KR102175064B1 - Non-orientied electrical steel sheet and method for manufacturing the same - Google Patents

Non-orientied electrical steel sheet and method for manufacturing the same Download PDF

Info

Publication number
KR102175064B1
KR102175064B1 KR1020150185425A KR20150185425A KR102175064B1 KR 102175064 B1 KR102175064 B1 KR 102175064B1 KR 1020150185425 A KR1020150185425 A KR 1020150185425A KR 20150185425 A KR20150185425 A KR 20150185425A KR 102175064 B1 KR102175064 B1 KR 102175064B1
Authority
KR
South Korea
Prior art keywords
hot
less
electrical steel
sheet
rolled sheet
Prior art date
Application number
KR1020150185425A
Other languages
Korean (ko)
Other versions
KR20170075592A (en
Inventor
배병근
김용수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020150185425A priority Critical patent/KR102175064B1/en
Priority to US16/065,788 priority patent/US20190017137A1/en
Priority to JP2018532686A priority patent/JP7008021B2/en
Priority to CN201680076220.XA priority patent/CN108474076A/en
Priority to PCT/KR2016/015226 priority patent/WO2017111549A1/en
Publication of KR20170075592A publication Critical patent/KR20170075592A/en
Application granted granted Critical
Publication of KR102175064B1 publication Critical patent/KR102175064B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, C:0.005%이하(0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하(0%는 제외함), N:0.005%이하(0%는 제외함), S:0.001% 내지 0.006%, Ti:0.005%이하(0%는 제외함), O:0.005%이하(0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하고, 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크다.
[식 1]

Figure 112015126599529-pat00007

(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량(중량%)을 나타낸다.)Non-oriented electrical steel sheet according to an embodiment of the present invention is a weight percent, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% , P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance contain Fe and other inevitable impurities, satisfy the following Equation 1, and the average size of oxides in the precipitate is larger than the average size of non-oxides.
[Equation 1]
Figure 112015126599529-pat00007

(However, [Si], [Al] and [Mn] in Equation 1 represent the contents (% by weight) of Si, Al and Mn, respectively.)

Description

무방향성 전기강판 및 그 제조방법{NON-ORIENTIED ELECTRICAL STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}Non-oriented electrical steel sheet and its manufacturing method {NON-ORIENTIED ELECTRICAL STEEL SHEET AND METHOD FOR MANUFACTURING THE SAME}

무방향성 전기강판 및 그 제조방법에 관한 것이다. It relates to a non-oriented electrical steel sheet and a manufacturing method thereof.

무방향성 전기강판은 모터, 발전기 등의 회전 기기와 소형 변압기 등의 정지기기에서 철심용 재료로 사용되며 전기기기의 에너지 효율을 결정하는데 중요한 역할을 한다. 따라서 최근 에너지의 절감, 전기 기기의 소형화 등에 대한 요구는 전기기기의 효율 향상을 요구하고 있으며 이는 무방향성 전기강판의 특성 개선에 대한 요구로 이어지고 있다. 전기강판의 특성으로는 대표적으로 철손과 자속밀도를 들 수 있는데 철손은 작고, 자속밀도는 높을 수록 좋은데 이는 철심에 전기를 부가하여 자기장을 유도할 때, 철손이 낮을 수록 열로 손실되는 에너지를 줄일 수 있으며, 자속밀도가 높을수록 똑같은 에너지로 더 큰 자기장을 유도할 수 있기 때문이다. 따라서 에너지의 절감, 친환경 제품의 수요 증가에 대응하기 위해서는 철손은 낮고 자속밀도는 높은 무방향성 전기강판 제조 기술의 개발이 필요하다.Non-oriented electrical steel is used as a material for iron cores in rotating equipment such as motors and generators and stationary equipment such as small transformers, and plays an important role in determining the energy efficiency of electric equipment. Accordingly, recent demands for energy savings and miniaturization of electric devices are demanding to improve the efficiency of electric devices, which leads to a demand for improvement of characteristics of non-oriented electrical steel sheets. The characteristics of the electrical steel sheet are typically iron loss and magnetic flux density. The smaller the iron loss and the higher the magnetic flux density, the better. This is when the magnetic field is induced by adding electricity to the core, the lower the iron loss, the less energy lost as heat. This is because the higher the magnetic flux density, the greater the magnetic field can be induced with the same energy. Therefore, in order to save energy and respond to the increasing demand for eco-friendly products, it is necessary to develop a non-oriented electrical steel sheet manufacturing technology with low iron loss and high magnetic flux density.

무방향성 전기강판의 자기적 성질 중, 철손을 개선하기 위한 대표적인 방법으로는 크게 두께를 얇게 하는 방법과 Si, Al등의 비저항이 큰 원소를 첨가시키는 방법이 있다. 하지만 두께의 경우 사용되는 제품의 특성에 따라 결정되며 두께가 얇을수록 생산성 저하 및 원가 증가라는 문제를 안고 있다. 일반적인 소재의 전기 비저항 증가를 통한 철손 감소 방법인 비저항이 큰 합금 원소인 Si, Al, Mn등을 첨가하는 방법 역시 합금 원소를 첨가하게 되면 철손은 감소하지만 포화 자속밀도 감소로 인해 자속밀도의 감소 역시 피할 수 없다는 모순을 안고 있다. 또한, Si 첨가량이 4%이상이 되면 가공성이 저하되어 냉간압연이 곤란해져 생산성이 떨어지게 되며 Al, Mn등도 많이 첨가될수록 압연성도 저하되며 경도가 증가하며 가공성도 떨어지게 된다. 따라서 이들 첨가원소를 가장 적절히 첨가하여 원가를 낮추면서도 자성을 향상하도록 하는 기술이 필요하다.Among the magnetic properties of non-oriented electrical steel sheets, representative methods for improving iron loss include a method of greatly thinning the thickness and a method of adding an element having a high specific resistance such as Si and Al. However, the thickness is determined by the characteristics of the product used, and the thinner the thickness, the lower the productivity and the higher the cost. In the method of adding Si, Al, Mn, etc., which are alloy elements with high specific resistance, which is a method of reducing iron loss by increasing the electrical resistivity of general materials, adding an alloying element reduces iron loss, but decreases the magnetic flux density due to the decrease in saturation magnetic flux density. It has a contradiction that it cannot be avoided. In addition, when the amount of Si added is 4% or more, workability decreases and cold rolling becomes difficult, resulting in a decrease in productivity. As more Al and Mn are added, the rollability decreases, the hardness increases, and the workability decreases. Therefore, there is a need for a technique to improve magnetism while lowering cost by most appropriately adding these additive elements.

한편, 강 중에는 첨가원소인 Fe, SI, Al, Mn 등과 불가피하게 첨가되는 불순물 원소인 C, S, N, O, Ti 등이 결합하여 미세한 석출물을 형성하여 결정립의 성장을 억제시키고 자구의 이동을 방해하여 자기적 성질을 저하시킨다. 이러한 강중의 석출물에는 탄화물, 질화물, 황화물 및 산화물 등이 있다. 이들은 단독 또는 복합하여 나타나고 있다. 이들 미세한 화합물은 그 크기나 형성 원인에 따라 개재물 또는 석출물로 구분하는데, 개재물은 100nm이상의 크기이어서 결정립 성장에는 큰 영향을 미치지 아니하며, 100nm이하로 발견되는 석출물이 결정립성장을 억제하는 것으로 알려져 있다.On the other hand, in the steel, Fe, SI, Al, Mn, etc., which are additive elements, and C, S, N, O, Ti, etc., which are inevitable added impurity elements, are combined to form fine precipitates to suppress the growth of crystal grains and to prevent magnetic domain movement. It interferes and degrades magnetic properties. Precipitates in these steels include carbides, nitrides, sulfides and oxides. These are shown alone or in combination. These fine compounds are classified into inclusions or precipitates depending on their size or formation cause.Since the inclusions have a size of 100 nm or more, they do not have a significant effect on grain growth, and precipitates found to be less than 100 nm are known to inhibit grain growth.

이들 석출물이 미세하면 그만큼 수량이 많아져서 자구의 이동이나 결정립성장을 억제하기 때문에 석출물의 크기를 크게 하거나 또는 둘 이상의 복합 석출물을 만드는 것이 중요하다.If these precipitates are fine, the quantity of these precipitates increases accordingly to suppress the movement of magnetic domains or grain growth, so it is important to increase the size of the precipitates or to make two or more complex precipitates.

본 발명의 일 실시예는 첨가되는 합금원소량을 한정하고 석출물을 크게 성장하도록 하여서 결정립 성장과 자화 중 자구의 이동을 용이하게 함으로써 자성을 향상시킨 무방향성 전기강판 및 그 제조 방법을 제공하는 것이다. An embodiment of the present invention is to provide a non-oriented electrical steel sheet with improved magnetism and a method of manufacturing the same by limiting the amount of alloying elements added and allowing the precipitate to grow large, thereby facilitating the movement of magnetic domains during grain growth and magnetization.

본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, C:0.005%이하(0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하(0%는 제외함), N:0.005%이하(0%는 제외함), S:0.001% 내지 0.006%, Ti:0.005%이하(0%는 제외함), O:0.005%이하(0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하고, 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크다.Non-oriented electrical steel sheet according to an embodiment of the present invention is a weight percent, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% , P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance contain Fe and other inevitable impurities, satisfy the following Equation 1, and the average size of oxides in the precipitate is larger than the average size of non-oxides.

[식 1][Equation 1]

Figure 112015126599529-pat00001
Figure 112015126599529-pat00001

(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량(중량%)을 나타낸다.)(However, [Si], [Al] and [Mn] in Equation 1 represent the contents (% by weight) of Si, Al and Mn, respectively.)

석출물 중 산화물이 비산화물에 비해 개수가 많을 수 있다.Among the precipitates, the number of oxides may be greater than that of non-oxides.

Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 중량% 더 포함할 수 있다.It may further contain 0.01 to 0.2% by weight of Sn and Sb alone or in combination, respectively.

석출물 중 FeO 또는 FeO가 함유된 석출물의 개수가 40% 이상이 될 수 있다.Among the precipitates, the number of precipitates containing FeO or FeO may be 40% or more.

평균 결정립 입경이 50 내지 180㎛이 될 수 있다.The average grain size may be 50 to 180㎛.

본 발명의 일 실시예에 의한 무방향성 전기강판의 제조 방법은 중량%로, C:0.005%이하(0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하(0%는 제외함), N:0.005%이하(0%는 제외함), S:0.001% 내지 0.006%, Ti:0.005%이하(0%는 제외함), O:0.005%이하(0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계;열연판을 권취 후 냉각하는 단계; 열연판을 소둔하고 냉각하는 단계; 열연 소둔판을 냉간 압연하여 냉연판을 제조하는 단계; 및 냉연판을 최종 소둔하고 냉각하는 단계를 포함하고, 열연판을 권취 후 냉각하는 단계에서 600℃ 이상에서 30분 이상 유지하여 냉각하고, 열연판 소둔하고 냉각하는 단계에서 600℃ 이상에서 5초 이상 냉각하고, 냉연판을 최종 소둔하고 냉각하는 단계에서 600℃ 이상에서 5초 이상 냉각한다.The method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention is in weight %, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 To 1.0%, P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (excluding 0%) , O: 0.005% or less (excluding 0%) and the balance contains Fe and other inevitable impurities, heating a slab that satisfies Equation 1 below, and then hot rolling to prepare a hot-rolled sheet; winding a hot-rolled sheet After cooling; Annealing and cooling the hot-rolled sheet; Cold rolling a hot-rolled annealed sheet to manufacture a cold-rolled sheet; And final annealing and cooling the cold-rolled sheet, and in the step of cooling the hot-rolled sheet after winding it, maintaining it at 600°C or higher for 30 minutes or more, and cooling the hot-rolled sheet by annealing and cooling the hot-rolled sheet for 5 seconds or more at 600°C or higher. After cooling, the cold-rolled sheet is cooled at 600°C or higher for 5 seconds or longer in the final annealing and cooling step.

[식 1][Equation 1]

Figure 112015126599529-pat00002
Figure 112015126599529-pat00002

(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량(중량%)을 나타낸다.)(However, [Si], [Al] and [Mn] in Equation 1 represent the contents (% by weight) of Si, Al and Mn, respectively.)

슬라브는 Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 중량% 더 포함할 수 있다.The slab may further contain 0.01 to 0.2% by weight of Sn and Sb individually or in combination, respectively.

열연판을 제조하는 단계에서, 슬라브를 1200℃ 이하로 가열할 수 있다.In the step of manufacturing the hot-rolled sheet, the slab may be heated to 1200°C or less.

열연판을 권취 후 냉각하는 단계에서 권취온도는 600 내지 800℃가 될 수 있다.In the step of cooling the hot-rolled sheet after winding, the winding temperature may be 600 to 800°C.

열연판을 소둔하고 냉각하는 단계에서, 열연판 소둔 온도는 850 내지 1,150℃가 될 수 있다.In the step of annealing and cooling the hot-rolled sheet, the annealing temperature of the hot-rolled sheet may be 850 to 1,150°C.

열연 소둔판을 냉간 압연하여 냉연판을 제조하는 단계에서, 0.1 내지 0.7mm의 두께로 냉간 압연할 수 있다.In the step of cold rolling the hot-rolled annealed sheet to produce a cold-rolled sheet, it may be cold-rolled to a thickness of 0.1 to 0.7 mm.

열연 소둔판을 냉간 압연하여 냉연판을 제조하는 단계에서, 냉간 압연은 1차 냉간압연, 중간 소둔 및 2차 냉간 압연을 포함할 수 있다.In the step of cold rolling a hot-rolled annealed sheet to produce a cold-rolled sheet, the cold rolling may include primary cold rolling, intermediate annealing, and secondary cold rolling.

냉연판을 최종 소둔하고 냉각하는 단계에서 소둔시, 소둔의 균열온도는 850 내지 1,100℃가 될 수 있다.During annealing in the final annealing and cooling step of the cold rolled sheet, the cracking temperature of the annealing may be 850 to 1,100°C.

제조된 전기강판의 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 클 수 있다.The average size of oxides among the precipitates of the manufactured electrical steel sheet may be larger than that of non-oxides.

석출물 중 산화물이 비산화물에 비해 개수가 많을 수 있다.Among the precipitates, the number of oxides may be greater than that of non-oxides.

석출물 중 FeO 또는 FeO가 함유된 석출물의 개수가 40% 이상일 수 있다.Among the precipitates, the number of precipitates containing FeO or FeO may be 40% or more.

평균 결정립 입경이 50 내지 180㎛일 수 있다.The average grain size may be 50 to 180㎛.

본 발명의 일 실시예에 의한 무방향성 전기강판은 석출물을 크게 성장하도록 하여서 결정립 성장과 자화 중 자구의 이동을 용이하게 함으로써 자성을 향상시킬 수 있다.The non-oriented electrical steel sheet according to an exemplary embodiment of the present invention can improve magnetism by facilitating movement of magnetic domains during crystal grain growth and magnetization by allowing the precipitate to grow large.

제1, 제2 및 제3 등의 용어들은 다양한 부분, 성분, 영역, 층 및/또는 섹션들을 설명하기 위해 사용되나 이들에 한정되지 않는다. 이들 용어들은 어느 부분, 성분, 영역, 층 또는 섹션을 다른 부분, 성분, 영역, 층 또는 섹션과 구별하기 위해서만 사용된다. 따라서, 이하에서 서술하는 제1 부분, 성분, 영역, 층 또는 섹션은 본 발명의 범위를 벗어나지 않는 범위 내에서 제2 부분, 성분, 영역, 층 또는 섹션으로 언급될 수 있다.Terms such as first, second and third are used to describe various parts, components, regions, layers, and/or sections, but are not limited thereto. These terms are only used to distinguish one part, component, region, layer or section from another part, component, region, layer or section. Accordingly, a first part, component, region, layer or section described below may be referred to as a second part, component, region, layer or section without departing from the scope of the present invention.

여기서 사용되는 전문 용어는 단지 특정 실시예를 언급하기 위한 것이며, 본 발명을 한정하는 것을 의도하지 않는다. 여기서 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함한다. 명세서에서 사용되는 “포함하는”의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분을 구체화하며, 다른 특성, 영역, 정수, 단계, 동작, 요소 및/또는 성분의 존재나 부가를 제외시키는 것은 아니다.The terminology used herein is for referring only to specific embodiments and is not intended to limit the present invention. Singular forms as used herein also include plural forms unless the phrases clearly indicate the opposite. As used in the specification, the meaning of “comprising” specifies a specific characteristic, region, integer, step, action, element and/or component, and the presence of another characteristic, region, integer, step, action, element and/or component It does not exclude additions.

어느 부분이 다른 부분의 "위에" 또는 "상에" 있다고 언급하는 경우, 이는 바로 다른 부분의 위에 또는 상에 있을 수 있거나 그 사이에 다른 부분이 수반될 수 있다. 대조적으로 어느 부분이 다른 부분의 "바로 위에" 있다고 언급하는 경우, 그 사이에 다른 부분이 개재되지 않는다.When a part is referred to as being "on" or "on" another part, it may be directly on or on another part, or other parts may be involved in between. In contrast, when a part is referred to as being “directly above” another part, no other part is intervened.

다르게 정의하지는 않았지만, 여기에 사용되는 기술용어 및 과학용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 보통 사용되는 사전에 정의된 용어들은 관련기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Although not defined differently, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms defined in a commonly used dictionary are additionally interpreted as having a meaning consistent with the related technical literature and the presently disclosed content, and are not interpreted in an ideal or very formal meaning unless defined.

또한, 특별히 언급하지 않는 한 %는 중량%를 의미하며, 1ppm 은 0.0001중량%이다.In addition, unless otherwise specified,% means% by weight, and 1 ppm is 0.0001% by weight.

이하, 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement the present invention. However, the present invention may be implemented in various different forms and is not limited to the embodiments described herein.

본 발명의 일 실시예에 의한 무방향성 전기강판은 중량%로, C:0.005%이하(0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하(0%는 제외함), N:0.005%이하(0%는 제외함), S:0.001% 내지 0.006%, Ti:0.005%이하(0%는 제외함), O:0.005%이하(0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하고, 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크다.Non-oriented electrical steel sheet according to an embodiment of the present invention is a weight percent, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0% , P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance contain Fe and other inevitable impurities, satisfy the following Equation 1, and the average size of oxides in the precipitate is larger than the average size of non-oxides.

[식 1][Equation 1]

Figure 112015126599529-pat00003
Figure 112015126599529-pat00003

(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량(중량%)을 나타낸다.)(However, [Si], [Al] and [Mn] in Equation 1 represent the contents (% by weight) of Si, Al and Mn, respectively.)

본 발명의 일 실시예에서는 무방향성 전기강판의 성분 중에서도 특히 Si, Al, Mn 등의 성분을 정밀하게 조절하여, 석출물이 가능한한 크게 생성되고, 석출물이 단독으로 존재하지 않고 복합적으로 석출하게 함으로서 석출물이 크게 석출하고자 하였다. 또한 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크게 형성함으로써 자성을 향상시킨다.In one embodiment of the present invention, among the components of the non-oriented electrical steel sheet, in particular, components such as Si, Al, and Mn are precisely controlled to produce the precipitates as large as possible, and the precipitates do not exist alone and are precipitated in a complex manner. This largely attempted to precipitate. In addition, the average size of oxides in the precipitate is formed larger than that of non-oxides, thereby improving magnetism.

본 발명의 일 실시예에서 첨가하는 원소는 Si, Mn, Al, P 또는 필요에 따라 Sn, Sb이며, 모재의 Fe가 있다. 그 외의 첨가되는 원소는 O, C, N, S 등이 있으며 이들은 낮게 관리될 필요가 있다. 이들 원소 N나 C가 다른 원소와 만드는 질화물과 탄화물이 있으며, Al, Mn, Si 및 Fe 등이 O와 만드는 산화물, 그리고 Mn과 Cu가 S와 만드는 황화물 등이 있으며, 이들은 단독 또는 복합하여 발생한다.Elements added in an embodiment of the present invention are Si, Mn, Al, P, or Sn, Sb as needed, and Fe of the parent material. Other elements to be added include O, C, N, and S, and they need to be kept low. There are nitrides and carbides made by these elements N and C with other elements, oxides made by O, such as Al, Mn, Si, and Fe, and sulfides made by Mn and Cu, and S, and these occur alone or in combination. .

본 발명의 일 실시예에서는 석출물을 조대화하고자 하였고, 특히 석출물이 단독이 아닌 복합적으로 석출되도록 함으로써 보다 용이하게 성장시키고자 하였다. 그 중에서 산화물은 추가 원소를 들이지 않고도 가능한 원소이어서 보다 조대화가 용이하였다. 이를 통해 전기강판의 자성이 향상됨을 확인할 수 있었다.In an embodiment of the present invention, the precipitate was to be coarsened, and in particular, it was intended to be grown more easily by allowing the precipitate to precipitate in a complex rather than singly. Among them, oxides were more easily coarsened because they were possible without adding additional elements. Through this, it was confirmed that the magnetic properties of the electrical steel sheet were improved.

본 발명의 일 실시예에서는 석출물 중에서 산화물이 전체 석출물 개수의 50% 이상이었으며, 산화물 중에서도 특히 FeO가 40% 이상을 차지하였다. 특히 석출물이 복합적으로 석출하는데 산화물의 영향이 크게 작용하였다. 이들 산화물은 제강 작업할 때 O를 낮추었으나 강 중에 산화물로 잔존 또는 소둔 후 석출되는 것으로 판단된다. 황화물은 슬라브 재가열하고 열간압연 후 냉각할 때 상당량 석출되며, 이들은 CuS, MnS 또는 이들의 복합 석출물로 석출되어 나타났다. 하지만 산화물은 황화물 보다는 FeO, Al2O3, SiO2 등의 산화물의 복합 석출물이 많았고, 산화물이 질화물과 탄화물과의 결합은 상대적으로 적다.In one embodiment of the present invention, oxides of the precipitates accounted for 50% or more of the total number of precipitates, and especially FeO accounted for 40% or more among oxides. In particular, the effect of oxides had a great effect on the complex precipitation of precipitates. These oxides lowered O during steelmaking, but it is believed that they remain as oxides in the steel or precipitate after annealing. Sulfides precipitated in a considerable amount when the slab was reheated and cooled after hot rolling, and these were precipitated as CuS, MnS, or complex precipitates thereof. However, oxides have more complex precipitates of oxides such as FeO, Al 2 O 3 , and SiO 2 than sulfides, and oxides have relatively little bonds with nitrides and carbides.

본 발명의 일 실시예에서 발생된 석출물 중 산화물은 단독 또는 복합으로 존재하며 평균 크기가 15nm 내지 70nm 이었고, 평균수량은 1mm2당 10,000개에서 400,000개로 확인되었다. 또한 석출물 중 비산화물은 단독 또는 복합하여 평균크기가 10nm 내지 50nm 이고, 평균수량은 1mm2당 5,000개에서 200,000개로 확인되었다.Among the precipitates generated in an embodiment of the present invention, oxides exist alone or in combination and have an average size of 15 nm to 70 nm, and the average amount was found to be from 10,000 to 400,000 per 1 mm 2 . In addition, non-oxides among the precipitates were found to have an average size of 10 nm to 50 nm, alone or in combination, and an average amount of 5,000 to 200,000 per 1 mm 2 .

이처럼 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크게 형성함으로써 결정립 성장을 용이하게 할 수 있고, 구체적으로 평균 결정립 크기를 50 내지 180㎛로 할 수 있다. 이 때 결정립 크기는 전기강판 분야에서 일반적으로 사용되는 절편법(intercept method)에 의해 측정된 결정립 크기를 의미한다.As described above, the average size of the oxide in the precipitate is formed larger than the average size of the non-oxide, thereby facilitating grain growth, and specifically, the average grain size may be 50 to 180 μm. At this time, the grain size means the grain size measured by the intercept method generally used in the field of electrical steel.

무방향성 전기강판의 성분 한정의 이유를 하기에 설명한다.The reasons for limiting the components of the non-oriented electrical steel sheet will be described below.

Si: 1.0 내지 4.0 중량%Si: 1.0 to 4.0% by weight

실리콘(Si)은 강의 비저항을 증가시켜서 철손 중 와류손실을 낮추는 성분이기 때문에 첨가되는 주요 원소이며 산화물을 쉽게 형성하는 원소이다. Si가 너무 적게 함유되면 저철손 특성을 얻기 어렵고, Si가 너무 많이 첨가되면 냉간압연이 곤란할 수 있다. 따라서 1.0 내지 4.0 중량%로 제한할 수 있다.Silicon (Si) is a major element added because it is a component that lowers eddy current loss during iron loss by increasing the specific resistance of steel and is an element that easily forms oxides. If too little Si is contained, it is difficult to obtain low iron loss characteristics, and if too much Si is added, cold rolling may be difficult. Therefore, it can be limited to 1.0 to 4.0% by weight.

Mn:0.1 내지 1.0중량% Mn: 0.1 to 1.0% by weight

망간(Mn)은 Si, Al등과 더불어 비저항을 증가시켜 철손을 낮추는 효과가 있기 때문에 Mn을 적어도 0.1 중량%이상 첨가함으로써 철손을 개선하려는 목적으로 첨가된다. 그러나 Mn 첨가량이 증가할수록 포화자속밀도가 감소하기 때문에 자속밀도가 감소하며 또한 S와 결합하여 미세한 MnS 석출물을 형성하여 결정립 성장을 억제하며 자벽 이동을 방해하여 철손 중 특히 이력 손실을 증가시키는 단점이 있어서 1.0 중량% 이하로 첨가한다.Manganese (Mn) is added for the purpose of improving iron loss by adding at least 0.1% by weight of Mn since it has an effect of lowering iron loss by increasing specific resistance along with Si and Al. However, since the saturation magnetic flux density decreases as the amount of Mn added increases, the magnetic flux density decreases, and it combines with S to form fine MnS precipitates to inhibit crystal grain growth and hinder magnetic wall movement, thereby increasing hysteresis loss, especially among iron losses. It is added at 1.0% by weight or less.

Al:0.15 내지 1.5중량% Al: 0.15 to 1.5% by weight

알루미늄(Al)은 제강공정에서 강의 탈산을 위하여 불가피하게 첨가되는 원소로서 비저항을 증가시키는 주요 원소이기 때문에 철손을 낮추기 위하여 많이 첨가되지만 첨가하여 포화 자속밀도를 감소시키는 역할도 한다. 또한 Al 첨가량이 과도하게 적으면 미세한 AlN을 형성시켜 결정립 성장을 억제하여 자성을 저하시킬 수 있다. 또한 Al이 너무 많이 첨가되면 자속밀도가 감소되는 원인이 되므로 그 첨가량을 0.15 내지 1.5 중량%로 제한할 수 있다.Aluminum (Al) is an element that is inevitably added for deoxidation of steel in the steel making process, and is a major element that increases the specific resistance, so it is often added to lower iron loss, but it also plays a role in reducing the saturation magnetic flux density by adding it. In addition, when the amount of Al added is excessively small, fine AlN is formed to suppress crystal grain growth, thereby reducing magnetism. In addition, if too much Al is added, it causes the magnetic flux density to decrease, so the amount of Al may be limited to 0.15 to 1.5% by weight.

P: 0.2 중량% 이하P: 0.2% by weight or less

인(P)은 비저항을 증가시켜 철손을 낮추며 결정립계에 편석함으로써 자성에 유해한 집합조직의 형성을 억제하고 유리한 집합조직인 {100}을 형성하나 너무 많이 첨가되면 압연성을 저하시키므로 0.2 중량% 이하로 제한할 수 있다.Phosphorus (P) increases the specific resistance, lowers iron loss, and segregates at grain boundaries to suppress the formation of a grainy structure that is harmful to magnetism, and forms an advantageous texture, {100}. However, if too much is added, it is limited to 0.2% by weight or less because it lowers the rollability. can do.

C:0.005 중량% 이하C: 0.005% by weight or less

탄소(C)는 많이 첨가될 경우 오스테나이트 영역을 확대하며 상변태 구간을 증가시키고 소둔 할 때 페라이트의 결정립성장을 억제하여 철손을 높이는 효과를 나타내며, 또한 Ti등과 결합하여 탄화물을 형성하여 자성을 열위시키며 최종제품에서 전기 제품으로 가공 후 사용 시 자기시효에 의하여 철손을 높이기 때문에 0.005 중량% 이하로 제한할 수 있다.When a large amount of carbon (C) is added, it expands the austenite region, increases the phase transformation section, and suppresses the grain growth of ferrite when annealing, thereby increasing the iron loss. Also, it combines with Ti to form carbides, resulting in poor magnetism. When used after processing from the final product to an electrical product, it can be limited to 0.005% by weight or less because the iron loss is increased by magnetic aging.

N:0.005 중량% 이하N: 0.005% by weight or less

질소(N)는 Al, Ti등과 강하게 결합함으로써 질화물을 형성하여 결정립 성장을 억제하는 등 자성에 해로운 원소이므로 적게 함유시키는 것이 바람직하며, 0.005 중량% 이하로 제한할 수 있다.Nitrogen (N) is an element that is harmful to magnetism, such as forming nitride by strongly bonding with Al, Ti, etc. to suppress crystal grain growth, so it is preferable to contain less nitrogen (N), and may be limited to 0.005% by weight or less.

S:0.001 내지 0.006중량%S: 0.001 to 0.006% by weight

황(S)은 자기적 특성에 유해한 MnS, CuS 및 (Cu,Mn)S 등의 황화물을 형성하는 원소이므로 가능한 한 낮게 첨가하는 것이 바람직하다. 하지만 너무 적게 첨가될 경우 오히려 집합조직 형성에 불리하여 자성이 저하될 수 있다. 또한 너무 많이 첨가될 경우는 미세한 황화물의 증가로 인해 자성이 열위해질 수 있다. 따라서 0.001 내지 0.006 중량%로 제한할 수 있다.Sulfur (S) is an element that forms sulfides such as MnS, CuS, and (Cu,Mn)S, which are harmful to magnetic properties, so it is preferable to add it as low as possible. However, if too little is added, the magnetism may be deteriorated because it is disadvantageous to the formation of the texture. In addition, if too much is added, magnetism may be deteriorated due to the increase of fine sulfides. Therefore, it can be limited to 0.001 to 0.006% by weight.

Ti:0.005 중량% 이하Ti: 0.005% by weight or less

티타늄(Ti)은 미세한 탄화물과 질화물을 형성하여 결정립성장을 억제하며 많이 첨가될 수록 증가된 탄화물과 질화물로 인해 집합 조직도 열위하게 되어 자성이 나빠지게 된다. 따라서 0.005 중량% 이하로 제한할 수 있다.Titanium (Ti) suppresses grain growth by forming fine carbides and nitrides, and as more carbides and nitrides are added, the texture becomes inferior due to the increased carbides and nitrides, resulting in poor magnetic properties. Therefore, it can be limited to 0.005% by weight or less.

O : 0.005 중량% 이하O: 0.005% by weight or less

산소(O)는 여러가지 산화물을 만들어 결정립성장을 억제하기 때문에 가능한 낮게 함유시킬 수 있다. 따라서 0.005 중량% 이하로 제한할 수 있다.Oxygen (O) can be contained as low as possible because it suppresses grain growth by making various oxides. Therefore, it can be limited to 0.005% by weight or less.

Sn, Sb: 0.01 내지 0.2중량%Sn, Sb: 0.01 to 0.2% by weight

주석(Sn)과 안티몬(Sb)은 결정립계에 편석원소로써 결정립계를 통한 질소의 확산을 억제하며 자성에 해로운 {111} 집합조직을 억제하고 유리한 {100}집합조직을 증가시켜 자기적 특성을 향상시키기 위하여 첨가하며, Sn 및 Sb 각각 단독 또는 그 합이 너무 많이 첨가하면 결정립 성장을 억제하여 자성을 떨어뜨리고 압연성상이 나빠질 수 있다. 따라서, Sn 또는 Sb를 포함하는 경우, Sn 및 Sb 각각 단독 또는 그 합으로 0.01 내지 0.2 중량%로 제한할 수 있다.Tin (Sn) and antimony (Sb) are segregation elements in the grain boundaries, suppressing the diffusion of nitrogen through the grain boundaries, suppressing the {111} texture harmful to magnetism, and increasing the advantageous {100} aggregate structure to improve magnetic properties. If the Sn and Sb are added alone or too much, the grain growth may be suppressed to lower the magnetism and the rolling properties may deteriorate. Therefore, when it contains Sn or Sb, it may be limited to 0.01 to 0.2% by weight of each of Sn and Sb alone or as a sum.

특히 본 발명의 일 실시예에서는 첨가원소 중에서 Si, Mn, Al을 하기 식 1을 만족하도록 조절함으로써 Mn함량이 높지 않으면서 Si함량이 높은 조건을 갖도록 하며 Al도 상당량 함유시켜 AlN 등을 억제하도록 하였다.In particular, in an embodiment of the present invention, Si, Mn, and Al among the added elements are adjusted to satisfy Equation 1 below, so that the Mn content is not high and the Si content is high, and Al is also contained in a significant amount to suppress AlN, etc. .

[식 1][Equation 1]

Figure 112015126599529-pat00004
Figure 112015126599529-pat00004

(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량(중량%)을 나타낸다.)(However, [Si], [Al] and [Mn] in Equation 1 represent the contents (% by weight) of Si, Al and Mn, respectively.)

본 발명의 일 실시예에 의한 무방향성 전기강판의 제조 방법은 중량%로, C:0.005%이하(0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하(0%는 제외함), N:0.005%이하(0%는 제외함), S:0.001% 내지 0.006%, Ti:0.005%이하(0%는 제외함), O:0.005%이하(0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계; 열연판을 권취 후 냉각하는 단계; 열연판을 소둔하고 냉각하는 단계; 열연 소둔판을 냉간 압연하여 냉연판을 제조하는 단계; 및 냉연판을 최종 소둔하고 냉각하는 단계를 포함하고, 열연판을 권취 후 냉각하는 단계에서 600℃ 이상에서 30분 이상 유지하여 냉각하고, 열연판 소둔하고 냉각하는 단계에서 600℃ 이상에서 5초 이상 냉각하고, 냉연판을 최종 소둔하고 냉각하는 단계에서 600℃ 이상에서 5초 이상 냉각한다.The method of manufacturing a non-oriented electrical steel sheet according to an embodiment of the present invention is in weight %, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 To 1.0%, P: 0.2% or less (excluding 0%), N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (excluding 0%) , O: 0.005% or less (excluding 0%) and the balance comprises Fe and other unavoidable impurities, heating the slab satisfying the following formula 1 and then hot rolling to prepare a hot-rolled sheet; Cooling the hot-rolled sheet after winding; Annealing and cooling the hot-rolled sheet; Cold rolling a hot-rolled annealed sheet to manufacture a cold-rolled sheet; And final annealing and cooling the cold-rolled sheet, and in the step of cooling the hot-rolled sheet after winding it, maintaining it at 600°C or higher for 30 minutes or more, and cooling the hot-rolled sheet by annealing and cooling the hot-rolled sheet for 5 seconds or more at 600°C or higher. After cooling, the cold-rolled sheet is cooled at 600°C or higher for 5 seconds or longer in the final annealing and cooling step.

본 발명의 일 실시예에서는 열연판 제조 후, 열연판 소둔 후, 냉연판 소둔 후 냉각할 때 천천히 냉각하여 석출물이 성장하는 시간을 갖도록 하여 자성을 향상하고자 하였다. In one embodiment of the present invention, after the hot-rolled sheet is manufactured, the hot-rolled sheet is annealed, and then the cold-rolled sheet is annealed and then cooled, slowly cooling to have a time for the precipitate to grow, thereby improving magnetic properties.

이하에서는 각 단계별로 공정을 설명한다.Hereinafter, the process will be described for each step.

먼저 슬라브를 가열한 후 열간 압연하여 열연판을 제조한다. 각 조성의 첨가 비율을 한정한 이유는 전술한 무방향성 전기강판의 한정 이유와 동일하다. 후술할 열간 압연, 열연판 소둔, 냉간 압연, 최종 소둔 등의 과정에서 슬라브의 조성은 실질적으로 변동되지 아니하므로, 슬라브의 조성과 무방향성 전기강판의 조성이 실질적으로 동일하다.First, the slab is heated and then hot-rolled to produce a hot-rolled sheet. The reason for limiting the addition ratio of each composition is the same as the reason for limiting the non-oriented electrical steel sheet described above. Since the composition of the slab does not change substantially during the process of hot rolling, hot-rolled sheet annealing, cold rolling, and final annealing to be described later, the composition of the slab and the composition of the non-oriented electrical steel sheet are substantially the same.

슬라브를 가열로에 장입하여 1,200℃ 이하로 가열할 수 있다. 가열 온도가 너무 높을 경우 슬라브 내에 존재하는 AlN, MnS등의 석출물이 재고용된 후 열간 압연 시 미세 석출되어 결정립 성장을 억제하고 자성을 저하시킬 수 있다. 더욱 구체적으로 1,050℃ 내지 1,200℃에서 가열할 수 있다.It can be heated to 1,200℃ or less by charging the slab to the heating furnace. If the heating temperature is too high, precipitates such as AlN and MnS present in the slab are re-dissolved and then finely precipitated during hot rolling, thereby inhibiting grain growth and lowering magnetism. More specifically, it can be heated at 1,050°C to 1,200°C.

가열된 슬라브는 1.4mm 내지 3mm로 열간 압연하여 열연판으로 제조된다. 열간 압연할 때 사상압연에서의 마무리압연은 페라이트상에서 종료하며 판형상 교정을 위하여 최종 압하율은 20%이하로 실시한다.The heated slab is made into a hot-rolled sheet by hot rolling to 1.4mm to 3mm. When hot rolling, finish rolling in finish rolling is finished in ferrite, and the final rolling reduction ratio is less than 20% for plate shape correction.

다음으로 열연판을 권취 후 냉각한다. 열연판은 600℃ 내지 800℃의 온도에서 권취하고, 공기중이나 별도의 노에 넣어서 냉각한다. 냉각할 때의 온도는 600℃ 이상에서 적어도 30분 이상 유지될 수 있도록 한다. 온도가 너무 낮거나 시간이 짧게 유지되면 석출물의 성장이 어려워 미세하게 석출될 수 있다. 더욱 구체적으로 600 내지 800℃의 온도에서 30분 내지 3시간 동안 유지될 수 있다.Next, the hot-rolled sheet is wound and cooled. The hot-rolled sheet is wound at a temperature of 600°C to 800°C, and cooled by putting it in air or in a separate furnace. When cooling, the temperature should be kept above 600℃ for at least 30 minutes. If the temperature is too low or the time is kept short, the growth of the precipitate is difficult and may be finely precipitated. More specifically, it may be maintained for 30 minutes to 3 hours at a temperature of 600 to 800 ℃.

다음으로 열연판을 소둔하고 냉각한다. 자성개선을 위하여 열연판을 소둔하는 것이며, 열연판 소둔 온도는 850 내지 1,150℃로 한다. 열연판 소둔 온도가 너무 낮으면 결정립 성장이 불충분할 수 있다. 열연판 소둔 온도가 너무 높으면 결정립이 과도하게 성장하고 판의 표면 결함이 과다해 질 수 있다. Next, the hot-rolled sheet is annealed and cooled. The hot-rolled sheet is annealed for magnetic improvement, and the hot-rolled sheet annealing temperature is set at 850 to 1,150°C. If the hot-rolled sheet annealing temperature is too low, grain growth may be insufficient. If the hot-rolled sheet annealing temperature is too high, grains may grow excessively and surface defects of the sheet may become excessive.

열연판 소둔 후 냉각할 때 냉각은 급냉하지 않고 600℃ 이상에서 5초 이상 유지한다. 냉각할 때 온도가 너무 낮거나, 유지 시간이 짧으면 석출물이 조대화가 어렵고 판이 휠 수도 있다. 더욱 구체적으로 냉각시 온도는 600 내지 800℃가 될 수 있고, 5 내지 30초간 유지할 수 있다.When cooling the hot-rolled sheet after annealing, the cooling is not rapidly cooled and maintained at 600℃ or higher for 5 seconds or longer. If the temperature is too low during cooling or the holding time is short, the precipitate may be difficult to coarsen and the plate may be bent. More specifically, the temperature during cooling may be 600 to 800°C, and may be maintained for 5 to 30 seconds.

열연판 소둔 후 산세할 수도 있다.It can also be pickled after annealing the hot-rolled sheet.

다음으로, 열연 소둔판을 냉간 압연하여 냉연판을 제조한다. 냉간 압연은 0.1mm에서 0.7mm의 두께로 최종 압연하며, 필요시 1차 냉간압연, 중간소둔, 2차 냉간 압연할 수 있으며, 최종 압하율은 50 내지 95%의 범위로 할 수 있다.Next, the hot-rolled annealed sheet is cold-rolled to produce a cold-rolled sheet. Cold rolling is finally rolled to a thickness of 0.1mm to 0.7mm, and if necessary, primary cold rolling, intermediate annealing, and secondary cold rolling can be performed, and the final rolling reduction can be in the range of 50 to 95%.

다음으로, 냉연판을 최종 소둔하고 냉각한다. 냉연판을 소둔하는 공정에서 소둔할 때 냉연판 소둔의 균열온도는 850 내지 1,100℃로 한다. 냉연판 소둔온도가 850℃이하에서는 결정립의 성장이 미흡하여 자성에 해로운 집합 조직인 {111} 집합조직이 증가하며, 1100℃이상에서는 결정립이 과도하게 성장하여 자성에 나쁜 영향을 미칠 수 있기 때문에 냉연판의 균열온도는 850 내지 1100℃로 한다.Next, the cold-rolled sheet is finally annealed and cooled. When annealing in the process of annealing the cold-rolled sheet, the cracking temperature of the annealing of the cold-rolled sheet is 850 to 1,100°C. Cold-rolled sheet When the annealing temperature is 850℃ or less, grain growth is insufficient, resulting in an increase in the texture of {111}, which is harmful to magnetism, and above 1100℃, the grains grow excessively and adversely affect magnetism. The cracking temperature of is set to 850 to 1100°C.

냉연판 소둔 후 냉각할 때 냉각은 급냉하지 않고 600℃ 이상에서 5초 이상 유지한다. 냉각할 때 온도가 너무 낮거나, 유지 시간이 짧으면 미세한 석출물이 단독으로 석출될 수 있다. 더욱 구체적으로 냉각시 온도는 600 내지 800℃가 될 수 있고, 5 내지 30초간 유지할 수 있다.When cooling after annealing the cold rolled sheet, the cooling is not rapidly cooled and maintained at 600℃ or higher for 5 seconds or longer. If the temperature is too low or the holding time is short during cooling, fine precipitates may be precipitated alone. More specifically, the temperature during cooling may be 600 to 800°C, and may be maintained for 5 to 30 seconds.

소둔판은 절연피막처리 후 고객사로 출하된다. 상기 절연피막은 유기질, 무기질 및 유무기 복합피막으로 처리될 수 있으며, 기타 절연이 가능한 피막제로 처리하는 것도 가능하다. 고객사는 강판을 가공 후 그대로 사용할 수 있다.The annealed plate is shipped to the customer after insulating film treatment. The insulating film may be treated as an organic, inorganic, and organic-inorganic composite film, or may be treated with other insulating film. Customers can use the steel plate as it is after processing.

이하에서는 실시예를 통하여 본 발명을 좀더 상세하게 설명한다. 그러나 이러한 실시예는 단지 본 발명을 예시하기 위한 것이며, 본 발명이 여기에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. However, these examples are only for illustrating the present invention, and the present invention is not limited thereto.

실시예Example 1 One

진공 용해를 통하여 하기 표 1 및 표 2와 같이 조성되는 강괴를 제조하여 Si, Al, Mn의 중량%의 양이 식 1을 만족하는 발명강 A1에서 A7까지, 그리고 식 1을 만족하지 못하는 A8에서 A12까지 비교강을 용해하였다.Inventive steels A1 to A7 satisfying Equation 1 and A8 not satisfying Equation 1 by producing a steel ingot composed as shown in Table 1 and Table 2 below. Comparative steel was dissolved up to A12.

진공용해강 A1 내지 A7은 Si, Al, Mn 함량이 발명의 범위로 제조하고 각 강괴는 1120℃에서 가열하고, 2.2mm의 두께로 열간압연한 후 권취하고 표 2에서와 같이 대기 중에서 서냉하여 권취하고 냉각한 열연강판은 5분간 질소 분위기에서 소둔하고, 질소와 산소가 혼재하는 분위기의 600℃ 이상 온도에서 서냉하고 최종 물을 뿌려 급냉하였다. 소둔한 열연판은 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판의 최종 소둔은 수소 30%와 질소 70%의 분합분위기에서 2분간 소둔하였다. 냉각대는 수소 40%와 질소의 분위기에서 냉각하였다. 최종 소둔판은 각각의 시편에 대하여 산화물, 황화물, 탄화물, 질화물 및 그 복합 석출물의 크기 및 수량을 조사하였고 결정립 및 자성을 측정하여 하기 표 3에 정리하였다.Vacuum melted steels A1 to A7 are manufactured with Si, Al, Mn content within the scope of the invention, and each steel ingot is heated at 1120℃, hot-rolled to a thickness of 2.2mm, wound, and slowly cooled in the atmosphere as shown in Table 2. The taken and cooled hot-rolled steel sheet was annealed in a nitrogen atmosphere for 5 minutes, slowly cooled at a temperature of 600° C. or higher in an atmosphere in which nitrogen and oxygen are mixed, and then quenched by sprinkling final water. The annealed hot-rolled sheet was pickled and then cold-rolled to a thickness of 0.35 mm, and the final annealing of the cold-rolled sheet was annealed for 2 minutes in a mixed atmosphere of 30% hydrogen and 70% nitrogen. The cooling zone was cooled in an atmosphere of 40% hydrogen and nitrogen. In the final annealed plate, the sizes and quantities of oxides, sulfides, carbides, nitrides, and complex precipitates thereof were investigated for each specimen, and crystal grains and magnetic properties were measured and summarized in Table 3 below.

석출물의 크기, 종류 및 분포를 분석하기 위한 방법으로는 시편으로부터 추출된 carbon replica를 TEM으로 관찰하며 EDS로 분석하는 방법을 사용하였다. TEM 관찰은 치우침이 없이 무작위로 선택된 영역으로 EDS spectrum을 통하여 석출물의 종류를 분석하였다.As a method for analyzing the size, type and distribution of precipitates, a carbon replica extracted from the specimen was observed with TEM and analyzed with EDS. TEM observation was a randomly selected area without bias, and the type of precipitate was analyzed through EDS spectrum.

철손(W15/50)은 50Hz주파수에서 1.5Tesla의 자속밀도가 유기되었을 때의 압연방향과 압연방향 수직방향의 평균 손실(W/kg)로 측정하였다.The iron loss (W 15/50 ) was measured as the average loss (W/kg) in the rolling direction and the vertical direction in the rolling direction when the magnetic flux density of 1.5 Tesla was induced at 50 Hz frequency.

자속밀도(B50)는 5000A/m의 자기장을 부가하였을 때 유도되는 자속밀도의 크기(Tesla)로 측정하였다.The magnetic flux density (B 50 ) was measured as the magnitude of the magnetic flux density (Tesla) induced when a magnetic field of 5000A/m was added.

구분division CC SiSi AlAl MnMn PP SS NN TiTi SnSn SbSb A1A1 0.00250.0025 1.561.56 0.250.25 0.420.42 0.0310.031 0.00240.0024 0.00140.0014 0.00020.0002 0.0260.026 0.0120.012 A2A2 0.00280.0028 2.642.64 0.220.22 0.40.4 0.0360.036 0.00210.0021 0.00210.0021 0.00150.0015 0.0190.019 0 0 A3A3 0.00250.0025 2.822.82 0.820.82 0.80.8 0.0450.045 0.00280.0028 0.00140.0014 0.00170.0017 00 00 A4A4 0.00220.0022 2.952.95 0.780.78 0.620.62 0.0550.055 0.00210.0021 0.00120.0012 0.00160.0016 00 00 A5A5 0.00250.0025 2.822.82 1.31.3 0.450.45 0.0320.032 0.00150.0015 0.00250.0025 0.00110.0011 0 0 0.0310.031 A6A6 0.00280.0028 2.912.91 0.320.32 0.520.52 0.0310.031 0.00180.0018 0.00210.0021 0.00110.0011 0.0240.024 0.0210.021 A7A7 0.00220.0022 3.33.3 0.250.25 0.40.4 0.0350.035 0.00320.0032 0.00260.0026 0.00150.0015 0.0360.036 0.0150.015 A8A8 0.00210.0021 0.520.52 0.0020.002 0.450.45 0.0310.031 0.00240.0024 0.00140.0014 0.00020.0002 0.0260.026 0.0120.012 A9A9 0.00260.0026 1.431.43 0.250.25 0.620.62 0.0450.045 0.00010.0001 0.00150.0015 0.00190.0019 0.0250.025 0.0310.031 A10A10 0.00230.0023 2.242.24 0.120.12 0.720.72 0.0550.055 0.00320.0032 0.00180.0018 0.00210.0021 0 0 0.0190.019 A11A11 0.00270.0027 2.512.51 0.450.45 0.90.9 0.0230.023 0.00350.0035 0.00210.0021 0.00210.0021 0.0350.035 0 0 A12A12 0.00290.0029 2.962.96 0.740.74 1.31.3 0.0190.019 0.00190.0019 0.00190.0019 0.00250.0025 0.0430.043 0 0

강종Steel grade 식 1 만족 여부Whether Equation 1 is satisfied 권취후 냉각Cooling after winding 열연판소둔 Hot rolled sheet annealing 냉연판소둔Cold rolled sheet annealing 비고Remark 온도(℃)Temperature(℃) 시간(분) Time (minutes) 소둔온도(℃)Annealing temperature (℃) 600℃이상 유지 시간(초)Holding time over 600℃ (sec) 소둔온도(℃)Annealing temperature (℃) 600℃이상 유지 시간(초)Holding time over 600℃ (sec) A1A1 O O 700700 6060 900900 1010 900900 88 발명강1Invention Lesson 1 A2A2 O O 650650 6060 10001000 1212 10301030 1515 발명강2Invention Lesson 2 A3A3 O O 650650 6060 10001000 1010 10301030 1515 발명강3Invention Lesson 3 A4A4 O O 650650 6060 10001000 77 10301030 1515 발명강4Invention Lesson 4 A5A5 O O 650650 6060 10001000 77 10501050 1515 발명강5Invention Lesson 5 A6A6 OO 650650 6060 10001000 1010 10501050 1515 발명강6Invention Lesson 6 A7A7 OO 650650 6060 10001000 1010 10501050 1515 발명강7Invention Lesson 7 A8A8 XX 700700 6060 900900 1010 900900 88 비교강1Comparative Steel 1 A9A9 XX 700700 6060 900900 1212 900900 88 비교강2Comparative lecture 2 A10A10 XX 650650 6060 10001000 1212 10501050 1515 비교강3Comparative lecture 3 A11A11 XX 650650 6060 10001000 1212 10501050 1515 비교강4Comparative lecture 4 A12A12 XX 650650 6060 10001000 1212 10501050 1515 비교강5Comparative lecture 5

강종Steel grade 결정립크기
(㎛)
Grain size
(㎛)
석출물 중 산화물Oxides in the precipitate 석출물 중
FeO비율(%)
Among the precipitates
FeO ratio (%)
석출물 중 비산화물Non-oxides in the precipitate 철손 (W15/50) W/kg Iron loss (W 15/50 ) W/kg 자속밀도 (B50) TeslaMagnetic flux density (B 50 ) Tesla 비고Remark
크기(nm)Size (nm) 비율(%)ratio(%) 크기(nm)Size (nm) 비율(%)ratio(%) A1A1 6060 4545 5555 4545 4040 4545 3.723.72 1.781.78 발명강1Invention Lesson 1 A2A2 8080 4848 6060 5050 4343 4040 2.212.21 1.731.73 발명강2Invention Lesson 2 A3A3 8787 6060 6262 5454 4545 3838 2.122.12 1.711.71 발명강3Invention Lesson 3 A4A4 120120 6565 6565 4848 4646 3535 1.851.85 1.691.69 발명강4Invention Lesson 4 A5A5 120120 5858 7070 5555 4545 3030 1.921.92 1.681.68 발명강5Invention Lesson 5 A6A6 110110 4545 7272 6262 4040 2828 1.951.95 169169 발명강6Invention Lesson 6 A7A7 160160 4848 7070 5555 3535 3030 1.931.93 1.681.68 발명강7Invention Lesson 7 A8A8 4040 3232 3535 2828 3838 6565 6.436.43 1.711.71 비교강1Comparative Steel 1 A9A9 4545 3333 4040 3535 3838 6060 4.524.52 1.691.69 비교강2Comparative lecture 2 A10A10 6060 3131 3535 3232 3737 6565 2.522.52 1.661.66 비교강3Comparative lecture 3 A11A11 6565 2222 4040 3636 3939 6060 2.542.54 1.651.65 비교강4Comparative lecture 4 A12A12 7070 2828 4545 3030 3535 5555 2.322.32 1.621.62 비교강5Comparative lecture 5

표 1 내지 표 3에서 나타나듯이, A1 내지 A7은 전기강판의 조성 범위 및 식 1을 만족하고 있으며, 석출물 중 산화물의 크기가 비산화물의 크기에 비해 큰 것을 확인할 수 있으며, 결정립도 잘 성장되었고, 철손 및 자속밀도도 우수함을 확인할 수 있다. 반면, A8 내지 A12는 전기강판의 조성 범위 및 식 1을 만족하지 아니하며, 일부는 석출물 중 산화물의 크기가 비산화물의 크기에 비해 작은 것을 확인할 수 있다. 따라서 철손 및 자속밀도가 열악함을 확인할 수 있다. As shown in Tables 1 to 3, A1 to A7 satisfy the composition range and Equation 1 of the electrical steel sheet, and it can be seen that the size of the oxide in the precipitate is larger than the size of the non-oxide. And it can be confirmed that the magnetic flux density is excellent. On the other hand, A8 to A12 do not satisfy the composition range and Equation 1 of the electrical steel sheet, and in some cases, it can be seen that the size of the oxide in the precipitate is smaller than the size of the non-oxide. Therefore, it can be confirmed that the iron loss and magnetic flux density are poor.

실시예Example 2 2

진공 용해를 통하여 하기 표 4 및 표 5와 같이 조성되는 강괴를 제조하여 Si, Al, Mn의 중량%의 양이 식 1을 만족하는 발명강 A13에서 A15까지 용해하였다.Inventive steels A13 to A15 were dissolved in the amount of Si, Al, and Mn by weight% satisfying Equation 1 through vacuum melting to prepare steel ingots as shown in Tables 4 and 5 below.

각 강괴는 1120℃에서 가열하고, 2.2mm의 두께로 열간압연한 후 권취하고 표 5에서와 같이 대기 중에서 서냉하여 권취하고 냉각한 열연강판은 5분간 질소 분위기에서 소둔하고, 질소와 산소가 혼재하는 분위기의 600℃ 이상 온도에서 서냉하고 최종 물을 뿌려 급냉하였다. 소둔한 열연판은 산세한 다음 0.35mm 두께로 냉간압연하고, 냉연판의 최종 소둔은 수소 30%와 질소 70%의 분합분위기에서 2분간 소둔하였다. 냉각대는 수소 40%와 질소의 분위기에서 냉각하였다. 최종 소둔판은 각각의 시편에 대하여 산화물, 황화물, 탄화물, 질화물 및 그 복합 석출물의 크기 및 수량을 조사하였고 결정립 및 자성을 측정하여 하기 표 6에 정리하였다.Each steel ingot is heated at 1120℃, hot-rolled to a thickness of 2.2mm, wound up, slowly cooled in the atmosphere as shown in Table 5, and wound up, and the cooled hot-rolled steel sheet is annealed in a nitrogen atmosphere for 5 minutes, Slow cooling was performed at a temperature of 600°C or higher in the atmosphere, and the final water was sprinkled for rapid cooling. The annealed hot-rolled sheet was pickled and then cold-rolled to a thickness of 0.35 mm, and the final annealing of the cold-rolled sheet was annealed for 2 minutes in a mixed atmosphere of 30% hydrogen and 70% nitrogen. The cooling zone was cooled in an atmosphere of 40% hydrogen and nitrogen. In the final annealed plate, the sizes and quantities of oxides, sulfides, carbides, nitrides, and complex precipitates thereof were investigated for each specimen, and crystal grains and magnetic properties were measured and summarized in Table 6 below.

구분division CC SiSi AlAl MnMn PP SS NN TiTi SnSn SbSb A13A13 0.00350.0035 2.122.12 0.310.31 0.20.2 0.0320.032 0.00440.0044 0.00250.0025 0.00130.0013 0 0 0.0350.035 A14A14 0.00240.0024 2.522.52 0.260.26 0.210.21 0.0430.043 0.00220.0022 0.00290.0029 0.00110.0011 0.0410.041 0 0 A15A15 0.00210.0021 3.123.12 0.510.51 0.80.8 0.0450.045 0.00450.0045 0.00220.0022 0.00090.0009 0.0310.031 0 0

강종Steel grade 식 1 만족 여부Whether Equation 1 is satisfied 권취후 냉각Cooling after winding 열연판소둔 및 냉각 Hot rolled sheet annealing and cooling 냉연판소둔 및 냉각Cold rolled sheet annealing and cooling 비고Remark 온도(℃)Temperature(℃) 시간(분) Time (minutes) 소둔온도(℃)Annealing temperature (℃) 600℃이상 유지(초)Maintain over 600℃ (sec) 소둔온도(℃)Annealing temperature (℃) 600℃이상 유지시간Holding time over 600℃ A13A13 OO 650650 5050 950950 1212 980980 1010 발명강8Invention Lecture 8 A13A13 OO 650650 5050 800800 22 980980 22 비교강6Comparative lecture 6 A14A14 OO 620620 8080 10201020 1010 10201020 1111 발명강9Invention Lecture 9 A14A14 OO 620620 8080 10201020 22 10201020 1111 비교강7Comparative Steel 7 A14A14 OO 620620 1One 10201020 22 900900 22 비교강8Comparative lecture 8 A14A14 OO 520520 8080 10201020 22 10201020 22 비교강9Comparative lecture 9 A15A15 OO 650650 3030 10201020 1515 10201020 1212 발명강10Invention Lesson 10 A15A15 OO 650650 1One 10201020 22 10201020 22 비교강10Comparative Steel 10 A15A15 OO 650650 3030 10201020 22 10201020 22 비교강11Comparative Steel 11

강종Steel grade 결정립크기 (㎛)Grain size (㎛) 석출물 중 산화물Oxides in the precipitate 석출물 중
FeO비율(%)
Among the precipitates
FeO ratio (%)
석출물 중 비산화물Non-oxides in the precipitate 철손 (W15/50) W/kg Iron loss (W 15/50 ) W/kg 자속밀도 (B50) TeslaMagnetic flux density (B 50 ) Tesla 비고Remark
크기(nm)Size (nm) 비율(%)ratio(%) 크기(nm)Size (nm) 비율(%)ratio(%) A13A13 7575 4747 6868 5252 3535 3232 2.812.81 1.751.75 발명강8Invention Lecture 8 A13A13 4545 3030 4141 3535 3838 5959 3.523.52 1.721.72 비교강6Comparative lecture 6 A14A14 7878 5252 6565 4545 4646 3535 2.232.23 1.711.71 발명강9Invention Lecture 9 A14A14 6060 2828 3838 3838 3535 6262 2.522.52 1.681.68 비교강7Comparative Steel 7 A14A14 4040 3131 3535 3535 3535 6565 2.432.43 1.671.67 비교강8Comparative lecture 8 A14A14 6060 2828 3636 3232 3636 6464 2.612.61 1.681.68 비교강9Comparative lecture 9 A15A15 120120 6565 8080 5757 3838 2020 2.112.11 1.711.71 발명강10Invention Lesson 10 A15A15 7272 2525 4545 3535 3333 5555 2.432.43 1.651.65 비교강10Comparative Steel 10 A15A15 6767 2121 4242 3636 3333 5858 2.642.64 1.631.63 비교강11Comparative Steel 11

표 4 내지 표 6에서 나타나듯이, 비교강에 비하여 발명강은 권취 후 냉각시간을 충분히 주었고, 열연판 및 냉연판을 소둔 후 600℃ 이상에서 시간을 충분히 주어서 FeO 산화물을 비롯한 산화물의 형성이 잘 되어서 결정립이 잘 성장하였고 자성이 우수함을 확인할 수 있다.As shown in Tables 4 to 6, compared to the comparative steel, the invention steel gave sufficient cooling time after winding, and after annealing the hot-rolled and cold-rolled sheets, sufficient time was given at 600°C or higher to form oxides including FeO oxides. It can be seen that the crystal grains grew well and the magnetism was excellent.

반면, 비교강 6은 열연판소둔 온도가 낮으며 냉각할 때 600℃이상 유지시간이 짧았으며 석출물 중 산화물의 크기가 작으며 그 수량도 작았다. 비교강 7도 열연판 소둔후 냉각시간이 짧아서 석출물 중 산화물이 크기가 비산화물에 비하여 상대적으로 작고 수량이 적었으며, FeO 산화물의 비율도 40%이하로 낮았다. 비교강 8은 권취 후 냉각을 수냉하여 빨리 냉각하였고, 열연판 소둔한 후 600℃이상에서 냉각시간이 짧았으며 냉연판 소둔후 시간도 짧아서 석출물 중 FeO를 비롯한 산화물의 형성이 미흡하여 철손이 상대적으로 높고 자속밀도가 낮다. 비교강 9도 성분은 만족하지만 권취온도가 낮으며, 열연판 소둔 후 냉각시 소둔시간이 짧아서 FeO를 비롯한 산화물 단독 또는 복합 석출물의 크기가 작고 그 수도 비산화물에 비하여 적어서 결정립의 크기도 작고 자성이 저조함을 확인할 수 있다. 비교강 10은 권취 후 냉각을 물속에 급냉하고 비교강 11과 함께 열연판 및 냉연판 소둔 후 냉각시간을 짧게한 결과 석출물 중 FeO비율이 낮고 산화물의 형성이 적어서 결정립이 작고 자성이 미흡한 것을 확인할 수 있다.On the other hand, Comparative Steel 6 had a low hot-rolled sheet annealing temperature and a short holding time of over 600℃ when cooled, and the size of oxides in the precipitate was small, and the quantity was small. The cooling time after annealing of the comparative steel 7 degree hot-rolled sheet was short, so the size of oxides in the precipitate was relatively small and the yield was smaller than that of non-oxides, and the proportion of FeO oxide was also low, 40% or less. Comparative steel 8 was cooled quickly by water cooling after winding, and the cooling time was short at 600℃ or higher after hot-rolled sheet annealing, and the time after cold-rolled sheet annealing was also short, so iron loss was relatively insufficient due to insufficient formation of oxides including FeO in the precipitate. High and low magnetic flux density. Comparative strength 9 degree component is satisfactory, but the coiling temperature is low, and the annealing time is short when cooling after hot-rolled sheet annealing, so the size of oxides alone or complex precipitates including FeO is small and the number of oxides is small compared to non-oxides, so the size of crystal grains is small It can be confirmed that it is poor. As a result of shortening the cooling time after annealing of the hot-rolled and cold-rolled sheets together with Comparative Steel 11 after winding, the comparative steel 10 has a low FeO ratio in the precipitate and the formation of oxides, so that the crystal grains are small and the magnetism is insufficient. have.

본 발명은 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The present invention is not limited to the embodiments, but may be manufactured in a variety of different forms, and those of ordinary skill in the art to which the present invention pertains may use other specific forms without changing the technical spirit or essential features of the present invention. It will be appreciated that it can be implemented. Therefore, it should be understood that the embodiments described above are illustrative in all respects and not limiting.

Claims (17)

중량%로, C:0.005%이하(0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하(0%는 제외함), N:0.005%이하(0%는 제외함), S:0.001% 내지 0.006%, Ti:0.005%이하(0%는 제외함), O:0.005%이하(0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고,
하기 식 1을 만족하고,
석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크고,
상기 석출물 중 산화물이 비산화물에 비해 개수가 많은 무방향성 전기강판.
[식 1]
Figure 112020104701526-pat00005

(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량(중량%)을 나타낸다.)
In wt%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding 0%) , N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance Contains Fe and other unavoidable impurities,
Satisfies Equation 1 below,
The average size of oxides in the precipitate is larger than the average size of non-oxides,
Non-oriented electrical steel sheet in which the number of oxides among the precipitates is greater than that of non-oxides.
[Equation 1]
Figure 112020104701526-pat00005

(However, [Si], [Al] and [Mn] in Equation 1 represent the contents (% by weight) of Si, Al and Mn, respectively.)
삭제delete 제1항에 있어서,
Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 중량% 더 포함하는 무방향성 전기강판.
The method of claim 1,
Non-oriented electrical steel sheet further comprising 0.01 to 0.2% by weight of Sn and Sb, either alone or in combination.
제1항에 있어서,
석출물 중 FeO 또는 FeO가 함유된 석출물의 개수가 40% 이상인 무방향성 전기강판.
The method of claim 1,
Non-oriented electrical steel sheet in which the number of precipitates containing FeO or FeO is 40% or more.
제1항에 있어서,
평균 결정립 입경이 50 내지 180㎛인 무방향성 전기강판.
The method of claim 1,
Non-oriented electrical steel sheet having an average grain size of 50 to 180㎛.
중량%로, C:0.005%이하(0%는 제외함), Si:1.0 내지 4.0%, Al:0.15 내지 1.5%, Mn:0.1 내지 1.0%, P:0.2%이하(0%는 제외함), N:0.005%이하(0%는 제외함), S:0.001% 내지 0.006%, Ti:0.005%이하(0%는 제외함), O:0.005%이하(0%는 제외함) 및 잔부는 Fe 및 기타 불가피한 불순물을 포함하고, 하기 식 1을 만족하는 슬라브를 가열한 후 열간 압연하여 열연판을 제조하는 단계;
상기 열연판을 권취 후 냉각하는 단계;
상기 열연판을 소둔하고 냉각하는 단계;
열연 소둔판을 냉간 압연하여 냉연판을 제조하는 단계; 및
상기 냉연판을 최종 소둔하고 냉각하는 단계를 포함하고,
상기 열연판을 권취 후 냉각하는 단계에서 600℃ 이상에서 30분 이상 유지하여 냉각하고,
상기 열연판 소둔하고 냉각하는 단계에서 600℃ 이상에서 5초 이상 냉각하고,
상기 냉연판을 최종 소둔하고 냉각하는 단계에서 600℃ 이상에서 5초 이상 냉각하고,
제조된 무방향성 전기강판의 석출물 중 산화물의 평균크기가 비산화물의 평균크기에 비해 크고,
상기 석출물 중 산화물이 비산화물에 비해 개수가 많은 무방향성 전기강판의 제조방법.
[식 1]
Figure 112020104701526-pat00006

(단, 식 1에서 [Si], [Al] 및 [Mn]은 각각 Si, Al 및 Mn의 함량(중량%)을 나타낸다.)
In wt%, C: 0.005% or less (excluding 0%), Si: 1.0 to 4.0%, Al: 0.15 to 1.5%, Mn: 0.1 to 1.0%, P: 0.2% or less (excluding 0%) , N: 0.005% or less (excluding 0%), S: 0.001% to 0.006%, Ti: 0.005% or less (excluding 0%), O: 0.005% or less (excluding 0%) and the balance Comprising Fe and other unavoidable impurities, heating a slab that satisfies Equation 1 below, and then hot rolling to prepare a hot-rolled sheet;
Cooling the hot-rolled sheet after winding;
Annealing and cooling the hot-rolled sheet;
Cold rolling a hot-rolled annealed sheet to manufacture a cold-rolled sheet; And
Including the step of final annealing and cooling the cold-rolled sheet,
In the step of cooling the hot-rolled sheet after winding, it is cooled by holding it at 600°C or higher for 30 minutes or longer,
In the step of annealing and cooling the hot-rolled sheet, cooling at 600° C. or higher for 5 seconds or more,
In the final annealing and cooling step of the cold-rolled sheet, it is cooled at 600° C. or higher for 5 seconds or more,
The average size of oxides among the precipitates of the prepared non-oriented electrical steel sheet is larger than that of non-oxides,
A method of manufacturing a non-oriented electrical steel sheet in which the number of oxides among the precipitates is greater than that of non-oxides.
[Equation 1]
Figure 112020104701526-pat00006

(However, [Si], [Al] and [Mn] in Equation 1 represent the contents (% by weight) of Si, Al and Mn, respectively.)
제6항에 있어서,
상기 슬라브는 Sn 및 Sb를 각각 단독 또는 복합으로 0.01 내지 0.2 중량% 더 포함하는 무방향성 전기강판의 제조방법.
The method of claim 6,
The slab is a method of manufacturing a non-oriented electrical steel sheet further comprising 0.01 to 0.2% by weight of Sn and Sb individually or in combination, respectively.
제6항에 있어서,
상기 열연판을 제조하는 단계에서, 상기 슬라브를 1200℃ 이하로 가열하는 무방향성 전기강판의 제조방법.
The method of claim 6,
In the step of manufacturing the hot-rolled sheet, a method of manufacturing a non-oriented electrical steel sheet by heating the slab to 1200°C or less.
제6항에 있어서,
상기 열연판을 권취 후 냉각하는 단계에서 권취온도는 600 내지 800℃인 무방향성 전기강판의 제조방법.
The method of claim 6,
A method of manufacturing a non-oriented electrical steel sheet having a winding temperature of 600 to 800°C in the step of cooling the hot-rolled sheet after winding.
제6항에 있어서,
상기 열연판을 소둔하고 냉각하는 단계에서, 열연판 소둔 온도는 850 내지 1,150℃인 무방향성 전기강판의 제조방법.
The method of claim 6,
In the step of annealing and cooling the hot-rolled sheet, the annealing temperature of the hot-rolled sheet is 850 to 1,150°C.
제6항에 있어서,
상기 열연 소둔판을 냉간 압연하여 냉연판을 제조하는 단계에서, 0.1 내지 0.7mm의 두께로 냉간 압연하는 무방향성 전기강판의 제조방법.
The method of claim 6,
In the step of cold rolling the hot-rolled annealed sheet to produce a cold-rolled sheet, a method of manufacturing a non-oriented electrical steel sheet by cold rolling to a thickness of 0.1 to 0.7 mm.
제6항에 있어서,
상기 열연 소둔판을 냉간 압연하여 냉연판을 제조하는 단계에서, 상기 냉간 압연은 1차 냉간압연, 중간 소둔 및 2차 냉간 압연을 포함하는 무방향성 전기강판의 제조방법.
The method of claim 6,
In the step of producing a cold-rolled sheet by cold rolling the hot-rolled annealed sheet, the cold-rolling is a method of manufacturing a non-oriented electrical steel sheet including primary cold rolling, intermediate annealing, and secondary cold rolling.
제6항에 있어서,
상기 냉연판을 최종 소둔하고 냉각하는 단계에서 소둔시, 소둔의 균열온도는 850 내지 1,100℃인 무방향성 전기강판의 제조방법.
The method of claim 6,
When annealing in the final annealing and cooling step of the cold-rolled sheet, the cracking temperature of the annealing is 850 to 1,100°C.
삭제delete 삭제delete 제6항에 있어서,
석출물 중 FeO 또는 FeO가 함유된 석출물의 개수가 40% 이상인 무방향성 전기강판의 제조방법.
The method of claim 6,
A method of manufacturing a non-oriented electrical steel sheet in which the number of precipitates containing FeO or FeO among the precipitates is 40% or more.
제6항에 있어서,
평균 결정립 입경이 50 내지 180㎛인 무방향성 전기강판의 제조방법.
The method of claim 6,
A method of manufacturing a non-oriented electrical steel sheet having an average grain size of 50 to 180 μm.
KR1020150185425A 2015-12-23 2015-12-23 Non-orientied electrical steel sheet and method for manufacturing the same KR102175064B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150185425A KR102175064B1 (en) 2015-12-23 2015-12-23 Non-orientied electrical steel sheet and method for manufacturing the same
US16/065,788 US20190017137A1 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and manufacturing method therefor
JP2018532686A JP7008021B2 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and its manufacturing method
CN201680076220.XA CN108474076A (en) 2015-12-23 2016-12-23 Non-oriented electromagnetic steel sheet and its manufacturing method
PCT/KR2016/015226 WO2017111549A1 (en) 2015-12-23 2016-12-23 Non-oriented electrical steel sheet and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150185425A KR102175064B1 (en) 2015-12-23 2015-12-23 Non-orientied electrical steel sheet and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20170075592A KR20170075592A (en) 2017-07-03
KR102175064B1 true KR102175064B1 (en) 2020-11-05

Family

ID=59089606

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150185425A KR102175064B1 (en) 2015-12-23 2015-12-23 Non-orientied electrical steel sheet and method for manufacturing the same

Country Status (5)

Country Link
US (1) US20190017137A1 (en)
JP (1) JP7008021B2 (en)
KR (1) KR102175064B1 (en)
CN (1) CN108474076A (en)
WO (1) WO2017111549A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043289B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102178341B1 (en) * 2018-11-30 2020-11-12 주식회사 포스코 Non-oriented electrical steel sheet having superior magneticproperties and method for manufacturing the same
BR112021016820A2 (en) * 2019-03-20 2021-11-16 Nippon Steel Corp Non-Oriented Electrical Steel Sheet
CN112143963A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and continuous annealing method thereof
CN112143964A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with extremely low iron loss and continuous annealing process thereof
CN112143962A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with high magnetic induction and low iron loss and manufacturing method thereof
CN112143961A (en) * 2019-06-28 2020-12-29 宝山钢铁股份有限公司 Non-oriented electrical steel plate with excellent magnetic property and continuous annealing method thereof
CN112430776B (en) * 2019-08-26 2022-06-28 宝山钢铁股份有限公司 Non-oriented electrical steel plate with small magnetic anisotropy and manufacturing method thereof
US20230033301A1 (en) 2019-11-21 2023-02-02 Nippon Steel Corporation Non-oriented electrical steel sheet and method for producing same
KR102325011B1 (en) * 2019-12-20 2021-11-11 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR102468078B1 (en) * 2020-12-21 2022-11-16 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
KR20240012071A (en) * 2022-07-20 2024-01-29 현대제철 주식회사 Non-oriented electrical steel sheet and method for manufacturing the same
WO2024070489A1 (en) * 2022-09-30 2024-04-04 日本製鉄株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing non-oriented electromagnetic steel sheet

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19930519C1 (en) * 1999-07-05 2000-09-14 Thyssenkrupp Stahl Ag Non-textured electrical steel sheet, useful for cores in rotary electrical machines such as motors and generators, is produced by multi-pass hot rolling mainly in the two-phase austenite-ferrite region
JP2984185B2 (en) * 1994-07-26 1999-11-29 川崎製鉄株式会社 Manufacturing method of low iron loss non-oriented electrical steel sheet with small magnetic anisotropy
JPH1088298A (en) * 1996-09-19 1998-04-07 Nkk Corp Nonoriented silicon steel sheet
JP2000008147A (en) * 1998-06-24 2000-01-11 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic characteristic and its production
JP4790151B2 (en) * 2001-05-31 2011-10-12 新日本製鐵株式会社 Non-oriented electrical steel sheet with extremely excellent iron loss and magnetic flux density and method for producing the same
CN100436631C (en) * 2006-05-18 2008-11-26 武汉科技大学 Low-carbon high-manganese oriented electrical steel plate, and its manufacturing method
JP5098430B2 (en) * 2007-05-17 2012-12-12 新日鐵住金株式会社 Non-oriented electrical steel sheet excellent in punching workability and iron loss and manufacturing method
CN102199721B (en) * 2010-03-25 2013-03-13 宝山钢铁股份有限公司 Manufacture method of high-silicon non-oriented cold-rolled sheet
CN102453838A (en) 2010-10-25 2012-05-16 宝山钢铁股份有限公司 High-strength non-oriented electrical steel with high magnetic induction and manufacturing method thereof
JP5713100B2 (en) * 2011-08-18 2015-05-07 新日鐵住金株式会社 Non-oriented electrical steel sheet, method for producing the same, laminated body for motor core and method for producing the same
US9728312B2 (en) * 2011-11-11 2017-08-08 Nippon Steel & Sumitomo Metal Corporation Non-oriented electrical steel sheet and manufacturing method thereof
EP2612942B1 (en) * 2012-01-05 2014-10-15 ThyssenKrupp Steel Europe AG Non-grain oriented electrical steel or sheet metal, component produced from same and method for producing non-grain oriented electrical steel or sheet metal
CN102650016B (en) * 2012-05-24 2014-03-19 宝山钢铁股份有限公司 Manufacturing method for high-magnetic induction low-cost 250 MPa cold-rolled magnetic pole steel
KR20140058935A (en) * 2012-11-07 2014-05-15 주식회사 포스코 Non-oriented electrical steel sheets and method for manufacturing the same
TWI531663B (en) * 2013-04-09 2016-05-01 新日鐵住金股份有限公司 Non-oriented electrical steel sheet and manufacturing method thereof
CN104674136B (en) * 2013-11-28 2017-11-14 Posco公司 The excellent non-oriented electromagnetic steel sheet of permeability and its manufacture method
KR101634092B1 (en) * 2015-10-27 2016-06-28 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method for the same

Also Published As

Publication number Publication date
KR20170075592A (en) 2017-07-03
JP7008021B2 (en) 2022-01-25
CN108474076A (en) 2018-08-31
US20190017137A1 (en) 2019-01-17
JP2019508574A (en) 2019-03-28
WO2017111549A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
KR102175064B1 (en) Non-orientied electrical steel sheet and method for manufacturing the same
CN110114489B (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101648334B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101507942B1 (en) Non-oriented electrical steel steet and method for the same
KR101493059B1 (en) Non-oriented electrical steel steet and method for the same
CN115003843A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101353462B1 (en) Non-oriented electrical steel shteets and method for manufactureing the same
KR102353673B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101353463B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101701195B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101707452B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20130127295A (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101919529B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR101353460B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR102134311B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102099866B1 (en) Grain oriented electrical steel sheet method for manufacturing the same
KR101353459B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
KR101630425B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150016435A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20200076832A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR20150015308A (en) Non-oriented electrical steel sheet and method for manufacturing the same
KR102361872B1 (en) Non-oriented electrical steel sheet and method for manufacturing the same
JP2024517690A (en) Non-oriented electrical steel sheet and its manufacturing method
KR101353461B1 (en) Non-oriented electrical steel sheets and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right