つの曲線が互いに離れる前に対応する。このことは、図4fに関してさらに詳述される。
図3bは図2の拡大であるが、ここで、第1ポート7から第2ポート8への調整された主フロー10、つまり圧縮行程中のフローを可能にするために、主バルブ部4および主バルブ座部9は部分的に開いた位置にある。例示されているように、可動主バルブ部9および主バルブ部4は、図2および図3aの閉位置と比較したとき、バルブハウジング2に対して軸方向に変位された位置にともに保持される。この位置において、第1ポート7から第2ポート8への調整された主流体フロー10が可能にされ、まず第1制限部R1に加えて第4制限部R1’(第1ポートに最も近い上流)によって制限され、次いで第1制限部R1の下流の第2制限部R2によって制限される。径方向内壁26は、可動バルブ座9とともに第1制限部(R1)の一部を形成し、径方向外壁(27)は、可動バルブ座(9)とともに第2制限部(R2)の一部を形成する。2つの制限部は周方向の制限部として形成され、径方向に変位されるため、いかなる部分的に開いた状態においても、第1制限部R1が第2制限部R2よりも小さい。第2制限部はより大きい円周を有するため、(可動バルブ座部9の)上方向および(ハウジングの径方向側壁の)下方向に共通の区切りを有して形成されたとき、そのオリフィスは常に第1制限部のオリフィスよりも大きくなる。さらに、第4制限部R1’は一定の開口を有する。これにより、第1制限部R1および第4制限部R1’の和は、初期は第2制限部R2よりも大きいが、行程Sが増大するにつれて、第2制限部は第1および第4制限部の和よりも大きくなる。このことは図4dおよび図4eに例示されている。
よって、図3bにおいて、ポート7内の減衰流体からの圧力は、(持上げ領域42および43に作用する)主バルブ部4および(図4bに例示されるように持上げ領域21aに作用する)主バルブ座部9の開口軸方向変位をもたらす。この移動は、先に説明したように、主バルブ部4に作用するパイロットチャンバ3からの反作用圧力に依存する。これにより、減衰流体の調整された主フローが、第1ポート7から第2ポート8に流れることが可能になる。この種の調整は、図4fの第2段階フローq1、つまり3つの曲線が互いに離れた後に対応する。フローを調整するために2つの連続的かつ協働的な制限部R1およびR2が使用されるため、第1段階q1から第2段階q2に向かうときの緩動開放が達成され得る。このことは、上で言及したように、図4fに関してさらに詳述される。
図3cもまた、図3の図の拡大であるが、ここでは、第2ポート8から第1ポート7への調整された主フロー10、つまり、反発行程中のフローを可能にするために、主バルブ部4は部分的に開いた位置にある。図3cを図3bと比較すると、主バルブ部4に対して密接して配置された状態から、代わりにバルブハウジング2に対して密接して配置されるように移動されたのは、可動主バルブ座部9のみである。このことは、第2ポート8から第1ポート7への減衰のフロー(圧力)を通じて達成され、このフローは可動主バルブ座部9の上面(持上げ領域22である)に作用し、主バルブ部4の持上げ領域43にも作用するが、主バルブ部4と主バルブ座部とが分離されるように、反対方向となる。第2ポート8における圧力は、主バルブ座部9を常にバルブハウジング2に対して押し付けられたままにする。また、圧力のレベルによっては、主バルブ部4と主バルブ座部9との間の開口が第3制限部R3を構成する。第3制限部R3は、反発行程における圧力調整されたフローを可能にする。
図3bと図3cとを比較したとき、可動バルブ座部9を有することより、圧縮圧力領域と反発圧力領域との間のより可撓性の高い領域圧力比を得るという、上で言及した利点が理解され得る。図示の実施形態においては、パイロット圧領域を変更することなく、圧縮領域と反発領域との間の領域比を調整し得る。主バルブ座が固定されている解決策においては、圧縮加圧領域と反発加圧領域との和がパイロット加圧領域に等しい。しかしながら可動主バルブ部を有する場合、可動バルブ座部が移動することにより圧縮圧力と反発圧力とが異なる表面で作用するため、この和がパイロット加圧領域よりも大きい可能性がある。このことは、圧縮行程と反発行程との両方において、一方の力を損なうことなく所望の減衰力を発生させるためのバルブ機構を形成することを可能にする。
図4aおよび図4bは、可動バルブ座部9の加圧領域をさらに例示する。図4aにおいて、加圧領域21b、21cおよび22は、図2および図3aに例示されるように、主バルブが閉じられたときに可動バルブ座部9に作用する領域に対応する。領域21bは、バルブハウジングから径方向内側に突出している可動バルブ座部の部分に対応する。領域21cは、バルブハウジングにおける周方向アパーチャ25の上面に配置された可動バルブ座部の部分に対応する。すなわち、このアパーチャは、加圧された減衰流体で満たされ得る。さらに、領域22は、可動バルブ座部9の、主バルブ部の径方向外角から径方向外側方向に延びる部分に対応する。図3aを参照されたい。
さらに、図4bは、調整された圧縮行程中の持上げ表面領域が例示されている主バルブ座部の側部の断面を示す。例示されている可動バルブ座部9上の加圧領域21aは、主バルブ部が少なくとも部分的に開かれているときである。この領域は、可動バルブ座部9の下表面全体に対応する。
図4cは、上方視点からの可動バルブ座部9を例示する。可動バルブ座部9は、外径D1及び内径D2を有するワッシャとして形成されることが示されている。さらにまた、ワッシャは3つの径方向指向突起91を備える。指向突起は、主バルブハウジング2と噛み合うように寸法決めされ、適合される。さらにまた、ワッシャ内の少なくとも3つの径方向指向突起91の間の空間は、圧縮行程中に、第1ポート7から第2ポート8に主流体フロー10が通ることを可能にする中間ポート92を形成する。本実施形態の指向突起91および中間ポート92は、ひとつの指向突起91も、対向する指向突起をワッシャの反対側に有さないように配置されている。言い換えれば、突起91のいずれかとワッシャの中心とを通る直線は、第2指向突起91を通過せず、代わりに中間ポート92を通過する。この設計の理由は、ワッシャの直径沿いには2つの正反対の突起が存在しないため、可動バルブ座部9が傾いている(つまり、その中心軸に垂直な軸の周りを回転する)場合、その詰まりが防止され得るからである。傾斜している場合の詰まりを回避するように可動バルブ座部9の円周に沿って分布されてさえいれば、より多くの径方向指向突起を有することも可能であろう。
図4dは、行程長Sの関数としてのオリフィス開口OR1+OR1’およびOR2のグラフを示す。第1オリフィスOR1は、第1制限部R1のオリフィスに対応する。このオリフィスOR1は、図4eにおける円の包絡面によっても例示され、OR1で表示されるものであって、従って、行程長Sに依存する。行程長は、調節された位置にあるときの可動バルブ座部9と主バルブハウジング2との間の軸方向距離である。例えば図3bを参照されたい。第2オリフィスOR2は、第2制限部R2のオリフィスOR2に対応する。このオリフィスは、図4eにおける円の包絡面によっても例示され、OR2で表示される。第4オリフィスOR1’は、第4制限部R1’のオリフィスに対応する。このオリフィスOR1’は、OR1’で表示される図4eにおける表面によっても例示されており、主バルブハウジング2内の周方向アパーチャへの開口に対応する。既に上で説明したように、図4eは、主バルブ座部の断面側面図の例示を示しており、第1オリフィスOR1、第2オリフィスOR2、および第4オリフィスOR1’が任意の行程長Sで例示されている。この例示から、いかに第1オリフィスOR1および第2オリフィスOR2は行程長Sとともに変化するが、第4オリフィスOR1’は変化がないかが明らかである。
調整された圧縮行程の初期段階においては、つまりR1とR2とが閉位置からちょうど開きはじめているときには、図4dに示すように、制限は第2制限部において行われるが、これは、この初期段階では、第2制限部R2のオリフィスが第1および第4制限部R1+R1’のオリフィスよりも小さいためである。第2制限部R3のオリフィスが第1制限部および第4制限部を組合せたオリフィスR1+R1’よりも大きくなるとすぐに、代わりに第1制限部および第4制限部で制限が行われる。
異なる制限部のオリフィス間の寸法関係は、本発明の概念から逸脱することなく変化させ得る。オリフィス寸法関係を調整することにより、図4dに示される「OR1+OR1’」−曲線と「OR2」曲線との間の交差点を移動させ得る。OR1’のオリフィス寸法は「OR1+OR1’」−曲線がY軸を横切るところで表される。第1制限部および第2制限部のオリフィスOR1の寸法間の関係は、図4dの2つの曲線の異なる傾斜によって例示される。さらに、第1オリフィスOR1の最大オリフィス寸法に対する第4オリフィスOR1’の相対的寸法を大きくすることによって、緩動開放が長くなる。
第1オリフィスOR1の最大オリフィス寸法は、第2オリフィスOR2の最大オリフィス寸法の約50%〜95%であり得る。一実施形態において、第1オリフィスOR1の最大オリフィス寸法は、第2オリフィスOR2の最大オリフィス寸法の約70%〜90%である。別の実施形態において、第1オリフィスOR1の最大オリフィス寸法は、第2オリフィスOR2の最大オリフィス寸法の約75%〜85%である。
第4オリフィスOR1’のオリフィス寸法は、第1オリフィスOR1の最大オリフィス寸法の約0.1%〜10%であり得る。一実施形態において、第4オリフィスOR1’のオリフィス寸法は、第1オリフィスOR1の最大オリフィス寸法の約0.3%〜3%である。別の実施形態において、第4オリフィスOR1’のオリフィス寸法は、第1オリフィスOR1の最大オリフィス寸法の約0.5%〜1%である。
さらに、図4dのグラフが例示するように、第1および第4オリフィスOR1、OR1’は、初期行程中は第2オリフィスOR2よりも大きいが、ある点において、第1オリフィスOR1と第4オリフィスOR1’との組み合わせよりも第2オリフィスOR2が大きくなり、同じ行程長中は、より速く増大する。
最後に図4fは、異なる減衰特性を有する3つの異なるダンパーにおける、圧縮行程中のフローqの関数としての圧力Pのグラフを示す。すべての機能は共通の第1段階q1を備え、ここで、調整されたブリードフローが例示される。3つの機能が互いに分離されるところから始まる第2段階q2は、圧力調整された主流体フローに対応する。第1減衰特性DC1は鋭動開放を例示しており、これは今日の2方向バルブにおける通例の挙動である。第2機能DC2および第3機能DC3は、両方とも緩動開放、つまり本出願に記載されている解決策が使用されるときを例示する。両者の差は、第4制限部R1’のオリフィス寸法である。すなわち、第4制限部のオリフィスの寸法を改変することにより、緩動開放の特性を調整し得る。第2機能DC2においては、第4オリフィスOR1’が第3機能DC3におけるそれより小さく、第3機能DC3はそれゆえ、より大きいオリフィスOR1’を有する。
本発明の例示的な実施形態が示され、記載されてきたが、本明細書に記載されたような本発明の数多くの変更および修正または改変がなされ得ることは、当業者には明らかであろう。また、上に記載した異なる実施形態は、本発明の概念の範囲から逸脱することなく、異なる方法で組み合わせ得る。よって、本発明の上述の記載および付随の図面は、その非限定的な例とみなされるものであり、本発明の範囲は、添付された特許請求の範囲において規定されることが理解されるものである。

Claims (15)

  1. ショックアブソーバのためのバルブ機構(1)であって、前記バルブ機構が、
    第1ポート(7)および第2ポート(8)を備えるバルブハウジング(2)と、
    前記第1ポートおよび/または第2ポートと流体連通するパイロットチャンバ(3)であって、前記パイロットチャンバ内の油圧によってパイロット圧(Pp)が規定されるパイロットチャンバ(3)と、
    前記バルブハウジング内に軸方向に移動可能に配置された主バルブ部(4)であって、前記主バルブ部(4)に作用する前記パイロット圧(Pp)に応じて前記第1ポート(7)と前記第2ポート(8)との間の主流体フロー(10)を制限するために、主バルブ座部(9)と相互作用するように配置された前記主バルブ部(4)と、を備え、
    ここにおいて
    圧縮行程中は、第1制限部(R1)および協働して直列的に配置された第2制限部(R2)で前記主流体フロー(10)が制限され、反発行程中は、第3制限部(R3)で前記主流体フロー(10)が制限されるように、前記主バルブ座部(9)が第1の圧縮行程位置と第2の反発行程位置との間で移動可能である、バルブ機構。
  2. 前記第1制限部(R1)は、圧縮流体フロー方向を考慮して、前記第2制限部(R2)に対して上流に配置されている、請求項1に記載のバルブ機構。
  3. 少なくとも部分的に開かれたとき、前記第1制限部(R1)は、前記第2制限部(R2)のオリフィス(OR2)よりも小さいオリフィス(OR1)を有する、請求項1〜2のいずれか一項に記載のバルブ機構。
  4. 前記主バルブ座部(9)が前記反発行程位置にあるとき、前記第1制限部(R1)および前記第2制限部(R2)のうちの少なくとも一方が閉じられている、請求項1〜3のいずれか一項に記載のバルブ機構。
  5. 前記主バルブ座部(9)が前記圧縮行程位置にあるとき、前記第3制限部(R3)が閉じられている、請求項1〜4のいずれか一項に記載のバルブ機構。
  6. 前記第1制限部(R1)、第2制限部(R2)および/または第3制限部(R3)のオリフィス(OR1、OR2)は、前記バルブハウジング(2)に対する前記主バルブ部(4)の軸方向位置を用いて制御される、請求項1〜5のいずれか一項に記載のバルブ機構。
  7. 前記第2制限部(R2)と直列に配置された第4制限部(R1’)を備える、請求項1〜6のいずれか一項に記載のバルブ機構。
  8. 前記第4制限部(R1’)は、前記バルブハウジング(2)に対する前記主バルブ部(4)の軸方向位置とは独立した一定のオリフィス(OR1’)を有する、請求項7に記載のバルブ機構。
  9. 前記バルブハウジング(2)および前記可動主バルブ座部(9)のうちの少なくとも一方が、径方向内壁(26)および径方向外壁(27)を有する幾何学的に規定された周方向アパーチャ(25)をさらに備え、前記径方向内壁(26)が前記第1制限部(R1)の一部を形成し、前記径方向外壁(27)が前記第2制限部(R2)の一部を形成する、請求項1〜8のいずれか一項に記載のバルブ機構。
  10. 前記圧縮行程中の前記主流体フロー(10)を制限するように、前記バルブハウジング(2)内に前記周方向アパーチャ(25)が形成され、前記第1制限部(R1)および前記第2制限部(R2)を形成するため、前記周方向アパーチャ(25)の前記径方向内壁(26)および前記径方向外壁(27)と協働するよう前記可動バルブ座部(9)が寸法決めされ、適合される、請求項9に記載のバルブ機構。
  11. 前記可動バルブ座部(9)がワッシャまたはシムである、請求項10に記載のバルブ機構。
  12. 前記可動バルブ座部(9)が、前記反発行程中に前記周方向アパーチャ(25)の上部を閉じるワッシャまたはシムである、請求項9〜11のいずれか一項に記載のバルブ機構。
  13. 前記可動バルブ座部は、前記主バルブハウジング(2)と噛み合う少なくとも3つの径方向指向突起(91)を備えるワッシャまたはシムである、請求項9〜12のいずれか一項に記載のバルブ機構。
  14. 前記ワッシャまたはシム内の前記少なくとも3つの径方向指向突起(91)の間の空間が、前記圧縮行程中に、前記主流体フロー(10)を可能にするための中間ポート(92)を形成する、請求項13に記載のバルブ機構。
  15. 制御バルブ部(5)をさらに備え、前記制御バルブ部は、前記制御バルブ部に作用する作動力に応じて前記主バルブ部(4)に対して軸方向に移動可能であり、付勢部を用いて前記作動力の反対方向に弾性的に負荷をかけられ、ここにおいて、前記制御バルブ部(5)と前記主バルブ部(4)との間の境界面は、前記第1ポート(7)と前記第2ポート(8)との間の減衰媒体のブリードフロー(20)を制限する開口を備える、請求項1〜14のいずれか一項に記載のバルブ機構。
JP2018543603A 2016-02-22 2017-02-21 ショックアブソーバのための緩動開放2方向バルブ機構 Active JP6946315B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16156682.3 2016-02-22
EP16156682.3A EP3208489B1 (en) 2016-02-22 2016-02-22 Soft opening 2-way valve arrangement for a shock absorber
PCT/EP2017/053892 WO2017144444A1 (en) 2016-02-22 2017-02-21 Soft opening 2-way valve arrangement for a shock absorber

Publications (2)

Publication Number Publication Date
JP2019509438A true JP2019509438A (ja) 2019-04-04
JP6946315B2 JP6946315B2 (ja) 2021-10-06

Family

ID=55405224

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018543603A Active JP6946315B2 (ja) 2016-02-22 2017-02-21 ショックアブソーバのための緩動開放2方向バルブ機構
JP2018543613A Active JP6957488B2 (ja) 2016-02-22 2017-02-21 ショックアブソーバのための2方向緩動開放バルブ機構

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2018543613A Active JP6957488B2 (ja) 2016-02-22 2017-02-21 ショックアブソーバのための2方向緩動開放バルブ機構

Country Status (5)

Country Link
US (2) US10989266B2 (ja)
EP (2) EP3208489B1 (ja)
JP (2) JP6946315B2 (ja)
CN (2) CN108700153B (ja)
WO (2) WO2017144445A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208489B1 (en) 2016-02-22 2020-04-29 Öhlins Racing Ab Soft opening 2-way valve arrangement for a shock absorber
EP3527841B1 (en) * 2018-02-20 2021-01-13 Öhlins Racing AB A valve arrangement and method for controlling a pilot pressure in a valve arrangement
DE102020134820A1 (de) 2020-12-23 2022-06-23 Ktm Ag Ventilanordnung für einen Schwingungsdämpfer
EP4043751A1 (en) * 2021-02-10 2022-08-17 Öhlins Racing AB Valve arrangement for a shock absorber
DE102023102682A1 (de) 2023-02-03 2024-08-08 Eto Magnetic Gmbh Bidirektionale Dämpfervorrichtung, Dämpfer und Verfahren

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073141A (ja) * 1995-12-20 1998-03-17 Tokico Ltd 減衰力調整式油圧緩衝器
US20130341540A1 (en) * 2012-06-25 2013-12-26 Zf Friedrichshafen Ag Adjustable Damping Valve Arrangement
WO2014170303A1 (en) * 2013-04-16 2014-10-23 öHLINS RACING AB Valve arrangement
JP2016516957A (ja) * 2013-04-16 2016-06-09 オーリンス・レイシング・エービーOehlins Racing Ab バルブ装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226512A (en) * 1989-02-22 1993-07-13 Atsugi Unisia Corporation Variable damping force shock absorber with variable orifice for adjusting damping characteristics
US5647461A (en) * 1995-11-06 1997-07-15 General Motors Corporation Adjustable piston valve damper
JPH09217778A (ja) * 1996-02-09 1997-08-19 Kayaba Ind Co Ltd 油圧緩衝器のバルブ構造
SE523534C2 (sv) 1998-03-10 2004-04-27 Oehlins Racing Ab Ventil- eller tryckregulatoranordning för att effektuera öppnings och/eller stängningsfunktioner eller rörelser för två från och mot varandra arbetande delar, t ex kägla/slid respektive säte/hus.
US5992585A (en) * 1998-03-19 1999-11-30 Tenneco Automotive Inc. Acceleration sensitive damping for automotive dampers
DE10020778B4 (de) * 1999-04-28 2005-01-13 Tokico Ltd., Kawasaki Hydraulischer Stossdämpfer mit Dämpfungskraftregelung
JP3978708B2 (ja) * 2001-11-29 2007-09-19 株式会社日立製作所 減衰力調整式油圧緩衝器
SE533996C2 (sv) * 2009-04-23 2011-03-22 Oehlins Racing Ab Tryckregulator i en stötdämparventil
US8616351B2 (en) * 2009-10-06 2013-12-31 Tenneco Automotive Operating Company Inc. Damper with digital valve
DE102012210459B3 (de) * 2012-06-21 2013-10-10 Zf Friedrichshafen Ag Verstellbare Dämpfventileinrichtung
JP5952760B2 (ja) * 2013-03-13 2016-07-13 Kyb株式会社 減衰弁
KR101771682B1 (ko) * 2013-12-04 2017-08-25 주식회사 만도 주파수 감응형 쇽업소버
JP6417170B2 (ja) * 2014-09-30 2018-10-31 株式会社ショーワ 緩衝器
KR102323479B1 (ko) * 2015-02-02 2021-11-09 주식회사 만도 내장형 전자 제어 댐퍼
DE102015223932A1 (de) * 2015-12-01 2017-06-01 Zf Friedrichshafen Ag Verstellbare Dämpfventileinrichtung mit einem Dämpfventil
EP3208489B1 (en) 2016-02-22 2020-04-29 Öhlins Racing Ab Soft opening 2-way valve arrangement for a shock absorber
US10578184B2 (en) * 2017-05-15 2020-03-03 Fox Factory, Inc. Valve stiffness adjustment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1073141A (ja) * 1995-12-20 1998-03-17 Tokico Ltd 減衰力調整式油圧緩衝器
US20130341540A1 (en) * 2012-06-25 2013-12-26 Zf Friedrichshafen Ag Adjustable Damping Valve Arrangement
WO2014170303A1 (en) * 2013-04-16 2014-10-23 öHLINS RACING AB Valve arrangement
JP2016516957A (ja) * 2013-04-16 2016-06-09 オーリンス・レイシング・エービーOehlins Racing Ab バルブ装置

Also Published As

Publication number Publication date
EP3420244A1 (en) 2019-01-02
EP3420244B1 (en) 2023-07-12
EP3208489A1 (en) 2017-08-23
US10989266B2 (en) 2021-04-27
WO2017144444A1 (en) 2017-08-31
EP3208489B1 (en) 2020-04-29
JP2019505744A (ja) 2019-02-28
CN108700154B (zh) 2021-03-05
CN108700153B (zh) 2021-02-02
JP6957488B2 (ja) 2021-11-02
CN108700153A (zh) 2018-10-23
US20190048965A1 (en) 2019-02-14
US20190048967A1 (en) 2019-02-14
JP6946315B2 (ja) 2021-10-06
WO2017144445A1 (en) 2017-08-31
CN108700154A (zh) 2018-10-23
US10801576B2 (en) 2020-10-13

Similar Documents

Publication Publication Date Title
JP6946315B2 (ja) ショックアブソーバのための緩動開放2方向バルブ機構
JP5833129B2 (ja) 弁構成体
KR101946642B1 (ko) 감쇠력 조정식 완충기
JP6373966B2 (ja) バルブ装置
JP5809801B2 (ja) 緩衝器
WO2019239721A1 (ja) 圧力緩衝装置
JP6333954B2 (ja) バルブ装置
JP2018013208A (ja) 減衰力調整式緩衝器
JP2018500506A (ja) 弁装置
JP6814644B2 (ja) 減衰力調整式緩衝器
JP6059548B2 (ja) ソレノイドバルブ
JP5639879B2 (ja) 緩衝器
JP7012884B2 (ja) 緩衝器
EP2839180B1 (en) Valve arrangement
JP2024120598A (ja) 緩衝器
JP2019060359A (ja) バルブ、及びバルブを備えた流体ダンパ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210915

R150 Certificate of patent or registration of utility model

Ref document number: 6946315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250