JP2019508574A - Non-oriented electrical steel sheet and method of manufacturing the same - Google Patents

Non-oriented electrical steel sheet and method of manufacturing the same Download PDF

Info

Publication number
JP2019508574A
JP2019508574A JP2018532686A JP2018532686A JP2019508574A JP 2019508574 A JP2019508574 A JP 2019508574A JP 2018532686 A JP2018532686 A JP 2018532686A JP 2018532686 A JP2018532686 A JP 2018532686A JP 2019508574 A JP2019508574 A JP 2019508574A
Authority
JP
Japan
Prior art keywords
electrical steel
hot
oriented electrical
steel sheet
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018532686A
Other languages
Japanese (ja)
Other versions
JP7008021B2 (en
Inventor
ビョン グン ベ,
ビョン グン ベ,
ヨン ス キム,
ヨン ス キム,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2019508574A publication Critical patent/JP2019508574A/en
Application granted granted Critical
Publication of JP7008021B2 publication Critical patent/JP7008021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

【課題】添加される合金元素量を限定して析出物が大きく成長するようにし、結晶粒成長と磁化中の磁区の移動を容易にすることによって、磁性を向上させた無方向性電磁鋼板及びその製造方法を提供する。【解決手段】本発明の一実施例による無方向性電磁鋼板は、質量%で、C:0.005%以下(0%は除く)、Si:1.0〜4.0%、Al:0.15〜1.5%、Mn:0.1〜1.0%、P:0.2%以下(0%は除く)、N:0.005%以下(0%は除く)、S:0.001%〜0.006%、Ti:0.005%以下(0%は除く)、O:0.005%以下(0%は除く)並びに残部はFe及びその不可避的不純物からなり、下記数1を満足し、析出物のうち酸化物の平均大きさが非酸化物の平均大きさに比べて大きいことを特徴とする。【数1】(但し、数1において、[Si]、[Al]及び[Mn]は、それぞれSi、Al及びMnの含有量(質量%)を示す。)【選択図】なしA non-oriented electrical steel sheet having improved magnetism by limiting the amount of alloying elements to be added so that precipitates grow large and facilitating grain growth and movement of magnetic domains during magnetization Providing the manufacturing method. A non-oriented electrical steel sheet according to an embodiment of the present invention is, by mass%, C: 0.005% or less (except 0%), Si: 1.0 to 4.0%, Al: 0 .15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0 .001% to 0.006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance are Fe and unavoidable impurities thereof, the following numbers 1 is characterized in that the average size of oxides among the precipitates is larger than the average size of non-oxides. (In the formula 1, [Si], [Al] and [Mn] respectively indicate the content (mass%) of Si, Al and Mn).

Description

本発明は、無方向性電磁鋼板及びその製造方法に係り、より詳しくは、添加される合金元素量を限定して析出物が大きく成長するようにし、結晶粒成長と磁化中の磁区の移動を容易にすることによって、磁性を向上させた無方向性電磁鋼板及びその製造方法に関する。 The present invention relates to a non-oriented electrical steel sheet and a method of manufacturing the same, and more specifically, the amount of alloying elements to be added is limited so that precipitates grow largely, and grain movement and movement of magnetic domains during magnetization are performed. The present invention relates to a non-oriented electrical steel sheet having improved magnetism by facilitating the method and a method of manufacturing the same.

無方向性電磁鋼板は、モータ、発電機などの回転機器と小型変圧機などの静止機器において鉄心用材料として用いられ、電気機器のエネルギ効率を決定することにおいて重要な役割を果たす。したがって、最近、エネルギの節減、電気機器の小型化などにおいて、電気機器の効率向上が求められており、これは、無方向性電磁鋼板の特性改善に対する要求につながっている。電磁鋼板の特性としては、代表的に鉄損と磁束密度が挙げられ、鉄損は小さく、磁束密度は高いほど良いが、これは鉄心に電気を付加して磁場を誘導する時、鉄損が低いほど熱で損失されるエネルギを減らし得、磁束密度が高いほど同じエネルギでより大きい磁場を誘導できるからである。したがって、エネルギの節減、エコ製品の需要増加に対応するためには、鉄損は低く、磁束密度は高い無方向性電磁鋼板の製造技術の開発が必要である。 Non-oriented electrical steel sheets are used as materials for iron cores in rotating devices such as motors and generators and in stationary devices such as small transformers, and play an important role in determining the energy efficiency of electrical devices. Therefore, recently, there is a demand for improving the efficiency of electrical devices in terms of energy saving, downsizing of electrical devices, etc., which leads to a demand for improving the characteristics of non-oriented electrical steel sheets. Typical characteristics of the magnetic steel sheet include iron loss and magnetic flux density, smaller iron loss and higher magnetic flux density are better, but iron loss is caused by adding electricity to the iron core to induce a magnetic field The lower the temperature, the less energy is dissipated by heat, and the higher the magnetic flux density, the larger the magnetic field can be induced at the same energy. Therefore, in order to save energy and meet the increase in demand for eco products, it is necessary to develop a manufacturing technology for non-oriented electrical steel sheet with low core loss and high magnetic flux density.

無方向性電磁鋼板の磁気的性質のうち、鉄損を改善するための代表的な方法としては、大きく厚さを薄くする方法と、Si、Alなどの比抵抗が大きい元素を添加させる方法がある。しかし、厚さの場合、使用される製品の特性に応じて決定され、厚さが薄いほど生産性低下及び原価増加という問題を有している。一般的な素材の電気比抵抗増加による鉄損減少方法である比抵抗が大きい合金元素のSi、Al、Mnなどを添加する方法においても合金元素を添加すると、鉄損は減少するが、飽和磁束密度の減少によって磁束密度の減少もまた避けられない矛盾を有している。また、Siの添加量が4%以上になれば、加工性が低下して冷間圧延が困難になり、生産性が落ち、Al、Mnなども多く添加されるほど圧延性も低下し、硬度が増加し、加工性も落ちる。したがって、これら添加元素を最も適切に添加して原価を低くし、かつ磁性を向上させる技術が必要である。 Among the magnetic properties of the non-oriented electrical steel sheet, as a typical method for improving the core loss, a method of greatly reducing the thickness and a method of adding an element having a large specific resistance such as Si or Al is there. However, in the case of thickness, it is determined according to the characteristics of the product to be used, and the thinner the thickness, the lower the productivity and the higher the cost. If the alloy element is added also in the method of adding Si, Al, Mn, etc. of alloy elements having large resistivity, which is a method of reducing iron loss due to the increase of electric resistivity of general materials, the core loss decreases, but the saturation flux Due to the reduction of the density, the reduction of the magnetic flux density also has an inevitable contradiction. In addition, if the amount of Si added is 4% or more, the workability is lowered and cold rolling becomes difficult, the productivity is lowered, and as more Al, Mn, etc. are added, the rollability is lowered, the hardness Increase and the processability also falls. Therefore, there is a need for a technique for adding these additive elements most appropriately to lower the cost and improve the magnetism.

一方、鋼の中には添加元素であるFe、SI、Al、Mnなどと不可避的に添加される不純物元素であるC、S、N、O、Tiなどが結合して微細な析出物を形成して結晶粒の成長を抑制させ、磁区の移動を妨げて磁気的性質を低下させる。このような鋼中の析出物には炭化物、窒化物、硫化物及び酸化物などがある。これらは単独または複合して現されている。これら微細な化合物は、その大きさや形成原因によって介在物または析出物に区分するが、介在物は100nm以上の大きさであるので、結晶粒成長には大きい影響を与えず、100nm以下で発見される析出物が結晶粒成長を抑制するものとして知られている。
これらの析出物が微細であれば、その分数量が多くなり、磁区の移動や結晶粒成長を抑制するため、析出物の大きさを大きくしたりまたは二つ以上の複合析出物を作ることが重要である。
On the other hand, in the steel, additive elements such as Fe, SI, Al, Mn, etc. are inevitably combined with C, S, N, O, Ti, etc. which are impurity elements to form fine precipitates. As a result, the growth of crystal grains is suppressed, the movement of the magnetic domain is hindered, and the magnetic properties are reduced. Such deposits in steel include carbides, nitrides, sulfides and oxides. These are shown alone or in combination. These fine compounds are classified into inclusions or precipitates depending on their size and formation cause, but since the inclusions have a size of 100 nm or more, they are found at 100 nm or less without significantly affecting grain growth. Precipitates are known to inhibit grain growth.
If these precipitates are fine, the number increases, and the size of the precipitates may be increased or two or more composite precipitates may be formed in order to suppress the movement of magnetic domains and grain growth. is important.

本発明の目的とするところは、添加される合金元素量を限定して析出物が大きく成長するようにし、結晶粒成長と磁化中の磁区の移動を容易にすることによって、磁性を向上させた無方向性電磁鋼板及びその製造方法を提供することである。 The aim of the present invention is to improve the magnetism by limiting the amount of alloying elements added to make the precipitates grow large and facilitating the grain growth and the movement of the magnetic domain during magnetization. A non-oriented electrical steel sheet and a method of manufacturing the same.

本発明による無方向性電磁鋼板は、質量%で、C:0.005%以下(0%は除く)、Si:1.0〜4.0%、Al:0.15〜1.5%、Mn:0.1〜1.0%、P:0.2%以下(0%は除く)、N:0.005%以下(0%は除く)、S:0.001%〜0.006%、Ti:0.005%以下(0%は除く)、O:0.005%以下(0%は除く)並びに残部はFe及びその不可避的不純物からなり、下記数1を満足し、析出物のうち酸化物の平均大きさが非酸化物の平均大きさに比べて大きいことを特徴とする。

Figure 2019508574
(但し、数1において、[Si]、[Al]及び[Mn]は、それぞれSi、Al及びMnの含有量(質量%)を示す。) The non-oriented electrical steel sheet according to the present invention is, by mass%, C: 0.005% or less (except 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006% , Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance consist of Fe and its unavoidable impurities, and satisfy the following formula 1; Among them, the average size of oxides is characterized by being larger than the average size of non oxides.
Figure 2019508574
(However, in the formula 1, [Si], [Al] and [Mn] indicate the content (mass%) of Si, Al and Mn, respectively.)

析出物のうち酸化物が非酸化物に比べて個数が多く、
Sn及びSbをそれぞれ単独または複合で0.01〜0.2質量%さらに含み、
析出物のうちFeOまたはFeOが含まれた析出物の個数が40%以上であり、
平均結晶粒の粒径が50〜180μmであることを特徴とする。
Among the precipitates, the number of oxides is greater than that of non-oxides,
0.01 to 0.2% by mass of Sn and Sb alone or in combination, respectively, further
Among the precipitates, the number of precipitates containing FeO or FeO is 40% or more,
It is characterized in that the average grain size is 50 to 180 μm.

本発明による無方向性電磁鋼板の製造方法は、質量%で、C:0.005%以下(0%は除く)、Si:1.0〜4.0%、Al:0.15〜1.5%、Mn:0.1〜1.0%、P:0.2%以下(0%は除く)、N:0.005%以下(0%は除く)、S:0.001%〜0.006%、Ti:0.005%以下(0%は除く)、O:0.005%以下(0%は除く)並びに残部はFe及びその不可避的不純物からなり、下記数1を満足するスラブを加熱した後に熱間圧延して熱延板を製造する段階と、熱延板を巻取り後に冷却する段階と、熱延板を焼鈍して冷却する段階と、熱延焼鈍板を冷間圧延して冷延板を製造する段階と、冷延板を最終焼鈍して冷却する段階とを含み、熱延板を巻取り後に冷却する段階において、600℃以上で30分以上維持して冷却し、熱延板焼鈍して冷却する段階において、600℃以上で5秒以上冷却し、冷延板を最終焼鈍して冷却する段階において、600℃以上で5秒以上冷却することを特徴とする。

Figure 2019508574
(但し、数1において、[Si]、[Al]及び[Mn]は、それぞれSi、Al及びMnの含有量(質量%)を示す。) The method for producing a non-oriented electrical steel sheet according to the present invention comprises, in mass%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1. 5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0 .006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance are Fe and incidental impurities thereof, and a slab satisfying the following formula 1 Heat-rolling and then hot-rolling to produce a hot-rolled sheet, winding-up and cooling the hot-rolled sheet, annealing and cooling the hot-rolled sheet, and cold-rolling the hot-rolled annealed sheet And at the temperature of 600 ° C. or higher in the step of cooling after rolling up the hot rolled sheet, including the steps of manufacturing the cold rolled sheet and finally annealing and cooling the cold rolled sheet. At the stage of maintaining for 0 minutes or more, cooling, hot-rolled sheet annealing and cooling, cooling at 600 ° C. or more for 5 seconds or more, and finally annealing and cooling the cold-rolled sheet at 600 ° C. or more for 5 seconds or more It is characterized by cooling.
Figure 2019508574
(However, in the formula 1, [Si], [Al] and [Mn] indicate the content (mass%) of Si, Al and Mn, respectively.)

スラブは、Sn及びSbをそれぞれ単独または複合で0.01〜0.2質量%さらに含み、
熱延板を製造する段階において、スラブを1200℃以下で加熱し、
熱延板を巻取り後に冷却する段階において、巻取り温度は600〜800℃であり、
熱延板を焼鈍して冷却する段階において、熱延板の焼鈍温度は850〜1150℃であり、
熱延焼鈍板を冷間圧延して冷延板を製造する段階において、0.1〜0.7mmの厚さに冷間圧延し、
熱延焼鈍板を冷間圧延して冷延板を製造する段階において、冷間圧延は1次冷間圧延、中間焼鈍及び2次冷間圧延を含み、
冷延板を最終焼鈍して冷却する段階において、焼鈍時、焼鈍の亀裂温度は850〜1100℃であり、
製造された電磁鋼板の析出物のうち酸化物の平均大きさが非酸化物の平均大きさに比べて大きく、
析出物のうち酸化物が非酸化物に比べて個数が多く、
析出物のうちFeOまたはFeOが含まれた析出物の個数が40%以上であり、
平均結晶粒の粒径が50〜180μmであることを特徴とする。
The slab further contains 0.01 to 0.2% by mass of Sn and Sb alone or in combination,
In the step of producing the hot-rolled sheet, the slab is heated at 1200 ° C. or less,
In the stage of cooling after winding the hot-rolled sheet, the winding temperature is 600 to 800 ° C.,
At the stage of annealing and cooling the hot-rolled sheet, the annealing temperature of the hot-rolled sheet is 850 to 1150 ° C.,
In the stage of cold rolling a hot rolled annealed sheet to produce a cold rolled sheet, cold rolling to a thickness of 0.1 to 0.7 mm,
In the stage of cold rolling a hot rolled annealed sheet to produce a cold rolled sheet, cold rolling includes primary cold rolling, intermediate annealing and secondary cold rolling,
At the stage of final annealing and cooling of the cold-rolled sheet, at the time of annealing, the crack temperature of the annealing is 850 to 1100 ° C.,
Among precipitates of manufactured electromagnetic steel sheet, the average size of oxide is larger than the average size of non-oxide,
Among the precipitates, the number of oxides is greater than that of non-oxides,
Among the precipitates, the number of precipitates containing FeO or FeO is 40% or more,
It is characterized in that the average grain size is 50 to 180 μm.

本発明によれば、析出物を大きく成長するようにして結晶粒成長と磁化中の磁区の移動を容易にすることによって磁性を向上させることができる。 According to the present invention, the magnetism can be improved by making the precipitates grow large to facilitate the crystal grain growth and the movement of the magnetic domain during magnetization.

第1、第2及び第3などの用語は、多様な部分、成分、領域、層及び/またはセクションを説明するために用いられるが、これらに限定されない。これらの用語は、ある部分、成分、領域、層またはセクションを他の部分、成分、領域、層またはセクションとの区別にのみ用いられる。したがって、以下で叙述する第1部分、成分、領域、層またはセクションは、本発明の範囲から外れない範囲内で第2部分、成分、領域、層またはセクションといえる。
ここに用いられる専門用語は、単に特定の実施例を説明するためであり、本発明を限定することを意図しない。ここに用いられる単数形は文句においてこれと明確に反対の意味を有さない限り複数形も含む。明細書において用いられる「含む」の意味は、特定の特性、領域、整数、段階、動作、要素及び/または成分を具体化し、他の特性、領域、整数、段階、動作、要素及び/または成分の存在や付加を除くものではない。
ある部分が他の部分の「上に」にあるという場合、これは、他の部分の真上または上にあるか、その間に他の部分が介在され得る。これと対照的にある部分が他の部分の「真上に」あるという場合は、その間に他の部分が介されない。
他に定義しないが、ここに用いられる技術用語及び科学用語を含むすべての用語は、本発明が属する技術分野における通常の知識を有する者が一般的に理解する意味と同じ意味を有する。一般的に用いられる辞書に定義されている用語は、関連技術文献と現在開示された内容に符合する意味を有するものとさらに解釈され、定義しない限り理想的又は過度に形数的な意味として解釈されない。
また、特に言及しない限り、%は質量%を意味し、1ppmは0.0001質量%である。
以下、本発明の実施例について本発明が属する技術分野における通常の知識を有する者が容易に実施できるように詳しく説明する。しかし、本発明は、様々な相異する形態に具現され得、ここで説明する実施例に限らない。
The terms first, second and third are used to describe various parts, components, regions, layers and / or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Therefore, the first part, component, region, layer or section described below can be referred to as a second part, component, region, layer or section within the scope of the present invention.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms also include the plural unless the context clearly indicates otherwise. The term "comprising", as used in the specification, embodies a particular property, region, integer, step, action, element and / or component, and the other property, region, integer, step, action, element and / or component It does not exclude the existence or addition of
Where one part is said to be “above” the other part, this may be directly above or above the other part, or the other part may be interposed therebetween. In contrast to this, if one part is "above" another part, no other part is interposed therebetween.
Although not otherwise defined, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms defined in commonly used dictionaries are further interpreted as having meanings that conform to the relevant technical literature and the content currently disclosed, and are interpreted as ideal or overly numerical meanings unless otherwise defined. I will not.
Also, unless otherwise stated,% means mass%, and 1 ppm is 0.0001 mass%.
Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art to which the present invention belongs can easily implement. However, the present invention may be embodied in various different forms and is not limited to the embodiments described herein.

本発明の一実施例による無方向性電磁鋼板は、質量%で、C:0.005%以下(0%は除く)、Si:1.0〜4.0%、Al:0.15〜1.5%、Mn:0.1〜1.0%、P:0.2%以下(0%は除く)、N:0.005%以下(0%は除く)、S:0.001%〜0.006%、Ti:0.005%以下(0%は除く)、O:0.005%以下(0%は除く)並びに残部はFe及びその不可避的不純物からなり、下記数1を満足し、析出物のうち酸化物の平均大きさが非酸化物の平均大きさに比べて大きい。

Figure 2019508574
(但し、数1において、[Si]、[Al]及び[Mn]は、それぞれSi、Al及びMnの含有量(質量%)を示す。) The non-oriented electrical steel sheet according to one embodiment of the present invention is, by mass%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1 .5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: not more than 0.005% (excluding 0%), O: not more than 0.005% (excluding 0%) and the balance are Fe and unavoidable impurities thereof, satisfying the following formula 1 Among the precipitates, the average size of the oxide is larger than the average size of the non-oxide.
Figure 2019508574
(However, in the formula 1, [Si], [Al] and [Mn] indicate the content (mass%) of Si, Al and Mn, respectively.)

本発明の一実施例では、無方向性電磁鋼板の成分の中でも特にSi、Al、Mnなどの成分を精密に調節し、析出物が可能な限り大きく生成され、析出物が単独で存在せず複合的に析出するようにすることで、析出物を大きく析出しようとした。また、析出物のうち酸化物の平均大きさが、非酸化物の平均大きさに比べて大きく形成されることによって磁性を向上させる。
本発明の一実施例において、添加する元素は、Si、Mn、Al、Pまたは必要に応じてSn、Sbであり、母材のFeがある。そのほかに添加される元素はO、C、N、Sなどがあり、これらは低く管理される必要がある。これらの元素NやCが他の元素と作る窒化物と炭化物があり、Al、Mn、Si及びFeなどがOと作る酸化物、及びMnとCuがSと作る硫化物などがあり、これらは単独または複合して発生する。
In one embodiment of the present invention, among the components of the non-oriented electrical steel sheet, the components such as Si, Al, Mn, etc. are precisely controlled, precipitates are formed as large as possible, and precipitates do not exist alone. Precipitates were intended to be largely precipitated by causing complex precipitation. Further, the magnetism is improved by forming the average size of the oxide among the precipitates larger than the average size of the non-oxide.
In one embodiment of the present invention, the element to be added is Si, Mn, Al, P or optionally Sn, Sb, and there is Fe as a base material. Other elements to be added include O, C, N, S, etc., which need to be managed low. There are nitrides and carbides that these elements N and C make with other elements, oxides that make Al, Mn, Si and Fe etc. with O, and sulfides that Mn and Cu make with S, etc. It occurs alone or in combination.

本発明の一実施例では、析出物の粗大化を試み、特に析出物が単独でない複合的に析出されるようにすることにで、より容易に成長させようとした。その中で、酸化物は、追加元素を入れなくても可能な元素であるため、より粗大化が容易であった。これにより電磁鋼板の磁性が向上することが確認できた。
析出物のうち酸化物が全体析出物個数の50%以上であり、酸化物の中でも特にFeOが40%以上を占めた。特に析出物が複合的に析出することにおいて酸化物の影響が大きく作用した。これら酸化物は、製鋼作業をする時にOを低くしたが、鋼中に酸化物として残存または焼鈍後析出されると判断される。硫化物はスラブ再加熱して熱間圧延後に冷却するとき、相当量が析出され、これらはCuS、MnSまたはこれらの複合析出物として析出されて現れた。しかし、酸化物は硫化物よりはFeO、Al、SiOなどの酸化物の複合析出物が多く、酸化物の窒化物と炭化物との結合は相対的に少ない。
In one embodiment of the present invention, coarsening of the precipitates was attempted, and in particular, it was attempted to grow more easily by causing the precipitates to be complexly deposited not alone. Among them, since the oxide is a possible element without adding an additional element, coarsening was easier. It has been confirmed that this improves the magnetism of the magnetic steel sheet.
Among the precipitates, the oxide was 50% or more of the total number of precipitates, and among the oxides, FeO particularly occupied 40% or more. In particular, the influence of the oxide has a great effect on the complex precipitation of the precipitates. Although these oxides lowered O during steelmaking operations, it is judged that they remain as oxides in the steel or are precipitated after annealing. When the sulfides are re-heated and cooled after hot rolling, a considerable amount is deposited, and these appear as precipitation as CuS, MnS or their composite precipitates. However, the oxide has more complex precipitates of oxides such as FeO, Al 2 O 3 and SiO 2 than sulfides, and the bond between the nitrides of the oxides and carbides is relatively small.

本発明で発生した析出物のうち酸化物は、単独または複合で存在し、平均大きさが15nm〜70nmであり、平均数量は1mm当たり10,000個から400,000個であることが確認された。また、析出物のうち非酸化物は、単独または複合して平均大きさが10nm〜50nmであり、平均数量は1mm当たり5,000個から200,000個であることが確認された。
このように析出物のうち酸化物の平均大きさが、非酸化物の平均大きさに比べて大きく形成されることによって、結晶粒成長を容易にでき、具体的に平均結晶粒の大きさを50〜180μmにすることができる。この時、結晶粒の大きさは、電磁鋼板分野で一般に用いられる切片法(intercept method)によって測定された結晶粒の大きさを意味する。
Among the precipitates generated in the present invention, oxides are present singly or in combination, and the average size is 15 nm to 70 nm, and the average number is confirmed to be 10,000 to 400,000 per 1 mm 2 It was done. Further, among the precipitates, non-oxides were confirmed alone or in combination to have an average size of 10 nm to 50 nm, and an average number of 5,000 to 200,000 per 1 mm 2 .
By thus forming the average size of the oxide among the precipitates larger than the average size of the non-oxide, the crystal grain growth can be facilitated, and specifically, the size of the average crystal grain It can be 50 to 180 μm. At this time, the grain size refers to the grain size measured by the intercept method generally used in the field of electrical steel sheet.

無方向性電磁鋼板の成分限定の理由を以下で説明する。
Si:1.0〜4.0質量%
シリコン(Si)は、鋼の比抵抗を増加させて鉄損中の渦流損失を低くする成分であるため、添加される主要元素であり、酸化物を容易に形成する元素である。Si含有量が少なすぎると低鉄損の特性が得られにくく、Siが過剰に添加されると冷間圧延が困難であり得る。したがって、1.0〜4.0質量%に制限する。
Mn:0.1〜1.0質量%
マンガン(Mn)は、Si、Alなどとともに比抵抗を増加させて鉄損を低くする効果があるため、Mnを少なくとも0.1質量%以上添加することによって鉄損を改善しようとする目的で添加する。しかし、Mnの添加量が増加するほど飽和磁束密度が減少するため、磁束密度が減少し、また、Sと結合して微細なMnS析出物を形成して結晶粒成長を抑制し、磁壁移動を妨げて鉄損のうち特に履歴損失を増加させる短所があり、1.0質量%以下添加する。
The reasons for limiting the components of the non-oriented electrical steel sheet will be described below.
Si: 1.0 to 4.0 mass%
Silicon (Si) is a component that increases the specific resistance of steel and lowers the eddy current loss in the core loss, and thus is a main element to be added, and is an element that easily forms an oxide. If the Si content is too low, low core loss characteristics are difficult to obtain, and if Si is added excessively, cold rolling may be difficult. Therefore, it limits to 1.0 to 4.0 mass%.
Mn: 0.1 to 1.0% by mass
Manganese (Mn) has the effect of lowering core loss by increasing the specific resistance together with Si, Al, etc. Therefore, manganese (Mn) is added for the purpose of improving core loss by adding at least 0.1 mass% of Mn. Do. However, as the amount of addition of Mn increases, the saturation magnetic flux density decreases, so the magnetic flux density decreases, and, together with S, fine MnS precipitates are formed to suppress grain growth and domain wall motion. It has a disadvantage that it increases the hysteresis loss among the iron loss, and 1.0% by mass or less is added.

Al:0.15〜1.5質量%
アルミニウム(Al)は、製鋼工程で鋼の脱酸のために不可避的に添加される元素であって、比抵抗を増加させる主要元素であるため、鉄損を低くするために多く添加されるが、添加することにより飽和磁束密度を減少させる役割も果たす。また、Alの添加量が過度に少なければ微細なAlNを形成させて結晶粒成長を抑制して磁性を低下させ得る。また、Alが過剰に添加されると磁束密度が減少する原因になるので、その添加量を0.15〜1.5質量%に制限する。
P:0.2質量%以下
リン(P)は、比抵抗を増加させて鉄損を低くし、結晶粒系に偏析することによって磁性に有害な集合組織の形成を抑制し、有利な集合組織である{100}を形成するが、過剰に添加されると圧延性を低下させるので、0.2質量%以下に制限する。
C:0.005質量%以下
炭素(C)は、多く添加される場合、オーステナイト領域を拡大し、相変態区間を増加させて焼鈍する時のフェライトの結晶粒成長を抑制し、鉄損を高める効果を奏し、また、Tiなどと結合して炭化物を形成して磁性を劣位させて最終製品で電気製品として加工後、使用時の磁気時効によって鉄損が高まるため、0.005質量%以下に制限する。
Al: 0.15 to 1.5% by mass
Aluminum (Al) is an element that is inevitably added for deoxidation of steel in the steel making process and is a main element that increases the specific resistance, so a large amount is added to lower core loss. The addition also plays a role of reducing the saturation magnetic flux density. In addition, if the amount of Al added is excessively small, fine AlN can be formed to suppress crystal grain growth and reduce magnetism. Moreover, since excessive addition of Al causes a decrease in magnetic flux density, the amount of addition is limited to 0.15 to 1.5% by mass.
P: 0.2% by mass or less Phosphorus (P) increases resistivity, lowers core loss, suppresses formation of a texture harmful to magnetism by segregating in a grain system, and has an advantageous texture The {100} is formed, but when it is added in excess, the rollability is reduced, so it is limited to 0.2% by mass or less.
C: 0.005% by mass or less Carbon (C), when added in a large amount, expands the austenite region, increases the phase transformation interval, suppresses grain growth of ferrite when annealing, and increases core loss In addition, it combines with Ti etc. to form carbides and lowers the magnetism, and after processing as an electrical product in the final product, increases iron loss due to magnetic aging during use, so it is less than 0.005 mass%. Restrict.

N:0.005質量%以下
窒素(N)は、Al、Tiなどと強く結合することによって窒化物を形成して結晶粒成長を抑制するなど磁性に有害な元素であるため、少なく含有させることが好ましく、0.005質量%以下に制限する。
S:0.001〜0.006質量%
硫黄(S)は、磁気的特性に有害なMnS、CuS及び(Cu、Mn)Sなどの硫化物を形成する元素であるため、できるだけ低く添加することが好ましい。しかし、添加量が少なすぎる場合、むしろ集合組織形成に不利となり、磁性が低下する。また、過剰に添加される場合、微細な硫化物の増加によって磁性が劣位となる。したがって、0.001〜0.006質量%に制限する。
Ti:0.005質量%以下
チタニウム(Ti)は、微細な炭化物と窒化物を形成して結晶粒成長を抑制し、多く添加されるほど増加した炭化物と窒化物とによって集合組織も劣位となり、磁性が悪くなる。したがって、0.005質量%以下に制限する。
N: 0.005% by mass or less Nitrogen (N) is an element harmful to magnetism such as forming nitrides by strongly bonding to Al, Ti, etc. to suppress crystal grain growth, so the content should be small. Is preferable, and is limited to 0.005% by mass or less.
S: 0.001 to 0.006 mass%
Sulfur (S) is an element which forms sulfides such as MnS, CuS and (Cu, Mn) S which are harmful to magnetic properties, and therefore, it is preferable to add as low as possible. However, when the addition amount is too small, it is rather disadvantageous for texture formation and the magnetism is lowered. In addition, when added in excess, the increase in fine sulfides makes the magnetism inferior. Therefore, it limits to 0.001-0.006 mass%.
Ti: 0.005% by mass or less Titanium (Ti) forms fine carbides and nitrides to suppress crystal grain growth, and the addition of more carbides and carbides causes the texture to be inferior by increasing the amount of carbides and nitrides, Magnetism gets worse. Therefore, it limits to 0.005 mass% or less.

O:0.005質量%以下
酸素(O)は、様々な酸化物を作って結晶粒成長を抑制するため、可能な限り低く含有させ得る。したがって、0.005質量%以下に制限する。
Sn、Sb:0.01〜0.2質量%
錫(Sn)とアンチモン(Sb)は、結晶粒系に偏析する元素であって、結晶粒系による窒素の拡散を抑制し、磁性に有害な{111}集合組織を抑制して有利な{100}集合組織を増加させて磁気的特性を向上させるために添加し、Sn及びSbをそれぞれ単独またはその和が、過剰に添加すると結晶粒成長を抑制して磁性を落とし、かつ圧延性状が悪くなる。したがって、SnまたはSbを含む場合、Sn及びSbそれぞれの単独またはその和が0.01〜0.2質量%に制限する。
O: 0.005% by mass or less Oxygen (O) can be contained as low as possible to form various oxides to suppress grain growth. Therefore, it limits to 0.005 mass% or less.
Sn, Sb: 0.01 to 0.2% by mass
Tin (Sn) and antimony (Sb) are elements that segregate in the grain system, and are effective in suppressing the diffusion of nitrogen by the grain system and suppressing the {111} texture harmful to magnetism {100 } Adds in order to increase the texture and improve the magnetic properties, and when each of Sn and Sb is added singly or in combination, excessive addition of Sn and Sb suppresses crystal grain growth and lowers magnetism, and rolling properties deteriorate . Therefore, when Sn or Sb is contained, one or each of Sn and Sb is limited to 0.01 to 0.2% by mass.

特に本発明の一実施例では、添加元素のうちSi、Mn、Alを下記数1を満足するように調節することによって、Mn含有量が高く、かつSi含有量の高い条件を有するようにし、Alも相当量含有させてAlNなどを抑制するようにした。

Figure 2019508574
(但し、数1において、[Si]、[Al]及び[Mn]は、それぞれSi、Al及びMnの含有量(質量%)を示す。) In particular, in one embodiment of the present invention, by adjusting Si, Mn, and Al among the additive elements to satisfy the following equation 1, it is made to have the condition that the Mn content is high and the Si content is high, A considerable amount of Al is also contained to suppress AlN and the like.
Figure 2019508574
(However, in the formula 1, [Si], [Al] and [Mn] indicate the content (mass%) of Si, Al and Mn, respectively.)

本発明の一実施例による無方向性電磁鋼板の製造方法は、質量%で、C:0.005%以下(0%は除く)、Si:1.0〜4.0%、Al:0.15〜1.5%、Mn:0.1〜1.0%、P:0.2%以下(0%は除く)、N:0.005%以下(0%は除く)、S:0.001%〜0.006%、Ti:0.005%以下(0%は除く)、O:0.005%以下(0%は除く)並びに残部はFe及びその不可避的不純物からなり、下記数1を満足するスラブを加熱した後に熱間圧延して熱延板を製造する段階と、熱延板を巻取り後に冷却する段階と、熱延板を焼鈍して冷却する段階と、熱延焼鈍板を冷間圧延して冷延板を製造する段階と、冷延板を最終焼鈍して冷却する段階とを含み、熱延板を巻取り後に冷却する段階において、600℃以上で30分以上維持して冷却し、熱延板焼鈍して冷却する段階において、600℃以上で5秒以上冷却し、冷延板を最終焼鈍して冷却する段階において、600℃以上で5秒以上冷却する。
熱延板製造後、熱延板焼鈍後、冷延板焼鈍後冷却する時、ゆっくり冷却して析出物が成長する時間を持たせて磁性を向上させた。
In the method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0. 15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0. 001% to 0.006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance are Fe and unavoidable impurities thereof, and the following number 1 After the slab is heated and then hot rolled to produce a hot rolled sheet, the step of winding the hot rolled sheet after cooling, the step of annealing and cooling the hot rolled sheet, the hot rolled annealed sheet Cold rolling to produce a cold rolled sheet, and finally annealing and cooling the cold rolled sheet, and in the step of cooling the hot rolled sheet after winding, C. for 30 minutes or more, cooling, hot-rolled sheet annealing and cooling, cooling at 600 ° C. or more for 5 seconds or more, and finally annealing and cooling a cold-rolled sheet at 600 ° C. or more Cool for 5 seconds or more.
After the hot-rolled sheet production, after the hot-rolled sheet annealing, when cooling after the cold-rolled sheet annealing, it was slowly cooled to allow time for the precipitates to grow to improve the magnetism.

以下、各段階別の工程を説明する。
まず、スラブを加熱した後に熱間圧延して熱延板を製造する。各組成の添加比率を限定した理由は、前述した無方向性電磁鋼板の限定理由と同一である。後述する熱間圧延、熱延板焼鈍、冷間圧延、最終焼鈍などの過程におけるスラブの組成は、実質的に変動しないので、スラブの組成と無方向性電磁鋼板の組成とが実質的に同一である。
スラブを加熱炉に裝入して1200℃以下で加熱し得る。加熱温度が高すぎる場合、スラブ内に存在するAlN、MnSなどの析出物が再固溶された後熱間圧延時に微細に析出され、結晶粒成長を抑制し、磁性を低下させる。さらに具体的に1050℃〜1200℃で加熱する。
加熱されたスラブは、1.4mm〜3mmに熱間圧延して熱延板に製造される。熱間圧延時の仕上圧延における仕上げ圧延は、フェライト上で終了し、板状矯正のために最終圧下率は20%以下で行う。
The steps of each step will be described below.
First, the slab is heated and then hot rolled to produce a hot-rolled sheet. The reason for limiting the addition ratio of each composition is the same as the reason for limitation of the non-oriented electrical steel sheet described above. The composition of the slab in the process of hot rolling, hot rolled sheet annealing, cold rolling, final annealing, etc. described later does not substantially change, so the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same. It is.
The slab may be introduced into a furnace and heated to 1200 ° C. or less. If the heating temperature is too high, precipitates such as AlN and MnS present in the slab are re-solidified and then finely precipitated during hot rolling, thereby suppressing grain growth and reducing magnetism. More specifically, it heats at 1050 ° C-1200 ° C.
The heated slab is hot-rolled to 1.4 mm to 3 mm to produce a hot-rolled sheet. The finish rolling in finish rolling in hot rolling is finished on the ferrite, and the final rolling reduction is performed at 20% or less for plate-like correction.

次に、熱延板を巻取り後に冷却する。熱延板は600℃〜800℃の温度で巻取りし、空気中や別途の炉に入れて冷却する。冷却する時の温度は600℃以上で少なくとも30分以上維持する。温度が低すぎるか維持時間が短いと、析出物の成長が困難であり、微細に析出される。さらに具体的に600〜800℃の温度で30分〜3時間維持される。
次に、熱延板を焼鈍して冷却する。熱延板を焼鈍することは磁性改善のためであり、熱延板の焼鈍温度は850〜1150℃とする。熱延板の焼鈍温度が低すぎると結晶粒成長が不充分であり得る。熱延板の焼鈍温度が高すぎると結晶粒が過度に成長して板の表面欠陥が過多になる。
熱延板焼鈍後冷却する時の冷却は、急冷せずに600℃以上で5秒以上維持する。冷却する時の温度が低すぎるか維持時間が短いと、析出物の粗大化が難しく、板が撓むこともある。さらに具体的に冷却時の温度は600〜800℃であり得、5〜30秒間維持する。
熱延板焼鈍後に酸洗してもよい。
Next, the hot-rolled sheet is cooled after being wound up. The hot-rolled sheet is wound at a temperature of 600 ° C. to 800 ° C., and placed in air or in a separate furnace for cooling. The cooling temperature is maintained at 600 ° C. or more for at least 30 minutes or more. If the temperature is too low or the maintenance time is short, the growth of the precipitate is difficult and it is finely precipitated. More specifically, the temperature is maintained at a temperature of 600 to 800 ° C. for 30 minutes to 3 hours.
Next, the hot-rolled sheet is annealed and cooled. Annealing the hot-rolled sheet is to improve the magnetic properties, and the annealing temperature of the hot-rolled sheet is set to 850 to 1150 ° C. If the annealing temperature of the hot-rolled sheet is too low, grain growth may be insufficient. If the annealing temperature of the hot-rolled sheet is too high, crystal grains grow excessively and the surface defects of the sheet become excessive.
Cooling upon cooling after hot-rolled sheet annealing is maintained at 600 ° C. or more for 5 seconds or more without rapid cooling. If the temperature during cooling is too low or the maintenance time is short, coarsening of the precipitates is difficult and the plate may be bent. More specifically, the temperature at the time of cooling may be 600 to 800 ° C. and maintained for 5 to 30 seconds.
You may pickle after hot-rolled sheet annealing.

次に、熱延焼鈍板を冷間圧延して冷延板を製造する。冷間圧延は、0.1mm〜0.7mmの厚さに最終圧延し、必要に応じて1次冷間圧延、中間焼鈍、2次冷間圧延し、最終圧下率は50〜95%の範囲にする。
次に、冷延板を最終焼鈍して冷却する。冷延板を焼鈍する工程における焼鈍時の冷延板焼鈍の亀裂温度は、850〜1100℃とする。冷延板の焼鈍温度が850℃以下では結晶粒の成長が不十分であり、磁性に有害な集合組織である{111}集合組織が増加し、1100℃以上では結晶粒が過度に成長して磁性に悪影響を与えられるため、冷延板の亀裂温度は850〜1100℃とする。
冷延板焼鈍後冷却する時の冷却は、急冷せずに600℃以上で5秒以上維持する。冷却する時の温度が低すぎるか維持時間が短いと、微細な析出物が単独で析出する。さらに具体的に冷却時の温度は600〜800℃で、5〜30秒間維持する。
焼鈍板は、絶縁被膜処理後に顧客社に出荷される。前記絶縁被膜は、有機質、無機質及び有機−無機複合被膜で処理され、その他の絶縁が可能な被膜剤で処理することも可能である。顧客社は鋼板を加工後、そのまま用いることができる。
Next, the hot-rolled annealed sheet is cold-rolled to produce a cold-rolled sheet. Cold rolling is final rolling to a thickness of 0.1 mm to 0.7 mm, and if necessary, primary cold rolling, intermediate annealing, secondary cold rolling, final rolling reduction in the range of 50 to 95% Make it
Next, the cold rolled sheet is finally annealed and cooled. The crack temperature of the cold rolled sheet annealing at the time of annealing in the step of annealing the cold rolled sheet is set to 850 to 1100 ° C. When the annealing temperature of the cold rolled sheet is below 850 ° C, the growth of crystal grains is insufficient, the {111} texture which is the texture harmful to magnetism increases, and the crystal grain grows excessively at 1100 ° C or more The crack temperature of the cold rolled sheet is set to 850 to 1100 ° C. because the magnetism is adversely affected.
Cooling when cooling after cold-rolled sheet annealing is maintained for 5 seconds or more at 600 ° C. or more without quenching. When the temperature for cooling is too low or the maintenance time is short, fine precipitates precipitate alone. More specifically, the cooling temperature is maintained at 600 to 800 ° C. for 5 to 30 seconds.
The annealed sheet is shipped to the customer after the insulation coating process. The insulating coating may be treated with an organic, inorganic and organic-inorganic composite coating, and may be treated with other insulating coatings. The customer company can use it as it is after processing the steel plate.

以下、実施例により本発明についてさらに詳細に説明する。しかし、このような実施例は、単に本発明を例示するためであり、本発明はこれに限定されない。
実施例1
真空溶解により、下記表1及び表2のように組成される鋼塊を製造してSi、Al、Mnの質量%の量が数1を満足する発明鋼A1からA7まで、及び数1を満たさないA8からA12までの比較鋼を溶解した。
真空溶解鋼であるA1〜A7は、Si、Al、Mnの含有量を本発明の範囲にして製造し、各鋼塊は1120℃で加熱し、2.2mmの厚さに熱間圧延した後巻取りし、表2のように大気中で徐冷して巻取りし、冷却した熱延鋼板は、5分間窒素雰囲気で焼鈍し、窒素と酸素とが混在する雰囲気下の600℃以上温度で徐冷し、最終に水をかけて急冷した。焼鈍した熱延板は、酸洗した後0.35mmの厚さに冷間圧延し、冷延板の最終焼鈍は、水素30%と窒素70%の混合雰囲気で2分間焼鈍した。冷却帯は水素40%と窒素の雰囲気で冷却した。最終焼鈍板は、それぞれの試片に対して酸化物、硫化物、炭化物、窒化物及びその複合析出物の大きさ及び数量を調査し、結晶粒及び磁性を測定して下記表3に整理した。
Hereinafter, the present invention will be described in more detail by way of examples. However, such examples are merely to illustrate the present invention, and the present invention is not limited thereto.
Example 1
Production of steel ingots as shown in Tables 1 and 2 below by vacuum melting to satisfy the number 1 of the invention steels A1 to A7 in which the amounts of% by mass of Si, Al and Mn satisfy the number 1 None of the comparison steels from A8 to A12 were melted.
The vacuum melting steels A1 to A7 are manufactured with contents of Si, Al and Mn in the range of the present invention, and each steel ingot is heated at 1120 ° C. and hot rolled to a thickness of 2.2 mm. The hot rolled steel sheet rolled up, gradually cooled in air as shown in Table 2 and then cooled, was annealed in a nitrogen atmosphere for 5 minutes, and at a temperature of 600 ° C. or more in an atmosphere in which nitrogen and oxygen were mixed It was slowly cooled and finally quenched with water. The annealed hot-rolled sheet was pickled and cold-rolled to a thickness of 0.35 mm, and the final annealing of the cold-rolled sheet was annealed for 2 minutes in a mixed atmosphere of 30% hydrogen and 70% nitrogen. The cooling zone was cooled in an atmosphere of 40% hydrogen and nitrogen. For the final annealed sheet, the size and number of oxides, sulfides, carbides, nitrides and their composite precipitates were investigated for each specimen, and the crystal grains and magnetism were measured, and the results are summarized in Table 3 below. .

析出物の大きさ、種類及び分布を分析するための方法としては、試片から抽出されたcarbon replicaをTEMで観察し、EDSで分析する方法を用いた。TEM観察は偏りなくランダムに選択した領域でEDS spectrumにより析出物の種類を分析した。
鉄損(W1550)は、50Hz周波数で1.5Teslaの磁束密度が誘起された時の圧延方向と圧延方向垂直方向の平均損失(W/kg)で測定した。
磁束密度(B50)は、5000A/mの磁場を付加した時に誘導される磁束密度の大きさ(Tesla)で測定した。
As a method for analyzing the size, type and distribution of precipitates, a method of observing carbon replica extracted from a specimen by TEM and analyzing it by EDS was used. In TEM observation, types of precipitates were analyzed by EDS spectrum in randomly selected areas without bias.
Iron loss (W 15/50) was measured in the rolling direction and the average loss in the rolling direction vertical when the magnetic flux density of 1.5Tesla is induced by 50Hz frequency (W / kg).
The magnetic flux density (B 50 ) was measured by the magnitude (Tesla) of the magnetic flux density induced when a magnetic field of 5000 A / m was applied.

Figure 2019508574
Figure 2019508574

Figure 2019508574
Figure 2019508574

Figure 2019508574
Figure 2019508574

表1〜表3に示すように、A1〜A7は、電磁鋼板の組成範囲及び数1を満足しており、析出物のうち酸化物の大きさが、非酸化物の大きさに比べて大きいことが確認でき、結晶粒も旨く成長し、鉄損及び磁束密度にも優れることが確認できる。反面、A8〜A12は、電磁鋼板の組成範囲及び数1を満たしておらず、一部は析出物のうち酸化物の大きさが非酸化物の大きさに比べて小さいことが確認できる。したがって、鉄損及び磁束密度が劣悪であることが確認できる。 As shown in Tables 1 to 3, A1 to A7 satisfy the composition range and the number 1 of the magnetic steel sheet, and the size of the oxide among the precipitates is larger than the size of the non-oxide. It can be confirmed that crystal grains also grow well, and iron loss and magnetic flux density are also excellent. On the other hand, A8 to A12 do not satisfy the composition range and the number 1 of the magnetic steel sheet, and it can be confirmed that the size of the oxide among the precipitates is smaller in part than the size of the non-oxide. Therefore, it can be confirmed that iron loss and magnetic flux density are inferior.

実施例2
真空溶解により下記表4及び表5のように組成される鋼塊を製造してSi、Al、Mnの質量%の量が数1を満足する発明鋼A13からA15まで溶解した。
各鋼塊は1120℃で加熱し、2.2mmの厚さに熱間圧延した後巻取りし、表5のように大気中で徐冷して巻取りし、冷却した熱延鋼板は、5分間窒素雰囲気で焼鈍し、窒素と酸素とが混在する雰囲気下の600℃以上温度で徐冷して最終に水をかけて急冷した。焼鈍した熱延板は、酸洗した後0.35mmの厚さに冷間圧延し、冷延板の最終焼鈍は、水素30%と窒素70%の混合雰囲気で2分間焼鈍した。冷却帯は水素40%と窒素の雰囲気で冷却した。最終焼鈍板は、それぞれの試片に対して酸化物、硫化物、炭化物、窒化物及びその複合析出物の大きさ及び数量を調査し、結晶粒及び磁性を測定して下記表6に整理した。
Example 2
The steel ingots as shown in Tables 4 and 5 below were manufactured by vacuum melting, and the invention steels A13 to A15 in which the amounts of% by mass of Si, Al and Mn satisfy the formula 1 were melted.
Each steel ingot was heated at 1120 ° C., hot rolled to a thickness of 2.2 mm, wound, gradually cooled and wound in the air as shown in Table 5, and cooled; It was annealed for a minute in a nitrogen atmosphere, gradually cooled at a temperature of at least 600 ° C. in a mixed atmosphere of nitrogen and oxygen, and finally quenched with water. The annealed hot-rolled sheet was pickled and cold-rolled to a thickness of 0.35 mm, and the final annealing of the cold-rolled sheet was annealed for 2 minutes in a mixed atmosphere of 30% hydrogen and 70% nitrogen. The cooling zone was cooled in an atmosphere of 40% hydrogen and nitrogen. For the final annealed sheet, the size and the number of oxides, sulfides, carbides, nitrides and their composite precipitates were investigated for each specimen, and the crystal grains and magnetism were measured, and the results are summarized in Table 6 below. .

Figure 2019508574
Figure 2019508574

Figure 2019508574
Figure 2019508574

Figure 2019508574
Figure 2019508574

表4〜表6に示すように、比較鋼に比べて発明鋼は、巻取り後に冷却時間を十分に与え、熱延板及び冷延板を焼鈍後、600℃以上で時間を十分に与えてFeO酸化物をはじめとする酸化物の形成がうまく行われ、結晶粒がよく成長し、磁性に優れることが確認できる。
反面、比較鋼6は、熱延板の焼鈍温度が低く、冷却する時600℃以上での維持時間が短かく、析出物のうち酸化物の大きさが小さく、その数量も少なかった。比較鋼7も熱延板焼鈍後の冷却時間が短いため、析出物のうち酸化物の大きさが非酸化物に比べて相対的に小さく、数量が少なかった。FeO酸化物の比率も40%以下で低かった。比較鋼8は、巻取り後の冷却を水冷して急速に冷却し、熱延板焼鈍した後600℃以上での冷却時間が短く、冷延板焼鈍後の時間も短いため、析出物のうちFeOをはじめとする酸化物の形成が不十分であり、鉄損が相対的に高く、磁束密度が低い。比較鋼9も成分は満足するが巻取り温度が低く、熱延板焼鈍後冷却時の焼鈍時間が短いため、FeOをはじめとする酸化物単独または複合析出物の大きさが小さく、その数も非酸化物に比べて少ないため、結晶粒の大きさも小さく、かつ磁性が低調であることが確認できる。比較鋼10は、巻取り後に冷却を水の中に急冷し、比較鋼11と共に熱延板及び冷延板焼鈍後の冷却時間を短縮した結果、析出物のうちFeO比率が低く、酸化物の形成が少ないため、結晶粒が小さく、かつ磁性が不十分であることが確認できる。
As shown in Tables 4 to 6, as compared with the comparative steels, the invention steels allow sufficient cooling time after winding, and allow sufficient time at 600 ° C. or more after annealing hot-rolled sheets and cold-rolled sheets. It is possible to confirm that formation of oxides including FeO oxide is performed well, crystal grains grow well, and magnetism is excellent.
On the other hand, in Comparative Steel 6, the annealing temperature of the hot-rolled sheet was low, the maintenance time at 600 ° C. or higher was short when cooling, and the size of oxides among the precipitates was small and the number was also small. Since the comparative steel 7 also had a short cooling time after hot-rolled sheet annealing, the size of the oxide among the precipitates was relatively small compared to the non-oxide, and the number was small. The proportion of FeO oxide was also low at 40% or less. The comparative steel 8 is cooled by water cooling after winding and cooled rapidly, and the cooling time at 600 ° C. or higher after hot-rolled sheet annealing is short, and the time after cold-rolled sheet annealing is also short. Insufficient formation of oxides including FeO, relatively high core loss, and low magnetic flux density. Comparative steel 9 also satisfies the components but has a low coiling temperature and a short annealing time at the time of cooling after hot-rolled sheet annealing, so the size of FeO and other oxides alone or composite precipitates is small and the number is also small Since the amount is smaller than that of non-oxide, it can be confirmed that the size of the crystal grain is small and the magnetism is low. In Comparative Steel 10, the cooling is quenched into water after winding, and the cooling time after annealing of the hot-rolled sheet and the cold-rolled sheet is shortened with the comparative steel 11, and as a result, the FeO ratio in the precipitate is low and oxide Since the formation is small, it can be confirmed that the crystal grains are small and the magnetism is insufficient.

本発明は、実施例に限定されるものではなく、互いに異なる多様な形態に製造され得、本発明が属する技術分野における通常の知識を有する者は、本発明の技術的な思想や必須の特徴を変更せず、他の具体的な形態に実施され得ることを理解できるであろう。したがって、以上の実施例は、すべての面で例示的なものであり、限定的なものではないことに理解しなければならない。 The present invention is not limited to the embodiments, but can be manufactured in various forms different from one another, and those having ordinary knowledge in the technical field to which the present invention belongs can understand the technical idea and essential features of the present invention. It will be appreciated that it may be implemented in other specific forms without changing the Therefore, it should be understood that the above embodiments are illustrative in all aspects and not limiting.

Claims (17)

質量%で、C:0.005%以下(0%は除く)、Si:1.0〜4.0%、Al:0.15〜1.5%、Mn:0.1〜1.0%、P:0.2%以下(0%は除く)、N:0.005%以下(0%は除く)、S:0.001%〜0.006%、Ti:0.005%以下(0%は除く)、O:0.005%以下(0%は除く)並びに残部はFe及びその不可避的不純物からなり、
下記数1を満足し、
析出物のうち酸化物の平均大きさが非酸化物の平均大きさに比べて大きいことを特徴とする無方向性電磁鋼板。
Figure 2019508574

(但し、数1において、[Si]、[Al]及び[Mn]は、それぞれSi、Al及びMnの含有量(質量%)を示す。)
C: not more than 0.005% (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% by mass , P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (0 %, O: not more than 0.005% (excluding 0%) and the balance consist of Fe and its unavoidable impurities,
The following number 1 is satisfied,
A non-oriented electrical steel sheet characterized in that the average size of oxides among the precipitates is larger than the average size of non-oxides.
Figure 2019508574

(However, in the formula 1, [Si], [Al] and [Mn] indicate the content (mass%) of Si, Al and Mn, respectively.)
前記析出物のうち酸化物が非酸化物に比べて個数が多いことを特徴とする請求項1に記載の無方向性電磁鋼板。 The non-oriented electrical steel sheet according to claim 1, wherein among the precipitates, the number of oxides is larger than the number of non-oxides. Sn及びSbをそれぞれ単独または複合で0.01〜0.2質量%さらに含むことを特徴とする請求項1に記載の無方向性電磁鋼板。 The non-oriented electrical steel sheet according to claim 1, further comprising 0.01 to 0.2 mass% of Sn and Sb alone or in combination. 析出物のうちFeOまたはFeOが含まれた析出物の個数が40%以上であることを特徴とする請求項1に記載の無方向性電磁鋼板。 The non-oriented electrical steel sheet according to claim 1, wherein the number of precipitates containing FeO or FeO is 40% or more. 平均結晶粒の粒径が50〜180μmであることを特徴とする請求項1に記載の無方向性電磁鋼板。 The grain size of an average grain size is 50-180 micrometers, The non-oriented electrical steel sheet of Claim 1 characterized by the above-mentioned. 質量%で、C:0.005%以下(0%は除く)、Si:1.0〜4.0%、Al:0.15〜1.5%、Mn:0.1〜1.0%、P:0.2%以下(0%は除く)、N:0.005%以下(0%は除く)、S:0.001%〜0.006%、Ti:0.005%以下(0%は除く)、O:0.005%以下(0%は除く)並びに残部はFe及びその不可避的不純物からなり、下記数1を満足するスラブを加熱した後に熱間圧延して熱延板を製造する段階と、
前記熱延板を巻取り後に冷却する段階と、
前記熱延板を焼鈍して冷却する段階と、
熱延焼鈍板を冷間圧延して冷延板を製造する段階と、
前記冷延板を最終焼鈍して冷却する段階とを含み、
前記熱延板を巻取り後に冷却する段階において、600℃以上で30分以上維持して冷却し、
前記熱延板焼鈍して冷却する段階において、600℃以上で5秒以上冷却し、
前記冷延板を最終焼鈍して冷却する段階において、600℃以上で5秒以上冷却することを特徴とする無方向性電磁鋼板の製造方法。
Figure 2019508574

(但し、数1において、[Si]、[Al]及び[Mn]は、それぞれSi、Al及びMnの含有量(質量%)を示す。)
C: not more than 0.005% (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% by mass , P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (0 %, O: not more than 0.005% (except 0%) and the balance are Fe and unavoidable impurities thereof, and after hot-rolling the hot-rolled sheet after heating the slab satisfying the following equation (1) Manufacturing stage,
Cooling the hot rolled sheet after winding;
Annealing and cooling the hot-rolled sheet;
Cold rolling the hot rolled annealed sheet to produce a cold rolled sheet;
Final annealing and cooling the cold rolled sheet;
In the step of cooling after winding the hot-rolled sheet, cooling is performed by maintaining for 30 minutes or more at 600 ° C. or more,
In the step of annealing and cooling the hot-rolled sheet, cooling is performed at 600 ° C. or more for 5 seconds or more,
In the step of final annealing and cooling the cold-rolled sheet, the method for manufacturing a non-oriented electrical steel sheet, comprising cooling at 600 ° C. or more for 5 seconds or more.
Figure 2019508574

(However, in the formula 1, [Si], [Al] and [Mn] indicate the content (mass%) of Si, Al and Mn, respectively.)
前記スラブは、Sn及びSbをそれぞれ単独または複合で0.01〜0.2質量%さらに含むことを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 6, wherein the slab further contains 0.01 to 0.2 mass% of Sn and Sb alone or in combination. 前記熱延板を製造する段階において、前記スラブを1200℃以下で加熱することを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 6, wherein the slab is heated at 1200 ° C or lower in the step of producing the hot-rolled sheet. 前記熱延板を巻取り後に冷却する段階において、巻取り温度は600〜800℃であることを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 The method for manufacturing a non-oriented electrical steel sheet according to claim 6, wherein the coiling temperature is 600 to 800 ° C in the step of cooling after winding the hot-rolled sheet. 前記熱延板を焼鈍して冷却する段階において、熱延板の焼鈍温度は850〜1150℃であることを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 The method for manufacturing a non-oriented electrical steel sheet according to claim 6, wherein the annealing temperature of the hot-rolled sheet is 850 to 1150 ° C in the stage of annealing and cooling the hot-rolled sheet. 前記熱延焼鈍板を冷間圧延して冷延板を製造する段階において、0.1〜0.7mmの厚さに冷間圧延することを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 The non-directional electromagnetic wave according to claim 6, wherein the cold rolled sheet is cold rolled to a thickness of 0.1 to 0.7 mm in the step of cold rolling the hot rolled annealed sheet to produce a cold rolled sheet. Method of manufacturing steel plate. 前記熱延焼鈍板を冷間圧延して冷延板を製造する段階において、前記冷間圧延は、1次冷間圧延、中間焼鈍及び2次冷間圧延を含むことを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 In the step of cold rolling the hot rolled annealed sheet to produce a cold rolled sheet, the cold rolling includes primary cold rolling, intermediate annealing and secondary cold rolling. The manufacturing method of the non-oriented electrical steel sheet as described in-. 前記冷延板を最終焼鈍して冷却する段階において、焼鈍時、焼鈍の亀裂温度は850〜1100℃であることを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 The manufacturing method of the non-oriented electrical steel sheet according to claim 6, wherein, at the stage of final annealing and cooling the cold-rolled sheet, a crack temperature of the annealing is 850 to 1100 ° C. 製造された電磁鋼板の析出物のうち酸化物の平均大きさが、非酸化物の平均大きさに比べて大きいことを特徴とする請求項6に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 6, wherein the average size of the oxide among the precipitates of the manufactured electrical steel sheet is larger than the average size of the non-oxide. 前記析出物のうち酸化物が非酸化物に比べて個数が多いことを特徴とする請求項14に記載の無方向性電磁鋼板の製造方法。 The method for producing a non-oriented electrical steel sheet according to claim 14, wherein among the precipitates, the number of oxides is larger than that of non-oxides. 析出物のうちFeOまたはFeOが含まれた析出物の個数が40%以上であることを特徴とする請求項14に記載の無方向性電磁鋼板の製造方法。 The method of manufacturing a non-oriented electrical steel sheet according to claim 14, wherein the number of precipitates containing FeO or FeO among the precipitates is 40% or more. 平均結晶粒の粒径が50〜180μmであることを特徴とする請求項14に記載の無方向性電磁鋼板の製造方法。
The grain size of an average crystal grain is 50-180 micrometers, The manufacturing method of the non-oriented electrical steel sheet of Claim 14 characterized by the above-mentioned.
JP2018532686A 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and its manufacturing method Active JP7008021B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR10-2015-0185425 2015-12-23
KR1020150185425A KR102175064B1 (en) 2015-12-23 2015-12-23 Non-orientied electrical steel sheet and method for manufacturing the same
PCT/KR2016/015226 WO2017111549A1 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and manufacturing method therefor

Publications (2)

Publication Number Publication Date
JP2019508574A true JP2019508574A (en) 2019-03-28
JP7008021B2 JP7008021B2 (en) 2022-01-25

Family

ID=59089606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018532686A Active JP7008021B2 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and its manufacturing method

Country Status (5)

Country Link
US (1) US20190017137A1 (en)
JP (1) JP7008021B2 (en)
KR (1) KR102175064B1 (en)
CN (1) CN108474076A (en)
WO (1) WO2017111549A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022545793A (en) * 2019-08-26 2022-10-31 宝山鋼鉄股▲ふん▼有限公司 Non-oriented electrical steel sheet and manufacturing method thereof
WO2024070489A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043289B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102178341B1 (en) * 2018-11-30 2020-11-12 주식회사 포스코 Non-oriented electrical steel sheet having superior magneticproperties and method for manufacturing the same
CN113574194B (en) * 2019-03-20 2022-09-30 日本制铁株式会社 Non-oriented electromagnetic steel sheet
CN112143961A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and continuous annealing method thereof
CN112143964A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with extremely low iron loss and continuous annealing process thereof
CN112143962A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with high magnetic induction and low iron loss and manufacturing method thereof
CN112143963A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and continuous annealing method thereof
EP4063534A4 (en) 2019-11-21 2022-12-28 Nippon Steel Corporation Non-oriented electromagnetic steel sheet and method for producing same
KR102325011B1 (en) * 2019-12-20 2021-11-11 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102468078B1 (en) * 2020-12-21 2022-11-16 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR20240012071A (en) * 2022-07-20 2024-01-29 현대제철 주식회사 Non-oriented electrical steel sheet and method for manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841538A (en) * 1994-07-26 1996-02-13 Kawasaki Steel Corp Production of low core loss nonoriented silicon steel sheet small in magnetic anisotropy
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet
JP2013515166A (en) * 2010-10-25 2013-05-02 宝山鋼鉄股▲分▼有限公司 Non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and method for producing the same
WO2013069754A1 (en) * 2011-11-11 2013-05-16 新日鐵住金株式会社 Anisotropic electromagnetic steel sheet and method for producing same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930519C1 (en) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Non-textured electrical steel sheet, useful for cores in rotary electrical machines such as motors and generators, is produced by multi-pass hot rolling mainly in the two-phase austenite-ferrite region
JP2000008147A (en) * 1998-06-24 2000-01-11 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic characteristic and its production
JP4790151B2 (en) * 2001-05-31 2011-10-12 新日本製鐵株式会社 Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
CN100436631C (en) * 2006-05-18 2008-11-26 武汉科技大学 Low-carbon high-manganese oriented electrical steel plate, and its manufacturing method
JP5098430B2 (en) * 2007-05-17 2012-12-12 新日鐵住金株式会社 Non-oriented electrical steel sheet excellent in punching workability and iron loss and manufacturing method
CN102199721B (en) * 2010-03-25 2013-03-13 宝山钢铁股份有限公司 Manufacture method of high-silicon non-oriented cold-rolled sheet
CN103534376B (en) * 2011-08-18 2016-08-17 新日铁住金株式会社 Non-oriented electromagnetic steel sheet having, its manufacture method, motor iron core duplexer and manufacture method thereof
EP2612942B1 (en) * 2012-01-05 2014-10-15 ThyssenKrupp Steel Europe AG Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
CN102650016B (en) * 2012-05-24 2014-03-19 宝山钢铁股份有限公司 Manufacturing method for high-magnetic induction low-cost 250 MPa cold-rolled magnetic pole steel
KR20140058935A (en) * 2012-11-07 2014-05-15 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
PL2985360T3 (en) * 2013-04-09 2018-12-31 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing same
CN104674136B (en) * 2013-11-28 2017-11-14 Posco公司 The excellent non-oriented electromagnetic steel sheet of permeability and its manufacture method
KR101634092B1 (en) * 2015-10-27 2016-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0841538A (en) * 1994-07-26 1996-02-13 Kawasaki Steel Corp Production of low core loss nonoriented silicon steel sheet small in magnetic anisotropy
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet
JP2013515166A (en) * 2010-10-25 2013-05-02 宝山鋼鉄股▲分▼有限公司 Non-oriented electrical steel sheet having relatively high magnetic induction and high strength, and method for producing the same
WO2013069754A1 (en) * 2011-11-11 2013-05-16 新日鐵住金株式会社 Anisotropic electromagnetic steel sheet and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022545793A (en) * 2019-08-26 2022-10-31 宝山鋼鉄股▲ふん▼有限公司 Non-oriented electrical steel sheet and manufacturing method thereof
JP7378585B2 (en) 2019-08-26 2023-11-13 宝山鋼鉄股▲ふん▼有限公司 Non-oriented electrical steel sheet and its manufacturing method
WO2024070489A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet

Also Published As

Publication number Publication date
CN108474076A (en) 2018-08-31
JP7008021B2 (en) 2022-01-25
US20190017137A1 (en) 2019-01-17
KR20170075592A (en) 2017-07-03
KR102175064B1 (en) 2020-11-05
WO2017111549A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP7008021B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6020863B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6890181B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6043808B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
US11505845B2 (en) Soft high-silicon steel sheet and manufacturing method thereof
JP2020509182A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
KR101507942B1 (en) Non-oriented electrical steel steet and method for the same
KR101353462B1 (en) Non-oriented electrical steel shteets and method for manufactureing the same
WO2016111088A1 (en) Non-oriented electromagnetic steel sheet and method for producing same
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
KR101353463B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101410476B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
JP2022509676A (en) Non-oriented electrical steel sheet and its manufacturing method
KR101353460B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
JP6950748B2 (en) Manufacturing method of non-oriented electrical steel sheet
KR101353459B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101630425B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150016435A (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
KR20140133101A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101353461B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20150062247A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR20140058937A (en) Non-oriented electrical steel sheets and method for manufacturing the same
JP2024517690A (en) Non-oriented electrical steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200928

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201007

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201013

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201113

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201117

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210518

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211116

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211214

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107

R150 Certificate of patent or registration of utility model

Ref document number: 7008021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350